Electronic Supplementary Information for

Superior Solubility of Anhydrous Quercetin and Polymer Physical Mixtures Compared to Amorphous Solid Dispersions

Xu Ma, ^{a,b} Hong Su, ^b Yongming Liu,^c Fenghua Chen,^{b,*} and Rongrong Xue ^{b,*}

^a College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, Fujian,

China.

^b School of Resources and Chemical Engineering, Sanming University, Sanming 365004, Fujian,

China.

^c School of Education and Music, Sanming University, Sanming 365004, Fujian, China.

Corresponding Authors *(F. C.) E-mail: fenghuachen@fjsmu.edu.cn. *(R. X.) E-mail: rongrongxue@fjsmu.edu.cn.

Figure S1. Macro-thermogravimetric curve of QUE-DH at 150 °C in air. The weight loss reaches 9.7% in 15 minutes, which is the same as that of QUE-DH heated at 100 °C for 1 hour. The dehydration product is QUE-AH. The weight loss is up to 10.0% in 50 minutes, which indicates that a small amount of QUE molecules undergo degradation. Because the weight loss in the process was measured by macroscopic thermogravimetric, a 0.3 % difference is enough to judge the occurrence of degradation.

Figure S2. Hydration process of QUE-AH at room temperature and $\sim 60\%$ humidity.

Figure S3. UV-vis spectra of QUE aqueous solution with different storage time.

Figure S4. UV-vis spectra of the QUE aqueous solutions in the concentration range of (a) $1.8 - 12.5 \ \mu g \cdot ml^{-1}$ and (b) $13.8 - 17.8 \ \mu g \cdot ml^{-1}$. The UV-vis spectra exhibit a good gradient increase in the concentration range of $1.8 - 12.5 \ \mu g \cdot ml^{-1}$. The absorption of QUE aqueous solutions with concentration of 13.8 and 17.8 $\ \mu g \cdot ml^{-1}$ decreased significantly at 367 nm, while the baseline absorption increased significantly at 400 – 500 nm, indicating the occurrence of recrystallization.

Figure S5. Working curve establishment of QUE 50 vol% ethanol solutions in the concentration

range of $0 - 49.4 \ \mu g \cdot ml^{-1}$. (a) UV-vis spectra, (b) the fitted working curve.

Figure S6. PXRD pattern of commercial QUE-AH stored for years. The most PXRD peaks are related to QUE-DH, and the peak of QUE-AH is marked.

Figure S7. IR spectra of QUE polymorphs in the range of 2600 - 3600 cm⁻¹.

Figure S8. Low-frequency Raman spectra (in the range of 50 - 300 cm⁻¹) of QUE polymorphs.

QUE polymorphs			
QUE-AM	QUE-AH	QUE-DH	assignments
519	521	522	$\gamma(A) + \gamma(C) + \delta(COH)_A$
598	597	603	$\gamma(OH)_{C3} + \gamma(A) + \gamma(C) + \gamma(OH)_{A5}$
1319	1321	1327	$\nu(A) + \nu(C) + \delta(CH)_{A6} + \nu(C-O)_{A5}$
1558	1553	1547	$\delta(CH)_{B2'} + \nu(B) + \nu(C-O)B_{4'}$
1612	1613	1606	$\nu(B) + \delta(CH)_{B5'} + \nu(C=O)$

Table S1. Raman bands (cm⁻¹) and assignments of quercetin (QUE).¹

1. Hanuza, J.; Godlewska, P.; Kucharska, E.; Ptak, M.; Kopacz, M.; Mączka, M.; Hermanowicz, K.; Macalik, L., Molecular structure and vibrational spectra of quercetin and quercetin-5'-sulfonic acid. *Vibrational Spectroscopy* **2017**, *88*, 94-105.

Figure S9. UV-vis spectra of 1 mg·ml⁻¹ PVP and 1 mg·ml⁻¹ Soluplus solutions.

Figure S10. (a) IR and (b) Raman spectra of QUE ASDs with PVP (BM-PVP- ω_{QUE}) and PVP.

Figure S11. Fluorescence spectra of QUE-DH and QUE-AH. (λ_{ex} =350 nm)