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S.1 Bayesian optimization

BO method rely on Bayesian statistics applied to Gaussian processes (GP) to describe some phe-
nomenon in a black-box fashion, thus with a model that is based on experimental evidence and leverage
statistical consideration to describe an unknown relationship between some input parameters and an
output objective which should be optimized. After training a GP on the available data, it is possible to
query the optimization algorithm for new experimental conditions to test through the maximization of
an acquisition function, which balances the need to acquire more data in unknown regions of the design
space (exploration) and the need to check whether the optimal conditions found so far are actually
reliable (exploitation). Here follows a brief summary of GP and BO which is extensively discussed
elsewhere.1

Formally, a GP over a D-dimensional design space X ⊂ RD is a random process able to describe
some prior knowledge on the objective. A GP is characterized by a mean µ : X → R and a covariance
function (kernel) K : X 2 → R, thus a function f described by such GP has values that are normally
distributed according to f(x) ∼ N (µ(x),K (x,x)),x ∈ X . The prior knowledge is included in the GP
by specifying the kernel shape. Once experimental data is available (e.g., from steady or reconstructed
DynE), it is possible to calculate the predictive distribution f |X,Y ,x ∼ N (f̄ , cov(f)) with:

f̄ = K (x,X)(K (X,X) + σ2
nI)

−1Y

cov(f) = K (x,x)− K (x,X))(K (X,X) + σ2
nI))

−1K (X,x)
(S.1)

where x is a query point or set of points of the design space, X the matrix containing all tested
conditions (optimization parameters X), Y the vector of the measured function (objective Y ) in
the tested conditions, σ2

n the noise level of the measurements (which is generally unknown), and I the
identity matrix. Kernels are characterized by a set of hyperparameters that is computed by maximizing
the log marginal likelihood (assuming a zero-mean GP):

ln p(Y |X) =− 1

2

(
Y T (K X,X) + σ2

nI)
−1Y +

+ ln det (K (X,X) + σ2
nI) + |Y | ln(2π)

) (S.2)

where |Y | is the cardinality of Y . By optimization of the likelihood to find the kernel hyperparam-
eters, the GP is effectively trained on experimental evidence and becomes able to predict mean and
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uncertainty values of the objective in the design space using Equation (S.1). Uncertainty is generally
expressed for the prediction in terms of standard deviation, computed as σ(x) = (diag cov(f))1/2.

Once the GP is trained, it can be employed to suggest new conditions to test experimentally, by
accounting for exploration and exploitation of the design space. This can be done by maximizing an
acquisition function, α(x), aiming at reducing the regret (difference between the current best condition
and the true optimum) quickly as more experiments are performed. Common acquisition functions are
probability of improvement (PI),2 expected improvement (EI),3 and upper confidence bound (UCB).4

Normally, in steady-state (or batch) reactor experiments, a single condition to test is obtained as
argmaxα(x), but this cannot be applied directly to DynE, which collects several data points per
experiment. A modified form of acquisition function, specifically designed for DynE, will be discussed
in the following section.

S.2 Analytical solutions of Equation (2)

The equation that allows to compute the effective residence time from the instantaneous residence time
is:

dτ

dt
= 1− τI(t− τ)

τI(t)
, τ(0) = τI(0) (2)

which can be recast by defining a variable θ(t) = t− τ(t) as:

dθ

dt
=

τI(θ)

τI(t)
, θ(0) = −τI(0) (S.3)

which becomes an equation susceptible to analytical solution by separation of variables when the
function τI(t) is sufficiently simple. This provides the solution θ(t) which can be used to find τ(t).
In this work the expression of such function is such that for t ≤ 0 the instantaneous residence time is
constant (and equal to τI(0) = τ0). This is to reflect that before the initial time (zero), the reactor
works at steady state, and all variations happen after t = 0. This way the solution is achieved with a
piecewise method over three time ranges:

1. for t ≤ 0, when the reactor is at steady state (all fluid packets exiting the reactor experienced
the same residence time);

2. for 0 < t ≤ t∗, when some fluid packets start experiencing the variable residence time, but some
still retain memory of the steady-state regime; the value t∗ is the specific moment when the last
packet of fluid retaining the steady regime value of τ0 reaches the outlet of the reactor (at this
time, t = t∗ = τ ̸= τ0, thus θ(t∗) = 0);

3. for t > t∗, when all fluid packets experience the variable regime given by the equation.

The first time range leads to a trivial solution as

dθ

dt
=

τI(θ)

τI(t)
= −τ0

τ0
= 1, θ(0) = −τ0 (S.4)

θ(t) = t− τ0 → τ(t) = τ0 (S.5)

meaning that all packets have the same, constant residence time, as expected.
The second range is such that τI(θ) = τ0, thus Equation (2) reduces to:

dθ

dt
=

τ0
τI(t)

, θ(0) = −τ0 (S.6)

By defining I(t) as the primitive of 1/τI(t) (for the part t ≥ 0) one can integrate the previous ODE
by separation of variables: ∫ θ(t)

−τ0

dθ

τ0
=

∫ t

0

dξ

τI(ξ)
(S.7)
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θ(t)

τ0
+ 1 = I(t)− I(0) (S.8)

From this result, t∗ can be found from its definition:

θ(t∗) = 0 → 1 = I(τ∗)− I(0) (S.9)

The third time range has no simplifications and requires the solution of the equation:∫ θ(t)

θ(t∗)=0

dθ

τI(θ)
=

∫ t

t∗

dξ

τI(ξ)
(S.10)

I(θ)− I(0) = I(t)− I(t∗) (S.11)

but from Equation (S.9) one obtains:
I(θ) = I(t)− 1 (S.12)

A corollary property of the effective residence time is that, even if τI /∈ C0(t) (i.e., the reactor
pumps change the flow rate abruptly), it will always be τ ∈ C0(t). This because Equation (2) imposes
a finite value for its derivative (as τI(t) is non-vanishing), thus making τ(t) at least continuous. If
τI ∈ C0(t) (which is a desired property for correct DynE), then τ ∈ C1(t), meaning it will also be a
smooth function. These properties will impose continuous (and possibly smooth) trajectories for DynE
in the design space.

The solution of the aforementioned equations (and thus the expression τ(t)) is explicit when I(t)
has an explicit inverse function. This happens for simple functions τI(t) as reported in the next
sections. It is worth noting that these solutions have never been proposed in literature and they were
found by hand, as commercial software for symbolic integration failed to provide an explicit solution.
The analytical solution is superior to its numerical counterpart with standard algorithms in terms of
computational time, taking for all analyzed cases 15-30 times less time to be evaluated. Specifically for
sinusoidal residence time, implicit integration methods may suffer from numerical error accumulation,
leading to solution degradation.

S.2.1 Polynomial residence time

For the linear case:
τI(t) = τ0(1 + at ·H(t)) (S.13)

where a is a parameter and H(t) the Heaviside function.

I(t) =
ln(1 + at)

aτ0
(S.14)

t∗ =
exp(aτ0)− 1

a
(S.15)

τ(t) =


τ0 t ≤ 0

t+ τ0 −
ln(1 + at)

a
0 < t ≤ t∗

(1− exp(−aτ0))

(
t+

1

a

)
t > t∗

(S.16)

For the quadratic case:
τI(t) = τ0(1 + (at+ bt2) ·H(t)) (S.17)

where a and b are parameters.

I(t) = − 2

τ0α
tanh−1

(
a+ 2bt

α

)
α =

√
a2 − 4b (S.18)

t∗ =
2

α
tanh(

τ0α
2

)
− a

(S.19)
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τ(t) =


τ0 t ≤ 0

t+ τ0 +
2

α
tanh−1

(
− α

2 + at
t

)
0 < t ≤ t∗

2(1 + at+ bt2) tanh
(
τ0α
2

)
α+ (a+ 2bt) tanh

(
τ0α
2

) t > t∗

(S.20)

Polynomial expressions for τI(t) of degree higher than 2 have no explicit solution as the function
I(t) has no explicit inverse.

S.2.2 Sinusoidal residence time

τI(t) = τ0

(
1 + δ sin

(
2πt ·H(t)

T
+ ϕ

))
(S.21)

where a is a parameter.

I(t) =
T

τ0πα
tan−1

(
tan(πtT + ϕ

2 )

α

)
α =

√
1− δ2 (S.22)

t∗ =
T

π

tan−1

−

(
α

tan ( τ0πα
T )

+ δ

)
tan (ϕ2 ) + α2 + δ2

tan (ϕ2 )−
α

tan (
τ0πα
T

)
+ δ

− ϕ

2

 (S.23)

τ(t) =



τ0 t ≤ 0

t− τ0 (1 + δ sinϕ)− T (1+δ sinϕ)
πα

(
tan−1

(
tan (πt

T
+ϕ

2 )+δ

α

)
− tan−1

(
tan (ϕ

2 )+δ

α

))
0 < t ≤ t∗

t− T
π

tan−1


(

α

tan( τ0πα
T )

−δ

)
tan (πt

T
+ϕ

2 )−α2−δ2

tan (πt
T
+ϕ

2 )+
α

tan( τ0πα
T )

+δ

− ϕ
2

 t > t∗

(S.24)
The last expression has finite discontinuities to be mended, specifically of height T (1 + δ sinϕ) /α in
the range 0 < t ≤ t∗ at

t = kT +
T

2
− ϕT

2π
k ∈ N (S.25)

and of height T in the range t > t∗ at

t = kT − T

π

(
ϕ

2
+ tan−1

(
α

tan
(
τ0πα
T

) + δ

))
k ∈ N (S.26)

S.2.3 Exponential residence time

τI(t) = τ0 exp(at ·H(t)) (S.27)

where a is a parameter.

I(t) = −exp(−at)

aτ0
(S.28)

t∗ = − ln(1− aτ0)

a
(S.29)

τ(t) =


τ0 t ≤ 0

t+ τ0 −
1− exp(−at)

a
0 < t ≤ t∗

t+
ln(exp(−at) + aτ0)

a
t > t∗

(S.30)
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S.2.4 Polynomial total flow rate

When the total flowrate changes linearly with time:

τI(t) =
τ0

1 + at ·H(t)
(S.31)

where a is a parameter.

I(t) =
t+ a

2 t

τ0
(S.32)

t∗ =
−1 +

√
1 + 2aτ0
a

(S.33)

τ(t) =


τ0 t ≤ 0

τ0 −
a

2
t2 0 < t ≤ t∗

t+
1−

√
1 + a(2t+ at2 − 2τ0)

a
t > t∗

(S.34)

Explicit solutions would also exist for polynomial flow rate of degree 2 and 3, but that entails finding
roots of polynomials of degree 3 and 4 respectively. While that is possible, the procedure is excessively
complicated and out of the scope of this work, thus it is omitted. Polynomials of order greater than
3 instead have no analytical solution as it is impossible to find explicit roots of polynomials of order
greater than 4.

S.3 Experimental time a volume or reagents

The time required to run the optimization campaign (up to a given iteration) in real life depends on
the experimental approach adopted. For steady optimizers (Dragonfly and random), each data point
requires the reactor to reach steady state. This is usually achieved (considering possible dispersion of
the tubular reactor residence time distribution) within nτ = 3 times the value of the residence time.
The reactor effluent should be sampled and analyzed, so an additional time equal to ∆tS is required
for each data point. Overall, an iteration of Dragonfly or random with NS samples requires a time
span equal to:

NS∑
k=1

(nττk +∆tS) (S.35)

Random (steady) initialization on the other hand requires a time equal to:

nτ

NS∑
k=1

τk +∆tS (S.36)

as the analysis of all data points can be run in parallel with the experiments (except for the last point).
DynO runs the analyses during the dynamic experiment (except for the last data point), thus it requires
to reach an initial steady state and then run the dynamic trajectory in the design space. This translates
to an overall time span per iteration of:

nττI(0) +NS∆tS (S.37)

The amount of chemicals needed to run the experiments in the optimization campaign (up to a
given iteration) can be calculated similarly. For steady experiments (Dragonfly, random optimizer,
and random initialization), each data point requires the reactor to run at a constant flow rate for the
entire time, thus each iteration requires a relative volume (volume of chemicals divided by the reactor
volume) equal to:

NSnτ (S.38)
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DynO on the other hand has a variable flow rate throughout the experiment, thus consuming a relative
volume of:

nτ +

∫ (NS−1)∆tS

0

1

τI(t)
dt (S.39)

Given these relations, it is possible to compare steady and dynamic operations. Specifically for
time, the ratio between the time needed for a DynE and a steady experiment with the same number
of data points collected is lower than unity when:

nττI(0) +NS∆tS∑NS
k=1(nττk +∆tS)

< 1 (S.40)

NS∑
k=1

τk > τI(0) = τ1 (S.41)

which is always verified, meaning that a DynE will always save experimental time over steady operations
to collect the same number of data points.
In terms of volume comparison, the ratio between the volume of reagents needed for a DynE and a
steady experiment is lower than unity (meaning a DynE consumes a lower amount of chemicals) when:

nτ +

∫ (NS−1)∆tS

0

1

τI(t)
dt

NSnτ
< 1 (S.42)

By a change of variables t̃ = t/∆tS :

1

NS − 1

∫ NS−1

0

1

τ̃I(t̃)
dt̃ < nτ (S.43)

that is, when the integral average of 1/τ̃I(t̃) (over the dynamic part of the experiment) is less than nτ .
But the average is lower than the maximum value of 1/τ̃I(t̃), thus when (sufficient condition):

∆tS
mint τI(t)

< nτ → min
t

τI(t) >
∆tS
nτ

(S.44)

The minimum instantaneous residence time in a trajectory will also be greater than the minimum
residence time considered in the design space, aτ , thus a stronger condition for DynE to be advantageous
over steady states is aτ > ∆tS/nτ .

S.4 Mathematical model of the chemical reaction in the parametric
analysis

An ideal tubular reactor with uniform temperature is considered. Under the hypothesis of constant den-
sity of the fluid (thus neglecting thermal expansion and density changes due to composition changes),
the concentration of a chemical species i can be computed as:

dci
dθ

= Ri(c, T ) =

NR∑
j

νijrj(c, T ) θ ∈ (0, τ ]

ci(0) = [i]0

(S.45)

where θ is the coordinate of reaction time, ci(θ) the molar concentration of species i, Ri its production
rate, νij its stoichiometric coefficient in reaction j (among the NR reaction considered), rj the j-th
reaction rate, T the reactor temperature, and [i]0 the inlect concentration of species i. The j-th reaction
rate can be described via power law and Arrhenius’ equation as:

rj(c, T ) = kj(T )
∏
k

c
αkj

k kj(T ) = kj,ref exp

(
−Ea,j

R

(
1

T
− 1

Tref

))
(S.46)
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Table S1: Kinetic parameters used in the ODE system for the parametric analysis. kj,ref has units
[m3 kmol−1 s−1] for reactions 1-8 and [s−1] for reactions 9-10. For all reactions Tref = 340K. The
value r is chosen randomly in the range [0.5, 3.0].

Reaction kj,ref Ea,j

j [kcal/mol]

1 10 15
2 0.1r 20
3 5 13
4 0.05r 18
5 0.1 17
6 0.1r 22
7 0.05 15
8 0.05r 20
9 0.001 30
10 0.002 30

where kj is the j-th reaction rate constant (having a value kj,ref at a temperature Tref and an activation
energy Ea,j) and αkj the partial reaction order of species k in reaction j.

For the case analyzed the species vector is:

[A B cat Ia Ib II A∗
1 A∗

2 Ia∗ Ib∗] (S.47)

while the stoichiometric coefficient matrix describes 10 reactions (rows) of the 10 species (columns):

ν =



−1 0 −1 0 0 0 1 0 0 0
0 −1 1 1 0 0 −1 0 0 0
−1 0 −1 0 0 0 0 1 0 0
0 −1 1 0 1 0 0 −1 0 0
0 0 −1 −1 0 0 0 0 1 0
0 −1 1 0 0 1 0 0 −1 0
0 0 −1 0 −1 0 0 0 0 1
0 −1 1 0 0 1 0 0 0 −1
0 0 −1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0


(S.48)

Reaction orders are assumed unitary for reactants and null for other species, thus considering all
reactions as elementary. The reaction rate parameters are reported in Table S1. The choice of such
values was done in order to keep the case realistic while also providing nontrivial optima in the design
space for different choices of the parameter r. r is randomly chosen every time the algorithms are
tested and compared, to simulate different reacting systems to optimize (during comparisons, the
three algorithms considered share the same value of r).

The aforementioned ODE system is solved to obtain the steady state of the reactor for a given set
of operating conditions (residence time, temperature, inlet composition). The same system is solved
for DynE considering the steady-equivalent conditions computed with the procedure of design space
reconstruction outlined in the text. This is a valid procedure when the speed of variation of the design
space parameters during the DynE satisfies Equation (4).5

The objective used in the parametric analysis involves the yield of species Ia w.r.t. A, which is:

YIa/A =
cIa(τ)− [Ia]0

[A]0
(S.49)

S.5 Experimental Setup

Flow reactions of ester hydrolysis were carried out feeding each stream with a positive displacement
pump on a VICI Milligat six pumps array (Global FIA, VICI M6) with a 5 mL PFA coil (0.04” i.d.) on
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Figure S1: Setup for automated flow experimentation of ester hydrolysis.

a Polar Bear Plus FlowTM reactor (Uniqsis) (Fig. S1 and S2). A membrane back-pressure regulator
(Model No. BPR-10, Zaiput Flow Technologies) was applied downstream, and pressure relief lines
were included upstream near the pump outlet as a standard flow safety precaution. Online ultra high-
performance liquid chromatography (UHPLC) analysis was carried out with an Agilent 1290 UHPLC
with an Agilent IQ mass spectrometer. A 38” length of tubing (0.02” i.d.) from the outlet of the back-
pressure regulator (Model No. BPR-10, Zaiput Flow Technologies) to the UHPLC sampling valve
added a delay volume of approximately 0.2 mL. Details of the analytical method are reported in Table
S2.

References
1 Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press,
Cambdridge, MA, USA, 2006).

Figure S2: Experimental setup showing Agilent 1290 External Valve Drive (G1170A).

8



Figure S3: Schematic of ester hydrolysis reaction.
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Table S2: Details about UHPLC method.
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