Supplementary Information

Monodisperse oligo(ϵ -caprolactones) with terpenes and alkyl end-groups: synthesis, isolation, characterization, and antibacterial activity

María Guadalupe Ortiz-Aldaco,^a Miriam Estévez,^b Beatriz Liliana España-Sánchez,^c José Bonilla-Cruz,^d Eloy Rodríguez-deLeón,^e and José E. Báez^{a*}

^a University of Guanajuato (UG), Department of Chemistry, Noria Alta S/N, Col. Noria Alta, Guanajuato, Gto. México, 36050.

^b Universidad Nacional Autonoma de Mexico (UNAM), Centro de Física Aplicada y Tecnología Avanzada (CFATA), Boulevard Juriquilla 3001, Querétaro, Qro. México, 76230.

^c Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C. (CIDETEQ), Santiago de Queretaro, Qro. México, 76703.

^d Centro de Investigación en Materiales Avanzados (CIMAV), Unidad Monterrey, Polymer Science, Alianza Norte 202, Nueva Autopista Monterrey-Aeropuerto Km 10, Apodaca, N.L. México, 66628.

^e Autonomous University of Querétaro (UAQ), Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Queretaro, Qro. México, 76010.

To whom correspondence should be addressed: José E. Báez, e-mail: jebaez@ugto.mx

Tables		Page
Tables	Table S1 Hydrolytic degradation of initiators (farnesol and 1-pentadecanol), monodisperse monomers ($C_{15}F-CL_1$ and $C_{15}IP-CL_1$), and monodisperse dimers ($C_{15}F-CL_2$ and $C_{15}IP-CL_2$).	4
Figures		
	Fig. S1 ¹ H NMR (500 MHz) spectrum of geraniol (C_{10}) in CDCl ₃ at 40 °C.	5
	Fig. S2 ¹ H NMR (500 MHz) spectrum of nerol (C ₁₀) in CDCl ₃ at 40 °C.	6
	Fig. S3 ¹ H NMR (500 MHz) spectrum of β -citronellol (C ₁₀) in CDCl ₃ at 40 °C.	7
	Fig. S4 ¹ H NMR (500 MHz) spectrum of farnesol (C ₁₅) in CDCl ₃ at 40 °C.	8
	Fig. S5 ¹ H NMR (500 MHz) spectrum of 1-pentadecanol (C ₁₅) in CDCI ₂ at 40 °C	9
	Fig. S6 ¹ H NMR (500 MHz) spectrum of oligo(CL) synthetized using geraniol as initiator (C_{10} G-PCL, Table 1) in CDCl ₃ at 40 °C	10
	Fig. S7 ¹ H NMR (500 MHz) spectrum of oligo(CL) synthetized using β -citronellol as initiator (C ₁₀ C-PCL, Table 1) in CDCl ₃ at 40 °C	11
	Fig. S8 ¹ H NMR (500 MHz) spectrum of oligo(CL) synthetized using 1-pentadecanol as initiator (C_{15} 1P-PCL, Table 1) in CDCl ₃	12
	Fig. S9 ¹ H NMR (500 MHz) spectrum of a monomer derived from β -citronellol as initiator C ₁₀ C-CL ₁ (monodisperse specie,	13
	Table 2) in CDCl ₃ isolated by FCC from C ₁₀ C-PCL (Table 1). Fig. S10 ¹ H NMR (500 MHz) spectrum of a trimer derived from β -citronellol as initiator C ₁₀ C-CL ₃ (monodisperse specie, Table	14
	2) in CDCl ₃ isolated by FCC from $C_{10}C$ -PCL (Table 1). Fig. S11 ¹ H NMR (500 MHz) spectrum of a dimer derived from farnesol as initiator $C_{15}F$ -CL ₂ (monodisperse specie, Table 2) in	15
	CDCl ₃ isolated by FCC from $C_{15}F$ -PCL (Table 1). Fig. S12 ¹³ C NMR (500 MHz) spectrum of a monomer derived from 1-pentadecanol as initiator $C_{15}1P$ -CL ₁ (monodisperse	16
	specie, Table 2) in CDCl ₃ isolated by FCC from $C_{15}F$ -PCL (Table 1).	17
	Fig. S13 FT-IR spectrum and assignment of bands from monodisperse monomer C ₁₀ G-CL ₁ .	18
	Fig. S14 FT-IR spectrum and assignment of bands from monodisperse dimer $C_{10}G$ - CL_2 .	19
	Fig. S15 FT-IR spectrum and assignment of bands from	

Figures	Figures monodisperse trimer C ₁₀ G-CL ₃ .						
(continuted)	Fig. S16 FT-IR spectrum and assignment of bands from						
	monodisperse monomer C ₁₀ N-CL ₁ .						
	Fig. S17 FT-IR spectrum and assignment of bands from						
	monodisperse dimer C_{10} N-CL ₂ .						
	Fig. S18 FT-IR spectrum and assignment of bands from						
	monodisperse trimer C ₁₀ N-CL ₃ .	23					
	Fig. S19 FT-IR spectrum and assignment of bands from						
	monodisperse monomer C ₁₀ C-CL ₁ .	24					
	Fig. S20 FT-IR spectrum and assignment of bands from						
	monodisperse dimer C ₁₀ C-CL ₂ .	25					
	Fig. S21 FT-IR spectrum and assignment of bands from						
	monodisperse trimer $C_{10}C-CL_3$.	26					
	Fig. S22 FT-IR spectrum and assignment of bands from						
	monodisperse dimer $C_{15}F$ - CL_2 .	27					
	Fig. S23 FT-IR spectrum and assignment of bands from						
	monodisperse trimer $C_{15}F$ - CL_3 .	28					
	Fig. S24 FI-IR spectrum and assignment of bands from						
	monodisperse monomer C_{15} 1P-CL ₁ .						
	Fig. S25 FI-IR spectrum and assignment of bands from						
	monodisperse dimer C_{15} 1P-CL ₂ .	30					
	Fig. S26 FI-IR spectrum and assignment of bands from						
	monodisperse trimer C_{15} 1P-CL ₃ .	31					
	Fig. S27 Thermal degradation (TGA) of a) $C_{15}F-CL_2$ and b)						
	C ₁₅ 1P-CL ₂ .						

Table S1 Hydrolytic degradation of initiators (farnesol and 1-pentadecanol), monodisperse monomers ($C_{15}F-CL_1$ and $C_{15}1P-CL_1$), and monodisperse dimers ($C_{15}F-CL_2$ and $C_{15}1P-CL_2$).

Sample	T_{d1}	Weight	T_{d2}	Weight	T_{d3}	Weight
	(°C)	loss (%)	(°C)	loss (%)	(°C)	loss (%)
Farnesol	296	42	368	83		_
1-pentadecanol	250	83	_			_
C ₁₅ F-CL ₁	114	3	386	31	399	70
C ₁₅ 1P-CL ₁	316	54	393	91		_
C ₁₅ F-CL ₂	132	2	298	23	410	67
C ₁₅ 1P-CL ₂	369	47	410	80		

Fig. S1 ¹H NMR (500 MHz) spectrum of geraniol (C₁₀) in CDCl₃ at 40 $^{\circ}$ C.

Fig. S3 ¹H NMR (500 MHz) spectrum of β -citronellol (C₁₀) in CDCl₃ at 40 °C.

Fig. S4 ¹H NMR (500 MHz) spectrum of farnesol (C₁₅) in CDCl₃ at 40 $^{\circ}$ C.

Fig. S5 ¹H NMR (500 MHz) spectrum of 1-pentadecanol (C₁₅) in CDCl₃ at 40 $^{\circ}$ C.

Fig. S6 ¹H NMR (500 MHz) spectrum of oligo(CL) synthetized using geraniol as initiator (C_{10} G-PCL, Table 1) in CDCl₃ at 40 °C.

Fig. S7 ¹H NMR (500 MHz) spectrum of oligo(CL) synthetized using β -citronellol as initiator (C₁₀C-PCL, Table 1) in CDCl₃ at 40 °C.

Fig. S8 ¹H NMR (500 MHz) spectrum of oligo(CL) synthetized using 1-pentadecanol as initiator (C_{15} 1P-PCL, Table 1) in CDCl₃ at 40 °C.

Fig. S9 ¹H NMR (500 MHz) spectrum of a monomer derived from θ -citronellol as initiator C₁₀C-CL₁ (monodisperse specie, Table 2) in CDCl₃ isolated by FCC from C₁₀C-PCL (Table 1).

Fig. S10 ¹H NMR (500 MHz) spectrum of a trimer derived from θ -citronellol as initiator C₁₀C-CL₃ (monodisperse specie, Table 2) in CDCl₃ isolated by FCC from C₁₀C-PCL (Table 1).

Fig. S11 ¹H NMR (500 MHz) spectrum of a dimer derived from farnesol as initiator $C_{15}F-CL_2$ (monodisperse specie, Table 2) in CDCl₃ isolated by FCC from $C_{15}F$ -PCL (Table 1).

Fig. S12 ¹³C NMR (500 MHz) spectrum of a monomer derived from 1-pentadecanol as initiator C_{15} 1P-CL₁ (monodisperse specie, Table 2) in CDCl₃ isolated by FCC from C_{15} 1P-PCL (Table 1).

Fig. S13 FT-IR spectrum and assignment of bands from monodisperse monomer $C_{10}G$ -CL₁.

Fig. S14 FT-IR spectrum and assignment of bands from monodisperse dimer $C_{10}G\text{-}\ CL_2$.

Fig. S15 FT-IR spectrum and assignment of bands from monodisperse trimer $C_{10}G$ - CL_3 .

Fig. S16 FT-IR spectrum and assignment of bands from monodisperse monomer $C_{10}N$ - CL_1 .

Fig. S17 FT-IR spectrum and assignment of bands from monodisperse dimer $C_{10}\text{N-}\text{CL}_2$.

Fig. S18 FT-IR spectrum and assignment of bands from monodisperse trimer $C_{10}N$ - CL_3 .

Fig. S19 FT-IR spectrum and assignment of bands from monodisperse monomer $C_{10}C$ - CL_1 .

Fig. S20 FT-IR spectrum and assignment of bands from monodisperse dimer $C_{10}C$ - CL_2 .

Fig. S21 FT-IR spectrum and assignment of bands from monodisperse trimer $C_{10}C$ - CL_3 .

Fig. S22 FT-IR spectrum and assignment of bands from monodisperse dimer $C_{15}\mbox{F-}\xspace{CL}_2$.

Fig. S23 FT-IR spectrum and assignment of bands from monodisperse trimer $C_{15}F$ - CL_3 .

Fig. S24 FT-IR spectrum and assignment of bands from monodisperse monomer C_{15} 1P-CL₁.

Fig. S25 FT-IR spectrum and assignment of bands from monodisperse dimer $C_{\rm 15} 1P$ - $CL_{\rm 2}$

Fig. S26 FT-IR spectrum and assignment of bands from monodisperse trimer C_{15} 1P-CL₃.

Fig. S27 Thermal degradation (TGA) of a) $C_{15}F$ -CL₂ and b) $C_{15}1P$ -CL₂.