Supplementary material

Ioannis Zacharopoulos^a, Min Tao^a, and Constantinos Theodoropoulos^a

^aDepartment of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, The University of Manchester, Manchester, M13 9PL

For the calculation of the normal volume V_b at the normal boiling point, used in the Wilke-

⁶ Chang correlation (eq. 41 in the manuscript), the Schroeder method is used https://doi.org/10.1002/cjce.5450740122.

⁷ The Schroeder method (eq. 1) is an additive method, where the normal boiling point is calculated

⁸ by adding the contribution of each of the atoms or structural elements that make the molecule.

$$V_b = \sum \Delta V_b \tag{1}$$

⁹ With V_b the normal boiling point (cm^3/mol) and ΔV_b the incremental contribution of each

¹⁰ part of the molecule (cm^3/mol) .

1

2

¹¹ In Table 1 the value of each component's contribution is presented.

Table 1: Values of components contributions to the normal volume V_b

Component	$\Delta V_b \ (cm^3/mol)$
С	7
Н	7
O in OH group	5
O in COOH group	9
0	8
Double bond	7

¹² Here we calculate the V_b for glycerol (C₃H₈O₅), succinic acid (C₄H₆O₄), formic acid (C₃COOH)

and acetic acid (CH_2O_2) . In glycerol, all oxygens are part of the OH and all the bonds are single,

¹⁴ succinic acid has 2 double bonds and 2 of the O are part OH group. Formic acid has 1 double and

¹⁵ the 2 O are part of the COOH group. Finally, acetic acid has one double bond and the O are not ¹⁶ part of any group.

¹⁷ Taking all this into account and using eq. (1) and the data in Table 1, the normal volume for each

¹⁸ one of the molecules is calculated and presented in Table 2

Molecule	$V_b \ (cm^3/mol)$
Glycerol	92
Succinic acid	110
Acetic acid	53
Formic acid	37

Table 2: Normal volume V_b values for glycerol, succinic, acetic and formic acid