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Figure S1: Fluorescence emission maxima as function of periodically added diethylzinc in a
batchwise synthesis approach. Standard deviations results from four individual
batches. The wavelength emission maximum increases logarithmitically at 225 ◦C
and linearly at 190 ◦C.
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Figure S2: Piping and Instrumentation Diagram of continuous Zn3N2 synthesis. Throughout
production, the liquid precursor diethylzinc is flushed with inert gas and diluted
in-line with the solvent 1-octadecene by means of a slit-interdigital static mixer. N2

is applied in the pre-operating procedure to reach the reaction temperature and to
obtain blank spectra of the gas-liquid mixture for baseline correction. Then, the gas
flow is switched to NH3 which is the second precursor. Its pipeline and gas mass flow
meter are thermally insulated to prevent condensation before both reaction partners
are brought together in a second static mixer (T-piece) to generate a gas-liquid
segmented flow. For this purpose, all gas and liquid flow rates are recorded as well
as the system pressure. A check-valve prevents possible damage to the instruments
from reflux. The reaction solution then enters the hot and afterwards the cool zone
before the fluorescence emission is recorded online at room temperature. Finally,
the synthesis fractions are collected automatically under N2 atmosphere.
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Figure S3: Schematic flow-chart demonstrating input and output variables in a thermodynamic
process simulation (top). Simulated ammonia gas mass flow as a function of room
temperature, back pressure and water impurities (bottom). To dimension the reac-
tor, the gas cylinder is considered as a heat exchange module with a specific surface
of 0.064 m2 derived from its actual shape. As input factors, an air circulation was
considered of 1700 Nm3h−1 within the fume hood. As a result, sufficient ammonia
mass flows (> 100ml/min) can be supplied by the employed gas cylinder (8.6 bar)
as gas phase only (VF ∼1). In detail, gas regulation (5 or 7 bar) has the major
influence on the withdrawal amount in comparison to room temperature variations
(20-24 ◦C) and water impurities (200 ppm).
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Figure S4: Slit interdigital micromixer designed and manufactured as Fraunhofer IMM (Mainz,
Germany) which was applied to adapt the liquid-liquid ratio of diethylzinc with 1-
octadecene for inline-dilution.

Figure S5: Photo images of the gas-liquid interface after joining (top left), before heat reac-
tion zone (top right) and within cooling zone (bottom). The size of the initial gas
segments decreases towards the heat reaction zone and expands rapidly at reaction
temperatures of 190- 225 ◦C. A dewetting behaviour becomes visible again after
cooling the reaction medium within the water bath.
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Figure S6: Offline fluorescence spectra as a function of excitation wavelengths (Ex) of technical-
grade oleylamine (top left), and two Zn3N2 QDs samples (middle and bottom).
Zn3N2 nanocrystals can be clearly distinguished from technical-grade oleylamine
which is used as surfactant. Latter exhibits emission maxima from 350-480 nm
and their second order starting around 700 nm. In addition, a strong excitation
dependency becomes visible indicating multiple fluorescence states and/or species.
To completely avoid excitation of such species within technical-grade oleylamine,
455 nm was used as common excitation wavelength of Zn3N2 QDs samples for offline
as well as online analysis. A less pronounced Ex-Em dependency also exists for blue
emitting Zn3N2 QDs (middle) when using excitation wavelengths > 430 nm which
decreases with nanoparticle growth and vanishes for QDs emitting at 580 nm or
higher wavelengths (bottom).
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Figure S7: Offline fluorescence spectra of the same Zn3N2 QDs sample as a function of time
within. The emission maxima blueshifts when the sample is prepared and measured
at atmospheric condition (top row). The peak position and intensity remain most
stable within 1-octadecene and additionally dried toluene when prepared and sealed
under inert gas condition (bottom row). In comparison, the initial signal intensity
was found to be the highest within additionally dried toluene over time.
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Figure S8: Residence time distribution (E(t), left axis) and sum distribution (F (t), right axis)
at different total mass flow settings within the Zn3N2 tubular reactor based on Nile
Red as a tracer material. Four average residence times were considered. One average
residence time is similar to the batchwise synthesis approach (292 s ≈ 5min).
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Figure S9: TEM images of Zn3N2 nanocrystals (left), particle circularity results (right his-
tograms) including their statistical analysis. Cyan lines indicate the objects suitable
for analysis. The circularity decreases with increasing particle size (top to bottom)
which indicates atomic addition to selective crystal facets in relation to the monomer
amount available in solution.
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Figure S10: Electron energy loss spectra of the same Zn3N2 sample: Zn (top left), N2 (top
right) and O2 (bottom). EEL spectroscopy qualitatively confirms the presence of
a Zn-N compound among the continuously fabricated 10 nm nanoparticles. The
specific energy loss of oxygen was also detected as an indication of ZnO as a side
product.
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Figure S11: Full widths at half emission maximum (FWHM) at various emission wavelength
of continuously synthesised Zn3N2 Quantum dots. FWHM increases with emission
wavelength of the sample material.
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Figure S12: Integrated fluorescence intensity as a function of absorbance at 480 nm (left) of four
Zn3N2 quantum dots samples and Rhodamine 6G (Rh6G) as reference material.
Corresponding fluorescence spectra (dotted line) and absorbance spectra (right).
There is a linear correlation between the integrated intensity of the fluorescence
emission signals and the absorbance value at 480 nm. As a result, quantum yields
of the samples were determined to be circa 20 and 56% taking the error estimations
into account. There is no clear exciton peak found within the absorbance spectra
of differently coloured Zn3N2 quantum dots.
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Figure S13: Photo image at UV-light of post-synthetic surface passivation using the same Zn3N2

sample and different surfactants, diluted aliquots in toluene (top row). Qualita-
tively, surfactants with higher Lewis base strength were found to enhance the pho-
ton efficiency (tributylphosphine, trioctylphosphine). The 1-octanol sample shows
a blue shift in colour which indicates an etching effect, that is a decrease in nanopar-
ticle size. Zn3N2 decomposes after addition of thiol-surfactants. Here, all surfactant
materials were used without drying procedure.
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Figure S14: Online fluorescence spectra of Zn3N2 quantum dots at different process parameter
conditions during continuous synthesis. The raw and smoothed spectra are grey
and red respectively. The second maximum at 760 nm and the shoulder at 658 nm
are attributed to measurement artefacts since both are visible regardless of the
sample material.
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