Supplementary Information (SI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2024

Supporting information

for

Ammonia Decomposition over Low-loading Ruthenium Catalyst Achieved through "Adiabatic" Plasma Reactor

Minhazur Rahman Shawon,¹ Chinwendu Umeojiakor,¹ Anthony Griffin,² Jeffrey Aguinaga,² Jiachun Wu,¹ Derek Patton,² Zhe Qiang,² Hossein Toghiani,¹ Yizhi Xiang^{1,3,*}

¹Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, USA

²School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA

³Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, USA

*Corresponding Author, yxpxb@missouri.edu

Figure S2. Q-V Lissajours curves of NH₃ discharge at different powers between 4-23 W in adiabatic (left) and nonadiabatic (right) plasma reactor (with a catalyst).

Figure S3. The standard deviation of temperature at different powers from the fitted exponential equation for both adiabatic (left) and nonadiabatic plasma reactors.

Figure S4. Influence of Ru loading on NH₃ conversion achieved in adiabatic (Left panel) and nonadiabatic (right panel) plasma reactors. The reaction was carried out with 20 mL/min of undiluted NH₃ and 0.1 g of catalyst.

Figure S5. Response of N₂ and NH₃ outlet flow to step changes from Ar to NH₃ and back to Ar with plasma ON. The experiment was carried out with 20 mL/min of undiluted NH₃, 0.1 g of Ru_{0.5}/Al₂O₃ catalyst, and plasma power of around 14 W.

Figure S6. N₂ adsorption/desorption isotherm and pore size distribution of the Ru_{0.05}/Al₂O₃ after plasma catalytic NH₃ decomposition.

Figure S7. N₂ adsorption/desorption isotherm and pore size distribution of the Ru_{0.5}/Al₂O₃ after plasma catalytic NH₃ decomposition.

Figure S8. N₂ adsorption/desorption isotherm and pore size distribution of the Ru₁/Al₂O₃ after plasma catalytic NH₃ decomposition.

Figure S9. N₂ adsorption/desorption isotherm and pore size distribution of the Ru₅/Al₂O₃ after plasma catalytic NH₃ decomposition.

Figure S10. N₂ adsorption/desorption isotherm and pore size distribution of the Ru_{0.5}/Al₂O₃ after thermocatalytic NH₃ decomposition.

Catalyst	Power	Temperature	GHSV	Conversion (%)	Reference
	(W)	(°C)	(ml _{NH3} /(g _{cat} ·h))		
0.5 % Ru/Al ₂ O ₃	19	475	12000	99	This work
1 % Ru/Al ₂ O ₃	17	425	12000	99	This work
1.5% Ru/La ₂ O ₃	16	300	2400	65	1
1.5% Ru/La ₂ O ₃	20	375	2400	99	1
Mo ₂ N	26.4	450	3000	99	2
Co/fumed SiO ₂	30	450	2727	99	3
6Fe-4Ni	41	460	14400	61	4
6Fe-4Ni	41	500	14400	99	4

Table S1. Comparison of catalytic performance of plasma catalytic NH₃ decomposition with the state-of-the-art catalysts.

Reference

- 1. Z. Wang, G. He, H. Zhang, C. Liao, C. Yang, F. Zhao, G. Lei, G. Zheng, X. Mao and K. Zhang, *ChemSusChem*, 2023, **16**, e202202370.
- 2. Z. Wang, H. Zhang, Z. Ye, G. He, C. Liao, J. Deng, G. Lei, G. Zheng, K. Zhang, F. Gou and X. Mao, *Int. J. Hydrogen Energy*, 2024, **49**, 1375-1385.
- 3. L. Wang, Y. Yi, Y. Zhao, R. Zhang, J. Zhang and H. Guo, *ACS Catal.*, 2015, **5**, 4167-4174.
- 4. Y. Yi, L. Wang, Y. Guo, S. Sun and H. Guo, *AIChE J.*, 2019, **65**, 691-701.