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S1. Homogeneous kinetic model

Having a reliable gas-phase mechanism is of utmost importance for the accurate microkinetic modeling of 

OCM reactions. OCM is a complex process involving simultaneous reactions in the gas phase and on the 

catalytic surface. However, using mechanisms with hundreds of reactions and species can present 

challenges and cause inconvenience, since considerable computational resources and time would be 

required for simulations. In this context, Wang et al.1 conducted a comprehensive investigation into the 

most reliable gas-phase frameworks for catalyst-free OCM. They compared their experimental results 

obtained under methane-rich operating conditions in a jet-stirred reactor with the results of nine existing 

gas-phase network models. The observed trends under various operating conditions for OCM were 

successfully captured by very detailed combustion models such as AramcoMech 3.0,2 CRECK,3 

NUIGMech1.1,4 GRI-Mech 3.05 and USC Mech II.6 By contrast, models originally derived from catalytic 

processes exhibited poor agreement with the experimental trends. While it is preferable to have very 

detailed gas-phase models for describing the most accurate kinetics, a large number of gas-phase species 

significantly increases the number of equations in the 1D heterogenous model. This is because gas-phase 

species appear at each collocation point of both interstitial and interparticle phase mass balances. In fact, 

the number of species and reactions in the models ranges from 53 and 325 (GRI-Mech 3.0) to 2746 and 

11,270 (NUIGMech1.1). Furthermore, most microkinetic models for OCM with a catalyst either have ad-

hoc gas-phase models or have reduced versions of full-range models. Considering these factors, this study 

used a homogeneous kinetic model that accounts for gas-phase reactions in OCM while prioritizing the 

associated computational complexity. 

The first group of ad-hoc gas-phase mechanisms developed for OCM consists of models with a large 

number of reactions (>100). For instance, Simon et al.,7 Fleys et al.,8 and Simon and Marquaire9 employed 

a gas-phase reaction network comprising over 450 elementary reactions for their OCM experiments with a 

lanthanum oxide catalyst in a jet-stirred reactor, which included 19 surface reactions. Their gas-phase model 

encompasses all elementary reactions involving molecules and radicals containing fewer than three carbon 
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atoms. This model was validated using a significant amount of experimental data.10 Similarly, Mims et al.11 

developed a homogeneous model for OCM with almost 450 reversible elementary gas-phase reactions 

involving 115 species on the basis of isotopic studies with a Li/MgO catalyst. Zanthoff and Baerns12 

constructed their reaction scheme with 164 reaction steps and 28 species on the basis of kinetic values 

reported in the literature and then validated the scheme by conducting OCM experiments without a catalyst. 

According to their gas-phase kinetics, excess methane leads to high C2 concentrations and thereby promotes 

the formation of oxygen-containing radicals. They deduced that the C2 selectivity to CH3
• radical 

concentration via the coupling reaction and thus, a high concentration of the latter is fundamental for 

enhanced C2 selectivities. Similarly, Geerts et al.13 modeled OCM reactions in the gas phase in the presence 

and absence of a catalyst (Li/MgO) by assuming a PFR and developed a gas-phase mechanism by reducing 

their original mechanism of 400 reactions to 164 by, among other methods, ignoring CH3OH formation 

routes; their model was constructing by considering key reactive species that they identified, such as H•, 

OH•, HO2
•, and CH3

•.

Chen et al. took a major stride toward reducing gas-phase reaction mechanisms for OCM.14 They began 

with the models of Zanthoff and Baerns12 and Geerts et al.13 and managed to reduce the reaction mechanisms 

to 66 reactions and 20 species. This reduction involved disregarding certain species, such as CH3CHO, 

which was deemed to be insignificant in stoichiometric methane-air flames. Consequently, intermediates 

such as the CH3CO• radical were also excluded. Additionally, the use of high temperatures in OCM 

experiments allowed the exclusion of CH3OOH, which becomes significant in degenerate branching during 

methane oxidation at low temperatures (around 400 ºC). Notable species that were omitted included 

CH3OH, CH• radical, and CH2
• radical. Through their experiments in the absence of a catalyst and by using 

sensitivity analyses and contribution analyses, Chen et al.14 further refined their model to 33 reactions by 

ignoring most of the reactions involving H2–O2 mixtures and species such as H•, O•, OH•, and HO2
•, with 

minimal impact on model performance. In a subsequent study, Chen et al.15 extended their reduced model 

by incorporating the effect of co-feeding C2H6 in the presence and absence of a catalyst (Li/MgO), and the 
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resulting model involved 39 reactions. They validated their model at P = 100–400 kPa, T = 973–1083 K, 

and feed ratios of CH4/O2 = 4–5 and C2H6/CH4 = 0–0.1 In the absence of a catalyst, they observed that co-

feeding ethane significantly enhanced OCM conversions owing to the presence of C2H5
• radicals and the 

increased abundance of CH3
• and HO2

• radicals; all these radicals were attributed to the weaker C–H bond 

in ethane. The more pronounced increase in the concentration of the HO2
• radical was used to explain the 

decrease in C2 selectivity in absence of a catalyst. The model was also validated for a total pressure range 

of P = 100–1000 kPa by including the falloff pressure effect for three-body reactions.16 

In the present work, the model of Chen et al.15 with 39 reactions and 23 gas-phase species was selected 

for use. The set of 39 homogeneous reversible elementary reactions are presented in Table S1. 

It should be noted that while the incorporation of reduced homogeneous mechanisms specifically developed 

for OCM, such as the mechanism proposed by Chen et al.,15 may result in a reduction of the predictive 

capabilities of the model in the absence of a catalyst, it offers a favorable trade-off between simplicity and 

accuracy in representing the role of gas-phase kinetics under catalytic OCM conditions. In this context, 

despite acknowledging the limitations of Chen et al.’s model,15 Karakaya et al.17,18 still opted to use it 

because of its simplicity; they adjusted certain prefactor values to match their spatially resolved 

concentration and temperature profiles. Similarly, Reyes et al.19 coupled homogeneous reactions with a 

pellet-scale catalytic model by using the model of Zanthoff and Baerns.12 However, Chen et al.’s model15 

is the most extensively used model in the literature to account for gas-phase contributions for a wide array 

of OCM catalyst families, including Li/MgO, La-Sr/CaO, Sr/La2O3, and Mn-Na2WO4/SiO2.20–29 Other 

authors have adapted larger mechanisms to suit their specific applications. For example, Vandewalle et al.30 

used a reduced version of AramcoMech 1.3,31 which consisted of 317 reactions involving 57 species. 
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Table S1. Set of homogeneous reversible elementary reactions reported by Chen et al.15 and 
used in the present work, along with the forward rate parameters. Units: Af

j (order 1) s−1, Af
j (order 

2) kmol−1 mg
3 s−1, Af

j (order 3) kmol−2 mg
6 s−1, Ef

a,j kJ mol−1.

Step Equation Afj Efa,j 
1 CH4 (g) + O2 (g) ⇄ CH3

• (g) + HO2
• (g) 9.83 · 109 193.86

2 CH4 (g) + H• (g) ⇄ CH3
• (g) + H2 (g) 2.34 · 1011 51.17

3 CH4 (g) + O• g) ⇄ CH3
• (g) + OH• (g) 1.27 · 1012 33.83

4 CH4 (g) + OH• (g) ⇄ CH3
• (g) + H2O (g) 7.43 · 1011 41.43

5 CH4 (g) + HO2
• (g) ⇄ CH3

• (g) + H2O2 (g) 4.01 · 1010 99.61
6 CH3

• (g) + O2 (g) ⇄ CH3O• (g) + O• (g) 3.08 · 1011 141.00
7 CH3

• (g) + O2 (g) ⇄ CH2O (g) + OH• (g) 4.59 · 1010 103.66
8 CH3

• (g) + HO2
• (g) ⇄ CH3O• (g) + OH• (g) 8.85 · 1010 0.00

9 CH3
• (g) + CH3

• (g) + M (g) ⇄ C2H6 (g) + M (g) 6.50 · 1013 0.00
10 CH3O• (g) + M (g) ⇄ CH2O (g) + H• (g) + M (g) 2.58 · 1017 116.00
11 CH2O (g) + OH• (g) ⇄ CHO• (g) + H2O (g) 6.80 · 1011 6.00
12 CH2O (g) + HO2

• (g) ⇄ CHO• (g) + H2O2 (g) 4.17 · 109 40.12
13 CH2O (g) + CH3

• (g) ⇄ CHO• (g) + CH4 (g) 7.00 · 1010 26.03
14 CHO• (g) + M (g) ⇄ CO (g) + H• (g) + M (g) 2.80 · 1012 64.36
15 CHO• (g) + O2 (g) ⇄ CO (g) + HO2

• (g) 1.71 · 108 0.00
16 CO (g) + HO2

• (g) ⇄ CO2 (g) + OH• (g) 3.08 · 1011 107.34
17 C2H6 (g) + H• (g) ⇄ C2H5

• (g) + H2 (g) 9.10 · 1011 51.70
18 C2H6 (g) + OH• (g) ⇄ C2H5

• (g) + H2O (g) 6.45 · 1011 17.16
19 C2H6 (g) + CH3

• (g) ⇄ C2H5
• (g) + CH4 (g) 2.39 · 1010 64.73

20 C2H5
• (g) + HO2

• (g) ⇄ CH3
• (g) + CH2O (g) + OH• (g) 9.48 · 109 0.00

21 C2H5
• (g) + M (g) ⇄ C2H4 (g) + H• (g) + M (g) 6.96 · 1016 167.66

22 C2H5
• (g) + O2 (g) ⇄ C2H4 (g) + HO2

• (g) 6.35 · 109 53.20
23 C2H4 (g) + O2 (g) ⇄ C2H3

• (g) + HO2
• (g) 2.81 · 109 144.55

24 C2H4 (g) + H• (g) ⇄ C2H3
• (g) + H2 (g) 1.50 · 1011 42.7

25 C2H4 (g) + OH• (g) ⇄ C2H3
• (g) + H2O (g) 6.12 · 1010 24.7

26 C2H4 (g) + CH3
• (g) ⇄ C2H3

• (g) + CH4 (g) 1.99 · 108 51.46
27 C2H4 (g) + OH• (g) ⇄ CH3

• (g) + CH2O (g) 2.72 · 109 0.00
28 C2H3

• (g) + M (g) ⇄ C2H2 (g) + H• (g) + M (g) 1.21 · 1018 176.44
29 C2H3

• (g) + O2 (g) ⇄ C2H2 (g) + HO2
• (g) 6.00 · 109 0.00

30 C2H3
• (g) + O2 (g) ⇄ CH2O (g) + CHO• (g) 6.50 · 109 0.00

31 C2H5
• (g) + CH3

• (g) ⇄ C3H8 (g) 8.00 · 109 0.00
32 C3H8 (g) + H• (g) ⇄ C3H7

• (g) + H2 (g) 9.00 · 1011 32.00
33 C2H4 (g) + CH3

• (g) ⇄ C3H7
• (g) + CH4 (g) 3.00 · 108 29.00

34 C3H7
• (g) ⇄ C3H6 (g) + H• (g) 1.50 · 1015 156.00

35 O2 (g) + H• (g) ⇄ OH• (g) + O• (g) 2.20 · 1011 70.30
36 O2 (g) + H• (g) + M (g) ⇄ HO2

• (g) + M (g) 1.39 · 1011 0.00
37 HO2

• (g) + HO2
• (g) ⇄ O2 (g) OH• (g) + OH• (g) 2.00 · 109 0.00

38 H2O2 (g) + M (g) ⇄ OH• (g) + OH• (g) + M (g) 1.27 · 1014 199.36
39 C2H6 (g) ⇄ C2H5

• (g) + H• (g) 4.00 · 1016 378.51
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The primary initiation step in Chen et al.’s mechanism15 (Step 1 in Table S1), which involves the reaction 

between CH4 and O2, is not the main source of CH3
• radicals. Rather, the primary source of CH3

• radicals 

is H abstraction reactions involving CH4 and a radical (Steps 2–5 in Table S1), especially the reaction 

between CH4 and OH•. Consequently, the generation of OH• from H2O2 (Step 38 in Table S1) plays a crucial 

role in the degenerate branched-chain mechanism, as the majority of OH• radicals are formed through this 

step; thus, it is a secondary initiation step. Therefore, OH•, and not O•, is the main chain carrier in the 

proposed mechanism. H2O2 produced from the reactions between CH4 and HO2
• serves as the primary 

source of OH• radicals, with HO2
• being mainly formed in Steps 15 and 22 in Table S1 from the reaction of 

O2 with CHO• and C2H5
•, respectively. This highlights the significance of these reactions in providing the 

necessary OH• radicals for the overall mechanism.

The degeneration of the branched chain is primarily caused by the CH3
• radical coupling reaction (Step 9 

in Table S1), which acts as the dominant termination step. However, the CH3
• radicals are also heavily 

consumed in their oxidation chains (Steps 10–16 in Table S1), resulting in the inevitable formation of 

CH2O, primarily through the conversion of CH3O• but also directly from the CH3
• radical. The CH2O formed 

can undergo further oxidation to CHO• through its reaction with a CH3
• radical, leading to termination as 

either CO or further oxidation to CO2.

The coupling of CH3
• radicals with C2H6 is the primary pathway for the formation of C2 products, while the 

direct coupling of CH3
• radicals with C2H6 is negligible. The production of C2H4 is achieved through H 

abstractions from C2H6 (Steps 17–19 and 39 in Table S1) and subsequent (oxo)dehydrogenation of the 

resulting C2H5
• radical (Steps 20–22 in Table S1). These routes are in agreement with several works12,21,32 

that discarded the significant contribution of direct routes to form C2H4. C2H5
• radicals are predominantly 

formed from C2H6 through hydrogen abstractions by various radicals, including H•, OH•, HO2
•, and CH3

•. 

It is noteworthy that the formation of C2H4 from C2H6 occurs at higher rates via the pyrolytic chain 

compared with the oxidative route.14 Both direct and indirect scission (via HO2
•) of the C-C bond in C2H6 

are not considered significant because of their higher dissociation energy, especially in comparison with H 



S7

abstraction from C2H6 by a radical to produce C2H5
• radicals. Therefore, their contribution to CH2O 

formation is negligible in comparison to the amounts produced from CH3
• radicals. C2H4 can undergo 

further reactions, including H abstraction by radicals to form a C2H3
• radical (Steps 23–26 in Table S1), or 

it could react with OH• to break the C-C bond (Step 27 in Table S1). C2H2 is produced from pyrolytic or 

oxidative reactions of C2H3
• radicals (Steps 28 and 29 in Table S1). However, C2H3

• radicals can also 

undergo cracking to yield CH2O and a CH3O• radical (Step 30 in Table S1). The model also considers the 

coupling of C2H5
• and CH3

• radicals to produce C3H8, which is subsequently dehydrogenated to form a 

C3H7
• radical. However, the C3H7

• radical can also be formed through the coupling of C2H4 and CH3
• radicals 

(Steps 31–33 in Table S1). C3H7
• radicals can undergo only dehydrogenation, to form C3H6 (Step 34 in 

Table S1).
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S2. Propagation of reaction entropies

The relationship between model descriptors and kinetic parameters is schematized in Figure 4 of the main 

manuscript, and the surface reaction entropies calculated from chemisorption entropies are evenly 

propagated to the initial prefactor estimates in Table S2 by using Eqs. 35 and 36 in the main manuscript.  

Table S2. Initial estimates of prefactors used. Prefactor units: molecular adsorptions, mg
3 kmol–

1 s–1; molecular desorptions, s–1; dissociative adsorptions, mg
3 mc

2 kmol–2 s–1; associative 
desorptions, mc

2 kmol–1 s–1; Eley–Rideal reactions, mg
3 kmol–1 s–1; Langmuir–Hinshelwood steps, 

mc
2 kmol–1 s–1.

Step Equation Initial Afj Initial Abj

1 O2 (g) + 2* (s) ⇄ 2O* (s) 1 · 1018 2 · 1020

2 H2O (g) + * (s) ⇄ H2O* (s) 2 · 109 2 · 1013

3 CO2 (g) + * (s) ⇄ CO2* (s) 3 · 108 2 · 1013

4 CO (g) + * (s) ⇄ CO* (s) 1 · 106 2 · 1013

5 CH4 (g) + O* (s) ⇄ CH3
• (g) + OH* (s) 3 · 1010 3 · 1010

6 C2H6 (g) + O* (s) ⇄ C2H5
• (g) + OH* (s) 2 · 1010 2 · 1010

7 C2H5• (g) + O* (s) ⇄ C2H4 (g) + OH* (s) 2 · 1010 2 · 1010

8 C2H4 (g) + O* (s) ⇄ C2H3
• (g) + OH* (s) 2 · 1010 2 · 1010

9 CH3
• (g) + O* (s) ⇄ CH3O* (s) 2 · 107 2 · 1013

10 CH3O* (s) + O* (s) ⇄ CH2O* (s) + OH* (s) 1 · 1018 1 · 1018

11 CH3O• (g) + O* (s) ⇄ CH2O• (g) + OH* (s) 2 · 1010 2 · 1010

12 C2H4 (g) + O* (s) ⇄ CH3CHO* (s) 1 · 106 2 · 1013

13 CH3CHO* (s) + O* (s) ⇄ CH2CHO* (s) + OH* (s) 1 · 1019 1 · 1019

14 CH2CHO* (s) + O* (s) ⇄ CH2O* (s) + CHO* (s) 1 · 1019 1 · 1018

15 CH2O* (s) + O* (s) ⇄ CHO* (s) + OH* (s) 1 · 1018 1 · 1018

16 CH2O• (g) + O* (s) ⇄ CHO• (g) + OH* (s) 2 · 1010 2 · 1010

17 CHO* (s) + O* (s) ⇄ CO* (s) + OH* (s) 1 · 1018 1 · 1018

18 CHO• (g) + O* (s) ⇄ CO (g) + OH* (s) 2 · 1010 2 · 1010

19 CO* (s) + O* (s) ⇄ CO2* (s) + * (s) 1 · 1018 1 · 1018

20 H2 (g) + O* (s) ⇄ H• (g) + OH* (s) 1 · 1011 1 · 1011

21 H2O (g) + O* (s) ⇄ OH• (g) + OH* (s) 3 · 1010 3 · 1010

22 OH• (g) + O* (s) ⇄ O• (g) + OH* (s) 3 · 1010 3 · 1010

23 H2O2 (g) + O* (s) ⇄ HO2
• (g) + OH* (s) 2 · 1010 2 · 1010

24 HO2
• (g) + O* (s) ⇄ O2 (g) + OH* (s) 2 · 1010 2 · 1010

25 HO2
• (g) + * (s) ⇄ OH• (g) + O* (s) 2 · 1010 3 · 1010

26 OH* (s) + OH* (s) ⇄ H2O* (s) + O* (s) 2 · 1018 2 · 1018
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Forward adsorption step prefactors correspond to an initial sticking coefficient guess of 0.2 (O2), 0.05 

(H2O), 0.01 (CO2), 10–4 (CH3
•), 10–5 (CO), and 10–5 (C2H4), following the hierarchical order of magnitude 

of the results reported by Kechagiopoulos et al.20 Orders of magnitude of desorption prefactors have been 

taken from Dumesic et al.33 by assuming similar freedom, and thus, a ratio partition function close to unity 

for the adsorbed intermediate and its preceding transition state for molecular desorptions and immobile 

adsorbed and transition states for the associative desorption of O2. For Eley–Rideal steps, the reference 

used in this work was the comparison of the reactant mobility with that of the transition state reported by 

Sun et al.,20 which is similar to the estimates of Dumesic et al.33 under the assumption of an immobile 

transition state and those of Su et al.34 Additional mobility was granted to the transition state of the H-

abstraction step from H2. For all Langmuir–Hinshelwood reactions, transition state rotation was included 

in the mobility assessment for the consideration of the prefactor estimates.
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S3. Orthogonal collocation and number of collocation points

The system of equations defined by the continuity equations for both phases is a set of partial differential-

algebraic equations (PDEs), with 2 Ns,g differential equations (one for each continuity equation and gas-

phase species) from Eqs. 3 and 4 in the main manuscript and Ns,s +1 algebraic equations from Eqs. 8 and 9 

for the surface intermediates and vacancies, respectively. In order to simplify the mathematical solution of 

this problem, the orthogonal collocation (OC) method is proposed. This method is a powerful numerical 

technique used for solving differential equation problems, and it involves the discretization of a given 

spatial domain by representing the unknown solution in that domain as a series expansion of well-defined 

functions, often polynomials, referred to as trial functions. By fitting the coefficients of these trial functions 

at specific grid points, known as collocation points, the solution can be accurately approximated. A key 

aspect of the OC method is ensuring that the solution satisfies the governing equations at these collocation 

points, leading to a residual of zero. The choice of the trial function shape depends on the nature of the 

problem being solved. In the case of symmetric problems (applicable to both interstitial and intraparticle 

phases), the trial function can be conveniently expressed as a summation of polynomials with even powers. 

This symmetry property of the trial function reduces the number of unknown coefficients by a factor of 2, 

making the solution process more efficient.35 For a symmetrical problem, the trial function can be written 

as

(S1)

where y* is the trial function that approximates the true solution, x represents the vector of collocation points 

or mesh of the coordinate being discretized, ai and b are the coefficients of the trial polynomial that adjust 

the trial function to fit the given problem, Nc is the number of collocation points excluding the boundary 

points, and P is the orthogonal polynomial whose Nc roots are the collocation points, thus satisfying the 

differential equation at those points. 
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To summarize, the trial function y* is constructed using orthogonal polynomials and fitted using coefficients 

ai and b at the collocation points x that are part of the discretized domain. The objective is to determine the 

optimal coefficients that minimize the residual error and provide a good approximation of the true solution. 

The optimal coefficients are obtained through the following steps. 

1. Within the set of equations to be solved, define the spatial domain that can be discretized. 

2. Discretize the spatial domain through the determination of the collocation points by finding the 

roots of the orthogonal polynomial.

3. Approximate and evaluate the original equations by using trial functions at the collocation points.

4. Solve the resulting system of simplified equations.

The continuity equations discussed in this study involve two primary spatial domains: the radial coordinates 

of the interstitial and intraparticle phases (r and , respectively), and the axial coordinate of the reactor (z). 

To handle these equations effectively, the radial coordinates should be discretized while maintaining the 

axial coordinate continuous. In this manner, the continuity equation of the interstitial phase is transformed 

into a system of ordinary differential equations (ODEs), while the continuity equation of the intraparticle 

phase becomes a set of algebraic equations. Thus, the problem can be considered as a standard set of 

differential-algebraic equations (DAEs).

In OC, the discretization of the spatial domain proceeds through the determination of the collocation points. 

Various methods and criteria exist for determining collocation points. In this study, the procedure described 

by Finlayson35,36 was followed; it is known to produce accurate results. For symmetrical problems, the 

approach involves finding the roots of an orthogonal polynomial of even powers up to 2 Nc, where Nc 

represents the number of interior collocation points excluding the boundary point. When the orthogonal 

polynomial is defined, setting the first coefficient to 1 accounts for the trivial contribution of the boundary 

point, and therefore, the remaining Nc coefficients of the following polynomial should be determined:
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(S2)

In order to make the previous polynomial valid for OC, through the following orthogonality constraint, the 

coefficients of the polynomial (i in Eq. S2) whose roots are the collocation points can be obtained: 

i = 1, …, Nc (S3)

where w(x2) is the weight function, P(x2) is the proposed polynomial, and a is the geometry factor of the 

problem. For interstitial and intraparticle phases, that is, for cylindrical and spherical geometries 

respectively, values of a are 2 and 3. By applying these conditions, we can compute the coefficients of the 

Nc
th order Jacobi polynomial, and its roots are considered as the collocation points. This procedure can be 

used for any number of interior points (Nc) and any geometry (a value). Finally, the boundary collocation 

point (xNc+1 = 1) is appended by default.37 The purpose of the weight function is to assign different weights 

or importance to different points within the integration interval, and common choices include weights 

derived from quadrature formulas (e.g., the Radau quadrature where w = 1 – x2).

Once the collocation points have been determined, the next step is to approximate and evaluate the original 

equations using the trial functions. For this step, the trial function is formulated using the collocation points. 

In the case of symmetrical problems, a symmetrical nodal polynomial is proposed as the trial function at 

the jth collocation point:

j = 1, …, Nc + 1 (S4)

where yj
* is the trial function at a specific collocation point xj and di is the ith term of the trial function of the 

coefficient vector, determined from the solution of the collocation problem. Vector d essentially contains a 

and b terms in Eq. S1. Eq. S4 can be generalized to include all collocation points in a matrix form as follows: 
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(S5)

where Q (QℝNc+1Nc+1) represents the collocation matrix and d (dℝNc+1) represents the coefficients of the 

trial functions. Each entry of the matrix Q corresponds to the value of a collocation point raised to an even 

power, as Q is the term of the collocation point in Eq. S4. Since the shape of the solution is known (Eq. 

S4), the first derivative of the trial function at the jth collocation point, and hence the expected solution, can 

be obtained as 

j = 1, …, Nc + 1 (S6)

which in the generalized matrix form for the entire collocation point grid becomes essentially the matrix 

product of the derivative of Q and d:

(S7)

where C (CℝNc+1Nc+1) is the derivative of the collocation matrix. Since isolating d from Eq. S5 yields 

d = Q–1 y*, the first derivative of y* in Eq. S8 can be written as a function of the trial function itself:

(S8)

Eq. S8 reflects the fundamental idea of OC, as it allows differential operators to be expressed in terms of 

the trial function, thereby transforming the system's complexity from the differential level to the algebraic 

level. Notably, in Eq. S8, the matrix A can be computed in advance, as it depends only on the collocation 

points chosen for discretization. Similarly, the Laplacian of the trial function at the jth collocation point can 

be computed analogously: 
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(S9)

On the basis of the trial function for the entire grid, the Laplacian is given by

(S10)

where D (DℝNc+1Nc+1) is the characteristic Laplacian matrix, C is the derivative of the collocation matrix 

in Eq. S7, V (VℝNc+1Nc+1) is the collocation-point-independent matrix of D, and T (TℝNc+1Nc+1) is the 

geometry-independent matrix of D. The decomposition of D yields C, V, and T in Eq. S10. Note that the 

computation of the Laplacian is geometry sensitive (V is geometry dependent) because the choice of 

discretization strategy and the arrangement of collocation points depend on the geometry of the system, and 

these factors directly affect the accuracy and reliability of the Laplacian computation. C, V, and T for 

different geometries are provided in Table S3. 

Table S3. V and T matrices for the geometries of interest. 

V T

Cylindrical geometry

Spherical geometry

Matrix D can be decomposed into matrices C, V, and T by calculating the Laplacian of the trial function at 

the jth collocation point for both cylindrical (interstitial phase) and spherical (intraparticle phase) systems 

as

(S11)
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(S12)

The number of collocation points can also affect the computation of the coefficients required for obtaining 

the results, as the inversion of matrix Q should be performed. Inversion of Q can be done reliably for 

Nc < 10, with a loss of a few digits. However, as Nc is increased, A and B (from Eqs. S8 and S10) are poorly 

matched with the collocation abscissae, as Q becomes nearly singular. In such cases, other methods, such 

as the one proposed by Michelsen and Villadsen,38 are required. To ease the task of matrix inversion, we 

express the radial coordinates of the interstitial and intraparticle phases in their dimensionless form in the 

continuity equations.

After the differential operators are approximated using the trial functions, the set of 2 Ns,g differential 

equations, one per continuity equation and gas-phase species (Ns,g), is effectively simplified. From every 

partial differential equation for each gas-phase species in the interstitial phase, a set of Nc,g ODEs (with 

respect to z) is obtained, where Nc,g denotes the number of interior collocation points chosen for the radial 

discretization of the interstitial phase. The intraparticle phase continuity equation for each gas-phase species 

can be reduced to a set of Nc,s algebraic equations for being  dependent exclusively, where Nc,s denotes the 

number of interior collocation points chosen for the radial discretization of the intraparticle phase. The 

number of collocation points used in each phase may differ. Furthermore, enforcing the boundary 

conditions at both phases leads to the inclusion of two additional algebraic equations per gas-phase species. 

This arises from the concentration equality (Eq. 6 in the main manuscript) and the derivatives in the mass 

flux conservation (Eq. 4 in the main manuscript) being expressed as functions of the trial function. 

Moreover, selecting a symmetrical function for the trial function, specifically a polynomial of even powers, 

automatically enforces the symmetry boundary conditions for the concentration with respect to the radial 

coordinate at r = 0 or  = 0 in each phase (Eqs. 3 and 5). The pseudo-steady-state approximation across the 

intraparticle phase introduces additional Nc,s algebraic equations per surface-intermediate (Ns,s) as it is to be 
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evaluated at the interior points and at  = 1. The site balance (Eq. 9 in the main manuscript) contributes Nc,s 

more algebraic equations. The contribution of each term is detailed in Table S4. 

Table S4. Contribution of model terms to total number of equations. Gas and surface denote gas-
phase species and surface intermediates, totaling Ns,g and Ns,s number of species, respectively. 
Nc,g and Nc,s denote the number of collocation points in the interstitial and intraparticle phases, 
respectively. 

Term No. of differential 
equations

No. of algebraic equations

Interstitial phase (gas)
Continuity Nc,g · Ns,g –

Left boundary – 0 (because of even-powered trial 
function)

Right boundary – Ns,g

Intraparticle phase (gas)
Continuity – Nc,s · Ns,g

Left boundary – 0 (because of even-powered trial 
function)

Right boundary – Ns,g

Intraparticle phase (surface)
Pseudo-steady-state 
approximation – (Nc,s + 1) · Ns,s

Active site balance – (Nc,s + 1)

Total number of equations Nc,g · Ns,g
2 Ns,g + Ns,s + 1 + (Ns,g + Ns,s + 1) · 
Nc,s

Table S4 clarifies the direct correlation between the number of differential equations within the system and 

the collocation points in the interstitial phase (Nc,g). This correlation is delineated by a proportionality 

constant contingent upon the number of gaseous species. Furthermore, the number of algebraic equations 

increases in direct proportion to both the cumulative species count in the gaseous and surface phases 

(Ns,g + Ns,s) and the augmentation of collocation points in the intraparticle phase (Nc,s). It is imperative to 

underscore that the species count in each phase is intrinsically determined by the intricacy of the reaction 

network. This necessitates the meticulous determination of the appropriate collocation points to ensure 

accurate solutions while concurrently reducing computational expenses. Consequently, neither should be 

arbitrarily defined; this is one of the main benefits of using Chen et al.’s model15 for accounting for the 

homogeneous reaction mechanism. 
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Before embarking on parameter estimation for the 1D heterogeneous reactor, we should determine the 

number of collocation points to be used. For this, an extensive parameter search is conducted using a PFR 

and a genetic algorithm, which is computationally more feasible than the use of a 1D heterogeneous reactor 

model. The parameters estimated from this search are used to investigate the effect of the number of 

collocation points on the computation of the 1D heterogeneous reactor (Figure S1). 

Figure S1. Effect of number of collocation points of both interstitial and intraparticle phases on (a) 
the computation time required for integration of the 1D heterogeneous reactor, expressed as a 
relative difference with respect to the highest recorded value. (b–g) Absolute difference of 
simulated performance metrics with respect to the case with the maximum number of collocation 
points in both phases (i.e., 10 for each phase). Simulation conditions: IMP SiO2 catalyst with 
descriptors from the genetic algorithm employing a plug-flow reactor model, T = 800 ºC, 
P = 1 bar, feed molar ratio of CH4/O2/He = 3/1/0.6, W/FCH4,0 = 3.0 gc h molC–1 from the equivalent 
L = 0.02 m.

The objective of this study was to establish a balance between computational efficiency and model 

accuracy, a consideration intricately linked to the complexity of the task of solving the associated system 

of DAEs. As evidenced in Figure S1a, an increase in collocation points, especially the number of collocation 

points in the intraparticle phase, correlates proportionally with an increase in the computation time. This 

observation is not unexpected, since the intraparticle phase contributes 35 algebraic equations per interior 
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collocation point (excluding an additional 35 from boundary conditions). This contrasts with the 24 

differential equations contributed by the interstitial phase per interior collocation point (excluding an 

additional 24 from boundary conditions). In fact, a discernible reduction in computational time by over 

80% is achievable when the number of intraparticle collocation points is decreased from ten to three, and 

even at a considerable number of interstitial collocation points. Such an effect becomes less pronounced as 

the number of interstitial collocation points decreases. This relationship stresses the interplay between 

spatial discretization, represented by collocation points, and the numerical complexity inherent in solving 

the model equations.

An analysis of reactant conversions (Figures S1b,c) across various cases shows nuanced variations, 

underscoring the direct effect of collocation points on the evolution of gas-phase species within the reactor. 

For these metrics, the number of interstitial points does not appear to influence the estimated conversion 

significantly, unlike intraparticle collocation points. Furthermore, on the basis of conversions, the total 

number of intraparticle collocation points can be considered sufficient when set at seven. An examination 

of product selectivity (Figures S1d–g) further accentuates the role of spatial discretization. Changes in 

intraparticle collocation points affect not only the overall conversion but also the distribution of products. 

In fact, for the latter, the effect of the interstitial phase collocation points appears to be more prominent. In 

any case, seven intraparticle collocation points appear to be sufficient on the basis of product selectivities 

too, with the effect of the number of interstitial collocation points becoming somewhat irrelevant. 

In conclusion, on the basis of observed trends, the number of collocation points can be set at seven and four 

for the intraparticle and interstitial phases, respectively. This choice serves as a guide for the selection of 

an appropriate configuration for subsequent time-consuming optimization runs. However, this is not a 

generalized conclusion, as both computational time and accuracy depend on simulation conditions and the 

specific kinetic parameters employed.
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S4. Temperature-programmed experiments and simulations

Figure S2. Evolution of predicted temperature-programmed surface reaction of the (a–c) main 
products and (d–f) main surface intermediates for IMP SiO2, SD SiO2–SiC, and SD SiO2–
SiC. Simulation conditions: P = 1 bar, TI = 25 ºC, TF = 850 ºC,  = 7.5 ºC min–1, t = 30 min, 
FT = 100 NmL min–1, pCH4,0 = 1 bar, W = 50 mgc. Simulations were performed assuming plug-flow 
conditions and by using the model descriptors in Table 5 in the main manuscript.



S20

S5. Regression assessment

Figure S3. Residual probability plots of the measured and predicted performance metrics for (a) 
IMP SiO2, (b) SD SiO2-SiC, and (c) SD SiO2-SiC. The square of the Pearson product moment 
correlation coefficient for (d) IMP SiO2, (e) SD SiO2-SiC, and (f) SD SiO2-SiC is also shown.
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Figure S4. Binary correlation matrix of the descriptors obtained with the microkinetic model in 
Table 7 in the main manuscript for all three catalysts: (a) IMP SiO2, (b) SD SiO2-SiC, and (c) 
SD SiO2-SiC.
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S6. Model descriptor benchmarking

Figure S5.  Box plots of the normalized sensitivity coefficients of descriptors obtained with the 
microkinetic model in Table 7 in the main manuscript with respect to each performance metric 
over all the experimental conditions: (a–c) CH4 conversion, (d–f) O2 conversion, (g–i) C2H4 
selectivity, (j–l) C2H6 selectivity, (m–o) CO selectivity, and (p–r) CO2 selectivity for IMP SiO2, SD 
SiO2-SiC, and SD SiO2-SiC. The cross denotes mean value. 
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S7. Simulation results

Figure S6. Axial and radial (interstitial and intraparticle phases) concentration profile predictions 
for SD SiO2-SiC for (a) CH4, (b) CH3

•, (c) C2H6, (d) C2H5
•, (e) CH2O, (f) CHO•, (g) H•, and (h) 

HO2
•. Simulation conditions: T = 800 ºC, P = 1 bar, feed molar ratio of CH4/O2/He = 3/1/0.6, 

W/FCH4,0 = 4.4 gc h molC–1 from the equivalent Lb = 0.018 m. Simulation results: 5.3% CH4 
conversion, 10.4% O2 conversion, 31.4% C2H4 selectivity, 40.9% C2H6 selectivity, 17.9% CO 
selectivity, 9.7% CO2 selectivity.
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Figure S7. Axial and radial (interstitial and intraparticle phases) concentration profile predictions 
for SD SiO2-SiC for (a) CH4, (b) CH3

•, (c) C2H6, (d) C2H5
•, € CH2O, (f) CHO•, (g) H•, and (h) HO2

•. 
Simulation conditions: T = 800 ºC, P = 1 bar, feed molar ratio of CH4/O2/He = 3/1/0.6, 
W/FCH4,0 = 4.4 gc h molC–1 from the equivalent Lb = 0.017 m. Simulation results: 7.6% CH4 
conversion, 15.1% O2 conversion, 33.6% C2H4 selectivity, 38.2% C2H6 selectivity, 18.1% CO 
selectivity, 10.1% CO2 selectivity.
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Figure S8. Axial and radial (intraparticle phase) fractional coverage profile predictions for SD SiO2-
SiC for (a) OH*, (b) CO2*, (c) O*, (d) * (vacancies), (e) CH3O*, (f) CH3CHO*, (g) CO*, and (h) 
H2O*. Simulation conditions and results were identical to those of Figure S6.
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Figure S9. Axial and radial (intraparticle phase) fractional coverage profile predictions for SD SiO2-
SiC for (a) OH*, (b) CO2*, (c) O*, (d) * (vacancies), (e) CH3O*, (f) CH3CHO*, (g) CO*, and (h) 
H2O*. Simulation conditions and results were identical to those of Figure S7.
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S8. Nomenclature

Abbreviations

DAEs Differential-algebraic equations
OC Orthogonal collocation
OCM Oxidative coupling of methane
ODEs Ordinary differential equations
PDEs Partial differential-algebraic equations
PFR Plug-flow reactor

Symbols

A AℝNc+1Nc+1 matrix for the calculation of the derivative of y* from y*, c.u.
a Geometry factor. 1, 2, 3 for planar, cylindrical, and spherical geometries, respectively
ai ith coefficient of the trial polynomial, c.u.
Aj Prefactor of homogeneous or heterogeneous reaction step j, c.u.
B BℝNc+1Nc+1 matrix for the calculation of the Laplacian of y* from y*, c.u.
b Coefficient of the trial polynomial, c.u.
C CℝNc+1Nc+1 derivative of the collocation matrix, unitless
D DℝNc+1Nc+1 Laplacian matrix of the collocation matrix, unitless
d dℝNc+1 vector of coefficients for the trial function, c.u.
Ea,j Activation energy of homogeneous or heterogeneous reaction step j, kJ mol–1

Nc Number of collocation points, excluding the boundary points
Nc,g Number of interior collocation points for the interstitial phase
Nc,s Number of interior collocation points for the intraparticle phase
Ns,g Total number of gas-phase species
Ns,s Total number of surface intermediates
P Orthogonal polynomial whose Nc roots are the collocation points, unitless
Q QℝNc+1Nc+1 collocation matrix, unitless
T TℝNc+1Nc+1 geometry-independent-matrix of D, unitless
V VℝNc+1Nc+1 collocation-point-independent matrix of D, unitless
w Weight function in the determination of the orthogonal polynomial, unitless 
x Vector of collocation points, unitless
y* Trial function which approximates the true solution of y, c.u.
z Axial reactor bed coordinate, mb

Greek symbols

i ith coefficient of the orthogonal polynomial, unitless
ξ Radial intraparticle coordinate, dimensionless
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