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1. Synthesis method

Carbazole derivatives were synthesized according to the reported method.5354 9-(2-
bromoethyl)-9H-carbazole: 'H NMR (400 MHz, DMSO-de) 5 8.16 (d, J = 7.6 Hz, 2H), 7.67
(d, J =8.3Hz, 2H), 7.46 (t, J = 7.1 Hz, 2H), 7.22 (t, J = 7.5 Hz, 2H), 4.86 (t, J = 6.4 Hz,
2H), 3.92 (t, J = 6.3 Hz, 2H). 9-(4-bromobutyl)-9H-carbazole: 'H NMR (400 MHz, CDCl,-
d7) 88.11(d, J = 7.8 Hz, 2H), 7.52 — 7.44 (m, 2H), 7.40 (d, J = 8.1 Hz, 2H), 7.23 (d, J = 7.9
Hz, 2H), 4.36 (t, J = 6.9 Hz, 2H), 3.38 (t, J = 6.5 Hz, 2H), 2.12 — 2.03 (m, 2H), 1.98 — 1.87
(m, 2H). 9-(6-bromohexyl)-9H-carbazole: '"H NMR (400 MHz, DMSO-dg) 6 8.14 (d, J =
7.7 Hz, 2H), 7.57 (d, J = 6.3 Hz, 2H), 7.44 (t, J = 8.3 Hz, 2H), 7.19 (t, J = 7.4 Hz, 2H), 4.41
—4.28 (m, 2H), 3.49 — 3.39 (m, 2H), 1.73 (dd, J = 14.7, 7.5 Hz, 4H), 1.40 — 1.21 (m, 4H).
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Scheme 1. The synthetic route of naphthalen-1-yldiphenylphosphane, 4
(diphenylphosphaneyl)-1-naphthonitrile, and diphenyl(pyren-1-yl) phosphane.

Synthesis of Naphthalen-1-yldiphenylphosphane:

In the N, environment, 5.0 g (24.15 mmol, 1.0 eq.) of 1-bromonaphthalene was added to
a solution of ultra-dry tetrahydrofuran (THF) with a volume of 60 mL. The reaction mixture
was then cooled to an ultra-low temperature (-78 °C) and kept for over 15 minutes.
Subsequently, a hexane solution containing n-BuL.i at a concentration of 1.6 M (18.11 mL,
28.98 mmol, 1.2 eq.) was slowly added dropwise at a controlled rate while maintaining the
reaction temperature at -78 °C and stirring for one hour. After gradually warming the
reaction vessel to room temperature, diphenylphosphine chloride (4.8 g, 21.95 mmol, 1.1
eq.) was introduced and stirred for a duration of twelve hours. Upon completion of the
reaction, residual n-BuLi was quenched by adding deionized water (20 mL) to the mixed



solution followed by removal of tetrahydrofuran using vacuum distillation via rotary
evaporation apparatus. The resulting concentrate was subjected to extraction using a
mixture composed of water and methylene chloride as solvents. The organic phase
obtained from this process was collected and subsequently dried using anhydrous sodium
sulfate. Further purification involved evaporating under reduced pressure to obtain crude
product in solid form. Final purification steps were carried out through column
chromatography utilizing petroleum ether and dichloromethane as eluent with an overall
yield achieved at approximately 90% (Naphthalen-1-yldiphenylphosphane).'H NMR (400
MHz, DMSO-ds) 6 8.28 (dd, J = 8.3, 4.3 Hz, 1H), 7.98 (t, J = 7.6 Hz, 2H), 7.56 — 7.39 (m,
9H), 7.28 — 7.21 (m, 4H), 6.98 — 6.90 (m, 1H).

Synthesis of 4-(diphenylphosphaneyl)-1-naphthonitrile:

The synthesis of 4-(diphenylphosphaneyl)-1-naphthonitrile was accomplished using
the same methodology as Naphthalen-1-yldiphenylphosphane. Subsequently, the
resulting yellow solid underwent further purification via column chromatography employing
a petroleum ether and dichloromethane mixture as the eluent, yielding 82.3%. 'H NMR
(400 MHz, DMSO-dg) 6 8.38 (dd, J = 8.3, 4.3 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 8.12 (d, J
=7.5Hz, 1H), 7.86 —7.79 (m, 1H), 7.73 — 7.67 (m, 1H), 7.49 — 7.41 (m, 6H), 7.27 (id, J =
7.9, 2.3 Hz, 4H), 7.01 (dd, J = 7.5, 4.0 Hz, 1H).

Synthesis of diphenyl(pyren-1-yl) phosphane:

The synthesis of diphenyl(pyren-1-yl) phosphane was accomplished using the same
methodology as Naphthalen-1-yldiphenylphosphane. The resulting yellow solid was
further purified via column chromatography, employing a petroleum ether and
dichloromethane mixture as the eluent, yielding 80.1%. 'H NMR (400 MHz, DMSO-ds) d
8.65 (dd, J=9.2, 4.8 Hz, 1H), 8.35 (dd, J = 15.2, 7.8 Hz, 2H), 8.29 — 8.22 (m, 3H), 8.20 -
8.09 (m, 2H), 7.49 (dd, J=7.9,4.3 Hz, 1H), 7.42 (d, J = 3.9 Hz, 6H), 7.33 — 7.24 (m, 4H).

OO AN gy
- S0
©/P\© Toluene reflux 48 h N, /_r/7

NP-4C
CN

OO AN OO
- 7O
©/P\© Toluene reflux 48 h N, /_r/7

CN-4C




L Y

-
©/P\© Toluene reflux 48 h N, OQ )
Br

PY-4C
Scheme 2. The synthetic route of NP-4C, CN-4C, and PY-4C.

Synthesis of NP-4C:

A mixture of 500 mg (1.6 mmol, 1.0 eq.) of naphthalen-1-yldiphenylphosphane, 1.09 g (8
mmol, 5 eq.) of 1-bromobutane and 20 ml of ultra-dry toluene was added to a round-
bottomed flask with a capacity of 100 ml. The reaction mixture was refluxed under a
nitrogen atmosphere for 48 hours before the solvent was removed by rotary evaporation
and the remaining residue purified using flash column chromatography with an ethyl
acetate:methanol ratio of 100:1 resulting in a white solid product with a yield of 70%. 'H
NMR (400 MHz, DMSO-ds) & 8.54 (d, J = 8.1 Hz, 1H), 8.24 (d, J=9.0 Hz, 1H), 7.98 — 7.82
(m, 8H), 7.77 (dd, J = 7.6, 3.6 Hz, 4H), 7.70 (t, J = 8.9 Hz, 2H), 7.55 (t, J = 7.8 Hz, 1H),
3.75 (d, J = 15.4 Hz, 2H), 1.52 — 1.42 (m, 4H), 0.85 (q, J = 7.8 Hz, 3H). 3C NMR (101
MHz, DMSO-dg) & 138.20, 138.11, 137.14, 135.31, 135.28, 134.22, 134.13, 133.87,
133.77, 132.28, 132.20, 130.91, 130.79, 129.27, 128.05, 126.37, 126.23, 125.57, 125.51,
119.91, 119.06, 114.40, 113.57, 25.27, 25.23, 23.67, 23.50, 22.60, 22.09, 13.69. ESI-MS:
m/z = 396.13 (calc. CysHoP*: = 369.47)

Synthesis of CN-4C:

The synthesis of butyl(4-cyanonaphthalen-1-yl) diphenylphosphonium bromide was
accomplished using the same methodology as NP-4C. The process resulted in a yellow
solid product with a yield of 55%. "H NMR (400 MHz, DMSO-dg) & 8.50 (dd, J = 12.7, 7.9
Hz, 1H), 8.37 — 8.26 (m, 1H), 8.18 — 7.68 (m, 14H), 3.82 (d, J = 13.9 Hz, 2H), 1.74 — 1.36
(m, 4H), 0.91 (d, J=7.0 Hz, 3H). '3C NMR (101 MHz, DMSO-dg) 5 140.16, 139.95, 136.02,
135.61, 134.50, 134.39, 134.06, 133.96, 132.43, 131.02, 130.90, 128.36, 127.07, 126.71,
123.62, 122.80, 120.61, 119.00, 112.65, 111.72, 105.65, 25.20, 23.70, 23.52, 21.90, 21.66,
13.66. ESI-MS: m/z = 394.40 (calc. Co7HosNP*: = 394.48)

Synthesis of PY-4C:

The synthesis of butyldiphenyl(pyren-1-yl) phosphonium bromide was accomplished using
the same methodology as NP-4C. The process resulted in a yellow solid product with a
yield of 68%. '"H NMR (400 MHz, DMSO-ds) d 8.69 — 8.49 (m, 4H), 8.42 (d, J = 9.0 Hz,
1H), 8.37 — 8.18 (m, 3H), 7.93 (dd, J = 13.0, 8.2 Hz, 7H), 7.77 (td, J = 8.0, 3.4 Hz, 4H),
4.04 - 3.72 (m, 2H), 1.61 —1.45 (m, 4H), 0.90 — 0.81 (m, 3H). '3C NMR (101 MHz, DMSO-
dg) © 136.37, 136.34, 135.24, 133.93, 133.83, 133.46, 133.35, 132.18, 131.14, 130.94,
130.82, 129.83, 128.46, 128.20, 127.59, 125.95, 125.81, 124.85, 124.75, 124.25, 124.19,
123.32, 120.55, 119.71, 109.55, 108.70, 25.35, 23.73, 23.56, 23.09, 22.59, 13.71. ESI-MS:
m/z = 443.37 (calc. C3,HogP*: = 443.55)
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Scheme 3. The synthetic route of NP-2C-Cz, NP-4C-Cz, NP-6C-Cz, CN-2C-Cz, and PY-2C-
Cz.
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Synthesis of NP-2C-Cz:

500 mg (1.8 mmol, 1.0 eq.) of 9-(2-bromoethyl)-9H-carbazole, along with 684 mg (2.0
mmol, 1.1 eq.) of naphthalen-1-yldiphenylphosphane and 20 ml of ultra-dry toluene, were
introduced into a round-bottomed bottle with a capacity of 100 ml. The reaction mixture
was subjected to reflux under a nitrogen atmosphere for a duration of 48 hours.
Subsequently, the solvent was eliminated through rotary evaporation and the remaining
residue underwent purification via flash column chromatography using a mixture consisting
of ethyl acetate and methanol in a ratio of 80:1. This process yielded a white solid product
at an efficiency rate of 60%. '"H NMR (400 MHz, DMSO-ds) 5 8.56 (d, J = 8.3 Hz, 1H), 8.25
(d, J=8.2Hz, 1H), 8.11 (d, J = 7.6 Hz, 2H), 8.08 — 7.82 (m, 9H), 7.82 — 7.67 (m, 6H), 7.52
(t, J=7.8Hz, 1H), 7.36 (t, J = 7.7 Hz, 2H), 7.23 - 7.12 (m, 4H), 4.71 (q, J = 8.6 Hz, 2H),



4.36 (p, J = 8.0 Hz, 2H). 3C NMR (101 MHz, DMSO-d) d 139.48, 138.77, 138.66, 137.43,
137.39, 135.53, 135.49, 134.13, 134.02, 132.16, 132.08, 130.93, 130.80, 129.35, 128.10,
126.36, 126.18, 125.58, 125.52, 122.93, 120.80, 119.90, 119.33, 118.48, 113.37, 112.53,
109.69, 37.05, 23.38, 22.91. ESI-MS: m/z = 506.56 (calc. C3sHo9NP*: = 506.61)

Synthesis of NP-4C-Cz:

The synthesis of NP-4C-Cz was accomplished using the same methodology as NP-2C-
Cz. The final product obtained was a white solid, with a yield of 65%. "H NMR (400 MHz,
DMSO-dg) & 8.51 (d, J = 8.1 Hz, 1H), 8.20 (d, J = 8.3 Hz, 1H), 8.11 (d, J = 7.7 Hz, 2H),
7.93 -7.79 (m, 4H), 7.78 — 7.62 (m, 9H), 7.54 (dd, J = 13.9, 8.3 Hz, 3H), 745 (t, J= 7.6
Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.18 (t, J = 7.5 Hz, 2H), 4.40 (t, J = 6.9 Hz, 2H), 3.89 —
3.66 (m, 2H), 1.96 (p, J=7.1 Hz, 2H), 1.60 (t, J = 7.9 Hz, 2H). '3C NMR (101 MHz, DMSO-
de) 0 140.27, 138.07, 137.97, 137.19, 137.15, 135.28, 135.25, 134.17, 134.08, 133.74,
133.64, 132.20, 132.11, 130.84, 130.71, 129.15, 127.97, 126.24, 126.06, 125.44, 125.38,
122.45, 120.72, 119.58, 119.17, 118.74, 114.16, 113.33, 109.70, 41.81, 29.86, 29.70,
22.55, 22.05, 21.07, 21.04. ESI-MS: m/z = 534.56 (calc. C3gH33NP*: = 534.66)

Synthesis of NP-6C-Cz:

The synthesis of NP-6C-Cz was accomplished using the same methodology as NP-2C-
Cz. The final product obtained was a white solid, with a yield of 80%. 'H NMR (400 MHz,
DMSO-dg) 6 8.52 (d, J = 7.8 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 7.7 Hz, 2H),
7.91-7.79 (m, 8H), 7.73 (td, J= 7.8, 3.7 Hz, 4H), 7.69 — 7.62 (m, 2H), 7.53 (d, J = 8.3 Hz,
3H), 7.42 (t, J=7.6 Hz, 2H), 7.18 (t, J = 7.5 Hz, 2H), 4.31 (t, J= 7.0 Hz, 2H), 3.69 (d, J =
14.4 Hz, 2H), 1.64 (p, J = 7.3 Hz, 2H), 1.46 (d, J=7.2 Hz, 4H), 1.26 (t, J = 6.7 Hz, 2H). '3C
NMR (101 MHz, DMSO-dg) & 140.37, 138.17, 138.08, 137.17, 137.13, 135.31, 135.28,
134.19, 134.10, 133.83, 133.73, 132.26, 132.17, 130.90, 130.77, 129.26, 128.03, 126.33,
126.19, 126.12, 125.52, 125.45, 122.46, 120.75, 119.83, 119.11, 118.99, 114.33, 113.50,
109.64, 42.43, 30.02, 29.85, 28.47, 25.83, 23.01, 22.96, 22.71, 22.22. ESI-MS: m/z =
562.52 (calc. C4oH37NP*: = 562.72)

Synthesis of CN-2C-Cz:

The synthesis of CN-2C-Cz was accomplished using the same methodology as NP-2C-
Cz. The final product obtained was a yellow solid, with a yield of 38%. '"H NMR (400 MHz,
DMSO-dg) 6 8.25 - 8.16 (m, 2H), 8.03 - 7.91 (m, 8H), 7.86 — 7.75 (m, 6H), 7.66 (d, J = 8.7
Hz, 1H), 7.45—-7.28 (m, 4H), 7.20 (d, J= 8.3 Hz, 2H), 7.15 (t, J= 7.9 Hz, 2H), 4.89 (p, J =
6.7 Hz, 2H), 4.56 (dt, J = 13.3, 7.0 Hz, 2H). '3C NMR (101 MHz, DMSO-dg) d 139.32,
137.44, 137.34, 135.79, 135.75, 134.18, 134.07, 132.42, 132.28, 131.75, 131.65, 131.30,
131.22, 131.05, 130.92, 130.43, 129.83, 126.60, 126.46, 126.39, 126.11, 122.68, 120.62,
119.81, 119.66, 119.04, 118.86, 118.19, 116.80, 116.76, 109.81, 37.15, 23.17, 22.70. ESI-
MS: m/z = 531.40 (calc. C37HgNoP*: = 531.62)

Synthesis of PY-2C-Cz:

The synthesis of PY-2C-Cz was accomplished using the same methodology as NP-2C-Cz.
The final product obtained was a yellow solid, with a yield of 58%. '"H NMR (400 MHz,
DMSO-dg) 5 8.64 — 8.55 (m, 3H), 8.51 (d, J = 7.3 Hz, 1H), 8.42 (d, J = 8.9 Hz, 1H), 8.35 —
8.26 (m, 2H), 8.20 (d, J = 9.3 Hz, 1H), 8.08 — 7.90 (m, 9H), 7.79 (td, J = 7.8, 3.5 Hz, 4H),



7.26 (t, J = 7.6 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 7.11 (t, J = 7.4 Hz, 2H), 4.80 (t, J = 7.4
Hz, 2H), 4.51 (p, J = 7.6 Hz, 2H). 13C NMR (101 MHz, DMSO-d¢) 5 139.46, 136.56, 135.47,
134.18, 134.08, 133.83, 133.72, 133.63, 132.24, 131.15, 130.96, 130.84, 130.01, 129.82,
128.64, 128.53, 128.15, 127.59, 126.06, 125.87, 125.73, 124.82, 124.71, 124.14, 124.06,
123.28, 122.83, 120.59, 120.08, 119.78, 119.23, 109.66, 108.35, 107.50, 37.16, 23.88,
23.41. ESI-MS: m/z = 580.49 (calc. C4,H3:NP*: = 580.69)

2. Experimental Methods

Characterization methods:

The UV-Vis absorption spectra were measured utilizing a Shimadzu UV-2600 UV-vis
spectrophotometer. The prompt and delayed PL spectra were obtained using a Hitachi F-
4700 instrument. Luminous lifetime was determined on an Edinburgh Instruments FLS980
fluorescence spectrophotometer equipped with a microsecond flash-lamp (uF900) and
EPLED-280. An 8-watt halogen tube emitting UV light with A.x wavelengths of 300 nm
and 365 nm was employed as the light source for photography. The 'H NMR (400 MHz)
and 3C NMR (100 MHz) spectra were acquired using a Bruker ACF400 spectrometer at
298 K, employing deuterated solvents (DMSO-dg). Mass spectra were recorded on a
Bruker autoflex MALDI-TOF MS instrument.

Preparation of the PVA doped film:

First, PVA (1 g) was dissolved in deionized water (20 mL) and NP-2C-Cz (10 mg) was
dissolved in ethanol (1 mL). Then, 1mL of PVA aqueous solution and 100 pL of NP-2C-Cz
ethanol solution were put into 3mL centrifuge tube respectively, and ultrasonic examination
was conducted until clear and transparent. The doped aqueous solution is then coated on
the quartz sheet, allowed to evaporate, and dry overnight, and then dried at 75 ° C for 3
hours. Other PVA doped films were prepared by the same method.

Theoretical calculation:

The DFT calculations were performed using Gaussian 16 and ORCA 5.0.2 programs, while
Multiwfn and Visual Molecular Dynamics (VMD) software were utilized for visualizing the
electron orbital distribution. The ground state (Sp) geometry of NP-4C and NP-2C-Cz
molecules was optimized at the B3LYP/def2svp level, followed by vibration analysis to
ensure absence of negative frequencies. Hole electron analysis was conducted on the
optimized molecular configuration at the same level, and VMD 1.9.4a48 software was
employed to plot the distribution of hole electron orbitals. Finally, spin orbit mean field
(SOMF) method was used to calculate the coupling matrix elements between singlet and
triplet states.5"%2 The molecular model's Cartesian coordinates are as follows :
NP-4C:

Cc -2.41799 0.56565 -3.20008
Cc -1.18531 0.38204 -2.53545
Cc -1.13521 0.15923 -1.16342
Cc -2.35112 0.09876 -0.39109
Cc -3.59721 0.29547 -1.08296
Cc -3.59503 0.52858 -2.48547
P 0.48501 -0.00895 -0.36505



I I I I T I ITIITIITTITIITIITITITITTITIIITITITOOOOOCOOOOOOOOOOOOOOOOLO

0.69161
0.67915
1.78083
1.95816
1.04752
-0.04411
-0.23242
0.77611
0.91665
0.96892
0.87392
0.73293
-2.39884
-3.60074
-4.82363
-4.81798
1.79461
3.23064
4.2547
5.69436
-2.42586
-0.27556
2.49838
2.81164
1.18993
-0.75631
-1.0911
0.72434
0.98206
1.07851
0.90512
0.64325
-1.48046
-3.60724
-5.76626
-5.75579
1.64184
1.59241
3.33548
3.45247
4.12887
4.0368
6.40881
5.85306

1.29382
-1.66018
-1.95188
-3.24708
-4.25541
-3.96934
-2.67655

1.02745
2.08303
3.40171
3.67102
2.62327
-0.15538
-0.19882
0.00719
0.24683
0.23995
0.19639
0.55417
0.49071
0.73923
0.42309
-1.17553
-3.46931
-5.26778
-4.75504
-2.46239

0.00466

1.87145
4.22401
4.70138

2.85142
-0.32852
-0.39639
-0.02867

0.40106
-0.53478

1.21552

0.89486
-0.81097
-0.13141

1.56682

0.75479

1.18891

0.88604
0.35263
1.1815
1.66995
1.33512
0.50993
0.0164
2.26228
3.16679
2.70676
1.33679
0.42646
1.00745
1.68513
1.00332
-0.35362
-1.62476
-1.08598
-2.17091
-1.66158
-4.27782
-3.13448
1.45254
2.31426
1.72023
0.24869
-0.6226
2.63862
4.2363
3.41752
0.97585
-0.63876
1.56519
2.75952
1.55361
-0.8929
-2.39314
-2.09564
-0.23783
-0.69877
-3.0277
-2.55491
-2.45571
-0.8233
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5.9487
-4.55144

-2.50728
-1.58519
-1.84784
-3.08059
-4.01088
-3.6908
-0.61052
-0.17746
-1.25385
-0.59672
-1.07063
-2.19439
-2.8457
-2.38125
-0.33266
-0.02526
0.42517
0.56819
0.26836
-3.4471
-4.65096
-5.5558
-5.23907
0.84988
2.10442
-2.27292
-0.66274
0.27364
-0.56249
-2.56282
-3.72149
-2.89725
-0.70244
-0.13225
0.66559
0.92442
0.38231
-2.77886
-4.90559
-6.50038

-0.52159
0.67565

-3.08432
-2.65287
-1.55869
-0.84743
-1.30099
-2.41756
-1.01515
0.69669
-1.26179
-0.72996
-0.99534
-1.791
-2.32504
-2.06514
1.72667
3.02553
3.30216
2.27854
0.9752
0.25678
0.8883
0.44883
-0.62514
-2.09524
-1.77432
-3.9429
-3.20332
-0.10542
-0.5759
-1.99459
-2.94393
-2.47889
1.52848
3.82068
4.31855
2.48877
0.18579
0.62273
1.73427
0.95845

-1.30679
-2.99367

-2.66985
-1.7076
-0.90877
-1.04146
-2.03066
-2.82916

0.29027
-0.06303
1.9546
3.0649
4.33909
4.51374
3.41066
213179
0.8628
0.49772
-0.78476
-1.70987
-1.35546
-0.24601
-0.42205
-1.40057
-2.18685
0.08138
0.89834
-3.28211
-1.61036
2.93995
5.19602
5.50949
3.54417
1.27794
1.85621
1.22099
-1.06388
-2.70758
-2.08566
0.5163
0.2011
-1.52776



H -5.93115 -0.976 -2.94052
H 0.51404 -3.10106 0.33169
H 1.09501 -2.08247 -0.9766

H 1.87495 -1.73791 1.95829
H 2.78744 -2.61557 0.76451
H -4.40459 -2.7452 -3.57348
C 4.14445 0.82725 -3.1252

C 3.79457 -0.5224 -3.05419
C 3.32613 -1.08521 -1.87513
C 3.20912 -0.26 -0.76391
C 3.58038 1.10405 -0.81559
C 4.04889 1.64168 -2.00889
H 4.51366 1.23235 -4.05669
H 3.90562 -1.14815 -3.92879
H 3.10893 -2.14377 -1.83194
H 4.34262 2.68133 -2.06408
C 2.86392 0.59542 1.30264
C 2.61394 0.77996 2.6548
C 2.79174 2.0517 3.18224
C 3.22858 3.11208 2.38744
C 3.52675 2.91293 1.04955
C 3.35493 1.64969 0.4961

H 2.35188 -0.0418 3.3062
H 2.61374 2.21418 4.23639
H 3.36674 4.08825 2.83027
H 3.90094 3.72893 0.44603
N 2.75509 -0.55003 0.519

Fluorescence and phosphorescence QY calculation :
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Fig. S1. a. The PL spectra of NP-2C-Cz doped PVA film and blank reference PL spectra
at 300 nm excitation, b The PL spectra and delay PL of NP-2C-Cz doped PVA film.

The fluorescence and phosphorescence quantum yields were separately calculated
according to previous literature.’® The delayed emission spectrum provided the
phosphorescence bands. By analyzing the structure of these bands, the fluorescence and
phosphorescence emission bands could be distinguished in steady state emission spectra.
The ratio between fluorescence and phosphorescence quantum yields was determined by



calculating the areas under their respective bands. Therefore, the fluorescence and
phosphorescence quantum yields were obtained based on their total luminescence
quantum yields and the ratio between their relative quantum vyields.

Photoluminescence quantum efficiency was determined using an Edinburgh FLS980
spectrometer with a 142 mm diameter integrating sphere under ambient conditions. The

fluorescence and phosphorescence quantum efficiencies (ch and CDP) were calculated
using the following formulas:
AP
Dy, = Pp X —
45 (1)
CDF = CDE - (DP (2)
where P& represents the measured total emission quantum efficiency, Ap refers to the
integral area of the phosphorescent component in photoluminescence spectra, and Ag
refers to the integral area of all components in photoluminescence spectra except for
phosphorescent component.



3. Photophysical property

Table S1 Summary of photophysics of compounds in CH,Cl, 1x10-5 M.

Compounds Absorption Apax/nm Emission Apa/nm
CH,Cl; 1x105 M
(e/dm3 mol-' cm™) (To/ns)

298 K

NP-4C 301 (10582) 356 (2.01)
NP-2C-Cz 291 (22050), 325 (6048), 338 (6105) 352 (2.32), 478 (10.05)
NP-4C-Cz 293 (17388), 323 (6048), 344 (3409) 353 (2.70), 477 (14.17)
NP-6C-Cz 294 (12974), 322 (4209), 345 (2554) 352 (3.01), 508 (13.75)

CN-4C 323 (6082) 381 (3.09)
CN-2C-Cz 293 (20479), 323 (14611), 336 (13805) 381 (3.33), 518 (12.53)

PY-4C 284 (25301), 356 (19024), 366 (18896), 384 (14949) 391 (4.19)
PY-2C-Cz 284 (40696), 357 (29363), 366 (29491), 385 (22831) 393 (4.38), 497 (14.02)

Cz-2C 295 (23062), 331 (5153), 346 (5783) 355 (1.55), 370 (1.57)




Table S2 Summary of photophysics of compounds in PVA doped films (Wt = 2%).

Compounds doped
)\maxlnm Ama,/nm

PVA 2 wt% Gl% Dpl% Knds™ kiscls™

208 K (Te/ns) (Tp/s)

NP-4C 352 (8.52) 16.9 520 (0.26) 4.9 3.66 5.75x10¢
NP-2C-Cz 445 (7.25) 15.8 520 (0.80) 19.6 1.01 2.70x107
NP-4C-Cz 454 (8.69) 19.5 520 (0.58) 18.3 1.41 2.11x107
NP-6C-Cz 452 (8.56) 28.8 520 (0.40) 6.8 2.33 7.94x108

CN-4C 374 (6.75) 20.2 540 (0.10) 4.6 9.54 6.81x106
CN-2C-Cz 515 (8.13) 10.5 540 (0.41) 18.2 2.00 2.24x107

PY-4C 415 (13.24) 15.3 619 (0.12) 3.8 8.02 2.87x10°8
PY-2C-Cz 492 (7.70) 22.3 619 (0.33) 12.7 2.65 1.65x107

Te: lifetime of fluorescence; @r: absolute quantum vyield of fluorescence; 1p: lifetime of
phosphorescence; @,: absolute quantum yield of phosphorescence; k. rate constant of
non-radiative decay of T+; kisc: rate constant of intersystem crossing (ISC) from singlet to
triplet states. ko, = (1-@,)/ 1p; kisc = @, I1f.
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Fig. S2. In CH,Cl, 1x10-®* M a. The UV-visible absorption spectra of Cz-2C, NP-4C, NP-
2C-Cz, NP-4C-Cz, and NP-6C-Cz. b. The prompt PL spectra (Ex=300 nm) c. The prompt
PL spectra of NP-2C-Cz in various solution (Ex=300 nm) d. Fluorescence lifetime in
solution (Ex = 280 nm)
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Fig. S4. The UV-visible absorption spectra in various solution 1x10-° M. a. NP-4C b.NP-
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NP-4C-Cz, and NP-6C-Cz doped PVA films.
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4. Characterization data
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Fig. S23. "H NMR spectra of 9-(4-bromobutyl)-9H-carbazole in DMSO-dg
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