Supporting information for

ZIP-8/Ag-based Size-selective SERS Nanoplatform for Ultrasensitive Urea Detection in Milk Samples: Effects of Analyte Molecular Dimensions on

Adsorption Capacity and Sensing Performance

Dao Thi Nguyet Nga^{a,1}, Quan Doan Mai^a, Linh Ho Thuy Nguyen^{d,e}, Tan Le Hoang Doan^{d,e}

Vu Thi Kim Oanh^b, Ta Ngoc Bach^b, Vu Dinh Lam^b, Ha Anh Nguyen^{a,*,1}, Anh-Tuan Le^{a,c,**}

^aPhenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam

^bInstitute of Materials Science (IMS) and Graduate University of Science and Technology

(GUST), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Vietnam

^cFaculty of Materials Science and Engineering (MSE), Phenikaa University, Hanoi 12116, Vietnam

^dCenter for Innovative Material and Architectures, Ho Chi Minh City, Vietnam ^eVietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam Corresponding authors:

*anh.nguyenha@phenikaa-uni.edu.vn (H.A.Nguyen)

**<u>tuan.leanh@phenikaa-uni.edu.vn</u> (A.T.Le)

¹ D.T.N. Nga and H.A. Nguyen contributed equally to this work

Calculation of limit of detection (LOD) and limit of quantification (LOQ)

The standard curve of linear detecting range was given as:

$$Y = A + B \times Log(X) \tag{1}$$

where A and B are intercept and slope of regression equation obtained through the plot of the logarithmic SERS intensity (Y) – logarithmic concentration (X).

The LOD is calculated using the following equation [1]:

$$LOD = 10^{[(Y_{blank} + 3SD)/Y_{blank} - A]/B}$$
(2)

The LOQ is calculated as

$$LOQ = 10^{[(Y_{blank} + 10SD)/Y_{blank} - A]/B}$$
(3)

where Y_{blank} and SD are the SERS signal and the standard deviation of blank sample, respectively. SD is calculated via the well-known formula:

$$SD = \sqrt{\frac{1}{n-1} \times \sum_{i}^{n} (x_i - x_{average})^2}$$
(4)

where x_i if the "i" sample of the series of measurements, $x_{average}$ is the average value of SERS signal obtained from the blank sample repeated n times.

Calculation of relative standard deviation (RSD)

The RSD value of repeatability and reproducibility is calculated via the well-known formula:

$$RSD = \frac{SD \times 100}{x_{average}}$$
(5)

where SD is the standard deviation that calculates using equation 4 and $x_{average}$ is the average value of SERS signal obtained from each measurement.

Figure S1. (a) Absorption spectra of urea at different concentrations and linear plot; (b) Absorption spectra of the mixture containing 10 μ L of urea (5 mM) added into 2.0 mL of ZIP-8/Ag solution (50 ppm) over an incubation of 70 min.

Figure S2. (a) Absorption spectra of MB at different concentrations and linear plot; (b) Absorption spectra of the mixture containing 10 μ L of MB (5 mM) added into 2.0 mL of ZIP-8/Ag solution (50 ppm) over an incubation of 40 min.

Figure S3. (a) Absorption spectra of CR at different concentrations and linear plot; (b) Absorption spectra of the mixture containing 10 μ L of CR (5 mM) added into 2.0 mL of ZIP-8/Ag solution (50 ppm) over an incubation of 60 min.

Figure S4: SERS spectra of 4-NP (10⁻³ M – 10⁻⁵ M) on Ag and ZIF-8/Ag

Figure S5: SERS spectra of CAP (10⁻³ M – 10⁻⁵ M) on Ag and ZIF-8/Ag

Figure S6. SERS spectra of solutions containing 4-NP and CR at 10^{-4} M, 10^{-5} M, and 10^{-6} M

on ZIF-8/Ag

Figure S7. SERS spectra of solutions containing Urea and 4-NP at (a) 10⁻⁴ M, (b) 10⁻⁵ M, and (c) 10⁻⁶ M on ZIF-8/Ag

Figure S8. SERS intensities of Urea and Urea + 4-NP (a) 10⁻⁴ M, (b) 10⁻⁵ M, and (c) 10⁻⁶ M

at characteristic peaks on ZIF-8/Ag

Table S1. Raman	assignments	of ZIP-8	[2]
-----------------	-------------	----------	-----

Frequency (cm-1)	Band assignment
685	τ imidazolium ring
836	Imidazolium ring puchering, $\delta H_{(out of plane)}$
953	δ C-H _(out of plane) (C2-H)
1022	δ C-H _(out of plane)
1146	ν C-N
1180	ν C-N, N-H wag
1348	δ CH ₃
1460	δ C-H

1500	ν C-N, N-H wag
1510	N C-H (imidazolium ring)
2924	N C-H (imidazolium ring)

Table S2. Practicability of ZIP-8/Ag based SERS sensor urea detection in milk samples

Spiked concentration (M)	Detected concentration	Recovery rates (%)
	(M)	
10-5	1.15 × 10 ⁻⁵	115
10-6	1.03 × 10 ⁻⁶	103
10-7	9.1 × 10 ⁻⁶	91
10-8	$8.7 imes 10^{-6}$	87

 Table S3. Raman bands of solid 4-nitrophenol [3].

Raman (cm ⁻¹)	Assignment
1586	Ring stretch
1520	NO ₂ antisymm. stretch
1500	C-H ip bend
1338	Ring stretch
1284	C-H ip bend
1172	C-H ip bend
1070	CCC bend

870	NO ₂ bend
636	CCC bend

References

[1] R. Chen, H. Shi, X. Meng, Y. Su, H. Wang, Y. He, Dual-Amplification Strategy-Based SERS Chip for Sensitive and Reproducible Detection of DNA Methyltransferase Activity in Human Serum, Analytical Chemistry 91(5) (2019) 3597-3603.

[2] S. Tanaka, K. Fujita, Y. Miyake, M. Miyamoto, Y. Hasegawa, T. Makino, S. Van der Perre, J. Cousin Saint Remi, T. Van Assche, G.V. Baron, J.F.M. Denayer, Adsorption and Diffusion Phenomena in Crystal Size Engineered ZIF-8 MOF, The Journal of Physical Chemistry C 119(51) (2015) 28430-28439.

[3] M. Maurizio, SERS monitoring of the catalytic reduction of 4-nitrophenol on Ag-doped titania nanoparticles, Applied Catalysis B: Environmental, 146 (2014), 147-150.