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1. Solvers
The Multi-Objective Optimization (MOO) solvers selected for this study are those known for 

their capability to approximate the entire Pareto front, having been validated through 

application in actual reaction optimization scenarios. Further, each of these solvers utilizes a 

Bayesian approach; starting with the construction of a surrogate model from initial data, the 

approach continues with the prediction of the next evaluation point through an acquisition 

function, with this cycle repeating throughout the optimization process.

1.1. MVMOO
MVMOO1 (Mixed Variable Multi-Objective Optimization) is designed to manage both 

continuous and categorical variables. It utilizes a Gaussian process (GP) for the surrogate model 

and incorporates a customized covariance function based on the Gower distance metric to 

handle categorical variables. The Expected Improvement Matrix (EIM) – Euclidean distance 

serves as the acquisition function. This solver is available for use through installation in Python 

and can be accessed at https://github.com/jmanson377/MVMOO?tab=readme-ov-file

1.2. EDBO+
The Experimental Design via Bayesian Optimization (EDBO)2 platform, initially developed for 

Single-Objective Optimization (SOO) by the research group led by Abigail G. Doyle, has been 

expanded to include EDBO+3 for Multi-Objective Optimization (MOO). EDBO+ leverages a 

GP for the surrogate model and employs q-Expected HyperVolume Improvement as its 

acquisition function. It handles categorical variables through one-hot encoding. EDBO+ is 

accessible in Python via https://github.com/doyle-lab-ucla/edboplus and is also available as a 

web application (https://www.edbowebapp.com) making it particularly useful for chemists 

without coding skills and for use in non-autonomous setups. It is important to distinguish that 

EDBO and EDBO+ are two separate packages.

1.3. Dragonfly
Dragonfly4,5 is a versatile optimization package capable of addressing both SOO and MOO 

problems. It supports a wide range of variable types, including continuous (with specified 

boundaries), discrete numeric, categorical, integer, and discrete Euclidean. Among its notable 

features are parallel evaluation and constraint handling. Specifically, for MOO, Dragonfly 

allows users to define the range of interest on the Pareto front, focusing the algorithm's efforts 

https://github.com/jmanson377/MVMOO?tab=readme-ov-file
https://github.com/doyle-lab-ucla/edboplus
https://www.edbowebapp.com/
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on this specified range rather than the entire front. For surrogate modeling, Dragonfly employs 

a GP, utilizing a Hamming kernel function for categorical variables. UCB (Upper Confidence 

Bound) or Thompson Sampling are used as acquisition functions. Uniquely, Dragonfly adopts 

random scalarizations for Pareto approximation, scalarizing multiple objectives into a single 

objective weighted by randomly chosen weights in each iteration. Modifications were made to 

two significant settings for our study. Given Dragonfly's original development for 

hyperparameter tuning optimization, the default model update occurs every 17 iterations to 

reduce computational time. However, considering our context, where experimental iteration 

times are relatively long, updating the model after every iteration is deemed more beneficial for 

accurate predictions, thus we adjusted the model update frequency to after each iteration 

(build_new_model_every = 1). Additionally, Dragonfly typically employs the Tschebyshev 

scalarization function by default, which is capable of identifying solutions within non-convex 

regions. The linear setting, according to theory, cannot access solutions in non-convex regions. 

To assess performance, we conducted tests using both settings. Dragonfly is available for 

Python installation at Dragonfly GitHub Repository (https://github.com/dragonfly/dragonfly). 

Jensen et al.6 provide a well-structured tutorial for utilizing Dragonfly in both SOO and MOO, 

accessible at (https://github.com/anirudh-nambiar/make-it-

system/tree/main/dragonfly_bayesopt_demo)

Following this, we highlight the advantage of integer and discrete Euclidean variable types 

supported by Dragonfly. For integer types, it confines its consideration to integer values within 

a specified range of continuous variable. For discrete Euclidean variables, it optimizes based 

on predetermined combinations of real values. An example of this could be specifying 

conditions (e.g.  30 °C and 10 min, 50 °C and 5 min, or 70 °C and 2 min) when optimizing 

temperature and residence time concurrently. However, this approach, while facilitating 

optimization, may reduce the robustness of exploration, leading to a potential bias in the search 

for optimal solutions. This method allows the algorithm to concentrate on a preselected set of 

combinations, rather than examining every potential permutation within the finite sets of values. 

This approach streamlines the optimization process by targeting scenarios most pertinent to the 

desired outcomes, leveraging prior knowledge to enhance efficiency.

1.4. TSEMO
TSEMO - Thompson Sampling Efficient Multi-objective Optimization - utilizes GP as 

surrogate models and is designed to handle only continuous variables. In the acquisition phase, 

individual GPs for each objective are sampled using Thompson Sampling. These samples are 

then processed with NSGA-II to approximate the Pareto front. The subsequent step involves 

https://github.com/dragonfly/dragonfly
https://github.com/anirudh-nambiar/make-it-system/tree/main/dragonfly_bayesopt_demo
https://github.com/anirudh-nambiar/make-it-system/tree/main/dragonfly_bayesopt_demo
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selecting the next evaluation point anticipated to maximize the hypervolume contribution. 

TSEMO is available as MATLAB code on GitHub (https://github.com/Eric-Bradford/TS-

EMO) and requires the Statistics and Machine Learning Toolbox as well as the Optimization 

Toolbox for its operation.

1.5. EIM-EGO
EIM-EGO (Expected Improvement Matrix for Efficient Global Optimization) leverages GP as 

surrogate models and adopts a matrix-based, multi-objective variant of the Expected 

Improvement acquisition function, as introduced by Liu et al7. Initially, they presented three 

methods to combine Matrix EI—Euclidean distance, Hypervolume, and min-max. In this study 

we employed the Euclidean distance, identical to the acquisition approach in MVMOO. 

Moreover, our testing revealed no significant performance variance across these transformation 

methods. The implementation of EIM-EGO is included in the PlatEMO8, an open-source multi-

objective optimization toolbox for MATLAB. It required the Statistics and Machine Learning 

Toolbox and is designed to process only continuous variables.

2. In silico models
We used 10 distinct in silico problems for our analysis, all originating from three separate 

kinetic/surrogate models. The first kinetic model focuses on the SNAr reaction involving 2,4-

difluoronitrobenzene and pyrrolidine. The second model is a simulated kinetic study used by 

Reizman9. The third model draws from real experimental data we have used in the past, 

specifically for [3+3] cycloadditions.

2.1. SNAr
The SNAr reaction10 – 2,4-difluoronitrobenzene a1 reacts with pyrrolidine a2 to produce one 

desired product a3 and two undesired products a4 and a5 (Scheme. 1) - is used by Lapkin et 

al.11 as a benchmark.  The optimization involves maximizing Space time yield (STY) (g/h.L) 

and minimizing E-factor  by varying four continuous variables - residence time τ [0.5-2 min], 

inlet concentration of a1 Ca1,i [0.1 -0.5 M], equivalents of a2 na2 [1-5 eq.], and reactor 

temperature T [30-120 oC]. We referred to this problem as SNAr – 1.
max

𝑋
(𝑆𝑇𝑌, ‒ 𝐸)

𝑤ℎ𝑒𝑟𝑒 𝑋 =  [𝜏, 𝐶𝑎1,𝑖,𝑛𝑎2,𝑇 ]

https://github.com/Eric-Bradford/TS-EMO
https://github.com/Eric-Bradford/TS-EMO
https://github.com/BIMK/PlatEMO
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Scheme1. 2,4 – difluronitrobenzene reacts with pyrrolidine

Provided the inlet concentration of a1  and the Equivalents of a2 , inlet concentration of 𝐶𝑎1,𝑖 𝑛2

a2  is calculated as 𝐶𝑎2,𝑖

𝐶𝑎2,𝑖 = 𝑛𝑎2𝐶𝑎1,𝑖

Given the reaction conditions, and the inlet concentrations of a1  and a2 , outlet 𝐶𝑎1,𝑖 𝐶𝑎2,𝑖

concentrations of the products can be identified by 

𝑑𝜏 =  
𝑑𝐶_

‒ 𝑟_

 represents the concentration and  respresents the reaction rate of species (a1-a5).  The 𝐶_ 𝑟_

reaction rates are given as 

𝑟𝑎1 =‒ (𝑘1 + 𝑘2)𝐶𝑎1𝐶𝑎2

𝑟𝑎2 =‒ (𝑘1 + 𝑘2)𝐶𝑎1𝐶𝑎2 ‒ 𝑘3𝐶𝑎2𝐶𝑎3 ‒ 𝑘4𝐶𝑎2𝐶𝑎4

𝑟𝑎3 = 𝑘1𝐶𝑎1𝐶𝑎2 ‒ 𝑘3𝐶𝑎2𝐶𝑎3

𝑟𝑎4 = 𝑘1𝐶𝑎1𝐶𝑎2 ‒ 𝑘4𝐶𝑎2𝐶𝑎4

𝑟𝑎5 = 𝑘3𝐶𝑎2𝐶𝑎3 + 𝑘4𝐶𝑎2𝐶𝑎4

 represents the kinetic constants for each reaction (Step 1 to Step 4) which is calculated using 𝑘_

the Arrhenius equation.   

𝑘_ = 𝑘_,𝑟𝑒𝑓𝑒𝑥𝑝[ ‒
𝐸𝑎,𝑟_

𝑅
 (1

𝑇
‒

1

𝑇𝑟𝑒𝑓 = 90𝑜𝐶)]
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Table S1. Kinetic parameters used by Muller et al.10 for the SNAr reaction
𝑘_,𝑟𝑒𝑓 𝐸𝑎

Reaction 10 ‒ 2𝑚𝑜𝑙 ‒ 1𝑑𝑚3𝑠 ‒ 1 𝑘𝐽 𝑚𝑜𝑙 ‒ 1

1 57.9 33.3
2 2.70 35.3
3 0.865 38.9
4 1.63 44.8

Once the final concentration of all the species is identified, the Space time yield is calculated 

as the mass of product a3 leaving per residence time.  

𝑆𝑇𝑌 =  
𝐶𝑎3,𝑜𝑀𝑎3

𝜏
 (𝑔

ℎ.𝐿)

E-factor is calculated as ratio of mass of waste (outlet undesired products and reactants) to the 

mass of desired product.  

𝐸 =  

𝑄𝑡𝑜𝑡𝜌𝑒𝑡ℎ +
5

∑
𝑛 = 1,𝑛 ≠ 3

𝑀𝑎(𝑛)𝐶𝑎(𝑛),𝑜𝑄𝑡𝑜𝑡

𝑀𝑎3𝐶𝑎3,𝑜𝑄𝑡𝑜𝑡
 

where is the Molecular weight of the chemical species an, is the total volumetric flow 𝑀𝑎(𝑛) 𝑄𝑡𝑜𝑡 

rate ,   is the reactor volume assumed to be 5 mL. 
𝑉
𝜏 𝑉

We expanded this model for multi-objective optimization by incorporating an additional 

objective: yield. The calculation for yield can be outlined as follows:

𝑦𝑖𝑒𝑙𝑑 =  
𝐶𝑎3,𝑜

𝐶𝑎1,𝑖
∗ 100

max
𝑋

(𝑌𝑖𝑒𝑙𝑑,𝑆𝑇𝑌, ‒ 𝐸)

𝑤ℎ𝑒𝑟𝑒 𝑋 =  [𝜏, 𝐶𝑎1,𝑖,𝑛𝑎2,𝑇 ]

This 3-objective optimization problem is referred to as SNAr – 2.   

To introduce a problem with two distinct categorical variables, we adjusted the kinetic 

parameters, specifically  and , with three levels for each: = [49.21, 57.9, 66.58] and  = 𝑘1 𝑘2 𝑘1 𝑘2

[0.7353, 0.8650, 0.9947]. Increasing  value favours the desired product a3, whereas higher 𝑘1

 values promote the undesired product a5.  Thus, the combination   𝑘2 [𝑘1 = 66.58,𝑘2 = 0.7353]

yields a potentially better solution, while   result in a less favourable [𝑘1 = 49.21,𝑘2 = 0.9947]

outcome. This analysis is supported by Figure S1, which illustrates the Pareto front for each set 

of kinetic parameters, obtained from 100,000 random points. The difference in performance 
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can be assumed to be of different solvents and catalysts. This in silico problem is referred to as 

SNAr – 3.   
max

𝑋
(𝑆𝑇𝑌, ‒ 𝐸)

𝑤ℎ𝑒𝑟𝑒 𝑋 =  [𝜏, 𝐶𝑎1,𝑖,𝑛𝑎2,𝑇,𝑘1,𝑘2 ]

Figure S1. Pareto front for different combinations of kinetic parameters

2.2. Reizman
Reizman9 introduced a simulated catalytic reaction, depicted in Figure S2, encompassing five 

distinct case studies. The optimization objective for each case study is the maximization of 

Yield and Turnover Number (TON), involving three continuous variables: residence time τ [1-

10 min], temperature T [30-110 oC], Ccat [0.5 -2.5 mol%], and one categorical variable catalyst 

Cat.[1,2,3,4,5,6,7,8]. This model has served as a benchmark in previous studies.12,13

max
𝑋

(𝑌𝑖𝑒𝑙𝑑,𝑇𝑂𝑁)

𝑤ℎ𝑒𝑟𝑒 𝑋 =  [𝜏, 𝑇, 𝐶𝑐𝑎𝑡, 𝐶𝑎𝑡. ]
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Figure S2. Simulation-based catalytic reaction

Each case study highlights unique scenarios (Table S2). Case study 1 (Reizman - 1) 

demonstrates that catalyst 1 is more effective compared to other catalysts. Meanwhile, in case 

study 2 (Reizman - 2), both catalyst 1 and catalyst 2 perform equally well and better than the 

other catalysts. Case study 3 (Reizman - 3) features a side reaction of Reactant B leading to the 

formation of the undesired product S1. In case study 4 (Reizman - 4), Reactant B interacts with 

the desired product R, creating an undesired product S2. Finally, case study 5 (Reizman - 5) 

shows catalyst 1 decomposing when the temperature rises above 80°C.  

Table S2. Overview kinetic parameters for different case studies

Case Catalyst effect 𝑘𝑆1
𝑘𝑆2

1 𝐸𝐴1
> 𝐸𝐴2 ‒ 8 = 0 = 0

2 𝐸𝐴1
= 𝐸𝐴2

> 𝐸𝐴3 ‒ 8 = 0 = 0

3 𝐸𝐴1
> 𝐸𝐴2 ‒ 8 > 0a = 0

4 𝐸𝐴1
> 𝐸𝐴2 ‒ 8 = 0 > 0b

5 𝐸𝐴1
> 𝐸𝐴2 ‒ 8 = 0 = 0

a: 
𝐴𝑆1

= 1 𝑥 1012𝑠 ‒ 1, 𝐸𝑎𝑆1
= 100 𝐾𝐽 𝑚𝑜𝑙 ‒ 1

b: 
𝐴𝑅 = 3.1 𝑥 105𝐿0.5𝑚𝑜𝑙 ‒ 1.5𝑠 ‒ 1,𝐸𝑎𝑆2

= 50 𝐾𝐽 𝑚𝑜𝑙 ‒ 1

2.3. [3+3] cycloadditions
This model is a data-based in silico model, derived from real experimental work featured in our 

prior publications14,15 - 1,3-cyclohexanedione with citral leading to 2H-pyran (Scheme S2).  For 

prediction, we utilized GP, which incorporates data from both our published and unpublished 
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studies. The optimization involves optimizing two objective Yield (%) and Throughput (g/h), 

by adjusting one categorical variable, the catalyst, across five levels: ethanolamine, pyrrolidine, 

ethylenediamine, butylamine, and piperidine. Additionally, four continuous variables are 

varied: temperature  [25-50 oC], residence time τ [1-10 min], equivalents of b2  [1-2 eq.], 𝑇 𝑛𝑏2

and catalyst loading  [0.05 – 0.2 eq.]. This problem is referred to as [3+3] cycloadditions – 𝑛𝑐𝑎𝑡

1.     

max
𝑋

(𝑌𝑖𝑒𝑙𝑑, 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡)

𝑤ℎ𝑒𝑟𝑒 𝑋 =  [ 𝑇,𝜏, 𝑛𝑏2,𝑛𝑐𝑎𝑡,𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 ]

O

OH O

O

H

O

+

Cat.

b1 b2

Scheme S2.  1,3-cyclohexanone reacts with citral.

Utilizing this model, we also considered optimizing the same problem while fixing the catalyst 

to ethanolamine. This choice of catalyst is particularly intriguing due to the Pareto structure 

exhibiting a notable mix of convex and non-convex regions, reflecting the complexity often 

encountered in real scenarios. This specific optimization problem is designated as [3+3] 

cycloadditions – 2.
max

𝑋
(𝑌𝑖𝑒𝑙𝑑, 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡)

𝑤ℎ𝑒𝑟𝑒 𝑋 =  [ 𝑇,𝜏, 𝑛𝑏2,𝑛𝑐𝑎𝑡 ]

𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 = 𝐸𝑡ℎ𝑎𝑛𝑜𝑙𝑎𝑚𝑖𝑛𝑒

Yield values were used for training the surrogate model. Throughput values were then 

calculated based on the predicted yields. The data gathered for building this model originated 

from an optimization study, resulting in a dataset that lacks wide diversity across both 

categorical and continuous variables. However, for simulation studies aimed at evaluating the 

performance of optimization algorithms, the precision of the in silico model, while not required 

to be exact, should still fall within an acceptable range. To assess the model's predictive 

accuracy, we divided the dataset (totaling 216 data points) into 196 for training and 21 for 

testing, ensuring a stratified split. The model was trained using the Gaussian Process (GP) in 
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MATLAB with the fitrgp function, applying the default settings except for the kernel function, 

which was set to ardmatern52. and predictions were made for the test data to compare against 

actual values. This process resulted (Figure S3) in a mean absolute error of 4.7894 for the test 

data and 2.7375 for the training data, with r2 values of 0.9026 and 0.9590, respectively.  

Figure S3.  Parity plot for [3+3] cycloaddition model tested using 196 training points

The codes for the in silico models, along with the data used to build the [3+3] cycloaddition 

model, are made available on GitHub.

3. Metrics

3.1. Hypervolume
The hypervolume metric quantifies the space covered by the approximate Pareto set (PS) 

(current Pareto set), bounded by a predefined reference point. A higher hypervolume value 

signifies a higher quality of Pareto set. There exist several methods to compute hypervolume, 

and for our study, we adopted the Monte-Carlo approximation method, similar to the approach 

utilized by Bourne et al.16 In the objective space, random points [number of objective*100,000] 

are generated. The hypervolume is then determined by the proportion of these points that are 

dominated by the approximate Pareto set. The reference point used is the anti-ideal point 

(composed of the worst possible outcomes for all objectives), adjusted by 0.01 times the range 

of the objective space, following the methodology used by Knowles17.

3.2. Modified Inverted Generational Distance (IGD+)
The Inverted Generational Distance (IGD) is a metric that calculates the average minimum 

distance between the approximate Pareto points (identified as ) and the true Pareto points ( 𝑃𝑆
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). Originally defined as the Euclidean distance, IGD quantifies the average distance of each 𝑃𝑆 ∗

true Pareto point ( ) to its nearest approximate Pareto point (PS). It is expressed as follows:𝑃𝑆 ∗

𝐼𝐺𝐷 =  
1

|𝑃𝑆 ∗ | ∑
𝑖 ∈ 𝑃𝑆 ∗

min
𝑗 ∈ 𝑃𝑆

𝑑𝑖,𝑗

𝑤ℎ𝑒𝑟𝑒 𝑑𝑖,𝑗 𝑖𝑠 𝑡ℎ𝑒 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗

However, this distance calculation is Pareto non-compliant, meaning that at times, it does not 

accurately reflect the distance. Ideally, we want IGD to be minimized, but there are situations 

where it might incorrectly interpret the distance. To address this issue, a modified version of 

IGD ( ), as proposed by Nojima et al.18, is employed.𝐼𝐺𝐷 +

𝐼𝐺𝐷 + =
1

|𝑃𝑆 ∗ | ∑
𝑖 ∈ 𝑃𝑆 ∗

min
𝑗 ∈ 𝑃𝑆

𝑑 +
𝑖,𝑗  

𝑤ℎ𝑒𝑟𝑒 𝑑 +
𝑖,𝑗 =  max (𝑖1 ‒ 𝑗1,0)2 + … + 𝑚𝑎𝑥⁡(𝑖

𝑃𝑆 ∗ ‒ 𝑗𝑃𝑆,0)2

3.3. Worst attainment surface
The attainment surface represents the division between dominated and non-dominated areas 

within the PS. For any given optimization problem, the final attainment surface varies with each 

run. The "worst attainment surface" is identified among the set of attainment surfaces from 'n' 

runs and is characterized by the solutions forming the boundary of the worst-case scenario. In 

this study, the points constituting the worst attainment surface are derived from the Pareto 

points at the final iteration of all runs. Specifically, those points that remain non-dominated 

(when considering minimization) are deemed the worst attainment points for problems aimed 

at maximization. Given that this metric relies on visual representation, it is applicable primarily 

to scenarios involving 2 and 3 objectives (2D and 3D). However, interpreting results in 3D can 

be challenging, so in this study, we have chosen to use this metric exclusively for in silico 

problems with 2 objectives.

The codes utilized for metric calculations are provided on GitHub.

4. Results
Each in silico problem was solved with solvers that could accommodate the problem's variable 

types. TSEMO and EIM-EGO, which handle only continuous variables, were not used for 
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problems like SNAr – 2, [3+3] Cycloadditions – 1, and Reizman – 1-5, which required handling 

both continuous and categorical variables. Additionally, EDBO+ does not naturally process 

continuous variables within a boundary, so these were formatted as discrete numeric values for 

compatibility. To ensure reasonable computational time, we opted for discretization that 

resulted in a search space of approximately 10,000 points. Each solver was run 21 times, with 

100 iterations per run. Before optimization, initialization employed Latin Hypercube Sampling 

(LHS), conducting 5 experiments for each level of the categorical variables present or 5 

experiments for problems with only continuous variables. Initial sampling is consistent for 

across solvers for any given in silico problem.  

All the solvers were utilized in their default settings except for Dragonfly, which had specific 

adjustments detailed earlier in the Solver section on Dragonfly. Figure S4 displays the outcomes 

of the optimization for all the in silico problems. The first column corresponds to Hypervolume, 

the second to IGD+, and the third to the worst attainment surface metric. The worst attainment 

plot for SNAr – 2 is omitted due to the challenges in interpretation. For the Hypervolume and 

IGD+, the plot corresponds to the average value of each iteration resulting from 21 runs, along 

with the 95% confidence interval.

Calculation of True Pareto
Identifying the true pareto set (PS*) for each in silico problem, as depicted in Figure 3, is crucial 

since it serves as a reference for metrics such as IGD+ and the worst attainment surface. In our 

study, PS* is determined as the collection of non-dominated points selected from the Pareto 

points generated by all solvers throughout all runs — essentially, the best points among all the 

best points.

The results of the different in silico problems solved using different solvers, the codes for 

calling different in silico problems, the data used for training [3+3] cycloadditions model, and 

the codes for calculating metrics are all made available in the GitHub repository 

(https://github.com/Aravind-vel/Multi_opt_reaction.git).

https://github.com/Aravind-vel/Multi_opt_reaction.git
https://github.com/Aravind-vel/Multi_opt_reaction.git
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Figure S4.  Results for In Silico Problems: Hypervolume (1st column), IGD+ (2nd column), 

Worst Attainment Surface (3rd column)
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