# Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

Supporting Information

| A Tin Analogue of Propadiene with Cumulated C=Sn Double Bonds  |  |  |
|----------------------------------------------------------------|--|--|
| Koh Sugamata,* Teppei Asakawa, and Mao Minoura                 |  |  |
| Department of Chemistry, College of Science, Rikkyo University |  |  |
| 3-34-1, Misniikebukuro, Tosnima-ku, Tokyo 1/1-8501, Japan      |  |  |

| Experimental Procedures         | 2  |
|---------------------------------|----|
| General Procedures              | 2  |
| NMR Spectroscopic Analysis      | 7  |
| X-ray Crystallographic Analysis |    |
| Computational Details           |    |
| Infrared Spectroscopy           | 40 |
| UV-vis Spectroscopy             | 41 |

#### **Experimental Procedures**

## **General Procedures**

Unless otherwise noted, all experiments were performed under a nitrogen atmosphere. <sup>1</sup>H (400 MHz) and <sup>13</sup>C NMR (100 MHz) spectra were measured in CDCl<sub>3</sub>, CD<sub>2</sub>Cl<sub>2</sub>, C<sub>6</sub>D<sub>6</sub>, C<sub>7</sub>D<sub>8</sub> and, C<sub>4</sub>D<sub>8</sub>O using JEOL JNM ECS-400SS and ECX-400P spectrometers. The signals arising from residual CHCl<sub>3</sub> (7.26 ppm) in CDCl<sub>3</sub>, CDCl<sub>2</sub>H (5.32 ppm) in CD<sub>2</sub>Cl<sub>2</sub>, CC<sub>6</sub>D<sub>5</sub>H (7.16 ppm) in C<sub>6</sub>D<sub>6</sub>, CD<sub>7</sub>OH (7.26 ppm) in C<sub>7</sub>D<sub>8</sub> and, C<sub>4</sub>D<sub>7</sub>OH (3.58, 1.72 ppm) in C4D<sub>8</sub>O were used as internal standards for the <sup>1</sup>H NMR spectra, and those of CDCl<sub>3</sub> (77.16 ppm), CD<sub>2</sub>Cl<sub>2</sub> (53.84 ppm) and, C<sub>6</sub>D<sub>6</sub> (128.00 ppm) were used for the <sup>13</sup>C NMR spectra. <sup>29</sup>Si NMR (79 MHz) spectra were measured in CDCl<sub>3</sub>, CD<sub>2</sub>Cl<sub>2</sub>, C<sub>6</sub>D<sub>6</sub>, and C<sub>4</sub>D<sub>8</sub>O. <sup>119</sup>Sn NMR (148 MHz) spectra were measured in CDCl<sub>3</sub>, CD<sub>2</sub>Cl<sub>2</sub>, C<sub>6</sub>D<sub>6</sub>, and C<sub>4</sub>D<sub>8</sub>O. <sup>119</sup>Sn NMR (148 MHz) spectra were measured in CDCl<sub>3</sub>, CD<sub>2</sub>Cl<sub>2</sub>, C<sub>6</sub>D<sub>6</sub>, and C<sub>4</sub>D<sub>8</sub>O. <sup>119</sup>Sn NMR (148 MHz) spectra were measured in CDCl<sub>3</sub>, CD<sub>2</sub>Cl<sub>2</sub>, C<sub>6</sub>D<sub>6</sub>, and C<sub>4</sub>D<sub>8</sub>O. <sup>119</sup>Sn NMR (148 MHz) spectra were measured in CDCl<sub>3</sub>, CD<sub>2</sub>Cl<sub>2</sub>, C<sub>6</sub>D<sub>6</sub>, and C<sub>4</sub>D<sub>8</sub>O. <sup>119</sup>Sn NMR (148 MHz) spectra were measured in CDCl<sub>3</sub>, CD<sub>2</sub>Cl<sub>2</sub>, C<sub>6</sub>D<sub>6</sub>, and C<sub>4</sub>D<sub>8</sub>O. <sup>119</sup>Sn NMR (148 MHz) spectra were measured in CDCl<sub>3</sub>, CD<sub>2</sub>Cl<sub>2</sub>, C<sub>6</sub>D<sub>6</sub>, and C<sub>4</sub>D<sub>8</sub>O. Infrared spectrum (IR) was recorded on a JASCO FT/IR-4200 spectrometer. Ultraviolet-visible (UV-vis) spectroscopy was carried out using a JASCO V-603 UV spectrometer. High-resolution mass spectra (HRMS) were recorded using a JEOL JMS-T100LP (ESI) mass spectrometer. All melting points were measured using a SMP-300CT capillary melting point apparatus and are uncorrected.

## Synthesis of 2-stannapropadiene (1<sub>Sn</sub>)



A THF solution (15 mL) of  $(MePh_2Si)_2CBr_2$  (1.48 g, 2.61 mmol) at -100 °C was treated dropwise with *t*-BuLi (1.70 M in pentane, 3.07 mL, 5.22 mmol) under vigorous stirring. After 15 min of stirring at this temperature, THF (3 mL) solution of SnCl<sub>2</sub> · dioxane (242 mg, 0.87 mmol) was added dropwise, and the

reaction mixture was stirring at this temperature for 2 h. Then the reaction mixture was warmed to room temperature. Subsequently, the reaction mixture was filtrated with benzene to remove inorganic salt. After removal of all volatiles, the residue was washed with hexane to afford 2-stannapropadiene (481 mg, 0.49 mmol, 57%) as a yellow solid.

## 1<sub>Sn</sub>: yellow solid, m.p. 174.4-174.6 °C;

<sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) : δ 0.39 (s, 12H), 7.23–7.27 (m, 16H), 7.31–7.35 (m, 6H), 7.42–7.44 (m, 18H); <sup>13</sup>C NMR (100 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) : δ 141.5, 135.3, 129.7, 128.6, 107.3 (>*C*=Sn), 0.89; <sup>29</sup>Si NMR (79 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) : δ –17.3; <sup>119</sup>Sn NMR (148 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) : δ 507; <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) : δ 0.26 (s, 12H), 7.33–7.35 (m, 16H), 7.39–7.43 (m, 16H), 7.50–7.54 (m, 8H); <sup>13</sup>C NMR (100 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) : δ 141.4, 135.1, 129.8, 128.4, 106.3 (>*C*=Sn), 0.36; <sup>29</sup>Si NMR (79 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) : δ -17.9; <sup>119</sup>Sn NMR (148 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) : δ 496; HRMS (DART) found: *m/z* 933.2256 ([M+H]<sup>+</sup>). Calcd for C<sub>54</sub>H<sub>52</sub>Si<sub>4</sub>Sn: 933.2301 ([M+H]<sup>+</sup>). UV-vis (C<sub>6</sub>H<sub>6</sub>):  $\lambda_{max} = 327$  nm (ε 7,800 M<sup>-1</sup> cm<sup>-1</sup>). UV-vis (C<sub>6</sub>H<sub>6</sub>):  $\lambda_{max} = 328$  nm (ε 6,900 M<sup>-1</sup> cm<sup>-1</sup>). IR: v 930 cm<sup>-1</sup>, 867 cm<sup>-1</sup>.

#### Reaction of 1<sub>Sn</sub> with H<sub>2</sub>O

## 2: colorless solid, m.p. 181.2 °C (dec.);

<sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) : δ 0.46 (s, 2H), 0.65 (s, 12H), 0.69 (s, 2H), 7.04–7.06 (m, 8H), 7.21– 7.23 (m, 16H), 7.30–7.31 (m, 8H), 7.65–7.67 (m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, 298 K) : δ 138.3, 137.9, 135.3, 134.6, 129.6, 129.0, 128.1, 127.6, 7.41, -1.04; <sup>29</sup>Si NMR (79 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) : δ -8.6; <sup>119</sup>Sn NMR (148 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) : δ 13.2; HRMS (DART) found: *m/z* 969.2513 ([M+H]<sup>+</sup>). Calcd for C<sub>54</sub>H<sub>56</sub>O<sub>2</sub>Si<sub>4</sub>Sn: 969.2467 ([M+H]<sup>+</sup>).

## Reaction of $\mathbf{1}_{Sn}$ with MeLi followed by H<sub>2</sub>O

 $\begin{array}{l} \begin{array}{l} R^{\text{Si}} & R^{\text{Si}} \\ R^{\text{Si}} & C^{\text{Si}} \\ Me^{\text{Me}} \end{array} & \text{A Et}_{2}\text{O solution of MeLi} (0.2 \text{ mL}, 1.04 \text{ M}, 0.21 \text{ mmol}) \text{ was added to a THF solution of } \mathbf{1}_{\text{Sn}} \\ (100 \text{ mg}, 0.10 \text{ mmol}) \text{ in the presence of } 1 \text{ drop of } 12\text{-crown 4-ether at room temperature.} \\ R^{\text{Si}} = \text{Ph}_{2}\text{MeSi} \end{array} & \text{After stirring for } 1 \text{ h, it was reacted with excess amount of } H_{2}\text{O} (1 \text{ mL}) \text{ at the same} \\ \text{temperature.} \end{array} & \text{After 1h, the reaction mixture was evaporated. The residue was washed with benzene to} \\ \text{afford the corresponding protonated compound } \mathbf{3} (41 \text{ mg}, 0.04 \text{ mmol}, 38\%) \text{ as a colorless solid.} \end{array}$ 

3: colorless solid, m.p. 196.3 °C (dec.);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) :  $\delta$  –0.28 (s, 6H, *J* = 26 Hz), 0.49 (s, 12H), 0.75 (s, 2H), 7.01–7.02 (m, 16H), 7.10–7.15 (m, 4H), 7.28–7.36 (m, 20H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, 298 K) :  $\delta$ 139.8, 139.2, 135.0, 134.6, 128.9, 128.4, 127.8, 127.3, 0.26, –0.54, –5.02; <sup>29</sup>Si NMR (79 MHz, CDCl<sub>3</sub>, 298 K) :  $\delta$  –8.0; <sup>119</sup>Sn NMR (148 MHz, CDCl<sub>3</sub>, 298 K) :  $\delta$  24.8; HRMS (DART) found: *m/z* 949.2601 ([M–Me]<sup>+</sup>). Calcd for C<sub>55</sub>H<sub>57</sub>Si<sub>4</sub>Sn: 949.2569 ([M–Me]<sup>+</sup>).

#### Reaction of $1_{Sn}$ with HCl

 $\begin{array}{l} \begin{array}{l} R_{i}^{\text{Si}} \overset{\text{Cl}}{\underset{H}{}} \overset{\text{Cl}}{\underset{H}{}} \overset{\text{Cl}}{\underset{H}{}} \overset{\text{R}^{\text{Si}}}{\underset{H}{}} & \text{Excess amount of dioxane solution of HCl (0.1 mL, 4 M, 0.43 mmol) was added to a THF solution of <math>\mathbf{1}_{\text{Sn}}$  (100 mg, 0.11 mmol) at -50 °C. After stirred for 1 h, the reaction mixture was quenched with NaHCO<sub>3</sub> and evaporated. The residue was dissolved in benzene and filtrated with celite. The filtrate was evaporated. The residue was washed with MeCN to afford compound **4Cl** (78 mg, 0.08 mmol, 18%) as a colorless solid. \end{array}

# 4Cl: colorless solid, m.p. 237.2 °C (dec.);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) :  $\delta$  0.75 (s, 12H), 1.18 (s, 2H), 6.99–7.00 (m, 16H), 7.12–7.14 (m, 4H), 7.36–7.45 (m, 20H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, 298 K) :  $\delta$  138.2, 137.0, 135.4, 134.7, 129.4, 128.8, 128.0, 127.3, 14.6, -1.11; <sup>29</sup>Si NMR (79 MHz, CDCl<sub>3</sub>, 298 K) :  $\delta$  -9.5; <sup>119</sup>Sn NMR (148 MHz, CDCl<sub>3</sub>, 298 K) :  $\delta$  85.0; HRMS (DART) found: *m/z* 1022.1846 ([M+H<sub>2</sub>O]<sup>+</sup>). Calcd for C<sub>54</sub>H<sub>54</sub>Cl<sub>2</sub>Si<sub>4</sub>Sn: 1022.1805 ([M+H<sub>2</sub>O]<sup>+</sup>).

## Reaction of $\mathbf{1}_{Sn}$ with $SnCl_2$ •dioxane

 $\begin{array}{l} \begin{array}{c} Cl & Cl \\ R^{Si} & S^{N} & C \\ R^{Si} & S^{N} & C \end{array} & A \ SnCl_2 \bullet dioxane \ (60 \ mg, \ 0.22 \ mmol) \ was \ added \ to \ a \ benzene \ solution \ of \ \mathbf{1}_{Sn} \ (200 \ mg, \ 0.22 \ mmol) \ at \ room \ temperature. \ After \ stirred \ for \ 1 \ h, \ the \ reaction \ mixture \ was \ evaporated. \ The \ residue \ was \ washed \ with \ hexane \ to \ afford \ the \ corresponding \ protonated \ compound \ \mathbf{5Cl} \ (140 \ mg, \ 0.13 \ mmol, \ 57\%) \ as \ a \ light \ brown \ solid. \end{array}$ 

### **5Cl**: light brown solid, m.p. 138.6 °C (dec.);

<sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) :  $\delta$  0.66 (s, 12H), 6.93–7.10 (m, 22H), 7.40–7.47 (m, 18H); <sup>13</sup>C NMR (100 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) :  $\delta$  139.0, 138.3, 136.2, 136.1, 129.7, 129.5, 128.6, 128.4, 83.5, 5.73; <sup>29</sup>Si NMR (79 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) :  $\delta$  –14.1; <sup>119</sup>Sn NMR (148 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) :  $\delta$  1355, 61; UV-vis (C<sub>6</sub>H<sub>6</sub>):  $\lambda_{max}$  = 282 nm ( $\epsilon$  7,700 dm<sup>3</sup> mol<sup>-1</sup> cm<sup>-1</sup>), 336 nm ( $\epsilon$  2,500 dm<sup>3</sup> mol<sup>-1</sup> cm<sup>-1</sup>), 466 nm ( $\epsilon$  1,300 dm<sup>3</sup> mol<sup>-1</sup> cm<sup>-1</sup>).

#### Reaction of $1_{Sn}$ with SnBr<sub>2</sub>•dioxane



A SnBr<sub>2</sub>•dioxane (191 mg, 0.69 mmol) was added to a benzene solution of  $1_{sn}$  (650 mg, 0.69 mmol) at room temperature. After stirred for 1 h, the reaction mixture was evaporated. The residue was washed with hexane to afford the corresponding protonated compound **5Br** (652 mg, 0.54 mmol, 78%) as a light brown solid.

# 5Br: light brown solid, m.p. 153.4 °C (dec.);

<sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) :  $\delta$  0.75 (s, 12H), 6.97–7.01 (m, 16H), 7.06–7.10 (m, 8H), 7.38–7.40 (m, 8H), 7.50–7.52 (m, 8H); <sup>1</sup>H NMR (400 MHz, toluene-*d*<sub>8</sub>, 298 K) :  $\delta$  0.69 (s, 12H), 7.34–7.35 (m, 8H), 7.43–7.45 (m, 8H), The rest of 24H are overlap with toluene-*d*<sub>8</sub> ; <sup>13</sup>C NMR, <sup>29</sup>Si NMR and <sup>119</sup>Sn NMR could not obtained due to the insolubility.; UV-vis (C<sub>6</sub>H<sub>6</sub>):  $\lambda_{max} = 282$  nm ( $\epsilon$  7,900 dm<sup>3</sup> mol<sup>-1</sup> cm<sup>-1</sup>), 352 nm ( $\epsilon$  3,300 dm<sup>3</sup> mol<sup>-1</sup> cm<sup>-1</sup>), 472 nm ( $\epsilon$  1,300 dm<sup>3</sup> mol<sup>-1</sup> cm<sup>-1</sup>).

## Reaction of 5CI with $H_2O$

Excess amount of  $H_2O$  (1 mL) was added to a benzene solution of **5**Cl (30 mg, 0.027 mmol) and stirring for 1h at room temperature. After that, the reaction mixture was evaporated. The residue was washed with MeCN to afford **4**Cl (5 mg, 0.005 mmol, 18%) as a colorless solid.

## Reaction of 5Br with $H_2O$

 $\begin{array}{l} \text{Br} \ Br}_{\text{S}^{\text{S}^{\text{S}}} - \text{C}} \left( \begin{array}{c} \text{Sn} \\ \text{Sn} \\ \text{S}^{\text{S}^{\text{S}}} \\ \text{H} \end{array} \right) \left( \begin{array}{c} \text{R}^{\text{Si}} \end{array} \right) \left( \begin{array}{c} \text{R}^{\text{Si}} \\ \text{H} \end{array} \right) \left( \begin{array}{c} \text{R}^{\text{Si}} \end{array} \right) \left( \begin{array}{c} \text{R}^{$ 

## 4Br: colorless solid, m.p. 237.2 °C (dec.);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K) :  $\delta$  0.83 (s, 12H), 1.50 (s, 2H), 6.97–6.97 (m, 16H), 7.11–7.12 (m, 4H), 7.36–7.39 (m, 20H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, 298 K) :  $\delta$  138.3, 137.2, 135.5, 134.7, 129.3, 128.7, 128.0, 127.2, 13.9, -1.0; <sup>29</sup>Si NMR (79 MHz, CDCl<sub>3</sub>, 298 K) :  $\delta$  –9.1; <sup>119</sup>Sn NMR (148 MHz, CDCl<sub>3</sub>, 298 K) :  $\delta$  9.9; HRMS (DART) found: *m*/*z* 1112.0829 ([M+H<sub>2</sub>O]<sup>+</sup>). Calcd for C<sub>54</sub>H<sub>54</sub>Br<sub>2</sub>Si<sub>4</sub>Sn: 1112.0785 ([M+H<sub>2</sub>O]<sup>+</sup>).

#### Reduction of **5Br** with KC<sub>8</sub>



A KC<sub>8</sub> (135 mg, 1.00 mmol) was added to a THF of **5Br** (600 mg, 0.50 mmol) at room temperature. After stirred for 3 h, the reaction mixture was filtrated with THF for exclude graphite and the filtrate was evaporated. The residue was washed with benzene to afford **6** (132 mg, 0.13 mmol, 26%) as a purple solid.

# 6: purple solid, m.p. 187.2 °C (dec.);

<sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) :  $\delta$  0.47 (s, 12H), 7.07–7.09 (m, 24H), 7.56–7.57 (m, 16H); <sup>13</sup>C NMR (100 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) :  $\delta$  141.9, 134.9, 129.2, 128.7, 3.21, The rest of Sn<sub>2</sub>C<sub>2</sub> Carbon could not obtained due to the insolubility.; <sup>119</sup>Sn NMR (148 MHz, C<sub>6</sub>D<sub>6</sub>, 348 K) :  $\delta$  2003; <sup>1</sup>H NMR (400 MHz, tetrahydrofurane-*d*<sub>8</sub>, 298 K) :  $\delta$  0.21 (s, 12H), 7.12–7.16 (m, 16H), 7.21–7.25 (m, 8H), 7.37–7.39 (m, 16H); <sup>29</sup>Si NMR (79 MHz, tetrahydrofurane-*d*<sub>8</sub>, 298 K) :  $\delta$  –25.4; HRMS (DART) found: *m/z* 1067.1207 ([M+OH]<sup>+</sup>). Calcd for C<sub>54</sub>H<sub>52</sub>Si<sub>4</sub>Sn<sub>2</sub>: 1067.1228 ([M+OH]<sup>+</sup>). UV-vis (THF):  $\lambda_{max} = 304$  nm ( $\epsilon$  6,700 dm<sup>3</sup> mol<sup>-1</sup> cm<sup>-1</sup>).

## Photoreaction of 1<sub>Sn</sub>

 $C_6D_6$  solution of  $\mathbf{1}_{Sn}$  (30 mg, 0.03 mmol) in Pyrex J-young tube was irradiated a 100 W high-pressure mercury lamp for 3 days. The reaction mixture was evaporated. The residue was washed with hexane to afford **6** (2 mg, 0.002 mmol, 6%) as a purple solid.

NMR Spectroscopic Analysis



Figure S2. <sup>13</sup>C NMR spectrum ( $C_6D_6$ , 100 MHz) of  $1_{Sn}$ 



Figure S4. <sup>119</sup>Sn NMR spectrum ( $C_6D_6$ , 148 MHz) of  $\mathbf{1}_{Sn}$ 



Figure S5. <sup>1</sup>H NMR spectrum (CD<sub>2</sub>Cl<sub>2</sub>, 400 MHz) of  $\mathbf{1}_{Sn}$ 



Figure S6. <sup>13</sup>C NMR spectrum (CD<sub>2</sub>Cl<sub>2</sub>, 100 MHz) of 1<sub>Sn</sub>



Figure S7. <sup>29</sup>Si NMR spectrum (CD<sub>2</sub>Cl<sub>2</sub>, 79 MHz) of  $\mathbf{1}_{Sn}$ 







Figure S9. <sup>1</sup>H NMR spectrum ( $C_6D_6$ , 400 MHz) of 2



Figure S10. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 100 MHz) of 2



Figure S12. <sup>119</sup>Sn NMR spectrum ( $C_6D_6$ , 148 MHz) of 2



Figure S13. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz) of  $\mathbf{3}$ 



Figure S14. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 100 MHz) of 3



Figure S15. <sup>29</sup>Si NMR spectrum (CDCl<sub>3</sub>, 79 MHz) of 3



Figure S16.  $^{119}$ Sn NMR spectrum (CDCl<sub>3</sub>, 148 MHz) of **3** 







Figure S18. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 100 MHz) of 4Cl



X : parts per Million : Silicon29

Figure S19. <sup>29</sup>Si NMR spectrum (CDCl<sub>3</sub>, 79 MHz) of 4Cl



Figure S20. <sup>119</sup>Sn NMR spectrum (CDCl<sub>3</sub>, 148 MHz) of 4Cl



Figure S21. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz, 298 K) of 4Br



Figure S22. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 100 MHz, 298 K) of 4Br



Figure S23. <sup>29</sup>Si NMR spectrum (CDCl<sub>3</sub>, 79 MHz, 298 K) of 4Br



Figure S24. <sup>119</sup>Sn NMR spectrum (CDCl<sub>3</sub>, 148 MHz, 298 K) of 4Br



Figure S26.  $^{13}$ C NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 100 MHz) of 5Cl



Figure S28.  $^{119}$ Sn NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 148 MHz) of 5Cl







Figure S30. <sup>1</sup>H NMR spectrum (toluene-*d*<sub>8</sub>, 400 MHz) of 5Br



Figure S32. <sup>13</sup>C NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 100 MHz, 298 K) of 6







Figure S34. <sup>1</sup>H NMR spectrum (tetrahydrofurane-*d*<sub>8</sub>, 400 MHz, 298 K) of 6



Figure S35. <sup>29</sup>Si NMR spectrum (tetrahydrofurane-*d*<sub>8</sub>, 79 MHz, 298 K) of 6



Figure S36. <sup>1</sup>H NMR spectrum (C<sub>6</sub>D<sub>6</sub>, 79 MHz, 298 K) of photoreaction of  $\mathbf{1}_{Sn}$ 



Figure S37. Variable temperature <sup>1</sup>H NMR spectra of  $1_{Sn}$  (tetrahydrofurane- $d_8$ , 400 MHz).



Figure S38. Variable temperature <sup>119</sup>Sn NMR spectra of  $1_{Sn}$  (tetrahydrofurane, 148 MHz).

#### X-ray Crystallographic Analysis

Suitable single crystals 1-3, 5X, and 6 were grown by slow recrystallization from organic solvents at room temperature as shown in Table S1. Single-crystal X-ray diffraction (SC-XRD) data of 1-3, 5Br, and 6 were collected at 100 K using a Bruker-D8 Quest diffractometer equipped with a PHOTON detector, and Graphite monochromated Mo K $\alpha$  radiation ( $\lambda = 0.7103$  Å) I $\mu$ S microfocus source. The diffraction data for 5Cl was collected at the BL02B1 beamline of Spring-8 on Piratus3 X Ditector (Dectris) using synchrotron radiation The structures were determined by intrinsic phasing (SHELXT 2018/2)<sup>S1</sup> and refined by full-matrix least-squares refinement (SHELXL-2018/3)<sup>S2</sup> using the yadokari<sup>S3</sup> software package. Refinement results are summarized in Tables S1. Deposition numbers 2288706 (1), 2288707 (2), 2288708 (3), 2288705 (5Cl), 2305276 (5Br), and 2305277 (6) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge via www.ccdc.cam.ac.uk/data\_request/cif (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.).

| Compound                          | 1 <sub>Sn</sub>                                          | 2                                                                        | 3                                      | 5Cl                                                                                  | 5Br                                                                                | 6                                                          |
|-----------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------|
| solvent                           | C <sub>6</sub> H <sub>6</sub> / Hexane                   | C <sub>6</sub> H <sub>6</sub> / Hexane                                   | C <sub>6</sub> H <sub>6</sub> / Hexane | C <sub>6</sub> H <sub>6</sub> / Hexane                                               | C <sub>6</sub> H <sub>6</sub> / Hexane                                             | THF                                                        |
| Empirical formula                 | $\mathrm{C}_{54}\mathrm{H}_{52}\mathrm{Si}_4\mathrm{Sn}$ | $\mathrm{C}_{54}\mathrm{H}_{56}\mathrm{O}_{2}\mathrm{Si}_{4}\mathrm{Sn}$ | $C_{56}H_{60}Si_4Sn$                   | $\begin{array}{c} C_{54}H_{52}Cl_{2}Si_{4}Sn_{2}{\cdot}2.\\ 5C_{6}H_{6} \end{array}$ | $\begin{array}{c} C_{54}H_{52}Br_{2}Si_{4}Sn_{2}\cdot 2.\\ 5C_{6}H_{6}\end{array}$ | $\mathrm{C}_{54}\mathrm{H}_{52}\mathrm{Si}_4\mathrm{Sn}_2$ |
| Formula weight                    | 932.00                                                   | 968.03                                                                   | 964.09                                 | 1316.86                                                                              | 1405.78                                                                            | 1050.69                                                    |
| Temperature (K)                   | 110(2)                                                   | 110(2)                                                                   | 100(2)                                 | 100(2)                                                                               | 100(2)                                                                             | 100(2)                                                     |
| Wavelength (Å)                    | 0.71073                                                  | 0.71073                                                                  | 0.71073                                | 0.4139                                                                               | 0.71073                                                                            | 0.71073                                                    |
| Crystal system                    | Monoclinic                                               | Triclinic                                                                | Triclinic                              | Monoclinic                                                                           | Monoclinic                                                                         | Triclinic                                                  |
| Space group                       | $P2_{1}/c$                                               | <i>P</i> -1                                                              | <i>P</i> -1                            | $P2_{1}/c$                                                                           | $P2_{1}/c$                                                                         | <i>P</i> -1                                                |
| Unit cell dimensions              |                                                          |                                                                          |                                        |                                                                                      |                                                                                    |                                                            |
| <i>a</i> (Å)                      | 10.8346(2)                                               | 11.2316(3)                                                               | 11.5084(4)                             | 14.6488(1)                                                                           | 14.5967(5)                                                                         | 10.0462(4)                                                 |
| <i>b</i> (Å)                      | 15.7565(3)                                               | 12.9893(4)                                                               | 13.1355(5)                             | 23.2014(2)                                                                           | 23.3500(8)                                                                         | 10.6969(4)                                                 |
| <i>c</i> (Å)                      | 26.9143(5)                                               | 17.5630(5)                                                               | 17.4215(7)                             | 18.0516(1)                                                                           | 18.0604(6)                                                                         | 12.2851(3)                                                 |
| α (°)                             | 90                                                       | 70.964(3)                                                                | 71.074(4)                              | 90                                                                                   | 90                                                                                 | 81.137(2)                                                  |
| eta(°)                            | 90.212(2)                                                | 75.647(3)                                                                | 75.050(4)                              | 95.193(1)                                                                            | 94.819(3)                                                                          | 74.219(3)                                                  |
| γ(°)                              | 90                                                       | 84.203(3)                                                                | 84.125(3)                              | 90                                                                                   | 90                                                                                 | 66.744(4)                                                  |
| Volume (Å <sup>3</sup> )          | 4594.65(15)                                              | 2345.99(13)                                                              | 2406.38(17)                            | 6110.06(8)                                                                           | 6133.8(4)                                                                          | 1165.58(8)                                                 |
| Ζ                                 | 4                                                        | 2                                                                        | 2                                      | 4                                                                                    | 4                                                                                  | 1                                                          |
| Density (g/cm <sup>3</sup> )      | 1.347                                                    | 1.370                                                                    | 1.331                                  | 1.432                                                                                | 1.522                                                                              | 1.497                                                      |
| Data / restraints /<br>parameters | 10518 / 0 / 536                                          | 10754 / 0 / 556                                                          | 11021 / 0 / 556                        | 14000 / 0 / 698                                                                      | 12523 / 39 / 698                                                                   | 5308 / 0 / 273                                             |
| Goodness-of-fit on F <sup>2</sup> | 1.044                                                    | 1.028                                                                    | 1.059                                  | 1.053                                                                                | 1.103                                                                              | 1.046                                                      |
| $R_1, wR_2$                       | 0.0243, 0.0733                                           | 0.0264, 0.0614                                                           | 0.0270, 0.0556                         | 0.0233, 0.0623                                                                       | 0.0504, 0.1049                                                                     | 0.0166, 0.0436                                             |
| CCDC Number                       | 2288706                                                  | 2288707                                                                  | 2288708                                | 2288705                                                                              | 2305276                                                                            | 2305277                                                    |

 Table S1. Crystal data and data collection of 1-3, 5X, and 6.



Figure S39. Structure of  $1_{Sn}$ 



Figure S40. Structure of 2



Figure S41. Structure of 3



Figure S42. Structure of 5Cl



Figure S43. Structure of 5Br



Figure S44. Structure of 6

## **Computational Details**

All calculations were performed using the Gaussian 16 suite of programs, revision B 01.<sup>[S4]</sup> The geometry optimization and harmonic vibration frequency calculations of  $1_{Sn}$ ,  $1_{Sn}$ ·THF, 5Cl, and 6 were performed using the DFT method at the B3PW91-D3(bj)/Def2TZVP for Sn, 6-311G(2d,p) for the rest atoms level of theory. The frequency calculations confirmed minimum energies for the optimized structures. The optimized geometry of  $1_{Sn}$ ,  $1_{Sn}$ ·THF, 5Cl, and 6 are shown in Figure S45, S46, S47 and S48, and selected optimized structural parameters of  $1_{Sn}$ ,  $1_{Sn}$ ·THF, 5Cl, and 6 are given in Table S2, Table S3, Table S4, and Table S5. Optimized structures are provided as an xyz file.



Figure S45. Optimized structure of  $1_{Sn}$ .

| Table S2. Experimental and calcul | ated values of the bond | parameters for compound $1_{sn}$ . |
|-----------------------------------|-------------------------|------------------------------------|
|-----------------------------------|-------------------------|------------------------------------|

|            | Experimental values (Å, deg) | Calculated values (Å, deg) |
|------------|------------------------------|----------------------------|
| Sn–C1      | 1.9787(15)                   | 1.7733                     |
| Sn-C2      | 1.9827(16)                   | 1.7733                     |
| C1–Si1     | 1.8410(16)                   | 1.8655                     |
| C1–Si2     | 1.8336(16)                   | 1.8655                     |
| C2–Si3     | 1.8423(16)                   | 1.8655                     |
| C2–Si4     | 1.8428(16)                   | 1.8655                     |
| C1–Sn–C2   | 178.06(6)                    | 179.98                     |
| Sn–C1–Si1  | 114.62(8)                    | 118.54                     |
| Sn-C1-Si2  | 114.07(8)                    | 118.53                     |
| Si1–C1–Si2 | 130.90(9)                    | 122.93                     |
| Sn-C2-Si3  | 112.17(8)                    | 118.55                     |
| Sn-C2-Si4  | 114.29(8)                    | 118.53                     |
| Si3–C2–Si4 | 133.33(9)                    | 122.93                     |



Figure S46. Optimized structure of  $1_{Sn}$ ·THF,

| Table S3. Experimental and calculated values of the bond | parameters for compour | nd 1 <sub>Sn</sub> ·THF. |
|----------------------------------------------------------|------------------------|--------------------------|
|----------------------------------------------------------|------------------------|--------------------------|

|            | Calculated values (Å, deg) |
|------------|----------------------------|
| Sn-C1      | 1.9741                     |
| Sn-C2      | 1.9722                     |
| Sn-O       | 2.3321                     |
| C1–Si1     | 1.8188                     |
| C1–Si2     | 1.8207                     |
| C2–Si3     | 1.8362                     |
| C2–Si4     | 1.8284                     |
| C1–Sn–C2   | 159.59                     |
| Sn-C1-Si1  | 119.40                     |
| Sn-C1-Si2  | 121.59                     |
| Si1–C1–Si2 | 115.51                     |
| Sn-C2-Si3  | 120.79                     |
| Sn-C2-Si4  | 113.16                     |
| Si3–C2–Si4 | 125.61                     |



| Table S4. Experimental | and calculated | values of the bond | parameters for com | pound 5Cl. |
|------------------------|----------------|--------------------|--------------------|------------|
|------------------------|----------------|--------------------|--------------------|------------|

|            | Experimental values (Å, deg) | Calculated values (Å, deg) |
|------------|------------------------------|----------------------------|
| Sn1–C1     | 2.1741(16)                   | 2.1731                     |
| Sn1–C2     | 2.1636(15)                   | 2.1633                     |
| C1–Si1     | 1.8874(16)                   | 1.9017                     |
| C1–Si2     | 1.9051(16)                   | 1.9092                     |
| Sn1-Cl1    | 2.3690(4)                    | 2.3689                     |
| Sn1-Cl2    | 2.3708(4)                    | 2.3721                     |
| Sn2-C1     | 2.2996(15)                   | 2.3005                     |
| Sn2-C2     | 2.3119(15)                   | 2.3132                     |
| C2–Si3     | 1.9017(16)                   | 1.8876                     |
| C2–Si4     | 1.9095(16)                   | 1.9047                     |
| C1–Sn1–C2  | 87.97(5)                     | 87.926                     |
| C1–Sn2–C2  | 95.17(6)                     | 95.224                     |
| Sn1-C1-Sn2 | 87.69(5)                     | 87.667                     |
| Sn1-C2-Sn2 | 87.75(6)                     | 87.758                     |



| Figure S48. | Optimized | structure of 6. |
|-------------|-----------|-----------------|
|-------------|-----------|-----------------|

|             | Experimental values (Å, deg) | Calculated values (Å, deg) |
|-------------|------------------------------|----------------------------|
| Sn1–C18     | 2.301(1)                     | 2.2992                     |
| Sn1–C45     | 2.281(2)                     | 2.1633                     |
| C18–Si1     | 1.862(1)                     | 1.8493                     |
| C18–Si2     | 1.871(1)                     | 1.8609                     |
| Sn2-C18     | 2.301(1)                     | 2.3395                     |
| Sn2-C45     | 2.281(2)                     | 2.2991                     |
| C45–Si3     | 1.862(1)                     | 1.8493                     |
| C45–Si4     | 1.871(1)                     | 1.8609                     |
| C18–Sn1–C45 | 87.47(4)                     | 84.777                     |
| C18–Sn2–C45 | 87.47(4)                     | 84.780                     |
| Sn1-C18-Sn2 | 92.58(4)                     | 95.221                     |
| Sn1-C45-Sn2 | 92.58(4)                     | 95.222                     |

| Table S5. Experimenta | l and calculated | values of the bond | parameters for comp | oound <b>6</b> . |
|-----------------------|------------------|--------------------|---------------------|------------------|
|-----------------------|------------------|--------------------|---------------------|------------------|



**Figure S49.** Kohn-Sham molecular orbitals of 2-stannapropadiene [B3PW91-D3(bj)/Def2TZVP for Sn, 6-311G(2d,p) for the rest atoms, together with the chemical structure. The HOMO and HOMO-1 involve the two C-Sn  $\pi$ -bonds. The LUMO and LUMO+2 involve the two C-Sn  $\pi$ \*-bonds.



**Figure S50.** Kohn-Sham molecular orbitals of stannylene **5CI** [B3PW91-D3(bj)/Def2TZVP for Sn, 6-311G(2d,p) for the rest atoms, together with the chemical structure. The HOMO involves the lone pair of Sn atom and the LUMO involves the vacant p-orbitals of Sn atom.



Figure S51. Presentation of the energy levels of  $\mathbf{1}_{Sn}$  and  $\mathbf{1}_{Ge}.$ 



Figure S52. Relative energies of the 2-heterapropadienes and their donor coordinated compounds.



Infrared Spectroscopy

Figure S53. Infrared Spectra of  $1_{Ge}$  and  $1_{Sn}$ .





Figure S54. Variable temperature UV-vis Spectra of  $1_{Sn}$  in benzene (1.6 × 10<sup>-3</sup> M) at 20, 30, and 40 °C.



Figure S55. UV-vis Spectra of  $1_{Sn}$  in benzene (1.6 × 10<sup>-3</sup> M), in THF (1.6 × 10<sup>-3</sup> M),  $1_{Sn}$ ·Pyridine (1.6 × 10<sup>-3</sup> M of  $1_{Sn}$  with equimolar of pyridine), and  $1_{Sn}$ ·DMAP (1.6 × 10<sup>-3</sup> M of  $1_{Sn}$  with equimolar of DMAP).



Figure S56. Variable temperature UV-vis Spectra of  $1_{Sn}$  in THF (1.6 × 10<sup>-3</sup> M) at 0-50 °C.



Figure S57. UV-vis Spectra of  $1_{Sn}$  in C<sub>6</sub>H<sub>6</sub> (1.6 × 10<sup>-3</sup> M), Cyclohexane (0.8 × 10<sup>-3</sup> M), THF (1.6 × 10<sup>-3</sup> M) at 20 °C.



Figure S58. UV-vis Spectra of 5Cl and 5Br in benzene  $(1.5 \times 10^{-3} \text{ M})$  at room temperature.



**Figure S59.** Variable temperature UV-vis Spectra of **6** in THF  $(1.6 \times 10^{-3} \text{ M})$  at 0-60 °C.

- [S1] G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- [S2] G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- [S3] Wakita, K. (2001). Yadokari-XG. Software for Crystal Structure Analyses. Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, Kabuto, C., Akine, S., Nemoto, T. and Kwon, E. (2009). J. Cryst. Soc. Jpn., 51, 218-224.
- [S4] Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.