Supporting Information

Probing High-Efficiency Cs_{0.05}(FA_{0.77}MA_{0.23})_{0.95}Pb(I_{0.77}Br_{0.23})₃ -Based Perovskite Solar Cells through first principles computations and SCAPS-1D Simulation

Okba Saidani^{1*}, Souraya Goumri-Said^{2,**}, Abderrahim Yousfi¹, Girija Shankar Sahoo³,

Mohammed Benali Kanoun^{4,***}

 ¹ ETA Laboratory, Department of electronics, Faculty of Sciences and Technology, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj-34030, Algeria
 ² College of Science and General Studies, Physics Department, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi
 ³School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vandalur-Kellambakkam Road, Chennai, Tamil Nadu 600127, India
 ⁴Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia

Corresponding authors: *okba.saidani@univ-bba.dz, **sosaid@alfaisal.edu,

***mkanoun@psu.edu.sa

Parameters	ITO	C ₆₀ [1]	SnO ₂ [1]	ZnO [1]	IGZO [1]	PCBM [1]
Thickness d (µm)	0.5	0.1	0.1	0.1	0.1	0.1
Band gap $E_g(eV)$	3.5	1.7	3.6	3.3	3.05	2.08
Electron Affinity χ(eV)	4.1	3.9	4	4	4.16	3.95
Relative Permittivity $\varepsilon_{\rm r}$	9	4.2	9	9	10	4
Effective Density	2.2×10 ¹⁸	1×10 ¹⁹	2×10^{18}	3× 10 ¹⁸	5×10 ¹⁸	1.8×10 ¹⁸
of States (CB) $N_C(1/m^3)$						
Effective Density	3.8×10 ¹⁸	5×10 ²⁰	1×10^{19}	2×10 ¹⁹	5×10 ¹⁸	2×10 ¹⁸
of States (VB) $N_V(1/m^3)$						
Electron Mobility µ _n	20	8.0×10 ⁻²	100	100	15	0.2
(cm^2/Vs)						
Hole Mobility μ_p (cm ² /Vs)	10	3.5×10-3	25	25	0.1	0.2
Acceptor Density N _A	0	0	0	0	0	0
$(1/cm^3)$						
Donor Density $N_D(1/cm^3)$	1× 10 ²¹	1×10 ¹⁸	1 ×10 ¹⁷	1 ×10 ¹⁷	1×10 ¹⁷	1×10 ¹⁸
Defect Density N _t	1×10 ¹⁷	1×10 ¹⁴	1×10 ¹⁴	1×10 ¹⁴	1×10 ¹⁴	1×10 ¹⁴

Table S1. Simulation parameters for different ETL materials of the PSC device

Table S2	. Simulation	parameters f	or different	t HTL	materials	and absorber	layer of th	ne PSC
device.								

Parameters	V ₂ O ₅ [1]	Cu ₂ O [1]	CuSCN	CBTS [2]	CuSbS ₂	Cs _{0.05} (FA _{0.77} MA _{0.23})
			[1]		[3]	$_{0.95}$ Pb($I_{0.77}$ Br $_{0.23}$) ₃ [4]
Thickness d (µm)	0.1	0.1	0.1	0.6	0.3	0.2
Band gap $E_g(eV)$	2.4	2.17	3.6	1.9	1.5	1.68
Electron Affinity χ (eV)	4.6	3.20	1.9	3.6	4.5	4.5
Relative Permittivity	10	7.11	8.5	5.4	10	10
$\mathcal{E}_{ m r}$						
Effective Density	1×10 ¹⁹	1.8×10 ¹⁸	2.2×10 ¹⁸	2.2×10^{18}	8×10 ¹⁹	2.2×10 ¹⁸
of States (CB) N _C						
$(1/m^3)$						
Effective Density	5×10 ²⁰	2.2×10 ¹⁸	1.8×10 ¹⁹	2.2×10^{18}	8×10 ¹⁹	1.8×10 ¹⁹
of States (VB) N_V						
$(1/m^3)$						
Electron Mobility	3.2×10 ²	80	100	30	49	6
$\mu_n(cm^2/Vs)$						
Hole Mobility	4.0×10 ¹	80	25	10	49	24
$\mu_p(cm^2/Vs)$						
Acceptor Density	1×10 ¹⁸	1×10 ¹⁸	1×10 ¹⁸	2 ×10 ¹⁶	1×10^{17}	1×10 ¹⁵
$N_A(1/cm^3)$						
Donor Density N _D	0	0	0	0	0	0
$(1/cm^3)$						
Defect Density N _t	1×10 ¹⁴	1×10 ¹⁴	1×10 ¹⁴	2×10 ¹⁴	1×10 ¹⁴	1×10 ¹⁴

Table S3. Summarizing the absorption coefficient values used for each layer in the simulation.

Material	Layer type	Absorption coefficient (cm ⁻¹)
ΙΤΟ	Transparent contact	104
РСВМ	Electron transport layer (ETL)	104
C\$0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3	Absorbent layer	105
CuSbS ₂	Hole Transport Layer (HTL)	105

 Table S4. Electrical properties of interface.

Parameters and units	PCBM /mixed perovskite	Mixed perovskite/CuSbS ₂
Defect type	Neutral	Neutral
Total density	10 ¹⁰	10 ¹⁰
Energetic distribution	Single	Single
Energy level with respect to reference	0.6	0.6
(eV)		

Fig. S1. Schematic representation of perovskite solar cell.

Fig. S2. Schematic structure representation of (a) supercell $(Cs_{0.14}(FA_{0.85}MA_{0.14})_{0.88}Pb(I_{0.83}Br_{0.17})_3 \text{ and (b) } CuSbS_2.$

Fig. S3. Partial density of the states of (a) $Cs_{0.14}(FA_{0.85}MA_{0.14})_{0.88}Pb(I_{0.83}Br_{0.17})_3$ and (b) $CuSbS_2$ in the equilibrium geometry. The Fermi level was positioned along the dashed black line.

Fig. S4. Influence of PCBM ETL thickness in V_{OC}, J_{SC}, FF and PCE.

References

[1] Y H Khattak, F Baig, A Bouich, J Marí-Guaita, A Shuja, B M Soucase, Designing next-generation kesterite solar cells: A systematic numerical investigation of innovative structures and design variants for enhanced photovoltaic performance, Solar Energy 265 (2023) 112105.

[2] Chakraborty, R. et al. Colloidal synthesis, optical properties, and hole transport layer applications of Cu2BaSnS4 (CBTS) nanocrystals. ACS Appl. Energy Mater. 2, 3049–3055 (2019).

[3] Gupta, G.K., Dixit, A., 2020. Simulation studies on photovoltaic response of ultrathin CuSb(S/Se)2 ternary compound semiconductors absorber-based si. Int. J. Energy Res. 4, 1–13.

[4] Mohandes, A., Moradi, M., & Kanani, M. (2023). Numerical analysis of high performance perovskite solar cells with stacked ETLs/C60 using SCAPS-1D device simulator. Optical and Quantum Electronics, 55(6), 533.