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S1. Model Architecture, Input Feature Representation, and Training

The machine learning models used in this study was implemented using open-source packages
for Python. Linear Regression and Decision Tree Regression models were designed using the scikit
learn package.! For Decision Tree models, the maximum depth of the tree was limited to 5 and
the minimum number of samples required for the split was kept at 10% of the training dataset
size. Linear Tree Models (LTM) that combine linear regression and decision trees were based on
Linear-Tree package.? For LTM, the maximum tree depth and the minimum number of splits was
kept same as for the decision tree models. Additionally, Linear Regression model was used as the
base estimator for the split in the LTM models. Neural network-based models were designed
using modules from the Keras package.® The neural network model was designed with 2 fully
connected hidden layers, each with 20 nodes, and using Rectified Linear Units (RELU) as the
activation function. Batch size and epochs for the model training was 32 and 1000 respectively.
For all the models, mean squared error was used as the loss criteria. For Monet-Carlo Dropout
Neural Networks (MC-DNN), a dropout mask with a dropout probability of 0.2 was added to each
layer in the hidden layer of the neural network. This mask was applied during both the training
epochs and the model inference to avoid overfitting during training and extract model prediction
distribution during inference. For MC-DNN model uncertainty calculation, the model was
evaluated 200 times, each with a randomized dropout mask and the 95% confidence interval was
used to get the distribution of kia prediction from the ensemble of all NN models evaluated during
the Monte-Carlo inference. The general architecture and the code implementation of MC-DNN
was similar to the one described in our previous work.*

To train the models, the data was split into 80-20 split for training and testing. All hyperparameter
tuning for the models was performed and evaluated using the training dataset only. For k-fold
cross validation, all possible 5 folds of 80-20 split was prepared from the entire dataset and then
the models were evaluated for each fold. The training dataset for k.a prediction was represented
by 6 critical input features. These include 5 continuous input features (sparger size, fill volume of
the reactor vessel, temperature, agitation rate, VVM: volumetric flow rate of air per reactor
volume), and 1 categorical input feature (reactor geometry / scale). Reactor configuration
features such as the specific reactor geometry, shape of the agitator blade, number of baffles (like
temperature and dissolved oxygen probes) and their relative position in the reactor are all
combined in this single categorical feature. One-hot encoding technique is used to represent this
categorical feature as a numerical input to the model.

Data transformation for improved linearity and normality: For all models except standard Linear
Regression (LR) model, log-transformation was applied to the train-test dataset prior to data
normalization. Figure 2b in the manuscript shows that the improved data normality and linearity
leads to slight improvement in accuracy on test dataset when log-transformed linear regression
model (LL) is compared with the LR models. Figure S1 shows the distribution of all continuous
inputs and output to the model with and without the log transformation. Additional
transformation techniques like box-cox were also explored but did not yield any significant
improvement in terms of normalization of the data and the accuracy of the model.
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Figure S1. Density plot showing the distribution of data prior to the transformation and after
log transformation of the training dataset. The parameters on the x axis are shown on a
normalized scale.



S2. Web App Deployment of the Machine Learning Model for k.a Prediction

We utilized the Streamlit package® to deploy the trained ML model as an interactive web
application (Figure S2). Streamlit provides an intuitive open-source framework that simplifies the
integration of Python scripts into a user-friendly interface. By leveraging its straightforward and
well documented API, features such as data input, model inference, and result visualization can
be seamlessly incorporated. The examples for all functionalities and the widgets used in the
deployed web app are available with the Streamlit package documentation.” Figure S2 shows the
screenshot of the two key features of this web app: (i) prediction of k.a along with the uncertainty
in the model prediction are provided based on the user input of the process conditions and choice
of reactor configurations (Figure S2a); and (ii) identifying the range of operating conditions that
can yield a desired k.a value (based on user input) for the process (Figure S2b).
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Figure S2. Screenshot from web app deployment of the kia predictor models for the lab scientists.
Two features of how the developed ML model can be used for process development: (a)Prediction
of kia under known process conditions, and reactor configurations; and (b) Identifying the range
of process conditions that can yield a desired k.a for the process.



S3. SHAP analysis of the model

Shapley Additive explanations (SHAP) was used to interpret the trained ML model in terms of
guantifying the impact of each parameter on the predicted k.a value. For the SHAP analysis, we
utilized the open-source shap package for python (using the standard shap.Explainer class).®’ To
provide a comprehensive evaluation of the model’s behavior, we employed Latin Hypercube
Sampling (LHS) to generate the input data for SHAP analysis. LHS is a statistical method that
ensures space-filling and stratified sampling of the feature space., which helps in capturing a
representative distribution of the input features. This approach thus enhances the reliability of
the SHAP values by covering the feature space more uniformly. Figure S3 shows the shap values
for each input feature for different reactor configurations and scales. These results supplement
Figure 4 of the manuscript that only shows shap values across two different reactor
configurations. As evident, the importance and impact of different features varies significantly
across different reactor configurations / scale, thus highlighting the benefits of ML-based models
over the existing empirical models for predicting k.a.
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Figure S3. Shapley-additive explanations (SHAP) values for each parameter to estimate the impact
of each input feature on kia prediction across scales ranging from 100 mL lab scale reactor to 100
L kilo scale reactors (EasyMax (EM)100 mL, EasyMax (EM) 400mL, Chemglass (CG) 500 mL,
OptiMax (OM) 1L, Chemglass (CG) 4L, Chemglass (CG) 100L). This figure supplements the
information provided in Figure 4 of the manuscript.
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