Supplementary Information (SI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2025

Highly Efficient Cobalt-Modified Hopcalite Catalyst Prepared through the Crednerite-Spinel Transformation

¹Svintsitskiy D.A., ¹Kvasova E.S., ¹Kardash T.Yu., ^{1,2}Sokovikov N.A., ¹Stonkus O.A., ¹Boronin A.I.

1 – Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090, Novosibirsk, Russia

2 - Novosibirsk State University, St. Pirogova 2, 630090, Novosibirsk, Russia

Figure S1. Both experimental (+) and simulated (red line) X-ray patterns for as-prepared CuMn sample. Simulation was performed using the Rietveld method. Blue line corresponds to difference curve. The obtained value of R_{wp} is close to 7.8%.

Figure S2. Experimental (+) and simulated (red line) X-ray patterns for $CuMn_{0.8}Co_{0.2}$ as well as corresponding difference curve (blue line). The structure refinement was performed via the Rietveld method using (a) isotropic or (b) anisotropic models for microstrains simulation.

Fig.S2a shows experimental X-ray diffraction pattern for the $CuMn_{0.8}Co_{0.2}$ sample as well as the simulated Rietveld refinement based on the crednerite structure. Only the isotropic broadening of the diffraction lines (due to the change in the crystallite size and the concentration of microstrains) was taken into account for the refinement. In this case, the high value of $R_{wp} = 11.5$ is due to a poor description of the experimental broadening for the reflections of -201, 200, 202 (not wide enough) and -111 (not narrow enough). Previously, the defect structure of the

 $AgMnO_2$ oxide with a crednerite-type structure was discussed elsewhere [1]. The X-ray diffraction pattern of $AgMnO_2$ was also characterized by anisotropic broadening of the reflections, which was associated with the formation of planar defects. However, the presence of such defects in the crednerite structure causes a broadening of 110, -111, 111 reflections.

		As-prepared		T=250°C		T=350°C	
Sample	Phases	Content, wt.%	Crystal size, nm	Content, wt.%	Crystal size, nm	Content, wt.%	Crystal size, nm
	Crednerite CuMnO ₂	100	39(6)	100	19(2)	25	15(1)
CuMn	Cubic spinel (Cu,Mn) ₃ O ₄	-	-	-	-	73	14(2)
	Tenorite CuO	-	-	-	-	2	12(2)
	Crednerite Cu(Mn,Co)O ₂	100	23(3)	83	19(2)	-	-
$CuMn_{0.9}Co_{0.1}$	Cubic spinel (Cu,Mn,Co) ₃ O ₄	-	-	17	11(2)	95	11(1)
	Tenorite CuO	-	-			5	9(1)
	Crednerite Cu(Mn,Co)O ₂	100	10(1)	55	8(1)	-	-
$CuMn_{0.8}Co_{0.2}$	Cubic spinel (Cu,Mn,Co) ₃ O ₄	-	-	45	7(1)	93	10(1)
	Tenorite CuO	-	-	-	-	7	7(1)
	Crednerite Cu(Mn,Co)O ₂	74	8(1)	21	9(1)	-	-
	Tetragonal spinel CoMn ₂ O ₄	18	7(1)	18	6(1)	-	-
CuMn _{0.7} Co _{0.3}	Delafossite CuCoO ₂	3	≈5*	3	≈10*	2	25(9)
	Tenorite CuO	5	15(1)	19	3.2(3)	15	6.8(3)
	Cubic spinel (Cu,Mn,Co) ₃ O ₄	-	-	38	3.9(1)	83	13(1)
	Cubic spinel (Co,Mn)O ₄	71	4.9(2)	-	-	65	11(1)
$CuMn_{0.5}Co_{0.5}$	Tenorite CuO	12	20(1)	-	-	27	32(6)
	Cuprite Cu ₂ O	17	>100	-	-	8	>100

Table S1. Phase composition and corresponding crystallite sizes in accordance with the fullprofile Rietveld refinement of experimental X-ray patterns

*parameters were not refined due to low phase content;

Table S2. Structural parameters for crednerite particles in the composition of as-prepared $CuMn_{1-x}Co_x$ samples, where x=0, 0.1, 0.2, and 0.3

Sample	a, Å	b, Å	c, Å	β, °	V, Å ³	Microstrains*
--------	------	------	------	------	-------------------	---------------

CuMn	5.589(1)	2.884(1)	5.892(1)	103.97(2)	92.17(3)	0.008(1)
$CuMn_{0.9}Co_{0.1}$	5.505(3)	2.886(1)	5.896(3)	104.37(3)	90.75(6)	0.017(10
$CuMn_{0.8}Co_{0.2}$	5.414(3)	2.891(3)	5.901(3)	104.76(3)	89.3(1)	0.033(1)
$CuMn_{0.7}Co_{0.3}$	5.355(3)	2.892(2)	5.890(3)	105.28(6)	88.0(1)	**

* values averaged in all crystallographic directions;

** - parameters were not reliably obtained due to the presence of other interfering phases.

Figure S3. (a) Graphic visualization of the refined elements of anisotropic microstrain tensor; (b) Crednerite structure in the xz plane reflecting the long Mn-O bonds of distorted octahedra MnO_6 : blue circle – copper, red circle – oxygen, violet circle – manganese.

Figure S4. Spectral regions of Mn 2p for as-prepared $CuMn_{1-x}Co_x$ catalysts with varied Co content (x=0, 0.1, 0.2, 0.3 u 0.5)

Table S3. The values of specific surface area according to the BET theory for studied catalysts

Sample	Specific surface area (S _a), m ² /g
CuMn-250	35

CuMn-350	32
As-prepared CuMn _{0.9} Co _{0.1}	45
CuMn _{0.9} Co _{0.1} -250	43
CuMn _{0.9} Co _{0.1} -350	31
As-prepared CuMn _{0.8} Co _{0.2}	54
CuMn _{0.8} Co _{0.2} -250	46
CuMn _{0.8} Co _{0.2} -350	37
As-prepared CuMn _{0.7} Co _{0.3}	35
CuMn _{0.7} Co _{0.3} -250	29
CuMn _{0.7} Co _{0.3} -350	23
As-prepared CuMn _{0.5} Co _{0.5}	52
CuMn _{0.5} Co _{0.5} -350	49

Figure S5. Experimental X-ray patterns for $CuMn_{1-x}Co_x$ samples (x=0, 0.1, 0.2, 0.3 u 0.5) after catalytic measurements with heating up to (a) 250 and (b) 350°C in the comparison with simulated data for reference compounds. Simulation was performed using the full-profile Rietveld refinement. Quantitative data about phase composition and crystallite sized are presented in Table S1 above.

Table S4. Lattice and isotropic microstrain parameters for cubic spinel particles in the composition of $CuMn_{1-x}Co_x$ samples after catalytic measurements with heating up to 250 and 350°C

Samula	lattice para	ameter <i>a</i> , Å	microstrains		
Sample	T=250°C	T=350°C	T=250°C	T=350°C	
CuMn	-	8.303(1)	-	0.24(2)	
CuMn _{0.9} Co _{0.1}	8.320(6)	8.280(2)	0.41(6)	0.26(2)	

CuMn _{0.8} Co _{0.2}	8.286(6)	8.265(2)	0.42(6)	0.21(2)
$CuMn_{0.7}Co_{0.3}$	8.24(1)	8.253(2)	_*	0.24(1)
$CuMn_{0.5}Co_{0.5}$	-	8.205(2)	_*	0.07(1)

* - the parameter was not refined due to the presence of other interfering phases

Figure S6. Experimental (+) and simulated (red line) X-ray patterns for $CuMn_{0.8}Co_{0.2}$ -350 sample as well as corresponding difference curve (blue line). Simulation was performed using the full-profile Rietveld refinement taking into the account the presence of both cubic spinel (Cu,Mn,Co)₃O₄ and CuO particles. In the case of spinel (Cu,Mn,Co)₃O₄ the model with Cu cations in both tetrahedral and octahedral positions was considered.

Fig. S7. TEM data for $CuMn_{0.8}Co_{0.2}$ sample: (a) TEM image, high resolution TEM image and the insertion of FFT of selected area with indication of reflections from crednerite-type $CuMn(Co)O_2$ particles; (b) HAADF-STEM image and (c) corresponding EDX mapping showing the distribution of Mn (green), Co (red), and Cu (blue) in the sample as well as (d) corresponding EDX spectrum and quantitative data about element concentration for selected area.

Table S5. Quantitative TPR-CO data for CuMn and CuMn_{0.8}Co_{0.2} samples after heating at 350° C in Ar or $20\%O_2/Ar$

	*Cı	ıMn	*CuMn _{0.8} Co _{0.2}		
	Ar	20%O ₂ /Ar	Ar	20%O ₂ /Ar	
Evolved CO ₂ , 0-600°C	6858 µmol/g	12110 µmol/g	6510 µmol/g	12786 µmol/g	
CO/CO ₂ , 0-600°C	1.29	1.22	1.19	1.28	
Evolved CO ₂ , 0-100°C	22 µmol/g	127 µmol/g	45 μmol/g	204 µmol/g	
δ for CuMn _{1-x} Co _x O _{2+δ}	-	0.79	-	0.95	
[O] ₁₀₀ /[O] ₆₀₀	0.003	0.0105	0.007	0.016	

*total oxygen quantity for CuMn and CuMn_{0.8}Co_{0.2} samples was calculated to be near 13291 and 13220 μ mol/g respectively;

Table S6. Specific catalytic rates of dry CO oxidation over different hopcalites ($CuMnO_x$) at room temperature

CuMaO	Desetion	CHEV	Specific rea	action rate	
CulvinO _x	Reaction	$GHSV_{CO}$,	W _s ,	W _m ,	Reference
synthesis	conditions	min ng _{cat}	×10 ⁻³ ml(CO)·m ⁻² ·s ⁻¹	×10 ⁻² ml(CO)·g ⁻¹ ·s ⁻¹	
Thermal					
decomposition of	T=25°C				
supercritically	V=22.5 ml/min				S. Vondrat at al
precipitated	[CO] ₀ =0.5	135	-	0.375	
copper and	vol.%				[2]
manganese	m _{cat} =50 mg				
acetates					
Co-precipitation	T=20°C				
from copper and	V=55 ml/min				C. Hutshimas at al
manganese	[CO] ₀ =0.45	149	1.1	3.71	G. Hutchings et al
nitrates	vol.%				[2]
using Na ₂ CO ₃	m _{cat} =100 mg				
Co-precipitation	T=25°C				
from copper and	V=21 ml/min				T. Clarka
manganese	[CO] ₀ =0.5	126	0.185	1.575	DhD thosis [4]
nitrates	vol.%				
using Na ₂ CO ₃	m _{cat} =50 mg				

Co-precipitation	T=25°C				
from copper and	V=22.5 ml/min				C Ionas
manganese	[CO] ₀ =0.5	135	0.098	0.85	DhD thesis [5]
nitrates	vol.%				
using Na ₂ CO ₃	m _{cat} =50 mg				

	Reaction	GHSV _{co.}	Specific re		
Catalyst	conditions	$ml \cdot h^{-1} \cdot g_{cat}^{-1}$	W_s , ×10 ⁻³ ml(CO)·m ⁻² ·s ⁻¹	W_m , ×10 ⁻² ml(CO)·g ⁻¹ ·s ⁻¹	Reference
CuMn _{0.8} Co _{0.2} -350	$\begin{array}{c} T=25^{\circ}C \\ V=200 \text{ ml/min} \\ [CO]_{0}=0.24 \text{ vol.\%} \\ m_{cat}=300 \text{ mg} \\ S=37 \text{ m}^{2}/\text{g} \\ \text{light-off} \end{array}$	96	0.5	1.7	This work
1%Co/CuMnO _x	T=25°C V=22.5 ml/min [CO] ₀ =0.5 vol.% S=73 m ² /g steady state (120 min)	135	0.3	1.8	C. Jones et al. [6]
Mn-Cu-Co	$T=25^{\circ}C$ $V=30 \text{ ml/min}$ $[CO]_{0}=1 \text{ vol.\%}$ $m_{cat}=100 \text{ mg}$ $S=176 \text{ m}^{2}/\text{g}$ $light-off$	180	0.1	2.3	KH. Choi et al. [7]
CuMnCo _{RC3}	$\begin{array}{c} T=25^{\circ}C \\ V=60 \text{ ml/min} \\ [CO]_{0}=2.5 \text{ vol.\%} \\ m_{cat}=100 \text{ mg} \\ S=138.6 \text{ m}^{2}/\text{g} \\ \text{light-off} \end{array}$	900	0.3	3.8	S. Dey et al. [8]
CoO _x -CuO _x - 10MnO _x	$\begin{array}{c} T=30^{\circ}C \\ V=83.33 \text{ ml/min} \\ [CO]_{0}=5 \text{ vol.\%} \\ m_{cat}=900 \text{ mg} \\ S=33.7 \text{ m}^{2}/\text{g} \\ \text{light-off} \end{array}$	278	1.3	4.2	R.D. Kerkar et al [9]
Amorphous CuCoMnO4	$\begin{array}{c} \textbf{T=60°C} \\ V=60 \text{ ml/min} \\ [CO]_0=1 \text{ vol.\%} \\ m_{cat}=20 \text{ mg} \\ S=188 \text{ m}^2/\text{g} \\ \text{light-off} \end{array}$	1800	0.4	7.7	P.A. Wright et al. [10]
Crystallized CuCoMnO ₄	$\begin{array}{c} \textbf{T=60°C} \\ V=60 \text{ ml/min} \\ [CO]_0=1 \text{ vol.\%} \\ m_{cat}=20 \text{ mg} \\ S=113 \text{ m}^2/\text{g} \\ \text{light-off} \end{array}$	1800	0.8	9.2	P.A. Wright et al. [10]
CuO nanopowders	T=65°C V=1000 ml/min [CO] ₀ =0.2 vol.% m _{cat} =188.5 mg S=77 m ² /g light-off	637	0.23	1.8	D.A. Svintsitskiy et al. [11]

Table S7. Specific catalytic rates of dry CO oxidation over various Cu-Co-Mn catalytic systems at near room temperature

References:

- D.A. Svintsitskiy, V.M. Metalnikova, S. V. Cherepanova, A.I. Boronin, Appl. Catal. A Gen. 661 (2023) 119244.
- [2] S.A. Kondrat, T.E. Davies, Z. Zu, P. Boldrin, J.K. Bartley, A.F. Carley, S.H. Taylor, M.J. Rosseinsky, G.J. Hutchings, J. Catal. 281 (2011) 279–289.
- [3] G.J. Hutchings, A.A. Mirzaei, R.W. Joyner, M.R.H. Siddiqui, S.H. Taylor, Appl. Catal. A Gen. 166 (1998) 143–152.
- [4] T.J. Clarke, Preparation of Copper Manganese Oxide Catalysts and Their Application for Oxidation Reactions, Cardiff University, 2015.
- [5] C.D. Jones, Ambient Temperature Oxidation of Carbon Monoxide by Copper-Manganese Oxide Based Catalysts, Cardiff University, 2006.
- [6] C. Jones, S.H. Taylor, A. Burrows, M.J. Crudace, C.J. Kiely, G.J. Hutchings, Chem. Commun. (2008) 1707–1709.
- [7] K.H. Choi, D.H. Lee, H.S. Kim, Y.C. Yoon, C.S. Park, Y.H. Kim, Ind. Eng. Chem. Res. 55 (2016) 4443–4450.
- [8] S. Dey, G.C. Dhal, D. Mohan, R. Prasad, R.N. Gupta, Appl. Surf. Sci. 441 (2018) 303– 316.
- [9] R.D. Kerkar, A. V. Salker, Appl. Nanosci. 11 (2021) 2861–2867.
- [10] P.A. Wright, S. Natarajan, J.M. Thomas, P.L. Gai-Boyes, Chem. Mater. 4 (1992) 1053– 1065.
- [11] D.A. Svintsitskiy, A.P. Chupakhin, E.M. Slavinskaya, O.A. Stonkus, A.I. Stadnichenko, S.V. Koscheev, A.I. Boronin, J. Mol. Catal. A Chem. 368–369 (2013) 95–106.