Supporting Information

Cu-doped and 2-propylimidazole-modified nanoceria (CeO₂@Cu-PrIm) oxidase-like nanozyme for total antioxidant capacity assay of fruits

Zhendong Fu^{a1}, Jiahe Qiu^{a1}, Ping Gong^a, Danhong Zhang^{b*}, . Liping Wang^{a*}

^a Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130012, China
^b Jilin University Hospital, Jilin University, Changchun 130012, China

¹ These authors contributed equally to this work and should be considered as co-first authors * Correspondence: wanglp@jlu.edu.cn; Zhangdanhong@jlu.edu.cn; Tel.: +86-431-8515-5348

Jiahe Qiu <u>qiujh1319@mails.jlu.edu.cn</u> Zhendong Fu <u>fuzd21@mails.jlu.edu.cn</u> Ping Gong <u>ping19962020@163.com</u> Danhong Zhang <u>zhangdanhong@jlu.edu.cn</u> Liping Wang <u>wanglp@jlu.edu.cn</u> Supplementary Figures

Fig. S1. XPS spectra of survey scan for CeO₂@Cu-PrIm.

Fig. S2. The stability of the oxidase-like catalytic activity of CeO₂@Cu-PrIm. (a) Batch stability of CeO₂@Cu-PrIm. (b) Storage stability of CeO₂@Cu-PrIm.

Fig. S3. The oxidase-like activity of $CeO_2@Cu-PrIm$ after the cycle of centrifugation. The recycled $CeO_2@Cu-PrIm$ was obtained by centrifuging the reaction solution at 8000 g for 10 min. The above cycle was repeated five times.

Fig. S4. The UV-vis absorption spectra describing the relationship between $CeO_2@Cu$ -PrIm catalytic activity and concentration.

Fig. S5. The detection of AA using the DPPH \cdot free radical scavenging method.

Fig. S6. The anti-interference capacity of the reaction system of $CeO_2@Cu-PrIm/ox-TMB$ assay.

Fig. S7. The detection of TAC of three vitamin C tablets using the DPPH \cdot free radical scavenging method.

Supplementary Tables

Catalyst	<i>K_m</i> [mM]	V _{max} [10 ⁻⁸ M/s]	Reference
CeO ₂ @Cu-PrIm	6.521	77.45	This work
CeO ₂ NPs	3.8	70	1
Nano-CeO ₂	0.42	10.04	2
Ce-BPyDC	0.16	26.8	3
Ce-MOF (MVCM)	0.00037	550	4
Dex-FeMnzyme	0.33	13.29	5
MIL-53(Fe)	1.08	8.78	6
Mn ₃ O ₄ NPs	0.025	5.07	7

Table S1. Comparison of kinetic parameters between $CeO_2@Cu-PrIm$ and reported oxidase mimics.

Nanomaterials	Linear range (µM)	LOD (µM)	Reference
CeO ₂ @Cu-PrIm	1-70	1.26	This work
Ce-BPyDC	1-20	0.28	3
Dex-FeMnzyme	1-30	1.17	5
MIL-53(Fe)	28.6-190.5	15	6
CuNCs	0.5-10	0.11	8
CP ₆₀₀₋₆	0.8-80	35	9
SNC	100-5000	80	10
Fe-NC NTs	0.2-20	0.131	11

 Table S2. Comparison of reported oxidase mimics for the detection of AA.

Fig. S8. The EDS Mapping of CeO₂@Cu-PrIm NPs (a) HAADF of CeO₂@Cu-PrIm NPs

(b) C atoms (c) N atoms (d) O atoms (e) Ce atoms (f) Cu atoms

- 1. A. Asati, S. Santra, C. Kaittanis, S. Nath and J. M. Perez, *Angewandte Chemie International Edition*, 2009, **48**, 2308-2312.
- 2. H. Cheng, S. Lin, F. Muhammad, Y.-W. Lin and H. Wei, ACS Sensors, 2016, 1, 1336-1343.
- L. Luo, L. Huang, X. Liu, W. Zhang, X. Yao, L. Dou, X. Zhang, Y. Nian, J. Sun and J. Wang, *Inorganic Chemistry*, 2019, 58, 11382-11388.
- 4. Y. Xiong, S. Chen, F. Ye, L. Su, C. Zhang, S. Shen and S. Zhao, *Chemical Communications*, 2015, **51**, 4635-4638.
- X. Han, L. Liu, H. Gong, L. Luo, Y. Han, J. Fan, C. Xu, T. Yue, J. Wang and W. Zhang, *Food Chemistry*, 2022, 371, 131115.
- L. Ai, L. Li, C. Zhang, J. Fu and J. Jiang, *Chemistry A European Journal*, 2013, 19, 15105-15108.
- 7. X. Zhang and Y. Huang, *Analytical Methods*, 2015, 7, 8640-8646.
- H. Rao, H. Ge, Z. Lu, W. Liu, Z. Chen, Z. Zhang, X. Wang, P. Zou, Y. Wang, H. He and X. Zeng, *Microchimica Acta*, 2016, **183**, 1651-1657.
- 9. Z. Lou, S. Zhao, Q. Wang and H. Wei, *Analytical Chemistry*, 2019, 91, 15267-15274.
- Y. Chen, L. Jiao, H. Yan, W. Xu, Y. Wu, H. Wang, W. Gu and C. Zhu, *Analytical Chemistry*, 2020, 92, 13518-13524.
- N. Song, M. Zhong, J. Xu, C. Wang and X. Lu, Sensors and Actuators B: Chemical, 2022, 351, 130969.