Supplementary Information

Table S1 Performance parameters of the amorphous WO₃·2H₂O film compared with those of WO₃ hydrate films reported in the literature

Crystalline S9% at 1200 1.6~4.0 - 96.2 at 1200 nm, 13% at (vs. 1200 nm,	Material	ΔT	Operation	$t_{\rm c}/t_{\rm b}$	CE	Cycling stability
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			potential (V)	(s)	(cm ² /C)	
Crystalline 90.4% at -0.2~0.4 -0.2~0.4 -0.2~0.4 -0.2~0.4 -0.2~0.4 -0.2~0.4 -0.2~0.4 -0.2~0.4 -0.2~0.4 -0.2~0.8 -0.2~0.5 -0.2~0.8 -0.2~0.8 -0.2~0.5 -0.2~0.8 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5 -0.2~0.5	Crystalline	59% at 1200	1.6~4.0	-	96.2 at	-
Crystalline	$WO_3 \cdot H_2O$	nm, 13% at	(vs.		1200 nm,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Film [1]	550 nm	Li/Li ⁺)		20.7 at 550	
MO3·2H ₂ O nanoplate film [2] Ag/AgCl) Ag/AgCl) Amorphous 69% at 1100 -0.8~0.8 2.3/2.1 at 1100 nm ΔT after 500 cycles MO3·0.9H ₂ O film nm, 24% at (vs. 1100 nm 1100 nm ΔT after 12000 cycles at 1100 nm; retaining 87% after 1000 cycles at 550 nm Ag/AgCl) Amorphous Ag/AgCl Ag/AgCl Amorphous Ag/AgCl Ag/AgCl Amorphous Ag/AgCl Ag/AgCl Ag/AgCl Amorphous Ag/AgCl					nm	
Amorphous	Crystalline	90.4% at	-0.2~0.4	-	322.6 at	Retaining 93.7% of
Amorphous 69% at 1100 -0.8~0.8 2.3/2.1 at 312 at Retaining 97% of ΔT after 12000 cycles at 1100 nm; after 12000 cycles at 1100 nm; retaining 87% after 1000 cycles at 550 nm Amorphous and crystalline 83.8% at -0.5~0.5 15.3/14. 22.8 at 633 color nm Retaining 97% of ΔT after 12000 cycles at 1100 nm; retaining 87% after 1000 cycles at 550 nm Amorphous and crystalline 72.5% at Ag/AgCl) 15.3/14. 22.8 at 633 color nm, 90.8 of ΔT at 633 nm and at 1050 nm 0 ΔT after 12000 cycles at 1500 nm Crystalline 58% at 633 color nm -1~3 (vs. nm) 9 at 633 nm, nm, 90.8 of ΔT at 633 nm after 500 cycles -1.57.6.0 nm -	$WO_3 \cdot 2H_2O$	1600 nm	(vs.		1600 nm	ΔT after 500 cycles
MO ₃ ·0.9H ₂ O film nm, 24% at (vs. 1100 nm 1100 nm ΔT after 12000 cycles at 1100 nm; retaining 87% after 1000 cycles at 550 nm retaining 87% after 1000 cycles at 550 nm retaining 87% after 1000 cycles at 550 nm nm at 1000 cycles at 550 nm cys. 9 at 633 nm, 90.8 of ΔT at 633 nm and doped WO ₃ ·2H ₂ O 72.5% at Ag/AgCl) nm, at 1050 nm after 500 cycles at 1050 nm after 500 cycles at 1050 nm after 500 cycles at 1050 nm after 500 cycles at 1050 nm at 1050 nm at 1050 cycles at 633 cys. cy	nanoplate film [2]		Ag/AgCl)			
Solution	Amorphous	69% at 1100	-0.8~0.8	2.3/2.1 at	312 at	Retaining 97% of
Amorphous and crystalline Ti-doped WO ₃ ·2H ₂ O 72.5% at 1050 nm Ag/AgCl) Amorphous S8% at 633 -1~3 (vs. 9.6/5.1 38.2 -1.5~0.5 1.5~0.5	WO ₃ ·0.9H ₂ O film	nm, 24% at	(vs.	1100 nm	1100 nm	ΔT after 12000
Amorphous and crystalline Ti- d33 nm, doped WO ₃ ·2H ₂ O 72.5% at 1050 nm 1050 nm 1050 nm 26% at 1050 nm 1050 nm 1050 nm 26% at 1050 nm 26%	[3]	550 nm	Ag/AgCl)			cycles at 1100 nm;
Amorphous and crystalline Tidoped WO ₃ ·2H ₂ O 83.8% at respect to the state of t						retaining 87% after
Amorphous and crystalline Tidoped WO ₃ ·2H ₂ O 83.8% at crystalline Tidoped WO ₃ ·2H ₂ O at crystalline (vs. part of the part of						1000 cycles at 550
crystalline Ti-doped 633 nm, doped (vs. Ag/AgCl) 9 at 633 nm, nm, nm, at 1050 nm of ΔT at 633 nm and at 1050 nm at 1050 nm after 500 cycles Crystalline 58% at 633 -1~-3 (vs. nm) 9.6/5.1 38.2 - Crystalline WO ₃ ·H ₂ O nanoplates film [5] MO ₂ (O ₂)H ₂ O·1.66 32% at 632 -1.5~0.5 (vs. nm) 7.8/1.7 5.74 - WO ₂ (O ₂)H ₂ O·1.66 H ₂ O nanocrystal film [6] Ag/AgCl) Ag/AgCl) - - 3WO ₃ ·H ₂ O nanoplate film [7] 38% at -0.3~0.3 (vs. Ag/AgCl) 4.3/1.4 112.7 - Amorphous WO ₃ ·2H ₂ O film (this work) 92% at 633 -0.5~0.5 18.1/17. 204.2 retaining 94% of ΔT at 633 nm and at 1050 nm after 500 cycles at 633 nm nm after 500 cycles a						nm
doped WO ₃ ·2H ₂ O 72.5% at loso nm Ag/AgCl) nm, at loso loso nm 26% at loso nm after soo cycles Crystalline WO ₃ ·H ₂ O nanoplates film [5] 58% at 633 loso nm loso nm -1~-3 (vs. loso loso nm loso nm loso nm 3.5/16.0 loso nm lo	Amorphous and	83.8% at	-0.5~0.5	15.3/14.	22.8 at 633	Retaining 52.3%%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	crystalline Ti-	633 nm,	(vs.	9 at 633	nm, 90.8	of ΔT at 633 nm and
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	doped WO ₃ ·2H ₂ O	72.5% at	Ag/AgCl)	nm,	at 1050	26% at 1050 nm
Crystalline 58% at 633 -1~-3 (vs. particles) 9.6/5.1 38.2 - WO₃'H₂O nm Ag/AgCl) 38.2 - manoplates film [5] WO₂(O₂)H₂O·1.66 32% at 632 -1.5~0.5 7.8/1.7 5.74 - H₂O nanocrystal film [6] nm (vs. particles) 4.3/1.4 112.7 - 3WO₃'H₂O nanoplate film [7] 633nm (vs. particles) 4.3/1.4 112.7 - nanoplate film [7] 633nm (vs. particles) 4.3/1.4 112.7 - Ag/AgCl) Nm Ag/AgCl) 5 at 633 cm²/C at particles) after 2000 cycles (this work) 86% at 1100 particles Ag/AgCl) nm, particles 1100 nm, particles 10000 cycles at 633 1100 nm cm²/C at particles nm; retaining 18% particles 633 nm of ΔT after 10000	film [4]	1050 nm		3.5/16.0	nm	after 500 cycles
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				at 1050		
WO ₃ ·H ₂ O nm Ag/AgCl) Ag/AgCl) WO ₂ (O ₂)H ₂ O·1.66 32% at 632 -1.5~0.5 7.8/1.7 5.74 - H ₂ O nanocrystal film [6] Ag/AgCl) - Ag/AgCl) - - 3WO ₃ ·H ₂ O nanoplate film [7] 633nm (vs. - - - - - nanoplate film [7] 633nm (vs. Ag/AgCl) -<				nm		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Crystalline	58% at 633	-1~-3 (vs.	9.6/5.1	38.2	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$WO_3 \cdot H_2O$	nm	Ag/AgCl)			
H2O nanocrystal film [6] nm (vs. Ag/AgCl) 4.3/1.4 112.7 - 3WO ₃ ·H ₂ O nanoplate film [7] 38% at -0.3~0.3 (vs. Ag/AgCl) 4.3/1.4 112.7 - Amorphous WO ₃ ·2H ₂ O film (this work) 92% at 633 (vs. Ag/AgCl) 18.1/17. 204.2 (retaining 94% of ΔT after 2000 cycles at 633 cm²/C at after 2000 cycles (this work) 5 at 633 cm²/C at after 2000 cycles at 633 (rd²/C) at after 2000 cycles at 633 (rd²/C) at after 10000 cycles at 633 (rd²/C) at af	nanoplates film [5]					
film [6] Ag/AgCl) Ag/AgCl) Image: contract of the proof o	WO ₂ (O ₂)H ₂ O·1.66	32% at 632	-1.5~0.5	7.8/1.7	5.74	-
3WO ₃ ·H ₂ O 38% at namoplate film [7] -0.3~0.3 4.3/1.4 112.7 - Amorphous WO ₃ ·2H ₂ O film (this work) 92% at 633 -0.5~0.5 18.1/17. 204.2 retaining 94% of ΔT 86% at 1100 Ag/AgCl) nm 1100 nm and 76% after 7.1/5.0 at 72.3 10000 cycles at 633 1100 nm cm²/C at nm; retaining 18% of ΔT after 10000	H ₂ O nanocrystal	nm	(vs.			
nanoplate film [7] 633nm (vs. Ag/AgCl) Ag/AgCl) retaining 94% of ΔT Amorphous 92% at 633 -0.5~0.5 18.1/17. 204.2 retaining 94% of ΔT WO ₃ ·2H ₂ O film nm and (vs. 5 at 633 cm²/C at after 2000 cycles (this work) 86% at 1100 Ag/AgCl) nm, 1100 nm, and 76% after nm 7.1/5.0 at 72.3 10000 cycles at 633 1100 nm cm²/C at nm; retaining 18% of ΔT after 10000	film [6]		Ag/AgCl)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3WO ₃ ⋅H ₂ O	38% at	-0.3~0.3	4.3/1.4	112.7	-
Amorphous WO ₃ ·2H ₂ O film (this work) 92% at 633 nm -0.5~0.5 (vs. scale) 18.1/17. 204.2 scale (vs. scale) retaining 94% of ΔT after 10000 scycles at 633 nm; retaining 94% of ΔT after 10000	nanoplate film [7]	633nm	(vs.			
WO ₃ ·2H ₂ O film (this work) nm and (vs. 86% at 1100 Ag/AgCl) nm, 1100 nm, and 76% after 10000 cycles at 633 nm; retaining 18% of ΔT after 10000			Ag/AgCl)			
(this work) 86% at 1100 nm Ag/AgCl) nm, 7.1/5.0 at 1100 nm, 10000 cycles at 633 nm 1100 nm, 10000 cycles at 633 nm; retaining 18% of ΔT after 10000	Amorphous	92% at 633	-0.5~0.5	18.1/17.	204.2	retaining 94% of ΔT
nm $7.1/5.0 \text{ at} 72.3 10000 \text{ cycles at } 633 1100 \text{ nm} \text{cm}^2/\text{C} \text{at} \text{of } \Delta T \text{ after } 10000 \Delta T \text{ after } 10000 \Delta T \text{ at } \text{ of } \Delta T \text{ after } 10000 \Delta T \text{ at } \text{ of } \Delta T \text{ at } \Delta T \text{ at } \text{ of } \Delta T \text{ at } \text{ of } \Delta T \text{ at } \Delta$	$WO_3 \cdot 2H_2O$ film	nm and	(vs.	5 at 633	cm ² /C at	after 2000 cycles
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(this work)	86% at 1100	Ag/AgCl)	nm,	1100 nm,	and 76% after
633 nm of ΔT after 10000		nm		7.1/5.0 at	72.3	10000 cycles at 633
				1100 nm	cm ² /C at	nm; retaining 18%
					633 nm	of ΔT after 10000
						cycles at 1100 nm.

- [1] J. Fortunato, B.Z. Zydlewski, M. Lei, N.P. Holzapfel. M. Chagnot, J.B. Mitchell, H. Lu, D. Jiang, D.J. Milliron, V. Augustyn. Dual-band electrochromism in hydrous tungsten oxide, ACS Photonics, 10 (2023) 3409-3418.
- [2] Z. Wang, W. Gong, X. Wang, Z. Chen, X. Chen, J. Chen, H. Sun, G. Song, S. Cong, F. Geng, Z. Zhao. Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-to-pesedocapacitor transition. ACS Appl. Mater. Interfaces, 12 (2020) 33917-33925.
- [3] W. Zhao, J. Wang, B. Tam, H. Zhang, F. Li, A. Du, W. Cheng. Structural water in amorphous tungsten oxide hydrate enables fast nad ultrastable regulation of near-infrared light transmittance, Adv. Opt, Mater., 11 (2023) 2202774.
- [4] X. Sun, D. Wang, W. Wu, X. Zhao, Z. Zhang, B. Wang, X. Rong, G. Wu, X. Wang. Amorphous and crystalline Ti-doped WO₃·2H₂O for dual-band electrochromic smart windows, ACS Sustain. Chem. Eng., 12 (2024) 5459-5467.
- [5] C.Y. Ng, K.A. Razak, Z. Lockman. Effect of annealing on acid-treated WO₃·H₂O nanoplates and their electrochromic properties, Electrochim. Acta, 178 (2015) 673-681.
- [6] S. Wang, K. Dou, Y. Zou, Y. Dong, J. Li, D. Ju, H. Zeng. Assembling tungsten oxide hydrate nanocrystal colloids formed by laser ablation in liquid into fast-response electrochromic films, J. Colloid Interf. Sci., 489 (2017) 85-91.
- [7] Z. Jiao, X. Wang, J. Wang, L. Ke, H.V. Kemir, T. W. Koh, X. Sun. Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance, Chem. Commun., 48 (2012) 365-367.