

Cite this: DOI: 00.0000/xxxxxxxxx

Electronic Supplementary Information: Functionalization of zeolite–encapsulated Cu₅ clusters as visible–light photoactive sub–nanomaterials

Katarzyna M. Krupka,^a Lenard. L. Carroll,^a and María Pilar de Lara-Castells^{*a}

Notes and references

- 1 T. Lu, J. Chem. Phys., 2024, 161, 082503.
- 2 T. Lu and F. Chen, J. Comp. Chem., 2011, 33, 580-592.
- 3 K. M. Krupka, A. Krzemińska and M. P. de Lara-Castells, *RSC Advances*, 2024, **14**, 31348–31359.

^a Institute of Fundamental Physics (AbinitSim Unit, ABINITFOT Group), Madrid, Spain. E-mail: Pilar.deLara.Castells@csic.es

Fig. S1 Picture showing isosurfaces of the frontier "single-occupied" (or occupied only for a single spin component) orbital (referred to as SOMO) as well as the highest-energy and second "doubly-occupied" (or occupied for two spin components) molecular orbitals (referred to as HOMO and HOMO–1) of non-encapsulated Cu_5 -TiO₂ nanoparticles. Calculations: a) DFT+U/D3 with small (12-valence electrons $3s_3p_3d_4s$) pseudopotential for Ti atoms, b) DFT+U/D3 with large (4-valence electrons $3d_4s$) pseudopotential for Ti atoms, c) all-electron DFT-D3/aug-cc-pVTZ

Type of atom	Sum of Bader charges			Average Bader charge					
Zeolite–encapsulated									
	3s3p3d4s+PP for Ti	3d4s+PP for Ti	all-electron	3s3p3d4s+PP for Ti	3d4s+PP for Ti	all-electron			
Cu	1.41	1.31	1.43	0.28	0.26	0.29			
Ti	30.15	30.22	27.68	2.32	2.32	2.13			
0	-16.33	-16.46	-14.14	-1.36	-1.37	-1.18			
OH	-15.28	-15.61	-14.25	-0.54	-0.56	-0.51			
Non–encapsulated									
Type of atom	3s3p3d4s+PP for Ti	3d4s+PP for Ti	all-electron	3s3p3d4s+PP for Ti	3d4s+PP for Ti	all-electron			
Cu	0.82	0.72	0.82	0.16	0.14	0.16			
Ti	30.27	30.85	27.80	2.33	2.37	2.14			
0	-16.83	-17.02	-14.52	-1.40	-1.42	-1.21			
OH	-14.25	-14.85	-14.11	-0.51	-0.53	-0.50			

Table S1 Sums of Bader charges and average Bader charge of each type of atom. O refers to the oxygen atoms not involved in O–H covalent bonds, O(H) refers to the oxygen atoms involved in O–H covalent bonds, OH indicates Bader charges of the –OH groups. 1,2

Distance Label	Distance encapsulated (Å)	Distance non-encapsulated (Å)	Distance non-encapsulated (Å) (alt.)
Cu ₁ -Cu ₂	2.377	2.440	3.068
Cu ₁ -Cu ₄	2.416	2.291	2.427
Cu_2 - Cu_3	2.668	2.436	2.349
Cu_2 - Cu_4	2.451	2.338	2.484
Cu ₂ -Cu ₅	2.313	2.335	2.382
Cu ₃ -Cu ₅	2.652	2.309	2.416
Cu ₄ -Cu ₅	2.335	2.560	2.604
$Cu_1 - O_N$	1.898	1.927	2.061
Cu_2-O_N	1.933	1.946	1.969
Cu_3-O_N	1.859	1.916	2.001
Cu_4-O_N	1.972	4.362	1.975
Cu_5-O_N	1.986	4.524	2.087

Table S2 Cu–Cu and Cu–O_N distances from the zeolite-encapsulated and non-encapsulated Cu_5/TiO_2 structures (including an alternative structure based on the optimized structure of $Cu_5/TiO_2@$ Zeolite). O_N represents the nearest oxygen atom to the Cu₅ cluster. Atomic labels are from Figure 1 in the main manuscript.

Fig. S2 Cu–TiO₅H₆ complex used for benchmark study. Z is defined as the distance between the Cu and Ti atoms.

Distance (Z) [Å]	DFT-D3 [eV]	UMP2C [eV]
2.00	-0.20	1.83
2.25	-0.50	0.92
2.50	-0.8	0.00
2.70	-0.78	-0.44
3.00	-0.64	-0.57
3.50	-0.42	-0.45
4.00	-0.28	-0.34
4.50	-0.19	-0.24
5.00	-0.13	-0.18
5.50	-0.07	-0.12
6.00	-0.05	-0.07

Table S3 Numerical values of Cu–TiO₅H₆ interaction energies (in eV) at DFT-D3 and UMP2C³ levels of theory with the aug-cc-pVTZ basis set.

System	Dipole Moment Vector
HSE06 $(3d4s + PP \text{ for Ti})$ (Total)	(-7.74, -32.01, 62.26)
HSE06 ($3d4s$ +PP for Ti) (Origin) (Cu ₅)	(-69.39, -61.51, -119.19)
HSE06 ($3d4s$ +PP for Ti) (Center of Mass) (Cu ₅)	(-8.14, -4.02, 15.30)
HSE06 ($3d4s$ +PP for Ti) (Center of Geometry) (Cu ₅)	(-8.61, -4.72, 16.87)

Table S4 Dipole moment vectors for $Cu_5/TiO_2@$ zeolite calculated with the HSE06 functional large (4-valence electrons 3d4s) pseudopotential for Ti atoms. Calculations based on the orbital projection charges, with the dipole moment relative to the center of mass, origin and center of geometry for Cu_5 .

Fig. S3 a) Orbital projection charge color plot of $Cu_5/TiO_2@$ zeolite calculated with the HSE06 functional with large (4-valence electrons 3d4s) pseudopotential for Ti atoms. b) From the second row of structures, Cu = Bronze, O = Red, H = White, Ti = Silver Sand, Si = Desert Sand, AI = Silver Pink.