Palladium nanoparticles from β -Cyclodextrin and cellulose methyl carboxylate as an effective catalyst for Sonogashira coupling and the reduction of alkynes

Van-Dung Le^{a,b*}, T. Kim Chi Huynh^{a,b}, Van Nam Dao^{a, b}, Chi-Hien Dang^{a,b},

Thi Yen Nghi Le^{a,b}

^aInstitute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam.

^bGraduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.

*Corresponding author: Van-Dung Le; Email: tohoahocctb@gmail.com

1. Spectra ¹H and ¹³C NMR spectrum of 3a-3g

Figure S1. ¹H NMR spectrum of **3a** (600 Hz, CDCl₃)

Figure S2. ¹³C NMR spectrum of **3a** (150 Hz, CDCl₃)

Figure S3. ¹H NMR spectrum of **3b** (600 Hz, CDCl₃)

Figure S4. ¹³C NMR spectrum of **3b** (150 Hz, CDCl₃)

Figure S5. ¹H NMR spectrum of **3c** (600 Hz, CDCl₃)

Figure S6. ¹³C NMR spectrum of **3c** (150 Hz, CDCl₃)

Figure S7. ¹H NMR spectrum of **3d** (600 Hz, CDCl₃)

Figure S8. ¹³C NMR spectrum of **3d** (150 Hz, CDCl₃)

Figure S9. ¹H NMR spectrum of **3e** (600 Hz, CDCl₃)

Figure S10. ¹³C NMR spectrum of **3e** (150 Hz, CDCl₃)

Figure S11. ¹H NMR spectrum of **3f** (600 Hz, CDCl₃)

Figure S12. ¹³C NMR spectrum of **3f** (150 Hz, CDCl₃)

Figure S13. ¹H NMR spectrum of **3f** (600 Hz, CDCl₃)

Figure S14. ¹³C NMR spectrum of **3f** (150 Hz, CDCl₃)

2. GCMS spectrum of 5a-5d

Figure S16. GCMS spectrum of 5b

Figure S17. GCMS spectrum of 5c

Figure S18. GCMS spectrum of 5d

3. Spectra ¹H and ¹³C NMR spectrum of 5a-5e

Figure S19. ¹H NMR spectrum of **5a** (600 Hz, CDCl₃)

Figure S20. ¹H NMR spectrum of **5b** (600 Hz, CDCl₃)

Figure S21. ¹H NMR spectrum of **5c** (600 Hz, CDCl₃)

Figure S22. ¹H NMR spectrum of **5d** (600 Hz, CDCl₃)

Figure S24. ¹H NMR spectrum of **5e** (600 Hz, CDCl₃)

Figure S25. ¹³C NMR spectrum of **5e** (600 Hz, CDCl₃)