Supplementary Information

Ultrasonic-assisted Europium Decorated Cuprous Oxide Nanoparticles: Exploring their Photothermal Capabilities and Antioxidant Properties for Biomedical Applications

Sarmistha Mazumder^a, Tiasa Das^c and *Raviraj Vankayala^{a,b,c}

^aJoint Center for Medical Technologies, Indian Institute of Technology, Jodhpur 342030, Rajasthan, India.

^bDepartment of Interdisciplinary Research Division Smart Healthcare, Indian Institute of Technology, Jodhpur 342030, Rajasthan, India.

^cDepartment of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur 342030, Rajasthan, India. *E-mail: rvankayala@iitj.ac.in

Estimation of Photothermal Conversion Efficiency

The photothermal conversion efficiencies of the Eu-Cu₂O NPs and Cu₂O NPs were determined according to previously reported methods. Detailed calculation is as follows.

$$\eta = \frac{hs \left(T_{max} - T_0\right) - Q_{Dis}}{I \left(1 - 10^{-A_{808}}\right)} \qquad \dots (1)$$

h is the heat transfer coefficient; S is the surface area of the container; the value of hS is obtained from Eq. 4 and Fig. 4d and 4f.

The maximum steady temperature (T_{max}) of the solution of Eu-Cu₂O NPs and Cu₂O NPs was 55.3 ° C and 46.6 ° C respectively.

The ambient temperature (T_o) of the solution of Eu-Cu₂O NPs and Cu₂O NPs was 28.4 ° C and 24 ° C, respectively.

Therefore, the temperature change $(T_{max} - T_0)$ of the solution of Eu-Cu₂O NPs and Cu₂O NPs was 26.9 ° C and 22.6 ° C, respectively.

The laser power *I* is 1W. The absorbances of Eu-Cu₂O NPs and Cu₂O NPs at 808 nm A₈₀₈ were 0.282 and 0.228, respectively. Q_{Dis} denotes the heat dissipated from the light absorbed by the solvent and container.

To calculate *hS*, a dimensionless parameter θ was introduced as follows:

$$\theta = \frac{T - T_0}{T_{max} - T_0} \qquad \dots (2)$$

A sample system time constant t_s was calculated as Eq. 3

$$t = -t_s \ln (\theta) \qquad \dots (3)$$

According to figures 4d and 4f, t_s was calculated to be 489.67 s and 591.161 s for Eu-Cu₂O NPs and Cu₂O NPS, respectively.

$$hS = \frac{m_D C_D}{\tau_s} \qquad \dots \dots \dots (4)$$

Additionally, *m* is 1g, and *C* is 4.2 J/g ° C. Based on Eq . 4, *hS* is measured to be 8.5 mW/ °C and 7.1 mW/ °C for Eu-Cu₂O NPs and Cu₂O NPs respectively.

 Q_{Dis} measured heat dissipated from the light absorbed by the quartz sample cell that was measured using a quartz cuvette containing pure water and found to be 2.1 W

Substituting the values of all parameters in Eq. 1, the photothermal conversion efficiency (η) at 808 nm of Eu-Cu₂O NPs and Cu₂O NPs was calculated to be 44 % and 36 %.

Estimation of Crystallite Size

Estimation of Crystallite size from XRD data using the Scherrer equation, given by:

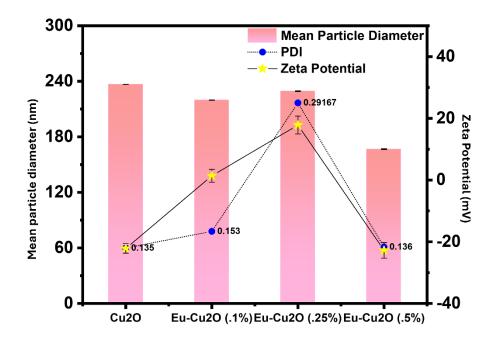
 $D = (K.\lambda)/(\beta \cos^{10}\theta) \dots (5)$

D=crystallite size (nm), K = Shape factor (0.9 for spherical nanoparticles) λ : for Cu Kalpha, 0.15418 nm), β : Full Width at Half Maximum (FWHM) of the peak (in radians).

For Eu-Cu₂O NPs, FHWM = 0.57203° = .00998 radians For Cu₂O NPs, FHWM = 0.38207° = .00667 radians

 θ : Bragg angle (in radians), $2\theta = 26.4^{\circ}$, $\theta = .2304$ radians

For Eu-Cu₂O NPs, $D=(0.9)(0.15418)/(0.00998) \cos(.2304) = 14.28 \text{ nm}$


For Cu₂O NPs, D= (0.9) (0.15418)/ (0.00667) cos (.2304) = 21.37 nm

Entry	Mean particle diameter	PDI	Zeta Potential
Cu ₂ O NPs	236.67± 1.52 nm	0.135	-22.1± 0.12 mV
Eu-Cu ₂ O NPs (.1%)	219.67±2.08 nm	0.153	$1.4\pm0.20\ mV$
Eu-Cu ₂ O NPs (.25%)	229.33±17.89 nm	0.291	$17.8\pm0.38\ mV$
Eu-Cu ₂ O NPs (.5%)	$166.67 \pm 2.52 \text{ nm}$	0.136	$-22.7 \pm 0.55 \text{ mV}$

Table S1. Table representing the mean particle diameters, PDI and zeta-potential valuesmeasured using DLS for various nanoparticles.

Entry	Cell Line	Test Method	Incubation period	Cell Viability	Ref.		
Cuprous oxide (Cu ₂ O) nanoparticles	B16-F10 (Melanoma)	MTT	48 h	50% at 1.992 mg/ml	[37]		
ZnO@polymer core-shell nanoparticles	U251 (Glioblastoma)	MTT	48 h	~80% at 10 mg/ml	[S1]		
? Dextran-coated MG-63 CeO ₂ (Osteosarcoma Nanoparticles		MTS	24 h	50% at >250 mg/ml	[S2]		
TiO ₂ -DOX nanoparticles			24 h	~84% at 10 mg/ml DOX	[S3]		
Iron doped Copper oxide nanoparticles	C6 (Glioma)	LDH	5 h	~45% at 1000 mM	[16]		
Europium-doped CeO ₂ nanoparticles	BV2 (Glial Cells)	MTT	4 h	60% at 1 mg/ml	[45]		
Europium decorated Cu ₂ O nanoparticles	KB (Epidermal Carcinoma)	PI cell death assay using flow cytometry	4 h	~80% at 50 mg/ml	Present work		

 Table S2. Comparative analysis of cellular viabilities of different metal oxide nanoparticles.

Fig. S1. DLS analysis of undecorated Cu₂O NPs and decorated Eu-Cu₂O NPs with variable europium content.

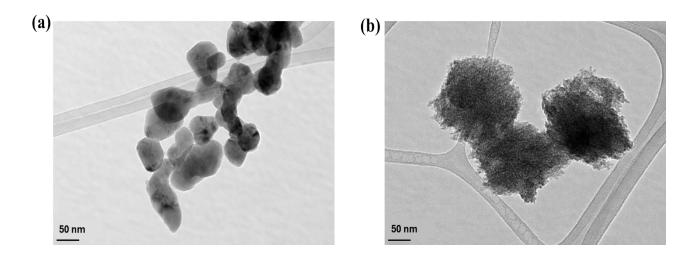


Fig. S2. TEM images of (a) Cu₂O NPs and (b) Eu-Cu₂O NPs.

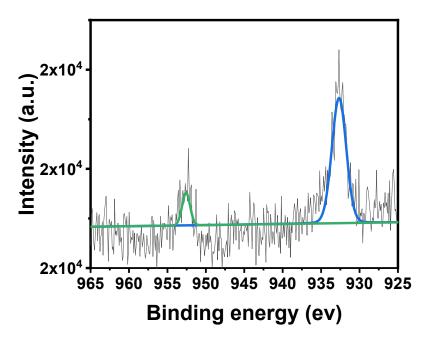
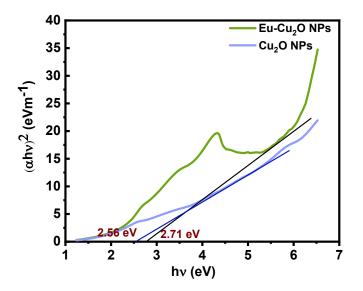
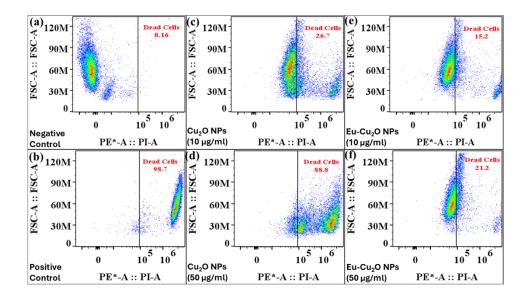
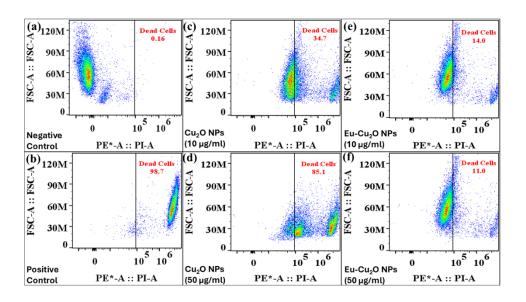
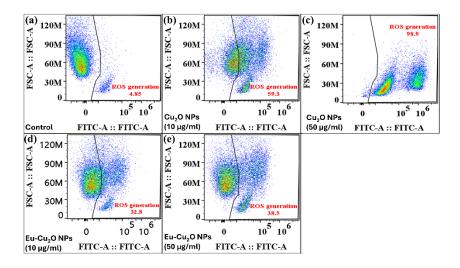


Fig. S3. XPS Elemental spectrum (Cu 2p) of pristine Cu₂O NPs


Fig. S4. Tauc Plot for direct band gap energy analysis of Eu-Cu₂O NPs and Cu₂O NPs.

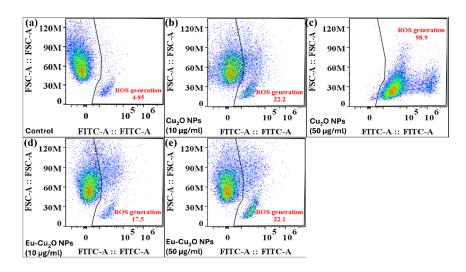

Fig. S5. Cell viability assay (dark) using flow cytometry with propidium iodide staining. (a) Untreated cells (b) induced dead cells (c) Cells treated with Cu₂O NPs (10 μ g/mL) (d) Cells treated with Cu₂O NPs (50 μ g/mL) (e) Cells treated with Eu-Cu₂O NPs (10 μ g/mL) (f) Cells treated with Eu-Cu₂O NPs (50 μ g/mL).

Fig. S6. Cell viability assay (under NIR irradiation) using flow cytometry with propidium iodide staining. (a) Untreated cells (b) induced dead cells (c) Cells treated with Cu₂O NPs (10 μ g/mL) (d) Cells treated with Cu₂O NPs (50 μ g/mL) (e) Cells treated with Eu-Cu₂O NPs (10 μ g/mL) (f) Cells treated with Eu-Cu₂O NPs (50 μ g/mL).

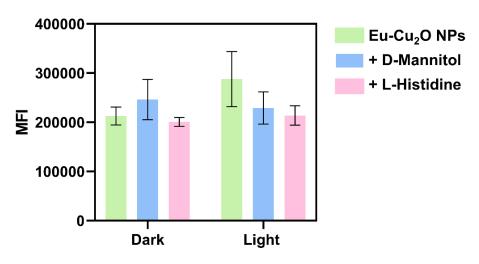

Fig. S7. DCFH-DA assay (dark) for ROS detection using flow cytometry in (a) Untreated cells (b) Cells treated with Cu₂O NPs (10 μ g/mL) (c) Cells treated with Cu₂O NPs (50 μ g/mL) (d) Cells treated with Eu-Cu₂O NPs (10 μ g/mL) (e) Cells treated with Eu-Cu₂O NPs (50 μ g/mL)

Fig. S8. DCFH-DA assay (NIR irradiated) for ROS detection using flow cytometry in (a) Untreated cells (b) Cells treated with Cu₂O NPs (10 μ g/mL) (c) Cells treated with Cu₂O NPs (50 μ g/mL) (d) Cells treated with Eu-Cu₂O NPs (10 μ g/mL) (e) Cells treated with Eu-Cu₂O NPs (50 μ g/ml)

(a)					(b)							(c)								
13778	15466	11509	18779	2714	16606	18623	5749	59	9055	825	13882	7449	3361	1560	12476	15507	15815	19175	14761	7963 C
1841	18699	18337	4348	2018	19751	6077	4981	14005	9019	12349	13074	17100	15963	9146	14945	11128 (C)	101	15130	1154	6463
4925	1384	8756	10015	18655	2432 C	6676	287	2518	5588	18556	****	10328	1514	3349 60	5863	457	6852		245	11127
17949	12630	1465	2344	15323	17993	5524	4679	5410	1592	8877	19971	6647	10437	18688	1609	1625	11654	14150	6236	2610
16070	18445	645	12410	9246	2692	19196	6822	19541	18169	7710	3507	17047	15222	10688	2001	8451	18898	512 (C)	3278	10553
10129 C	16716	4567	4675	12834	13934	8962	15713	528	6322	3210	11416	10602	19456	13766	10950	18541	15549	8270	3698	5866 G
18169	× ()	18285	6711	15520	9039 (C)	3014	18403	4791	14634	555	3022	16430	13247	2340	3632	8779	3388	2440	4105	9055

Fig. S9. Representative images of cells as obtained from Image enabled Flow Cytometry (BD FACS Discover S8) for (a) untreated (b) Cu_2O NPs (50 µg/mL) and (c) Eu- Cu_2O NPs (50 µg/mL) treated cells for estimation of ROS generation on light irradiation using DCFH-DA Assay. Green fluorescence indicates total ROS generation. The images have been processed

using BD CellView.

Fig. S10. ROS quenching studies to study ROS generation by $Eu-Cu_2O$ NPs through the flow cytometric approach, using DCFH-DA as the fluorescent probe and ROS quenchers (D-mannitol and L-histidine). (n=3)

Supplementary References:

[S1] Z.Y Zhang, Y. D. Xu, Y. Y Ma, L. L Qiu, Y. Wang, J. L. Kong, H.M Xiong, *Angew. Chem.*, 2013, **52(15)**,4127-4131.

[S2] E. Alpaslan, H. Yazici, N. H. Golshan, K. S. Ziemer and T. J. Webster, 2015, ACS Biomater Sci Eng, 1, 1096–1103.

[S3] W Ren, L Zeng, Z Shen, L Xiang, A Gong, J Zhang, C Mao, A Li, T Paunesku, G E. Woloschak, N S. Hosmaned, A Wu, 2013, *RSC Adv.*, **3**, 20855.