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Figure S1. Feature importance plots for (a) Rank-2 Random Forest and (b) Rank-1 XGBDT.

In Table S1, a variety of features are used to capture different characteristics of the signal. Features 
in this context include statistical metrics (e.g., mean, standard deviation, skewness), spectral peaks 
(e.g., intensity, position, width) derived from the wavenumber (Raman shift) domain, and 
frequency-domain characteristics (e.g., Fourier transforms, power spectral density). Specifically, 
the signal’s frequency-domain features capture the power and logarithmic magnitude across 
different frequency scales, providing a deeper understanding of the signal's characteristics. These 
include the maximum, total, average, variance, and peak of the power and scaled logarithmic 



magnitude. The skewness and kurtosis of the power and scaled logarithmic magnitude in the 
frequency domain are also calculated. These features might be correlated, particularly those related 
to power and magnitude. Additional complex features such as spectral roll-off, signal envelope 
features, Mel-Frequency Cepstrum Coefficients (MFCCs), and wavelet-transform-based features 
are also extracted. Spectral roll-off represents the frequency below which a given percentage of 
the total spectral energy is contained, useful for distinguishing between harmonic and non-
harmonic content. Signal envelope features can include extracting the envelope of the signal using 
techniques like the Hilbert transform. MFCCs are coefficients that represent audio and are widely 
used in speech and audio processing. Wavelet transforms can also be used to extract features. 
Histogram bins are calculated for different feature sets, providing another view of the distribution 
of these features. The count of the values of those features within the range defined by the bins 
could also show correlation depending on the distribution of your data. In summary, these features 
provide a comprehensive representation of the signal, capturing its various characteristics in both 
the wavenumber and frequency domains. However, potential correlations between these features 
should be considered before the model pipeline training.

Table S1. Feature alias/definition table. This table contains the list of aliases used to represent each of the features 
used for training the classifiers. The aliases are assigned to each of the feature for ease of representation and to optimize 
the feature importance plotting. This table contains all the 96 extracted features for the model pipeline training. The 
correlation between each of these features is computed and analyzed in detail before getting to the model pipeline 
training.



For all the features given in the Figure S1 and S2, the correlations are calculated w.r.t. one another 
and represented in a matrix form. The features showing lower correlations are represented by white 
or lighter shade of red and the features showing higher correlations are represented as darker shade 
of red. The purpose of this calculation is to determine the features having a high level of 
correlation. Those features can affect the model pipeline performance due to the multi-collinearity 
causing inaccuracies. Such highly correlated features are dropped during the preprocessing before 
the pipeline training step. The threshold to drop features based on correlation analysis is set to 
0.95.



Figure S2. Feature correlation matrix.



Figure S3. Regression to predict the dilution levels of all the VOCs. VOC dilution level predictions by (a) Random 
Forest rank-2 regression and (b) XGBDT rank-1 decision tree regression.





Figure S4. Feature importance plots for 3 prominent pipeline classifiers. FI plot for (a) rank-1 MLP classifier, (b) 
rank-3 random forest classifier, and (c) rank-2 XGBDT classifier. The plots are tabulated according to the pure VOCs’ 
class labels S1 to S8. When these VOCs are mixed to obtain a mixture VOC, the feature importance (or mean of SHAP 
values) of that mixture will be a derivative of the mean SHAP value of the pure VOCs used to obtain the mixture. The 
feature aliases in the x-axis of the bar plots are defined in the Table. S1 in the Supplementary Information. These plots 
give detailed insight into the impact of certain features on the model pipeline performance and are plotted right to left 
with the most important feature (i.e., the feature with largest mean SHAP value) starting at the right. Higher mean 
SHAP values suggest a greater impact on the model’s output. Features with larger bars are more influential in the 
model’s predictions.



Figure S5. Raman spectra of eight pure VOCs and ACN.



Table S2. Concentration Levels of VOC Mixtures at Various Dilution Factors Expressed in Units per Milliliter 
(unit/mL), Percentage (%), and Parts Per Million (PPM).


