Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

3D observational analysis of convection around and inside a self-propelled droplet

Tamako Suzuki*a and Hideyuki Sawadab

^a Department of Pure and Applied Physics, Graduated School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555, Japan.

^bFaculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555, Japan.

Contents

S1. PIV data about the convection around the droplet	2
S2. PIV data about the convection inside the droplet	4
S3. Supporting video information	

S1. PIV data about the convection around the droplet

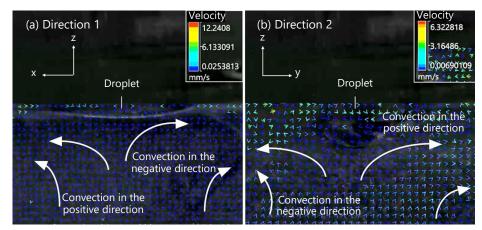


Fig. S1 Convection generated around a droplet, under the condition of using the aqueous solution with a concentration of 0.5 mL / 100 mL of water and the asymmetrical exoskeleton. (a) Convection captured from Direction 1. (b) Convection captured from Direction 2.

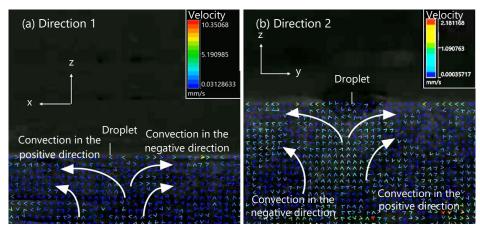


Fig. S2 Convection generated around a droplet, under the condition of using the aqueous solution with a concentration of 2.3 mL / 100 mL of water and the symmetrical exoskeleton. (a) Convection captured from Direction 1. (b) Convection captured from Direction 2.

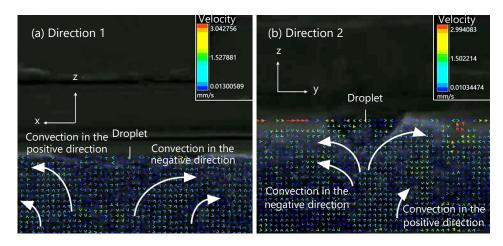


Fig. S3 Convection generated around a droplet, under the condition of using the aqueous solution with a concentration of 2.3 mL / 100 mL of water and the asymmetrical exoskeleton. (a) Convection captured from Direction 1. (b) Convection captured from Direction 2.

S2. PIV data about the convection inside the droplet

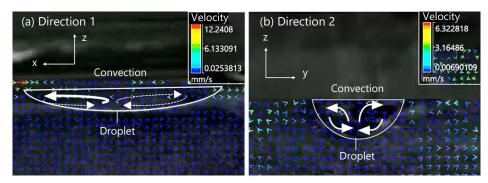


Fig. S4 Convection generated inside a droplet, under the condition of using the aqueous solution with a concentration of 0.5 mL / 100 mL of water and the asymmetrical exoskeleton. (a) Convection captured from Direction 1. (b) Convection captured from Direction 2.

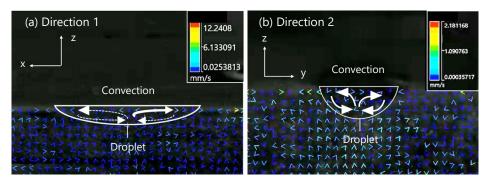


Fig. S5 Convection generated inside a droplet, under the condition of using the aqueous solution with a concentration of 2.3 mL / 100 mL of water and the symmetrical exoskeleton. (a) Convection captured from Direction 1. (b) Convection captured from Direction 2.

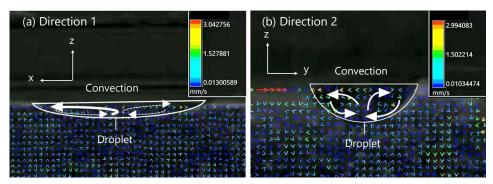


Fig. S6 Convection generated inside a droplet, under the condition of using the aqueous solution with a concentration of 2.3 mL / 100 mL of water and the asymmetrical exoskeleton. (a) Convection captured from Direction 1. (b) Convection captured from Direction 2.

S3. Supporting video information

Movie S1: Self-propulsion behavior of a 1-pentanol droplet under the condition of using the aqueous solution with a concentration of 0.5 mL / 100 mL water and the symmetrical exoskeleton.

Movie S2: Self-propulsion behavior of a 1-pentanol droplet under the condition of using the aqueous solution with a concentration of 0.5 mL / 100 mL water and the asymmetrical exoskeleton.

Movie S3: Self-propulsion behavior of a 1-pentanol droplet under the condition of using the aqueous solution with a concentration of 2.3 mL / 100 mL water and the symmetrical exoskeleton.

Movie S4: Self-propulsion behavior of a 1-pentanol droplet under the condition of using the aqueous solution with a concentration of 2.3 mL / 100 mL water and the asymmetrical exoskeleton.