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1 Methods

1.1 Chemicals and materials

All chemicals were of analytical grade unless specified. Buffers were filtered (200 nm

filter) and degassed before use. Thioflavin T (ThT) was from CalBiochem and a 2

mM stock solution was prepared from ThT powder, dissolved in Millipore water, passed

through a 200 nm filter, and the concentration determined from the absorbance of diluted

stock samples. The PEGylated black polystyrene 96-well half-area plates with clear

bottom were from Corning (3881).

1.2 Protein purification

The His6-tagged fusion protein of maltose-binding protein (MBP) and Htt were expressed

and purified as described.1

1.3 Measurement of enzymatic cleavage

The enzymatic cleavage reaction was studied for MBP-HttQ30 at six concentrations

ranging from 6.4 to 20 µM with 0.54 µM TEV protease in buffer (20 mM Tris-HCl, pH

7.5, 125 mM KCl). Samples were incubated at 37 ◦C with aliquots withdrawn at different

time points and separated by SDS PAGE (NuPAGE 4-12% Bis-Tris Gel, provider Ther-

moFisher, Stockholm, Sweden) using an image scanner for assessment of the amounts of

cleaved and un-cleaved MBP-HttQ30.

2



1.4 Measurement of kinetics

Aggregation kinetics were monitored at 37 ◦C via the ThT fluorescence intensity mea-

sured continuously using a BMG Fluostar plate reader with an excitation filter at 448

nm and emission filter at 480 nm. Purified MBP-HttQ45 at 4-15 µM total concentration

in buffer (20 mM Tris-HCl, pH 7.5, 125 mM KCl) with 10 µM ThT, without or with

preformed seeds fibrils, was placed in the wells of PEGylated polystyrene plates. TEV

protease (AcTEV Protease, provider ThermoFisher, Stockholm, Sweden) was added at

time zero to a final concentration of maximum 0.54 µM , in a dilution series with activity

varying between 7 U and 0.25U, after which the reading of ThT fluorescence intensity

was immediately started.

1.5 Fitting of kinetic data

All fits were performed on the modified local version of fitting platform AmyloFit.2 The

differential equations describing the kinetics and their approximate solutions which were

used in the fitting are all given in the main text and ESI †.

2 The fundamentals of aggregation without a source-

term

When primary nucleation, elongation and secondary nucleation are involved in the aggre-

gation of a protein, the time-evolution of the aggregate distribution f(t, j), of aggregates
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of size j at time t, is given by:3

∂f(t, j)

∂t
= knm(t)ncδj,nc (Primary nucleation)

+ 2k+m(t)n+ [f(t, j − 1)− f(t, j)] (Elongation)

+ k2m(t)n2

∞∑
i=nc

if(t, i)δj,n2 (Secondary nucleation).

(S1)

where m(t) is the free monomer concentration. kn, k2, k+ are the rate constants of the

primary nucleation, secondary nucleation and elongation. nc, n2 are reaction orders of

primary nucleation and secondary nucleation, which in the simplest interpretation cor-

respond to nucleus size. n+ is the reaction order of elongation, which similarly can be

interpreted as the number of monomers that are added onto the growing fibril in a single

elongation step. In most cases, elongation happens by monomer addition so n+ = 1. δi,j

is the Kronecker delta which equals 1 if i = j and 0 otherwise.

As a set of infinitely many coupled and non-linear differential equations, the master

equations Eqs. (S1) are usually be very difficult to deal with. However, the average

quantities such as total fibril number and total fibril mass are both easier to measure

and more mathematically tractable. The principal moments of the aggregation length

distribution are defined as:

QN(t) =
∞∑

j=nc

jNf(t, j). (S2)

We usually use number of aggregates, the zero-th moment P (t) = Q0(t) =
∑∞

j=nc
f(t, j),

and the total mass of aggregates, the first moment M(t) = Q1(t) =
∑∞

j=nc
jf(t, j),

to describe an aggregation reaction.4–6 Combining Eqs. (S1) and (S2), we obtain the
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moment equations:7–9

dP (t)

dt
= knm(t)nc + k2m(t)n2M(t) (S3a)

dM(t)

dt
= 2k+m(t)n+P (t) (S3b)

m(t) +M(t) = mtot. (S3c)

where mtot is total protein concentration of the system and Eqs. (S3c) describes the

conservation law between free monomers and the fibril mass, under the assumption that

no more new monomers are added into the system during the aggregation.10,11 The

moment equations Eqs. (S3) can be solved for example using a fixed point iteration

method:7 Firstly, approximate m(t) = mtot to enable solving the resulting differential

equations and obtain an approximate early time solution. Secondly, iterate the early time

solution into the moment equations to obtain the approximate full timescale solution.

3 Compare source-term aggregation with aggrega-

tion without secondary nucleation

For the source-term s(t) = mtot(1 − e−ksourcet), Eqs. (1) can be numerically solved and

the normalized fibril mass under different conditions are plotted in Fig. S1: A and B

compare the aggregation with secondary nucleation (k2 ̸= 0) but without the source-term

(s(t)/mtot = 1) to the aggregation with the source-term s(t)/mtot = 1−e−ksourcet but with-

out secondary nucleation (k2 = 0). Although the early time solution of the aggregation

with the source-term but without secondary nucleation is a polynomial function: M0(t) =

k+knm3
tot

6k2source
((6k2

sourcet
2−18ksourcet+17)+6e−ksourcet(2ksourcet−5)+15e−2ksourcet−2e−3ksourcet),

while the early time solution of the aggregation without a source-term but with the sec-
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ondary nucleation is an exponential function: M0(t) = kn
k2
mnc−n2

tot Sinh2(

√
2k+k2m

n2+1
tot

2
t),

their shape can be very similar at the condition of a certain set of parameters, as shown

in Fig. S1A. However, these two curves can be distinguished by adding seeds at t = 0.

For aggregation with a source-term but without the secondary nucleation, after adding

seeds, only the elongation speed is increased at the early time and the aggregation speed

is still mainly constrained by the source-term. For aggregation without a source-term

but with the secondary nucleation, adding seeds at t = 0 bypasses the primary nucle-

ation process, largely increases the speed of the surface catalyzed secondary nucleation

at the early time and the aggregated fibril mass rises earlier, as shown in Fig. S1B.

Adding 10% seeds fibrils with the average length of 100 can distinguish these two types

of aggregations.
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Figure S1: Numerical solution of normalized fibril mass concentration M(t)/mtot. A
and B compare the aggregation with secondary nucleation but without the source-term
(red curves) and the aggregation with the source-term s(t) = 1 − e−ksourcet but without
secondary nucleation (blue curves). Both aggregations in A are unseeded. Both aggrega-
tions in B have seeded fibrils initially: M(0) = 0.1 ·mtot, P (0) = 0.01 ·M(0). nc = n2 = 2
for all panels.
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4 Using time dependent effective parameters to an-

alytically solve aggregation with a source-term

Writing the inverse of S(T ) as T = T (S), we can rewrite the early-time kinetic Eqs. (4)

as an ODE with independent variable S. In Sturm-Liouville form12 this is:

[
G(S)

Sn+
· ν ′

0(S)]
′ = 2ϵ · Snc

G(S)
+ ν0(S) ·

Sn2

G(S)
, (S4)

where G(S) = dS
dT
. This can be analytically solved when nc = n2 = n+ = n0 (n0 is

defined as a ’homogeneous’ reaction order for all reaction micro-steps), yielding:

ν̂0(S) =
1

2
e−H(S)[(eH(S) − 2ϵ)2 − 2c1], H(S) =

∫ 1

S

xn0

G(x)
dx+ c2. (S5)

where c1, c2 are decided by boundary conditions. For the source-term S(T ) = 1− e−KT ,

Eqs. (S5) becomes:

ν̂0(S) = 4ϵ · sinh2

[∑n0

n=1(
Sn

n
) + ln(1− S)

2K

]
. (S6)

In general, n+ = 1; typically, however, the reaction orders nc, n2 ̸= 1. Nonetheless,

we can obtain an approximate analytical solution of Eqs. (4) for arbitrary nc, n2 based

on the special solution Eq. (S6) by introducing time dependent effective parameters.

The time dependent effective parameters are used to correct the approximate analytical

solution from the ’homogeneous’ reaction order nc = n2 = n+ = n0 to the more general

’inhomogeneous’ reaction orders. To see how this works, we rewrite Eqs. (4) as:
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Π′
0(T ) = 2ϵSnc−n0S(T )n0 + Sn2−n0ν0(T )S(T )

n0 (S7a)

ν ′
0(T ) = Sn+−n0S(T )n0Π0(T ). (S7b)

When S is slowly varying compared to ν0 and Π0, i.e. when monomer production

is either slow or rapid relative to aggregation, we have timescale separation and can to

a good approximation treat Snx−n0 as constants. Thus, defining T̄ = κefft = κ̄T , and

Π̄0 = Sn+−n0Π0/κ̄, Eq. (S7b) becomes:

ν ′
0(T̄ ) = S(T̄ )n0Π̄0(T̄ ). (S8)

Moreover, Eq. (4a) becomes:

κ̄2

Sn+−n0
Π̄′

0(T̄ ) = 2ϵSnc−n0S(T̄ )n0 + Sn2−n0ν0(T̄ )S(T̄ )
n0 (S9)

Π̄′
0(T̄ ) = 2ϵeffS(T̄ )n0 + ν0(T̄ )S(T̄ )

n0 (S10)

κ̄2 = Sn++n2−2n0 , ϵeff = ϵ · Snc−n2 (S11)

S(T̄ ) = 1− e−Keff T̄ , Keff =
K

κ̄
= K · S

2n0−n2−n+
2 . (S12)

The solution to this is Eq. (S6) with K replaced by Keff , and ϵ replaced by ϵeff . Setting

n+ = 1, this yields:

ν0(S) = 4ϵ · Snc−n2 · Sinh2

[∑n0

n=1(
Sn

n
) + ln(1− S)

2K · S
2n0−n2−1

2

]
. (S13)

The ’homogeneous’ reaction order n0 can be chosen as n0 = n2 if n2 is a integer and

n0 = ⌈n2⌉ otherwise. Then Eqs. (S13) is same as Eqs. (5).
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5 Approximate early time solution in different ex-

treme limits

We can simplify Eqs. (5) under different extreme limits:

For slow source, we can apply Taylor expansion on ln(1− S) ≈ −S − S2

2
− S3

3
− ...−

Sn2

n2
− .... In this condition, the early time solution is:

ν0(t) ≈ 4ϵ · s(t)nc−n2 · Sinh2[
κ · s(t)

n2+3
2

2(n2 + 1)ksource
]. (S14)

For secondary nucleation dominated, we can approximate Eqs. (S14) to:

ν0(t) ≈ ϵ · s(t)nc−n2 · e
κ·s(t)

n2+3
2

(n2+1)·ksource . (S15)

For primary nucleation dominated, we can approximate Eqs. (S14) to:

ν0(t) ≈
λ2 · s(t)nc+3

(n2 + 1)2 · k2
source

. (S16)

For fast source, we can approximate that S ≈ 1. In this condition, the early time

solution is:

ν0(t) ≈ 4ϵ · Sinh2(
κt

2
). (S17)

For secondary nucleation dominated, we can approximate Eqs. (S17) as:

ν0(t) ≈ ϵ · eκt. (S18)
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For primary nucleation dominated, we can approximate Eqs. (S17) to:

ν0(t) ≈
λ2t2

2
. (S19)

There approximated results are listed in Table 1.

6 Using Lie symmetry to get the full timescale so-

lution

To develop a global approximate solution we employ the method of asymptotic Lie

symmetries. For explanation of this method, see ref.13 Its applicability here requires

that the structure in phase space of the dynamics be the same as in ‘ordinary” protein

aggregation kinetics without a source term, i.e. that µ and Π monotonically decrease and

increase respectively from their initial values to an attractive fixed point at µ = 0, Π =

Π∞. Clearly this is not the case for Eqs. (2), since µ increases from zero initially. So,

we must first transform the variables into a form that ensures the correct phase space

structure. The logical way to do this is to divide through by S, i.e. µ̄ = µ/S, and

ν̄ = ν/S. Eqs. (2) become:

Π′(T ) = 2ϵµ̄(T )ncSnc + (1− µ̄)µ(T )n2Sn2+1 (S20a)

µ′(T ) = S ′ − µ(T )n+Π(T ) (S20b)

µ̄′(T ) = −µ̄(T )n+Sn+−1Π(T )− S ′

S
(µ̄− 1) (S20c)

1 = µ̄(T ) + ν̄(T ) (S20d)

Π(0) = 0, µ̄(0) = 1. (S20e)
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6.1 Perturbative solution

We now seek a perturbative solution by expanding µ̄,Π in ϵ as µ̄ = 1 + ϵµ̄(1) and

Π = Π(0) + ϵΠ(1). At zeroth order, Eqs. (S20) then reduce to (Π(0))′ = 0. Given initial

condition Π(0) = 0, this clearly is solved by Π(0) = 0, the same as with no source term.13

At first order in ϵ, Eqs. (S20) are:

(Π(1)(T ))′ = 2Snc − µ̄(1)Sn2+1 (S21a)

(µ̄(1)(T ))′ = −Sn+−1Π(1)(T )− S ′

S
µ̄(1) (S21b)

∴(Sµ̄(1)(T ))′ = −Sn+Π(1)(T ). (S21c)

Rewriting for µ(1) = Sµ̄(1), this yields:

dΠ(1)

dT
= 2Snc − µ(1)Sn2 ,

dµ(1)

dT
= −Sn+Π(1). (S22)

Adding this to the zeroth-order perturbation equations and making the substitution

ν0 = −µ(1) yields the “early-time” equations Eqs. (4), demonstrating their equivalence.

These have been solved for ν0 in Appendix 4, yielding Eqs. (5). So, for µ̄(1), we have:

µ̄(1) = −4Snc−n2−1 · sinh2

[∑n2

n=1
Sn

n
+ ln(1− S)

2K · S(n2−1)/2

]
. (S23)

6.2 Lie symmetry solution

In the limit that S → 1 (or K → ∞), the kinetic equations recover the traditional

protein aggregation equations. A µ → 1 asymptotic symmetry connecting S with ϵ and

T should suffice to transform the solution for µ in protein aggregation with no source
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into a solution for µ̄ valid for aggregation with a source term. This follows since µ̄ → µ

in the limit S → 1, and since we have shown that the late-time kinetics are identical and

unaffected by S to leading order. The source-less solution is:13

µ =
(
1 + 4ϵ sinh2(T/2)/c

)−c
, (S24)

where c = 3/(2n2 + 1).

As discussed in ref.,13 it is not necessary to explicitly compute the symmetry; we

can instead simply replace ϵ and T in the ordinary protein aggregation solution with

functions of S that ensure that its series expansion in ϵ matches the perturbative solution

Eq. (S23). This follows because a condition of the asymptotic symmetry transformation

of these parameters is that the series expansion matches.

In the present case, this requires ϵ → ϵSnc−n2−1, and T → (
∑n2

n=1
Sn

n
+ln(1−S))/(K ·

S(n2−1)/2). This finally yields the general solution:

ν̄ = 1− (1 + ϵν̄1/c)
−c . (S25)

This general solution is Eqs. (6).

Substituting the early time solution Eqs. (5) into the unified equation Eqs. (6), we

obtain the approximate full timescale solution for aggregation with a source-term. This

approximate analytical solution converges on the exact numerical kinetics almost pre-

cisely, as shown in Fig. S2.
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Figure S2: Comparing the analytical solution with the numerical integrated
rate law. Blue dotted curves are the approximate analytical solutions Eqs. (6). Red
curves are the numerically integrated rate law Eqs. (2)-(3). From right to left, the
parameters are: K = 10−3.5, 10−3.35, 10−3.2, 10−3, 10−2.75, 10−2.5, 10−2, 10−1. nc = n2 = 2
and ϵ = 10−10 for all curves.

13



7 Gel images of enzyme cleavage

Fig. S3 A-B show the degree of enzymatic cleavage of MBP-HttQ45.

A B

Figure S3: Gel images of enzyme cleavage. Gel electrophoresis images taken at
0 − 120 minutes. The initial concentrations of MBP-HttQ45 are: 6.4µM, 8µM, 10µMin
panel A and 12.8µM, 16µM, 20µM in panel B.

8 Bayesian analysis in enzyme cleavage data fitting

We global fit the enzyme cleavage data (with different mtot but the same e0 = 0.54µM)

to the source-term: s(t) = mtot − kb+kc
ka

·W0[
ka

kb+kc
·mtot · e

ka
kb+Kc

(mtot−kce0t)].

We use Bayesian analysis to find the optimised ka, kb, kc. If we note the measured

data points (ti, si) as d and the fitting parameters ka, kb, kc as k, the probability of fitting

parameters k in the condition of data points d, the likelihood P (k|d) can be expressed

in Bayesian theorem as follows:

P (k|d) = P (d|k)P (k)

P (d)
. (S26)
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where P (d|k) is the posterior probability, P (k) is the prior probability and P (d) is the

marginal likelihood (usually is a constant). In order to find the optimized fitting param-

eters, we need to find ka, kb, kc which leads to the maximum of the likelihood P (k|d).

If we assume that we have a flat prior probability, which implies P (k) is a constant,

P (k|d) ∝ P (d|k). We can find ka, kb, kc that leads to the maximum of the posterior

probability P (d|k). We assume the posterior probability is a normal distribution and

multiplies Pi(d|k) together for all data points di:

n∏
i

P (d|k) = (
1

σ
√
2π

)n · e−
1

2σ2

∑n
i [s(ti,k)−si]

2

. (S27)

where σ is the averaged standard deviation of all si calculated from the triplicate mea-

surements.

The 1D and 2D projections of multiplication posterior probability are shown in Fig.

S4. In 2D plot, brighter color represents larger posterior probability and more optimised

fitting data k. In 1D plot, larger value represents more optimised fitting data k. For

Q45 enzyme cleavage measurements, we fit that ka ≈ 0.0355, and ka ≪ kc. Substituting

them into: s(t) = mtot − kb+kc
ka

·W0[
ka

kb+kc
·mtot · e

ka
kb+Kc

(mtot−kce0t)]. For ka ≪ kc, we can

approximate the fitting function: s(t) ≈ mtot(1−e−ksourcet), where ksource =
kakce0
kb+kc

. Using

this approximation, we can calculate that kQ45
source = 0.02min−1µM−1 (from the optimised

ka, kb, kc fitted by Bayesian method).

15



Figure S4: 1D and 2D projections multiplication of posterior probability of Q45 data
set are shown in a) and b). c) is the fitting curves plotted using the optimised ka, kb, kc
from a) and b). mtot = 6.4µM, 8µM, 10µM, 12.8µM, 16µM, 20µM, e0 = 0.54µM ≪ mtot.

9 Add additional TEV at 24h after HttQ45 aggre-

gation

The aggregation kinetic of seeded HttQ45 aggregation with very low level of enzyme

in the beginning but add a lot of enzyme after 24h is shown in Fig. S5: We can see

the plateaued ThT signal rises again after adding additional plenty of enzyme, which

implies that the firstly added enzyme has been somehow consumed and there is still

non-aggregating precursor remains in the system.
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Figure S5: Beginning with 8µM monomer, 30% seeding, 0.003/muM enzyme. Further
add 0.1µM of enzyme after 24 h.

10 Same concentration of enzyme with different con-

centration of monomer

For the same concentration of enzyme and different concentrations of monomers, larger

mtot causes smaller percentage of non-aggregating precursors can finally aggregate, as

shown in Fig. S6:
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Figure S6: 4µM, 8µM, 11µM and 15µM monomer with 0.01µM and 0.003µM enzyme.
Use the ThT signal to justify M(∞)/m(0). The value of m(0) can be calibrated by the
ThT signal of same monomer concentration but with sufficient enzyme.

11 A simple source-term model for in-vivo protein

expression and clearance

As detailed in the main text, we assume aggregation-prone monomers are generated at

a constant production rate, with rate constant kp and removed at a rate proportional to

the concentration and rate constant kr. This produces the following moment equations
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as:

dP (t)

dt
= knm(t)nc + k2m(t)n2M(t) (S28a)

dM(t)

dt
= 2k+m(t)n+P (t) (S28b)

dm(t)

dt
= kp − krm(t)− 2k+m(t)n+P (t) (S28c)

M(0) = m(0) = P (0) = 0. (S28d)

The numerical solution of Eqs. S28 is shown in Fig. 6. M(t) is the blue curve and m(t)

is the red curve.

Under the early time approximation, the aggregation consumes very few monomers.

We can approximate Eqs. S28c as:

dm(t)

dt
≈ kp − krm(t), m(0) = 0. (S29)

We solve m(t) and get the source-term:

s(t) = m(t) +M(t) =
kp
kr
(1− e−kr·t). (S30)

where M(t) = 0 for the early time.

In order to get the early time analytical solution, we substitute the source-term into

Eqs. 5 and get:

M0(t) = 2
kn
k2

(
kp
kr
)nc−n2(1− e−krt)nc−n2 sinh2[

−krt+ (1− e−krt) + (1−e−krt)2

2

2kr√
2k+k2(

kp
kr

)n2+1
(1− e−krt)

n2−1
2

]. (S31)

which is plotted as the green curve in Fig. 6A. Compared with the numerical blue curve,
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we find that the approximate early time solution Eqs. S31 describes the lag time well.

We further substitute the early time solution Eqs. S31 into Eqs. 6 to get the full

time solution. At late time, the aggregation-prone monomer concentration approaches

the peptide solubility due to a large amount of fibrils that have been generated. The

increase in aggregate mass at late time thus only depends on the monomer production

rate. The late time solution in Eqs. 6 is M∞(t) = kpt. We plot the analytical full

time solution as the black curve in Fig. 6A. We also plot the numerical aggregate mass

and the analytical mass at a longer time scale, as shown in Fig. 6B. We find that the

exponential growth of fibril mass only appears at the early time and at the late time the

fibril mass grows linearly due to the limit of the constant monomer production rate.

12 Full time solutions with and without source term

We substitute the early time solution from Table. 1 column 4 into Eqs. 6 to get the full

time solutions for all regimes.

13 Boundary line between the slow monomer pro-

duction region and the fast monomer production

region

If we take the logarithm of both sides of the lag time solution in Table 1 regions 1 and 3

and cancel the tlag, we obtain the approximate boundary line between the slow monomer

production region and the fast monomer production region:

log10 κ ≈ log10 ksource + log10(ln
1

ϵ
)− 2

n2 + 1
log10(n0 + 1). (S32)
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Table S1: Full time solutions in five different regimes.

Regime Dominant nucleation Source Full time solutions M(t)

1 Secondary nucleation Slow source (1− (1 + ϵ·s(t)nc−n2−1·e
κ·s(t)

n2+3
2

(n2+1)·ksource
3

2n2+1

)
− 3

2n2+1 ) · s(t)

2 Primary nucleation Slow source (1− (1 + (2n2+1)·λ2·s(t)nc+2

3(n2+1)2·k2source
)
− 3

2n2+1 ) · s(t)

3 Secondary nucleation Fast source (1− (1 + ϵ·eκt·(2n2+1)
3

)
− 3

2n2+1 ) ·mtot

4 Primary nucleation Fast source (1− (1 + λ2t2(2n2+1)
6

)
− 3

2n2+1 ) ·mtot

5 N.A. Very slow source s(t)

The region boundary is roughly a straight line in the lag time contour plot. The slope of

the boundary line is 1. The intercept of the boundary line is log10(ln
1
ϵ
)− 2

n2+1
log10(n0+

1). The first term of the intercept log10(ln
1
ϵ
) depends on the y-axis log10 κ. We can

approximate it as a constant since ϵ is in a nested logarithm’s function. For 10−14 <

ϵ < 10−6, the first term of the intercept is 1.14 < log10(ln
1
ϵ
) < 1.5. For n0 = 1, 2, 3, 4, 5

and 0 < n2 < 5, the second term of the intercept is 0.26 < 2
n2+1

log10(n0 + 1) < 0.32.

We can sum these two terms and approximate the intercept of the boundary line equals

to 1. The boundary line in the lag time contour plot (double-log) is shown in Fig.

S7 as the white line. We find that the analytical prediction of the region boundary

log10 κ ≈ log10 ksource + 1 fit well with the numerical fitting in Fig. S7.

By using the same method, we can further calculate all boundaries between these

five regions, as shown in Table S2.
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Figure S7: Contour plot of exact numerical lag time when nc = n2 = 2, n+ = 1. Two
sets of black parallel lines are the extension of the lag time contour lines of the slow
monomer production region and the fast monomer production region. Red points are
the cross points of the corresponding extension black lines. These red points form our
numerical estimates of the boundary line. The analytic boundary line between these two
regions shown as a 45◦ white line (fitted by the red cross points): log10 κ = log10 ksource+1.
λ = 0.1. The value of λ leads to 10−14 < ϵ < 10−6 when 102 < κ < 106.

14 Reversible source term solutions

Having discussed the general features of a class of source terms that can be well approxi-

mated by first order irreversible kinetics, we now explore how more complex source terms

alter the system behaviour. First, we consider the reversibility of the monomer produc-

tion reaction, which may be important in a number of systems. For instance, when the

source consists of non-aggregating precursors unfolding or dissociating to aggregation-

prone monomers, the reverse reaction of the aggregation-prone monomers folding or

assembling back into the non-aggregating precursors may not be negligible. This process

can be described as a reversible source-term, with a reverse step of reaction order n.

For example, a folding/unfolding source-term has reaction order n = 1 and a tetramer
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Table S2: Boundaries function between different regions.

Boundaries Boundaries functions

1-31 log10 κ ≈ log10 ksource + 1

1-2 log10 κ ≈ nc−n2

nc+3
· log10 ksource + n2+3

nc+3
· log10 λ

3-4 log10 κ ≈ log10 λ+ 1

2-4 log10 λ ≈ log10 ksource − 1

1-5 log10 κ ≈ log10 ksource + 4

2-5 log10 λ ≈ log10 ksource + 2.5

dissociation/association source-term has reaction order n = 4. We consider reversible

source terms of the form:

A
ksource
⇌
ksink

n ·m → aggregation. (S33)

where A is the non-aggregating precursor and m is the aggregation-prone monomer.

ksource is the rate constant of the forward source-term reaction which produces monomers

whereas ksink is the rate constant of its reverse. The differential equations describing this

reversible source-term are:

dA(t)

dt
= −ksource · A(t) + ksink ·m(t)n (S34a)

n · A(t) +m(t) = mtot −M(t). (S34b)
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Figure S8: Elementary steps of protein aggregation with a reversible source-
term. The reaction order of reverse reaction is n = 1 for an unfolding/folding source-
term and n = 4 for a tetramer dissociation/association source-term.

where Eqs. (S34b) is the conservation of mass. mtot is the total concentration of precur-

sors, monomers and aggregates, in terms of monomer equivalents.

When deriving an analytical solution of aggregation with a reversible source-term,

we consider two different regimes: the fast source regime (monomer production is much

faster than aggregation: κ ≪ ksource, ksink) and the slow source regime (monomer pro-

duction is much slower than aggregation: κ ≫ ksource, ksink).

In the fast source regime, we can assume that monomer production is in equilibrium,

and thus ignore the differential equation for A(t), Eqs. (S34a). The numerical plots of

m(t) and n · A(t) for different values of the total concentration mtot −M(t) are shown

in Fig. S9.

For a general source-term of order n, Eqs. (S34) don’t have an analytical solution.

However, we can derive two extreme limits analytically: For n = 1, Eqs. (S34) can be
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analytically solved:

A(t) =
ksink

ksink + ksource
(mtot −M(t)) (S35a)

m(t) =
ksource

ksink + ksource
(mtot −M(t)). (S35b)

In these conditions the ratio of A(t) and m(t) is constant. By contrast, when n ≫ 1,

the systems behaviour begins to resemble a phase transition, with m(t) = mtot −M(t)

for small mtot −M(t) and m(t) = constant for large mtot −M(t). This regime would be

encountered for example if A(t) is an off-pathway condensate or amorphous precipitate.

Given these different regimes, we need to not only discuss whether the reaction has

a fast source or slow source, but also consider if the source-term order n is small (n = 1)

or large (n = 10). The numerical plots of aggregation in these four different regimes are

shown in Fig. S10.

For n = 1 and a fast source-term. The concentrations of non-aggregating pre-

cursor A(t) and the aggregation-prone monomers m(t) remain proportional throughout.

By applying the fast equilibrium approximation A′(t) = 0, the moment equations and

the conservation law can be expressed as:

dP (t)

dt
= knm(t)nc + k2m(t)n2M(t) (S36a)

dM(t)

dt
= 2k+m(t)n+P (t) (S36b)

ksource + ksink
ksource

·m(t) +M(t) = mtot (S36c)

M(0) = P (0) = 0 (S36d)
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By substituting the time-independent parameters

M(t)eff = M(t) · ksource
ksource + ksink

keff
2 = k2 ·

ksource + ksink
ksource

keff
+ = k+ · ksource

ksource + ksink

meff
tot = mtot ·

ksource
ksource + ksink

into the integrated rate laws of aggregation without a source-term, Eqs. (S36) can be

analytically solved.

This analytical solution for M(t) is given in Eqs. (S37) and is plotted as the black

dotted line in Fig. S10A, which fits well with the numerical solution (the cyan line).

M(t) = mtot·

(
1−
(
1+

ksourcekn(
ksourcemtot

ksink+ksource
)nc−n2−1(2n2 + 1)e

√
2k+k2(

ksourcemtot
ksink+ksource

)n2+1·t

6k2(ksink + ksource)

)− 3
2n2+1

)
.

(S37)

For n = 10 and a fast source-term. The monomer concentration remains constant

in the early time, until the non-aggregating precursor A(t) is depleted.

The early time free monomer concentration is same as the monomer equilibrium

concentration: m0 = meq, which can be numerically solved for general n, as shown in

Fig. S9B. The moment equations at the early time are then as follows:

P ′
0(t) = knm

nc
0 + k2m

n2
0 ·M0(t) (S38a)

M ′
0(t) = 2k+m

n+

0 · P0(t) (S38b)

P0(0) = M0(0) = 0. (S38c)
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From which we can derive the early time solution M0(t). The early time solution M0(t)

is:

M0(t) =
2knm

nc−n2
0

k2
· Sinh2[

√
2k+k2m

n2+1
0

2
· t]. (S39)

which agrees with the early time solution as obtained in the original derivation of the

integrated rate laws,14 but in this situation it is accurate for much longer, as the monomer

concentration remains approximately constant until the precursor A(t) is depleted. We

can derive this critical time tc at which the non-aggregating precursor A(t) is depleted:

M0(tc) = mtot −m0.

After A(t) is depleted, the aggregation can be regarded simply as a seeded aggregation

reaction with m(t) = m0 and a start time of: tc. The moment equations of this second

stage are:

P ′(τ) = k2m(τ)n2 ·M1(τ) (S40a)

M ′(τ) = 2k+m(τ)n+ · P (τ) (S40b)

m(τ) +M(τ) = mtot (S40c)

M(0) = mtot −m0. (S40d)

where τ = t − tc. This is simply a seeded reaction in the absence of a monomer

source. We denote this solution here by M1(t).

The early and late time solutions match in both value and derivative at the critical

time, i.e. M0(tc) = M1(tc) and M ′
0(tc) = M ′

1(tc). Thus we can directly unify the early

time solution M0(t) and the late time solution M1(t) to express the full timescale solution

M(t), shown as the black dotted line in Fig. S10C.

We have discussed reversible source term with the initial condition m(0) = 0. Using
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the same analytical approach, we can derive the approximate analytical solution for

varies of initial conditions, such as m(0) = meq and m(0) = mtot.

For n = 1 and a slow source-term. Under the early time approximation (aggre-

gated fibrils mass concentration is much smaller than the free monomer concentration)

M(t) ≪ m(t), the reversible source-term ODE can be approximately written as:

dS1(t)

dt
= ksource · (mtot − S1(t))− ksink · S1(t). (S41)

where S1(t) is the source-term at early time and S1(t) = m(t) +M(t), S1(0) = 0. From

Eqs. (S41), we obtain:

S1(t) =
ksource

ksource + ksink
·mtot · [1− e−(ksource+ksink)·t]. (S42)

Based on the source term S1(t), we obtain the early time solutionM0(t) (by substitut-

ing ksource with keff
source = ksource+ksink and substituting mtot with meff

tot = mtot · ksource
ksource+ksink

in Eqs. (5)).

Since the aggregation is much faster than monomer source and sink processes, ag-

gregation quickly consumes all free monomers at the lag time. The newly produced

monomers can be immediately consumed by aggregation, which implies the sink process

can be neglected. The time evolution from this point on, M∞(t), is simply given by the

late time source-term function S2(t), which can be described by:

dS2(t)

dt
= ksource · (mtot − S2(t)). (S43)

The boundary condition of Eqs. (S43) is S2(tlag) = S1(tlag), where the lag time tlag can

be analytically derived from M0(tlag) = 0.1mtot. In such boundary condition, we derive
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the late time source term S2(t) as:

S2(t) = (mtot − S1(tlag)) · (1− e−ksource·(t−tlag)) + S1(tlag). (S44)

which is also the late time solution M∞(t) = S2(t). Since the new produced monomers

can quickly aggregate into fibrils, the exponential rate of S2(t) only depends on ksource.

The full time solution of M(t) can be expressed by unifying M0(t) and M∞(t) using

Eqs. (6). This analytical M(t) is plotted as the black dotted line in Fig. S10B, which

fits well with the numerical solution (the cyan line).

For n = 10 and a slow source-term. The method of deriving an integrated

rate law is very similar to the n = 1 and slow source-term case. The reaction order

is only relevant when the reverse reaction is significant, thus only affects the early time

behaviour. Under the early time approximation M(t) ≪ m(t), the reversible source-term

ODE can be approximately written as:

dS1,n(t)

dt
= ksource · (mtot − S1,n(t))− n · ksink · S1,n(t)

n. (S45)

where S1,n(t) is the source-term at early time and S1,n(t) = m(t)+M(t) and the boundary

condition is S1,n(0) = 0. We can approximate the last term of Eqs. (S45) as mn
eq and

obtain:

S1,n(t) = (mtot − n · ksink
ksource

·mn
eq) · [1− e−ksource·t]. (S46)

where n is the order of the reversible source-term. Similarly as in the n = 1 case, we can

write the late time source-term using Eqs. (S44).

The unified full time solution M(t) has similar form as in the n = 1 case, by changing

the source terms S1(t), S2(t) to S1,n(t), S2,n(t) (substitute keff
source = ksource and meff

tot =
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mtot − n · ksink

ksource
·mn

eq into Eqs. (5)). This analytical M(t) is shown as the black dotted

line in Fig. S10D, which fits well with the numerical solution (the cyan line).
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Figure S9: Numerical solution for the precursor (green) and monomer (red)
concentrations at equilibrium as a function of the total protein concentration.
The red curves are m and the green curves are n · A. (A) is n = 1. (B) is n = 2. (C) is
n = 10.

Besides the initial condition m(0) = 0, we also derived analytical solution of other

initial conditions, such as: m(0) = meq and m(0) = mtot. The numerical and analytical

plots for different initial conditions and n = 1, 10 are shown in Fig.S11.

For n=1, slow source-term with different initial conditions.

When the initial condition of Eqs. (S41) is S1(0) = m0. The early time source-term

can be derived as:

S1(t) = (
ksource ·mtot

ksource + ksink
−m0) · [1− e−(ksource+ksink)·t] +m0. (S47)

For the late time, fast aggregation can immediately consumes all newly produced monomers,

which implies the monomer sink process can be neglected. We use the same ODE

Eqs. (S43) to derive the late time source-term under the boundary condition S2(tlag) =
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S1(tlag):

M∞(t) = S2(t) = (mtot − S1(tlag)) · (1− e−ksource·(t−tlag)) + S1(tlag) (S48)

where the lag time tlag can be analytically derived from M0(tlag) = 0.1mtot.

For initial conditions m(0) = 0,meq,mtot, This analytical full time solution M(t)

is shown as the black dotted line in Fig. S11A-C, which fits well with the numerical

solution (the cyan line).

For n=10, slow source-term with different initial conditions.

When the initial condition of Eqs. (S45) is S1,n(0) = m0 and we similarly approximate

the S1,n(t) of its last term as meq. The early time source-term can be derived as:

S1,n(t) = (mtot − n ·mn
eq ·

ksink
ksource

) · (1− e−ksource·t) +m0e
−ksource·t. (S49)

For the late time, fast aggregation can immediately consumes all newly produced monomers,

which implies the monomer sink process can be neglected. We use the same ODE

Eqs. (S48) to derive the late time source-term under the boundary condition S2,n(tlag) =

S1,n(tlag).

For initial conditions m(0) = 0,meq,mtot, This analytical full time solution M(t) is

shown as the black dotted line in Fig. S11D-F, which fits well with the numerical solution

(the cyan line).

31



M(t)
m(t)
nA(t)
Analytical M(t)

0 40000 80000
0

3e-7
2.5e-7
2e-7

1.5e-7
1e-7
5e-8

0 20 40 60 80 100
0

3e-7
2.5e-7
2e-7

1.5e-7
1e-7
5e-8

M(t)

m(t)
nA(t)
Analytical M(t)

A B

C D

n=1, fast source-term n=1, slow source-term 

0 20 40 60 80 100
0

3e-7
2.5e-7
2e-7

1.5e-7
1e-7
5e-8

M(t)

m(t)
nA(t)
Analytical M(t)

n=10, slow source-term n=10, fast source-term 

M(t)

m(t)
nA(t)
Analytical M(t)

3e-7
2.5e-7
2e-7

1.5e-7
1e-7
5e-8

0 400000 800000
0

Figure S10: Numerical and analytical integrated rate laws of aggregation
with a reversible source-term with the initial condition m(0) = 0. (A) shows
a fast source-term (monomer production rate constants are much larger than the ag-
gregation rate) ksource, ksink ≫ κ with a low reaction order n = 1. (B) shows a slow
source-term (monomer production rate constants are much smaller than the aggregation
rate) ksource, ksink ≪ κ with a low reaction order n = 1. (C) shows a fast source-term
ksource, ksink ≫ κ with a high reaction order n = 10. (D) shows a slow source-term
ksource, ksink ≪ κ with a high reaction order n = 10. Cyan curves are M(t) obtained
from numerically integrating Eqs. (S34) and the moment equations Eqs. (1). Red curves
are the numerical m(t). Green curves are the numerical n ·A(t). The black dashed curves
are the analytical solutions.
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Figure S11: Numerical and analytical integrated rate laws of aggregation with a re-
versible source-term with the initial conditions: m(0) = 0 for (A) and (D), m(0) = meq

for (B) and (E) and m(0) = mtot for (C) and (F). The reversible source-term orders:
n = 1 for (A)-(C) and n = 10 for (D)-(F). Red curves are the numerical m(t). Green
curves are the numerical n · A(t). The black dashed curves are the analytical solutions.
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