Supplementary data

Organocatalyst-mediated asymmetric one-pot/two domino/threecomponent coupling reactions for the synthesis of *trans*-hydrindanes

Naoki Mori, Toshiki Tachibana, Nariyoshi Umekubo, Yujiro Hayashi*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan

Contents:

1.	General Methods			
2.	Experimental ProceduresS3			
	2.1. Preparation of Starting Materials			
	2.2. Optimized procedure for the first reaction			
	2.3. Optimization for the second reaction and determination of the relative			
configuration of 4ab S8-				
	2.4. General procedure for the one-pot reaction			
	2.5. Determination of the absolute configuration			
	2.6. Unsuccessful substrates for this reaction			
	2.7. Attempts to synthesize ketones with other electron withdrawing groupsS2			
	2.8. Attempts to transform 4ab and its derivatives			
	2.9. References			
3.	Spectra for Compounds			

1. General Methods

General Remarks: Unless otherwise shown, all reactions were carried out under nitrogen atmosphere and monitored by thin-layer chromatography using Merck 60 F254 precoated silica gel plates (0.25 mm thickness). Specific optical rotations were measured using a JASCO P-2200 polarimeter. FT-IR spectra were recorded on a JASCO FT/IR-4600 HC1 spectrometer. ¹H and ¹³C NMR spectra were recorded on an Agilent-400 MR (400 MHz for ¹H NMR, 100 M Hz for ¹³C NMR) instrument. Data for ¹H NMR are reported as chemical shift (δ ppm), integration multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, ddt = doublet of double of triplets, m = multiplet), coupling constant (Hz), Data for ¹³C NMR are reported as chemical shift. High resolution ESI-TOF mass spectra were measured by Themo Orbi-trap LTQ XL instrument. HPLC analysis was performed on a HITACHI Elite LaChrom Series HPLC, UV detection monitored at appropriate wavelength respectively, using CHIRALPACK[®] AD-H (0.46 cm × 25 cm), CHIRALPACK[®] IB (0.46 cm × 25 cm), CHIRALPACK[®] ID (0.46 cm × 25 cm). Melting-point apparatus was Yanaco MP-J3.

2. Experimental Procedures

2.1. Preparation of Starting Materials and Catalysts

Ethyl 4-ethoxycarbonyl-2-oxopentenoate (1)

EtO₂C CO₂Et

¹H NMR spectrum of synthesized compound **1** matched with that of the reported one.^[1] ¹H NMR (400 MHz, CDCl₃): δ 9.75 (d, *J* = 7.6 Hz, 1H), 7.69 (brs, 4H), 7.51 (d, *J* = 16.4 Hz, 1H), 6.78 (dd, *J* = 16.0, 7.6 Hz, 1H)

(E)-4-Cinnamaldehyde (2a)

Compound 2a was purchased from TCI (product code: C0352).

(E)-4-Methoxycinnamaldehyde (2b)

Compound **2b** was purchased from TCI (product code: M1012).

(E)-4-Fluorocinnamaldehyde (2c)

¹H NMR spectrum of synthesized compound **2c** matched with that of the reported one.^[2] ¹H NMR (400 MHz, CDCl₃): δ 9.68 (d, *J* = 8.0 Hz, 1H), 7.56 (dd, *J* = 8.8, 5.6 Hz, 2H), 7.44 (d, *J* = 16.0 Hz, 1H), 7.12 (t, *J* = 8.4 Hz, 2H), 6.64 (dd, *J* = 16.0, 8.0 Hz, 1H)

(E)-4-Chlorocinnamaldehyde (2d)

¹H NMR spectrum of synthesized compound **2d** matched with that of the reported one.^[3] ¹H NMR (400 MHz, CDCl₃): δ 9.70 (d, *J* = 7.6 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.45-7.40 (m, 3H), 6.69 (dd, *J* = 16.0, 7.6 Hz, 1H)

(E)-4-Trifluoromethylcinnamaldehyde (2e)

¹H NMR spectrum of synthesized compound **2e** matched with that of the reported one.^[4] ¹H NMR (400 MHz, CDCl₃): δ 9.75 (d, *J* = 7.6 Hz, 1H), 7.69 (brs, 4H), 7.51 (d, *J* = 16.4 Hz, 1H), 6.78 (dd, *J* = 16.0, 7.6 Hz, 1H)

(E)-4-Bromocinnamaldehyde (2f)

¹H NMR spectrum of synthesized compound **2f** matched with that of the reported one.^[3] ¹H NMR (400 MHz, CDCl₃): δ 9.71 (d, *J* = 7.6 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.44-7.39 (m, 3H), 6.70 (dd, *J* = 16.0, 7.6 Hz, 1H)

(E)-3-Bromocinnamaldehyde (2g)

¹H NMR spectrum of synthesized compound **2g** matched with that of the reported one.^[5] ¹H NMR (400 MHz, CDCl₃): δ 9.71 (d, J = 7.6 Hz, 1H), 7.70 (s, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 16.4 Hz, 1H), 7.31 (t, J = 8.0 Hz, 1H), 6.64 (dd, J = 16.0, 8.0 Hz, 1H)

(E)-2-Bromocinnamaldehyde (2h)

¹H NMR spectrum of synthesized compound **2h** matched with that of the reported one.^[5] ¹H NMR (400 MHz, CDCl₃): δ 9.78 (d, J = 7.6 Hz, 1H), 7.90 (d, J = 16.0 Hz, 1H), 7.66 (dt, J = 8.0, 1.6 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.28 (td, J = 8.0, 1.6 Hz, 1H), 6.67 (dd, J = 16.0, 7.6 Hz, 1H)

(E)-4-Nitrocinnamaldehyde (2i)

¹H NMR spectrum of synthesized compound **2i** matched with that of the reported one.^[6] ¹H NMR (400 MHz, CDCl₃): δ 9.78 (d, *J* = 7.2 Hz, 1H), 8.29 (d, *J* = 8.8 Hz, 2H), 7.73 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 16.0 Hz, 1H), 6.81 (dd, *J* = 16.0, 7.6 Hz, 1H)

Compound 2j was purchased from Sigma-Aldrich (product code: F20602).

(2E,4E)-5-(4-methoxyphenyl)penta-2,4-dienal (2k)

¹H NMR spectrum of synthesized compound **2k** matched with that of the reported one.^[7] ¹H NMR (400 MHz, CDCl₃): δ 9.59 (d, *J* = 8.0 Hz, 1H), 7.48-7.43 (m, 2H), 7.25 (dd, *J* = 15.2, 10.8 Hz, 1H), 7.00-6.85 (m, 4H), 6.22 (dd, *J* = 15.2, 8.0 Hz, 1H), 3.84 (s, 3H)

(S)-2-(Diphenyl((trimethylsilyl)oxy)methyl)pyrrolidine (catalyst I)

¹H NMR spectrum of synthesized catalyst **I** matched with that of the reported one.^[8] ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.45 (m, 2H), 7.39-7.34 (m, 2H), 7.29-7.18 (m, 6H), 4.03 (t, *J* = 7.6 1H), 2.88-2.76 (m, 2H), 1.62-1.51 (m, 3H), 1.41-1.33 (m, 1H), 0.09 (s, 9H)

(S)-2-(((methyldiphenylsilyl)oxy)diphenylmethyl)pyrrolidine (catalyst II)

¹H NMR spectrum of synthesized catalyst **II** matched with that of the reported one.^[9] ¹H NMR (400 MHz, CDCl₃): δ 7.53-7.48 (m, 6H), 7.37-7.18 (m, 14H), 3.99 (t, *J* = 7.2 1H), 2.75-2.69 (m, 1H), 2.57-2.52 (m, 1H), 1.62-1.55 (m, 2H), 1.41-1.32 (m, 2H), 1.03-0.94 (m, 1H), 0.19 (s, 3H)

2.2. Optimized procedure for the first reaction

To a stirred solution of 1 (500 mg, 2.33 mmol) and **2a** (308 mg, 2.33 mmol) in toluene (4.7 mL) were added water (126 μ L, 7.00 mmol), catalyst **II** (210 mg, 0.467 mmol), *p*-nitrophenol (325 mg, 2.33 mmol) at 0 °C. After stirring for 24 h at 0 °C, sat. K₂CO₃ solution was added and the mixture was extracted with EtOAc. The organic layer was washed with sat. K₂CO₃ solution and brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 8:1) to give **3a** (606 mg, 75%).

Diethyl 2-((1R,2R,3S)-2-formyl-5-oxo-3-phenylcyclopentyl)malonate (3a)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{27}} = +111 (c \ 1.04, CHCl_3)$

IR (neat): v_{max} 2983, 1732, 1456, 1371, 1230, 1156, 1028, 864, 765, 702 cm⁻¹ ¹H NMR (400 MHz, CDCl₃): δ 9.64 (d, J = 1.6 Hz, 1H), 7.42-7.27 (m, 5H), 4.27-4.17 (m, 2H), 4.15 (q, J = 7.2 Hz, 2H), 4.08 (d, J = 4.0 Hz, 1H), 3.85 (td, J= 11.2, 1.6 Hz, 1H), 3.35 (td, J = 11.2, 8.8 Hz, 1H), 3.20 (ddd, J = 11.2, 4.0, 1.2 Hz, 1H), 2.92-2.76 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H), 1.27 (t, J = 7.2 Hz, 3H) ¹³C NMR (100 MHz, CDCl₃): δ 212.6, 201.0, 168.2, 167.9, 140.1, 129.1, 127.7, 127.3, 62.0, 62.0, 57.7, 50.8, 49.2, 45.9, 43.5, 13.9, 13.8 HRMS (ESI): calcd. for C₁₉H₂₂NaO₆ [M+Na]⁺ 369.1309, found 369.1311 Chiral HPLC: (ID, hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, λ = 210 nm) t_{minor} = 28.1 min, t_{major} = 32.0 min (>99% ee)

2.3. Optimization for the second reaction and determination of the relative configuration of 4ab

Ph CHO 2b	t 20 mol%	Ph Ph II OSIMePh ₂ EtC nol (100 mol%) O rq.) r, rt, time Ph	D ₂ C CO ₂ Et OMe H (18) H CHO 4ab
entry	solvent	time [h]	yield [%]
1	toluene	24	39 ^[b]
2	МеОН	60	26 ^[c]
3	EtOH	60	42 ^[d]
4	ⁱ PrOH	12	55
5	^t BuOH	6	72 ^[e]

Table S1. The effect of solvent in the reaction of 3a and 2b.^[a]

[a] Unless otherwise shown, the reaction was performed by employing **3a** (0.24 mmol), **2b** (0.24 mmol), organocatalyst (0.048 mmol), p-nitrophenol (0.24 mmol), water (0.73 mmol), in solvent (0.5 mL) at room temperature. [b] **3a** was recovered in 25% yield. [c] **3a** was recovered in 49% yield. [d] **3a** was recovered in 15% yield. [e] Enantiomeric excess (ee) was determined to be >99% by HPLC analysis on a chiral column material.

To a stirred solution of **3a** (83.7 mg, 0.242 mmol) and **2b** (39.2 mg, 0.242 mmol) in *t* BuOH (0.48 mL) were added water (13.0 μ L, 0.725 mmol), catalyst **II** (21.7 mg, 48.3 μ mol), *p*-nitrophenol (33.6 mg, 0.242 mmol) at room temperature. After stirring for 6 h, sat. K₂CO₃ solution was added and the mixture was extracted with EtOAc. The organic layer was washed with sat. K₂CO₃ solution and brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel

column chromatography (hexane/EtOAc = 5:1 to 4:1) to give **4ab** (85.2 mg, 72%).

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-6-formyl-5-(4-methoxyphenyl)-3-oxo-1-phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4ab)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{27}} = -183 (c \ 1.10, \text{ CHCl}_{3})$

IR (neat): *v*_{max} 2979, 1742, 1691, 1609, 1511, 1367, 1252, 1179, 1034, 754, 702 cm⁻¹

¹**H NMR (400 MHz, CDCl₃)**: δ 9.30 (s, 1H), 7.54-6.78 (m, 10H), 4.91 (s, 1H), 4.38-4.17 (m, 2H), 3.92 (m, 1H), 3.77 (s, 3H), 3.75 (m, 1H), 3.33 (td, *J* = 10.8, 8.0 Hz, 1H), 3.04 (d, *J* = 14.0 Hz, 1H), 3.00 (dd, *J* = 19.2, 8.0 Hz, 1H), 2.82 (ddt, *J* = 14.0, 10.8, 2.0 Hz, 1H), 2.53 (dd, *J* = 19.2, 10.8 Hz, 1H), 1.29 (t, *J* = 7.2 Hz, 3H), 0.97 (t, *J* = 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 8 205.7, 191.5, 168.5, 167.1, 159.2, 145.6, 143.0, 139.3, 129.9, 129.2, 127.8, 127.4, 127.3, 113.9, 62.1, 61.5, 59.8, 55.2, 51.4, 47.1, 45.5, 45.0, 44.3, 14.1, 13.5

HRMS (ESI): calcd. for $C_{29}H_{30}NaO_7$ [M+Na]+ 513.1884, found 513.1881 Chiral HPLC: (AD-H, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 208 nm) t_{minor} = 25.0 min, t_{major} = 29.7 min (>99% ee)

The relative configuration of **4ab** was determined by NOESY experiments. <NOESY experiment of **4ab**>

2.4. General procedure for the one-pot reaction 20 mol% -Ph II ÇO₂Et **OSiMePh** EtO₂C CO₂Et CO₂Ef 2' p-nitrophenol (100 mol%) CO₂Et H₂O (3.0 eq.) H₂O (3.0 eq.) CO₂Et toluene, 0 °C, 24 h t-BuOH. rt. time сно evanoration

To a stirred solution of 1 (100 mg, 0.469 mmol) and 2 (0.469 mmol, 1.0 equiv.) in toluene (0.93 mL, 0.5 M for 1) were added water (25.0 μ L, 1.41 mmol, 3.0 equiv.), catalyst II (42.0 mg, 93.4 μ mol, 0.2 equiv.), *p*-nitrophenol (64.9 mg, 0.469 mmol, 1.0 equiv.) at 0 °C. After stirring for 24 h at 0 °C, the mixture was evaporated under reduced pressure. The crude mixture was dissolved in *t*-BuOH (0.93 mL, 0.5 M for 1), and water (25.0 μ L, 1.41 mmol, 3.0 equiv.) and 2' (0.469 mmol, 1.0 equiv.) were added to the mixture. After stirring for the indicated time, sat. K₂CO₃ solution was added and the mixture was extracted with EtOAc. The organic layer was washed with sat. K₂CO₃ solution and brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give **4**.

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-6-formyl-1-(4-methoxyphenyl)-3-oxo-5-phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4ba)

Second reaction time: 3 h Isolated yield: 52% (119 mg) Physical state: a yellow oil Optical rotation: $[\alpha]_D^{26} = -99.3$ (c 1.03, CHCl₃) IR (neat): v_{max} 2982, 1747, 1691, 1515, 1455, 1251, 1036, 912, 833, 733, 703 cm⁻¹ ¹H NMR (400 MHz, CDCl₃): δ 9.31 (s, 1H), 7.32-7.20 (m, 5H), 7.12 (d, J= 6.8 Hz, 2H), 6.97 (d, J= 8.8 Hz, 2H), 6.90 (brs, 1H), 4.96 (s, 1H), 4.39-4.17 (m, 2H), 3.87 (m, 1H), 3.85 (s, 3H), 3.64 (m, 1H), 3.28 (td, J= 10.8, 8.0 Hz, 1H), 3.04 (d, J= 14.0 Hz, 1H), 2.97 (dd, J= 19.2, 8.0 Hz, 1H), 2.78 (ddt, J= 14.0, 10.8, 2.0 Hz, 1H), 2.49 (dd, J= 19.2, 10.8 Hz, 1H), 1.29 (t, J= 7.2 Hz, 3H) (t, J= 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 8 205.8, 191.5, 168.5, 167.1, 159.1, 146.3, 142.8, 138.0, 131.0, 128.8, 128.5, 128.3, 127.8, 114.5, 62.1, 61.5, 59.8, 55.3, 51.5, 47.2, 45.8, 45.7, 43.5, 14.1, 13.4

HRMS (ESI): calcd. for C₂₉H₃₀NaO₇ [M+Na]⁺ 513.1884, found 513.1887.

Chiral HPLC: (IB, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, $\lambda = 208$ nm) t_{major} = 19.0 min, t_{minor} = 28.0 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 5:1)

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-1-(4-chlorophenyl)-6-formyl-3-oxo-5-phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4da)

Second reaction time: 3 h

Isolated yield: 58% (135 mg)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{26}} = -95.5 \ (c \ 1.14, \ CHCl_3)$

IR (neat): v_{max} 2981, 1748, 1691, 1493, 1227, 1092, 1013, 912, 732, 703 cm⁻¹ ¹H NMR (400 MHz, CDCl₃): δ 9.31 (s, 1H), 7.53-7.07 (m, 9H), 6.86 (brs, 1H), 4.96 (s, 1H), 4.38-4.17 (m, 2H), 3.95-3.59 (m, 2H), 3.32 (td, J = 10.8, 8.0 Hz, 1H), 3.06 (d, J = 14.0 Hz, 1H), 2.99 (dd, J = 19.2, 8.0 Hz, 1H), 2.81 (ddt, J = 14.0, 10.8, 2.0 Hz, 1H), 2.48 (dd, J = 19.2, 10.8 Hz, 1H), 1.29 (t, J = 7.2 Hz, 3H), 0.90 (t, J = 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 6 205.1, 191.3, 168.4, 166.9, 145.5, 143.0, 137.8,

 $137.7, 133.5, 129.4, 128.8, 128.6, 128.5, 127.8, 62.2, 61.5, 59.7, 51.4, 47.0, 45.6, \\45.4, 43.7, 14.1, 13.4$

HRMS (ESI): calcd. for C₂₈H₂₇ClNaO₆ [M+Na]⁺ 517.1389, found 517.1385 Chiral HPLC: (IB, hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, λ = 208 nm) t_{major} = 23.1 min, t_{minor} = 43.1 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 6:1)

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-1-(4-bromophenyl)-6-formyl-3-oxo-5-phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4fa)

Second reaction time: 3 h

Isolated yield: 58% (146 mg)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{26}} = -85.5 \ (c \ 1.10, \ CHCl_3)$

IR (neat): v_{max} 2982, 1747, 1692, 1490, 1367, 1227, 1010, 911, 827, 732, 703 cm⁻¹

¹H NMR (400 MHz, CDCl₃): 5 9.31 (s, 1H), 7.58-7.07 (m, 9H), 6.86 (brs, 1H),
4.96 (s, 1H), 4.38-4.18 (m, 2H), 3.95-3.59 (m, 2H), 3.31 (td, J = 10.8, 8.0 Hz,
1H), 3.05 (d, J = 14.0 Hz, 1H), 2.99 (dd, J = 19.2, 8.0 Hz, 1H), 2.80 (ddt, J =
14.0, 10.8, 2.0 Hz, 1H), 2.48 (dd, J = 19.2, 10.8 Hz, 1H), 1.29 (t, J = 7.2 Hz,
3H), 0.90 (t, J = 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 6 205.1, 191.3, 168.4, 166.9, 145.5, 143.0, 138.2, 137.8, 132.3, 129.2, 129.0, 128.5, 127.8, 121.5, 62.2, 61.5, 59.7, 51.4, 46.9, 45.6, 45.3, 43.8, 14.1, 13.4

HRMS (ESI): calcd. for $C_{28}H_{27}BrNaO_6$ [M+Na]+ 561.0884, found 561.0880 Chiral HPLC: (IB, hexane/*i*-PrOH = 29:1, flow rate = 1.0 mL/min, λ = 208 nm) t_{major} = 36.7 min, t_{minor} = 68.2 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 6:1)

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-6-formyl-3-oxo-5-phenyl-1-(4-(trifluoromethyl)phenyl)-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4dicarboxylate (4ea)

$$F_{3}C$$

 $EtO_{2}C CO_{2}Et$
 $O H$
 H
 CHO
 H
 CHO

Second reaction time: 3 h

Isolated yield: 56% (138 mg)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{26}} = -111 \ (c \ 1.00, \ CHCl_3)$

IR (neat): v_{max} 2985, 1748, 1693, 1327, 1228, 1166, 1124, 1069, 733, 703 cm⁻¹ ¹H NMR (400 MHz, CDCl₃): δ 9.31 (s, 1H), 7.71 (d, J= 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.36-7.20 (m, 3H), 7.11 (d, J= 6.4 Hz, 2H), 6.85 (brs, 1H), 4.97 (s, 1H), 4.40-4.21 (m, 2H), 3.95-3.60 (m, 2H), 3.41 (td, J= 10.8, 8.0 Hz, 1H), 3.08 (d, J= 14.0 Hz, 1H), 3.03 (dd, J= 19.2, 8.0 Hz, 1H), 2.88 (ddt, J= 14.0, 10.8, 2.0 Hz, 1H), 2.53 (dd, J= 19.2, 10.8 Hz, 1H), 1.30 (t, J= 7.2 Hz, 3H), 0.91 (t, J= 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): δ 204.8, 191.3, 168.4, 166.9, 145.1, 143.4, 143.1, 137.7, 130.1 (q, J = 32.7 Hz), 128.8, 128.5, 127.9, 127.8, 126.2 (q, J = 3.1 Hz), 123.9 (q, J = 271 Hz), 62.3, 61.6, 59.7, 51.4, 46.8, 45.6, 45.3, 44.1, 14.1, 13.4 HRMS (ESI): calcd. for C₂₉H₂₇F₃NaO₆ [M+Na]⁺ 551.1652, found 551.1649 Chiral HPLC: (IB, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 208 nm) t_{major} = 9.7 min, t_{minor} = 17.4 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 6:1)

Diethyl (1R,3aR,5R,7aS)-6-formyl-1-((E)-4-methoxystyryl)-3-oxo-5phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4ka)

Second reaction time: 3 h

Isolated yield: 22% (54 mg)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{24}} = -7.10 \ (c \ 1.25, \ CHCl_3)$

IR (neat): v_{max} 2983, 1742, 1690, 1607, 1511, 1251, 1175, 1034, 913, 732 cm⁻¹ ¹H NMR (400 MHz, CDCl₃): δ 9.39 (s, 1H), 7.37 (d, J= 8.8 Hz, 2H), 7.37-7.07 (m, 6H), 6.89 (d, J= 8.8 Hz, 2H), 6.64 (d, J= 16.0 Hz, 1H), 6.02 (dd, J= 16.0, 8.4 Hz, 1H), 4.96 (s, 1H), 4.31-4.19 (m, 2H), 3.86 (m, 1H), 3.83 (s, 3H), 3.65 (m, 1H), 2.95 (d, J= 14.0 Hz, 1H), 2.93-2.79 (m, 2H), 2.52 (ddt, J= 14.0, 10.8, 2.0 Hz, 1H), 2.29 (dd, J= 18.8, 10.0 Hz, 1H), 1.26 (t, J= 7.2 Hz, 3H), 0.90 (t, J= 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 8 205.8, 191.5, 168.5, 167.1, 159.5, 146.4, 142.9, 138.0, 132.7, 129.0, 128.9, 128.5, 127.8, 127.5, 126.1, 114.2, 62.2, 61.5, 59.8, 55.3, 50.9, 45.8, 45.7, 44.5, 42.5, 14.0, 13.4

HRMS (ESI): calcd. for C₃₁H₃₂NaO₇ [M+Na]⁺ 539.2040, found 539.2037

Chiral HPLC: (IF, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, $\lambda = 208 \text{ nm}$) t_{minor} = 31.5 min, t_{major} = 38.1 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 5:1)

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-6-formyl-5-(4-methoxyphenyl)-3-oxo-1-phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4ab)

Second reaction time: 6 h Isolated yield: 56% (129 mg) Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{27}} = -183 (c \ 1.10, CHCl_{3})$

IR (neat): *v*_{max} 2979, 1742, 1691, 1609, 1511, 1367, 1252, 1179, 1034, 754, 702 cm⁻¹

¹**H NMR (400 MHz, CDCl₃)**: δ 9.30 (s, 1H), 7.54-6.78 (m, 10H), 4.91 (s, 1H), 4.38-4.17 (m, 2H), 3.92 (m, 1H), 3.77 (s, 3H), 3.75 (m, 1H), 3.33 (td, *J* = 10.8, 8.0 Hz, 1H), 3.04 (d, *J* = 14.0 Hz, 1H), 3.00 (dd, *J* = 19.2, 8.0 Hz, 1H), 2.82 (ddt, *J* = 14.0, 10.8, 2.0 Hz, 1H), 2.53 (dd, *J* = 19.2, 10.8 Hz, 1H), 1.29 (t, *J* = 7.2 Hz, 3H), 0.97 (t, *J* = 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 6 205.7, 191.5, 168.5, 167.1, 159.2, 145.6, 143.0, 139.3, 129.9, 129.2, 127.8, 127.4, 127.3, 113.9, 62.1, 61.5, 59.8, 55.2, 51.4, 47.1, 45.5, 45.0, 44.3, 14.1, 13.5

HRMS (ESI): calcd. for $C_{29}H_{30}NaO_7$ [M+Na]+ 513.1884, found 513.1881 Chiral HPLC: (AD-H, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 208 nm) t_{minor} = 25.0 min, t_{major} = 29.7 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 5:1 to 4:1)

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-5-(4-fluorophenyl)-6-formyl-3-oxo-1-phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4ac)

Second reaction time: 3 h

Isolated yield: 65% (145 mg)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{25}} = -189 (c \ 1.06, \ CHCl_3)$

IR (neat): *v*_{max} 2983, 1744, 1690, 1508, 1367, 1226, 1163, 1097, 912, 732, 701 cm⁻¹

¹**H NMR (400 MHz, CDCl₃)**: δ 9.30 (s, 1H), 7.48-6.95 (m, 9H), 6.90 (brs, 1H), 4.94 (s, 1H), 4.39-4.18 (m, 2H), 3.97-3.67 (m, 2H), 3.33 (td, *J* = 10.8, 8.0 Hz, 1H), 3.01 (dd, *J* = 19.2, 8.0 Hz, 1H), 3.00 (d, *J* = 14.0 Hz, 1H), 2.83 (ddt, *J* = 14.0, 10.8, 2.0 Hz, 1H), 2.54 (dd, *J* = 19.2, 10.8 Hz, 1H), 1.30 (t, *J* = 7.2 Hz, 3H), 0.97 (t, J= 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): δ 205.4, 191.4, 168.3, 167.0, 162.3 (d, J = 246 Hz), 146.4, 142.8, 139.1, 133.8 (d, J = 3.1 Hz), 130.4, 129.2, 127.8, 127.3, 115.4 (d, J = 21.3 Hz), 62.2, 61.6, 59.7, 51.4, 47.1, 45.5, 44.9, 44.3, 14.1, 13.5 HRMS (ESI): calcd. for C₂₈H₂₇FNaO₆ [M+Na]⁺ 501.1684, found 501.1687 Chiral HPLC: (AD-H, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 208 nm) t_{minor} = 15.6 min, t_{major} = 20.7 min (97% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 5:1)

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-5-(4-chlorophenyl)-6-formyl-3-oxo-1-phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4ad)

Second reaction time: 2 h

Isolated yield: 65% (151 mg)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{23}} = -176 (c \ 1.04, \ CHCl_3)$

IR (neat): *v*_{max} 2983, 1747, 1691, 1493, 1227, 1094, 755, 701 cm⁻¹

¹**H NMR (400 MHz, CDCl₃)**: δ 9.30 (s, 1H), 7.48-7.02 (m, 9H), 6.91 (brs, 1H), 4.93 (s, 1H), 4.39-4.18 (m, 2H), 3.97-3.69 (m, 2H), 3.32 (td, J = 10.8, 8.0 Hz, 1H), 3.01 (dd, J = 19.2, 8.0 Hz, 1H), 2.99 (d, J = 14.0 Hz, 1H), 2.84 (ddt, J = 14.0, 10.8, 2.0 Hz, 1H), 2.54 (dd, J = 19.2, 10.8 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 6 205.4, 191.3, 168.3, 166.9, 146.7, 142.6, 139.1, 136.6, 133.8, 130.1, 129.3, 128.6, 127.8, 127.3, 62.3, 61.7, 59.6, 51.4, 47.0, 45.5, 45.0, 44.2, 14.1, 13.4

HRMS (ESI): calcd. for $C_{28}H_{27}ClNaO_6$ [M+Na]⁺ 517.1389, found 517.1389 Chiral HPLC: (AD-H, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 208 nm) t_{minor} = 14.8 min, t_{major} = 24.5 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 6:1)

Diethyl (1S, 3aR, 5R, 7aR)-6-formyl-3-oxo-1-phenyl-5-(4-(trifluoromethyl)phenyl)-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-

dicarboxylate (4ae)

EtO₂C CO₂Et CF₃ Ĥ СНС 4ae

Second reaction time: 2 h

Isolated yield: 61% (151 mg)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{21}} = -168 (c \ 1.26, CHCl_3)$

IR (neat): _{Vmax} 2981, 1745, 1691, 1327, 1228, 1166, 1115, 1069, 913, 732, 701 cm⁻¹

¹**H NMR (400 MHz, CDCl₃)**: δ 9.32 (s, 1H), 7.58-7.22 (m, 9H), 6.97 (brs, 1H), 5.02 (s, 1H), 4.40-4.19 (m, 2H), 3.93-3.61 (m, 2H), 3.35 (td, J = 10.8, 8.0 Hz, 1H), 3.01 (dd, J = 19.2, 8.0 Hz, 1H), 2.99 (d, J = 14.0 Hz, 1H), 2.86 (ddt, J = 14.0, 10.8, 2.0 Hz, 1H), 2.56 (dd, J = 19.2, 10.8 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 6 205.3, 191.3, 168.1, 166.9, 147.3, 142.3, 138.9, 130.0 (q, J = 32.7 Hz), 129.3, 127.9, 127.2, 125.4 (q, J = 3.0 Hz), 123.9 (q, J = 271 Hz), 62.4, 61.7, 59.6, 51.5, 47.0, 45.5, 45.3, 44.2, 14.1, 13.2

HRMS (ESI): calcd. for $C_{29}H_{27}F_3NaO_6$ [M+Na]⁺ 551.1652, found 551.1651 Chiral HPLC: (AD-H, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 208 nm) t_{minor} = 9.7 min, t_{major} = 18.4 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 6:1)

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-5-(4-bromophenyl)-6-formyl-3-oxo-1-phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4af)

EtO₂C CO₂Et Br Н CHC 4af

Second reaction time: 2 h

Isolated yield: 60% (151 mg)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{23}} = -165 (c \ 1.18, CHCl_3)$

IR (neat): v_{max} 2982, 1747, 1692, 1488, 1367, 1227, 1011, 879, 754, 701 cm⁻¹ ¹**H NMR (400 MHz, CDCl₃)**: δ 9.30 (s, 1H), 7.48-6.95 (m, 9H), 6.91 (brs, 1H), 4.91 (s, 1H), 4.39-4.18 (m, 2H), 3.97-3.69 (m, 2H), 3.32 (td, J = 10.8, 8.0 Hz, 1H), 3.00 (dd, J = 19.2, 8.0 Hz, 1H), 2.98 (d, J = 14.0 Hz, 1H), 2.84 (ddt, J = 14.0, 10.8, 2.0 Hz, 1H), 2.54 (dd, J = 19.2, 10.8 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 6 205.3, 191.3, 168.2, 166.9, 146.8, 142.5, 139.0, 137.2, 131.6, 130.4, 129.3, 127.8, 127.3, 121.9, 62.3, 61.7, 59.6, 51.4, 47.0, 45.5, 45.1, 44.2, 14.1, 13.4

HRMS (ESI): calcd. for $C_{28}H_{27}BrNaO_6$ [M+Na]+ 561.0884, found 561.0888 Chiral HPLC: (AD-H, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 208 nm) t_{minor} = 15.6 min, t_{major} = 27.6 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 6:1)

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-5-(3-bromophenyl)-6-formyl-3-oxo-1-phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4ag)

Second reaction time: 2 h

Isolated yield: 62% (156 mg)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{26}} = -124$ (*c* 1.16, CHCl₃)

IR (neat): v_{max} 2982, 1747, 1690, 1473, 1366, 1227, 1053, 913, 732, 699 cm⁻¹ ¹**H NMR (400 MHz, CDCl₃)**: δ 9.31 (s, 1H), 7.49-7.00 (m, 9H), 6.93 (brs, 1H), 4.92 (s, 1H), 4.39-4.18 (m, 2H), 3.99-3.68 (m, 2H), 3.33 (td, J = 10.8, 8.0 Hz, 1H), 3.02 (dd, J = 19.2, 8.0 Hz, 1H), 2.98 (d, J = 14.0 Hz, 1H), 2.83 (ddt, J = 14.0, 10.8, 2.0 Hz, 1H), 2.54 (dd, J = 19.2, 10.8 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H), 0.98 (t, J = 7.2 Hz, 3H) ¹³C NMR (100 MHz, CDCl₃): 6 205.4, 191.3, 168.2, 166.8, 147.0, 142.3, 140.5, 139.0, 130.9, 129.9, 129.2, 127.8, 127.3, 122.7, 62.3, 61.8, 59.7, 51.4, 47.1, 45.4, 45.2, 44.1, 14.1, 13.5

HRMS (ESI): calcd. for $C_{28}H_{27}BrNaO_6$ [M+Na]+ 561.0884, found 561.0888 Chiral HPLC: (AD-H, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 208 nm) t_{minor} = 17.2 min, t_{major} = 20.3 min (98% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 5:1)

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-5-(2-bromophenyl)-6-formyl-3-oxo-1-phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4ah)

EtO₂C CO₂Et Н Br СНО Ĥ 4ah

Second reaction time: 9 h

Isolated yield: 56% (141 mg)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{26}} = -95.8 (c \ 1.10, CHCl_3)$

IR (neat): v_{max} 2982, 1745, 1692, 1468, 1367, 1257, 1024, 911, 732, 702 cm⁻¹ ¹**H NMR (400 MHz, CDCl₃)**: δ 9.27 (s, 1H), 7.62-6.97 (m, 9H), 6.94 (brs, 1H), 5.68 (s, 1H), 4.43-4.19 (m, 2H), 3.96 (q, J = 7.2 Hz, 2H), 3.32 (m, 1H), 3.10-2.94 (m, 3H), 2.59 (dd, J = 19.2, 10.8 Hz, 1H), 1.33 (t, J = 7.2 Hz, 3H), 1.02 (t, J = 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 8 206.2, 191.1, 168.4, 167.0, 146.5, 143.5, 139.
2, 138.0, 133.4, 129.6, 129.3, 129.0, 127.8, 127.3, 127.1, 126. 8, 62.3, 62.0, 58.5, 52.6, 47.1, 45.2, 44.5, 44.2, 14.1, 13.4

HRMS (ESI): calcd. for $C_{28}H_{27}BrNaO_6$ [M+Na]+ 561.0884, found 561.0886 Chiral HPLC: (AD-H, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 208 nm) t_{minor} = 35.7 min, t_{major} = 39.7 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 5:1)

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-6-formyl-5-(4-nitrophenyl)-3-oxo-1-phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4ai)

Second reaction time: 3 h

Isolated yield: 66% (157 mg)

Physical state: a brown oil

Optical rotation: $[\alpha]_{D^{25}} = -136 (c \ 1.10, \ CHCl_3)$

IR (neat): V_{max} 2979, 1735, 1687, 1522, 1348, 1253, 913, 731, 701 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 9.32 (s, 1H), 8.16 (d, *J* = 9.2 Hz, 2H), 7.52-7.19 (m, 7H), 7.00 (brs, 1H), 5.05 (s, 1H), 4.41-4.21 (m, 2H), 3.97-3.69 (m, 2H), 3.36 (td, *J* = 10.8, 8.0 Hz, 1H), 3.02 (dd, *J* = 19.2, 8.0 Hz, 1H), 2.97 (d, *J* = 14.0 Hz, 1H), 2.88 (ddt, *J* = 14.0, 10.8, 2.0 Hz, 1H), 2.57 (dd, *J* = 19.2, 10.8 Hz, 1H), 1.31 (t, *J* = 7.2 Hz, 3H), 0.97 (t, *J* = 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 8 205.0, 191.2, 167.9, 166.6, 147.9, 147.3, 145.8, 142.1, 138.8, 129.3, 127.9, 127.4, 127.2, 123.6, 62.5, 61.9, 59.5, 51.5, 47.0, 45.4, 45.2, 44.2, 14.1, 13.5

HRMS (ESI): calcd. for $C_{28}H_{27}NNaO_8$ [M+Na]+ 528.1629, found 528.1628 Chiral HPLC: (AD-H, hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 208 nm) t_{minor} = 16.2 min, t_{major} = 29.8 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 5:1)

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-6-formyl-3-oxo-1,5-diphenyl-1,2,3,3a,5,7ahexahydro-4*H*-indene-4,4-dicarboxylate (4aa)

EtO₂C CO₂Et Н СНО Ĥ 4aa

Second reaction time: 3 h Isolated yield: 74% (160 mg) Physical state: a yellow oil Optical rotation: [α]_D²⁸ = -223 (c 0.98, CHCl₃) IR (neat): v_{max} 2982, 1747, 1691, 1454, 1367, 1227, 912, 732, 702 cm⁻¹ ¹H NMR (400 MHz, CDCl₃): 6 9.31 (s, 1H), 7.48-7.08 (m, 10H), 6.90 (brs, 1H),
4.96 (s, 1H), 4.39-4.18 (m, 2H), 3.95-3.60 (m, 2H), 3.34 (td, J = 10.8, 8.0 Hz,
1H), 3.07 (d, J = 14.0 Hz, 1H), 3.00 (dd, J = 19.2, 8.0 Hz, 1H), 2.84 (ddt, J =
14.0, 10.8, 2.0 Hz, 1H), 2.54 (dd, J = 19.2, 10.8 Hz, 1H), 1.30 (t, J = 7.2 Hz,
3H), 0.90 (t, J = 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 8 205.6, 191.5, 168.5, 167.1, 146.1, 142.8, 139.2, 137.9, 129.2, 128.5, 127.8, 127.8, 127.3, 62.2, 61.5, 59.8, 51.5, 47.1, 45.7, 45.5, 44.3, 14.1, 13.4

HRMS (ESI): calcd. for $C_{28}H_{28}NaO_6$ [M+Na]⁺ 483.1778, found 483.1775 Chiral HPLC: (AD-H, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 208 nm) t_{minor} = 19.0 min, t_{major} = 23.1 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 5:1)

Diethyl (1*S*,3a*R*,5*R*,7a*R*)-6-formyl-5-(furan-2-yl)-3-oxo-1-phenyl-1,2,3,3a,5,7a-hexahydro-4*H*-indene-4,4-dicarboxylate (4aj)

Second reaction time: 2 h

Isolated yield: 35% (73 mg)

Physical state: a brown oil

Optical rotation: $[\alpha]_{D^{26}} = -191 \ (c \ 0.20, \ CHCl_3)$

IR (neat): V_{max} 2983, 1736, 1690, 1498, 1367, 1254, 1013, 755, 702 cm⁻¹

¹**H NMR (400 MHz, CDCl₃)**: δ 9.33 (s, 1H), 7.48-7.08 (m, 6H), 6.82 (brs, 1H), 6.28 (dd, J= 3.2, 1.6 Hz, 1H), 6.12 (d, J= 3.2 Hz, 1H), 5.02 (s, 1H), 4.38-3.86 (m, 4H), 3.37-3.26 (m, 2H), 3.00 (dd, J= 19.2, 8.0 Hz, 1H), 2.79 (ddt, J= 14.0, 10.8, 2.0 Hz, 1H), 2.53 (dd, J= 19.2, 10.8 Hz, 1H), 1.28 (t, J= 7.2 Hz, 3H), 1.13 (t, J= 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): 6 205.6, 191.2, 168.0, 167.1, 150.8, 146.6, 142.6, 140.7, 139.3, 129.2, 127.8, 127.3, 110.7, 109.4, 62.2, 62.0, 58.9, 52.4, 47.0, 45.6, 44.2, 39.7, 14.1, 13.7

HRMS (ESI): calcd. for C₂₆H₂₆NaO₇ [M+Na]⁺ 473.1571, found 473.1568

Chiral HPLC: (AD-H, hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, λ = 208 nm) t_{minor} = 41.9 min, t_{major} = 47.9 min (>99% ee)

Purification: Flash column chromatography on silica gel (hexane/EtOAc = 8:1 to 5:1)

2.5. Determination of the absolute configuration

To a stirred solution of **3a** (808 mg, 2.33 mmol) in toluene (4.7 mL) was added $Ph_3P=CHCO_2Et$ (2.03 g, 5.83 mmol) at 0 °C. After stirring for 2.5 h at room temperature, the mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 7:1) to give **5** (846 mg, 87%).

To a stirred solution of **5** (108 mg, 0.259 mmol) in DMSO (2.6 mL) were added lithium chloride (10.9 mg, 0.259 mmol) and water (9.8 mg, 0.545 mmol) at room temperature. After heating at 150 °C using an oil bath for 20 h, the mixture was extracted with EtOAc. The organic layer was washed with water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 4:1) to give **6** (81.3 mg, 91%).

Diethyl 2-((1*R*,2*R*,3*S*)-2-((*E*)-3-ethoxy-3-oxoprop-1-en-1-yl)-5-oxo-3phenylcyclopentyl)malonate (5)

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{26}} = +70.9 \ (c \ 1.0, \ CHCl_3)$

IR (neat): v_{max} 2982, 1736, 1455, 1371, 1339, 1307, 1227, 1175, 1094, 1033, 702 cm⁻¹

¹**H NMR (400 MHz, CDCl₃)**: δ 7.35-7.21 (m, 5H), 6.73 (dd, *J* = 15.6, 9.2 Hz, 1H), 5.55 (d, *J* = 15.6 Hz, 1H), 4.30-4.04 (m, 6H), 3.90 (d, *J* = 4.4 Hz, 1H), 3.34 (q, *J* = 10.0 Hz, 1H), 3.15 (td, *J* = 11.6, 8.4 Hz, 1H), 2.86 (dd, *J* = 12.4, 4.4 Hz, 1H), 2.81 (dd, *J* = 18.8, 8.4 Hz, 1H), 2.70 (dd, *J* = 18.8, 12.4 Hz, 1H), 1.32-1.19 (m, 9H)

¹³C NMR (100 MHz, CDCl₃): δ 212.9, 167.9, 167.6, 165.6, 146.7, 139.9, 128.7, 127.4, 127.2, 123.7, 61.7, 61.6, 60.3, 53.9, 50.2, 49.8, 46.7, 45.3, 14.0, 13.9, 13.8 HRMS (ESI): calcd. for C₂₃H₂₈NaO₇ [M+Na]⁺ 439.1727, found 439.1727

Ethyl (*E*)-3-((1*R*,2*S*,5*S*)-2-(2-ethoxy-2-oxoethyl)-3-oxo-5phenylcyclopentyl)acrylate (6)

The spectroscopic data of the product agreed with the literature values (*Chem. Sci.* **2020**, *11*, 1205).

¹H NMR (400 MHz, CDCl₃): 8 7.36-7.20 (m, 5H), 6.80 (dd, J = 15.6, 8.8 Hz, 1H), 5.66 (d, J = 15.6 Hz, 1H), 4.20-4.06 (m, 4H), 3.18 (td, J = 11.6, 8.0 Hz, 1H), 3.05 (dd, J = 11.2, 8.8 Hz, 1H), 2.84 (dd, J = 18.8, 8.0 Hz, 1H), 2.79 (dd, J = 17.6, 5.2 Hz, 1H), 2.63 (dd, J = 18.8, 12.4 Hz, 1H), 2.58 (dd, J = 17.6, 4.8 Hz, 1H), 2.51 (m, 1H), 1.26 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H)

Optical rotation: $[\alpha]_{D^{24}} = +92.0$ (*c* 1.0, CHCl₃), Lit.: $[\alpha]_{D^{26}} = +91.61$ (*c* 1.2, CHCl₃)

The absolute configuration was determined by comparison of the optical rotation.

2.6. Unsuccessful substrates for this reaction

 α , β -Unsaturated aldehydes 21, 2m, 2n, 20 were not suitable for the second reaction.

Diethyl (E)-2-(4-formyl-2-oxo-7-phenylhept-4-en-3-yl)malonate (S1)

EtO₂C CO₂Et CHO O H Ph S1

To a stirred solution of 1 (100 mg, 0.467 mmol) and 2l (75.0 mg, 0.467 mmol) in toluene (0.93 mL) were added water (25.0 μ L, 1.38 mmol), catalyst II (42.0 mg, 93.4 μ mol), *p*-nitrophenol (65.0 mg, 0.467 mmol) at 0 °C. After stirring for 24 h at 0 °C, sat. K₂CO₃ solution was added and the mixture was extracted with EtOAc. The organic layer was washed with sat. K₂CO₃ solution and

brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 7:1 to 5:1) to give **S1** (69.0 mg, 39%).

Physical state: a yellow oil

Optical rotation: $[\alpha]_{D^{24}} = +82.6 (c \ 1.1, CHCl_3)$

IR (neat): _{*V*max} 2981, 1730, 1686, 1454, 1368, 1264, 1159, 1032, 753, 700 cm⁻¹ ¹H NMR (400 MHz, CDCl₃): δ 9.34 (s, 1H), 7.35-7.15 (m, 5H), 6.75 (t, *J* = 7.2 Hz, 1H), 4.47 (m, 1H), 4.25-3.96 (m, 5H), 2.88-2.75 (m, 4H), 1.81 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.15 (t, *J* = 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): δ 212.9, 192.9, 167.8, 159.1, 139.8, 128.7, 128.4, 126.5, 61.8, 61.5, 50.9, 34.2, 31.0, 27.3, 13.9, 13.9, 11.7

HRMS (ESI): calcd. for $C_{21}H_{26}NaO_6$ [M+Na]⁺ 397.1622, found 397.1631 Chiral HPLC: (OZ-H, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 208 nm) t_{major} = 11.6 min, t_{minor} = 30.0 min (61% ee)

2.7. Attempts to synthesize ketones with other electron withdrawing groups

Preparation of 2-(2-oxopropylidene)malononitrile (**S2**) and 4,4bis(phenylsulfonyl)but-3-en-2-one (**S3**) with other electron withdrawing functional groups was unsuccessful.

2.8. Attempts to transform 4ab and its derivatives

Decarboxylation of 4ab and its derivatives S5, S7, S8 was tried but failed.

2.9. References

- [1] K. Okuro, H. Alper, J. Org. Chem. 2012, 77, 4420-4424.
- [2] S. R. Smith, S. M. Leckie, R. Holmes, J. Douglas, C. Fallan, P. Shapland,
 D. Pryde, A. M. Z. Slawin, A. D. Smith, *Org. Lett.* 2014, *16*, 2506–2509.
- [3] N. T. Patil, V. Singh, Chem. Commun. 2011, 47, 11116–11118.
- [4] R. Beaud, B. Michelet, Y. Reviriot, A. Martin-Mingot, J. Rodriguez, D. Bonne, S. Thibaudeau, Angew. Chem. Int. Ed. 2020, 59, 1279–1285.
- [5] E. Kim, M. Koh, B. J. Lim, S. B. Park, J. Am. Chem. Soc. 2011, 133, 6642– 6649.
- [6] L. C. Bencze, A. Filip, G. Bánóczi, M. I. Toşa, F. D. Irimie, A. Gellért, L. Poppe, C. Paizs, Org. Biomol. Chem. 2017, 15, 3717–3727.
- [7] P. An, N.-S. Xu, H.-L. Zhang, X.-P. Cao, Z.-F. Shi, W. Wen, *Chem. Asian. J.* 2015, *10*, 1959–1966.
- [8] Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212–4215.
- [9] U. Grošelj, D. Seebach, D. M. Badine, W. B. Schweizer, A. K. Beck, I. Krossing, P. Klose, Y. Hayashi, T. Uchimaru, *Helv. Chim. Acta.* 2009, *92*, 1225–1259.

3. Spectra for compounds

S44

4da

S89

