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S1. Model Architecture, Input Feature Representa9on, and Training 
 
The machine learning models used in this study was implemented using open-source packages 
for Python. Linear Regression and Decision Tree Regression models were designed using the scikit 
learn package.1 For Decision Tree models, the maximum depth of the tree was limited to 5 and 
the minimum number of samples required for the split was kept at 10% of the training dataset 
size. Linear Tree Models (LTM) that combine linear regression and decision trees were based on 
Linear-Tree package.2 For LTM, the maximum tree depth and the minimum number of splits was 
kept same as for the decision tree models. AddiKonally, Linear Regression model was used as the 
base esKmator for the split in the LTM models. Neural network-based models were designed 
using modules from the Keras package.3 The neural network model was designed with 2 fully 
connected hidden layers, each with 20 nodes, and using RecKfied Linear Units (RELU) as the 
acKvaKon funcKon. Batch size and epochs for the model training was 32 and 1000 respecKvely. 
For all the models, mean squared error was used as the loss criteria. For Monet-Carlo Dropout 
Neural Networks (MC-DNN), a dropout mask with a dropout probability of 0.2 was added to each 
layer in the hidden layer of the neural network. This mask was applied during both the training 
epochs and the model inference to avoid overfiVng during training and extract model predicKon 
distribuKon during inference. For MC-DNN model uncertainty calculaKon, the model was 
evaluated 200 Kmes, each with a randomized dropout mask and the 95% confidence interval was 
used to get the distribuKon of kLa predicKon from the ensemble of all NN models evaluated during 
the Monte-Carlo inference. The general architecture and the code implementaKon of MC-DNN 
was similar to the one described in our previous work.4  
 
To train the models, the data was split into 80-20 split for training and tesKng. All hyperparameter 
tuning for the models was performed and evaluated using the training dataset only. For k-fold 
cross validaKon, all possible 5 folds of 80-20 split was prepared from the enKre dataset and then 
the models were evaluated for each fold. The training dataset for kLa predicKon was represented 
by 6 criKcal input features. These include 5 conKnuous input features (sparger size, fill volume of 
the reactor vessel, temperature, agitaKon rate, VVM: volumetric flow rate of air per reactor 
volume), and 1 categorical input feature (reactor geometry / scale). Reactor configuraKon 
features such as the specific reactor geometry, shape of the agitator blade, number of baffles (like 
temperature and dissolved oxygen probes) and their relaKve posiKon in the reactor are all 
combined in this single categorical feature. One-hot encoding technique is used to represent this 
categorical feature as a numerical input to the model. 
 
Data transformaKon for improved linearity and normality: For all models except standard Linear 
Regression (LR) model, log-transformaKon was applied to the train-test dataset prior to data 
normalizaKon. Figure 2b in the manuscript shows that the improved data normality and linearity 
leads to slight improvement in accuracy on test dataset when log-transformed linear regression 
model (LL) is compared with the LR models. Figure S1 shows the distribuKon of all conKnuous 
inputs and output to the model with and without the log transformaKon. AddiKonal 
transformaKon techniques like box-cox were also explored but did not yield any significant 
improvement in terms of normalizaKon of the data and the accuracy of the model.  



 

 
  

 
Figure S1. Density plot showing the distribution of data prior to the transformation and after 
log transformation of the training dataset. The parameters on the x axis are shown on a 
normalized scale.  



S2. Web App Deployment of the Machine Learning Model for kLa Predic9on 
 
We uKlized the Streamlit package5 to deploy the trained ML model as an interacKve web 
applicaKon (Figure S2). Streamlit provides an intuiKve open-source framework that simplifies the 
integraKon of Python scripts into a user-friendly interface. By leveraging its straighborward and 
well documented API, features such as data input, model inference, and result visualizaKon can 
be seamlessly incorporated. The examples for all funcKonaliKes and the widgets used in the 
deployed web app are available with the Streamlit package documentaKon.5 Figure S2 shows the 
screenshot of the two key features of this web app: (i) predicKon of kLa along with the uncertainty 
in the model predicKon are provided based on the user input of the process condiKons and choice 
of reactor configuraKons (Figure S2a); and (ii) idenKfying the range of operaKng condiKons that 
can yield a desired kLa value (based on user input) for the process (Figure S2b).  
  

 
Figure S2. Screenshot from web app deployment of the kLa predictor models for the lab scientists. 
Two features of how the developed ML model can be used for process development: (a)Prediction 
of kLa under known process conditions, and reactor configurations; and (b) Identifying the range 
of process conditions that can yield a desired kLa for the process.  



S3. SHAP analysis of the model 
 
Shapley AddiKve explanaKons (SHAP) was used to interpret the trained ML model in terms of 
quanKfying the impact of each parameter on the predicted kLa value. For the SHAP analysis, we 
uKlized the open-source shap package for python (using the standard shap.Explainer class).6, 7 To 
provide a comprehensive evaluaKon of the model’s behavior, we employed LaKn Hypercube 
Sampling (LHS) to generate the input data for SHAP analysis. LHS is a staKsKcal method that 
ensures space-filling and straKfied sampling of the feature space., which helps in capturing a 
representaKve distribuKon of the input features. This approach thus enhances the reliability of 
the SHAP values by covering the feature space more uniformly. Figure S3 shows the shap values 
for each input feature for different reactor configuraKons and scales. These results supplement 
Figure 4 of the manuscript that only shows shap values across two different reactor 
configuraKons.  As evident, the importance and impact of different features varies significantly 
across different reactor configuraKons / scale, thus highlighKng the benefits of ML-based models 
over the exisKng empirical models for predicKng kLa.  

 
Figure S3. Shapley-additive explanations (SHAP) values for each parameter to estimate the impact 
of each input feature on kLa prediction across scales ranging from 100 mL lab scale reactor to 100 
L kilo scale reactors (EasyMax (EM)100 mL, EasyMax (EM) 400mL, Chemglass (CG) 500 mL, 
OptiMax (OM) 1L, Chemglass (CG) 4L, Chemglass (CG) 100L). This figure supplements the 
information provided in Figure 4 of the manuscript. 
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