Supplementary Information

Asymmetric synthesis of unnatural α-amino acids through photoredox-mediated C–O bond activation of aliphatic alcohols

Gregory R. Alvey,^a Elena V. Stepanova,^{a,b} Andrey Shatskiy,^a Josefin Lantz,^a Rachel Willemsen,^a Alix Munoz,^a Peter Dinér,^a Markus D. Kärkäs^{*a}

^a Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

^b Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia

* E-mail: karkas@kth.se

Table of Contents

1. General methods	S1
2. Electrochemical, fluorescence quenching and spectroelectrochemical studies	S1
3. Computational studies	.S2
4. Synthetic procedures	. S 4
4.1 Synthesis of starting materials	S4
Compound 1r (4-((<i>tert</i> -butyldimethylsilyl)oxy)-2-methylbutan-2-ol)	S4
Compound 1s (4-(benzoyloxy)-2-methylbutan-2-ol)	S4
Compound 1u (4-(benzoyloxy)-2-methylbutan-2-ol)	S5
Compound 1v (4-(2-thiophenecarboxy)-2-methylbutan-2-ol)	S5
Compound 1t (3-hydroxy-3-methylbutyl 4-bromobenzoate)	S5
Compound 1d (2-(2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-yl)ethyl benzoate)	S6
Compound 1w (1-(2:3,4:6-diacetone β -D-glucopyranosyloxy) 3-hydroxy-3-methylbutane)	S6
Compound 1I ((3-(hydroxymethyl)-1H-indol-1-yl)(phenyl)methanone)	S7
Compounds 2i , 2j , 2p (<i>tert</i> -alcohols from ketones)	S7
Compounds SI-3, SI-4, SI-5 (homoallylic alcohols)	S8
Compounds 2a–2w, 6a–6d (alkyl methyl oxalates)	S8
Compounds 3a-Na , 3x-Na , 3y-Na (alkyl oxalate salts)	S8
4.2 General procedure for the photoredox-mediated synthesis of unnatural amino acids	S9
Compounds 5a–5w, 7a–7d (unnatural α-amino acids)	S9
4.3 General procedure for <i>N</i> -sulfinyl amide deprotection	S9
Compounds 8a, 8d, 8f, 8i (N-deprotected unnatural α-amino acids)	S9
4.4 Unsuccessful substrates	S9
5. Analytical data	511
Compound SI-1 (3-hydroxy-3-methylbutan-1-ol β-D-glucopyranoside)S	511
Compound SI-2 (3-(((<i>tert</i> -butyldimethylsilyl)oxy)methyl)-1 <i>H</i> -indole)S	511
Compound SI-3 (tert-butyl (1R,3r,5S)-3-allyl-3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate) S	511
Compound SI-4 ((1r,3r,5r,7r)-2-allyladamantan-2-ol)	512
Compound SI-5 (2-allyl-2,3-dihydro-1 <i>H</i> -inden-2-ol)	512
Compound 1d (2-((1 <i>R</i> ,2 <i>R</i> ,4aS,8aS)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl)ethyldecahydronaphthalen-1-yl	yl 512
Compound 1i (<i>tert</i> -butyl 6-hydroxy-6-methyl-2-azaspiro[3.3]heptane-2-carboxylate)S	513
Compound 1 j (<i>tert</i> -butyl 2-hydroxy-2-methyl-7-azaspiro[3.5]nonane-7-carboxylate)	513

Compound 1I ((3-(hydroxymethyl)-1 <i>H</i> -indol-1-yl)(phenyl)methanone)S13
Compound 1p (<i>tert</i> -butyl (S)-4,4-difluoro-2-(2-hydroxypropan-2-yl)pyrrolidine-1-carboxylate) S14
Compound 1r (4-((<i>tert</i> -butyldimethylsilyl)oxy)-2-methylbutan-2-ol)S14
Compound 1s (4-(benzoyloxy)-2-methylbutan-2-ol)
Compound 1t (3-hydroxy-3-methylbutyl 4-bromobenzoate)S15
Compound 1u (4-(nicotynoyloxy)-2-methylbutan-2-ol)
Compound 1v (4-(2-thiophenecarboxy)-2-methylbutan-2-ol)
Compound 1w (1-(2:3,4:6-diacetone β-D-glucopyranosyloxy) 3-hydroxy-3-methylbutane)S16
Compound 2a (methyl (1-methylcyclohexyl) oxalate)S16
Compound 2b (methyl (1-methylcyclopentyl) oxalate)S16
Compound 2c (methyl (2-methyl-2,3-dihydro-1 <i>H</i> -inden-2-yl) oxalate)
Compound 2d ((1 <i>R</i> ,2 <i>R</i> ,4aS,8aS)-1-(2-(benzoyloxy)ethyl)-2,5,5,8a-tetramethyldecahydronaphthalen- 2-yl methyl oxalate)
Compound 2e (methyl ((3 <i>R</i> ,3a <i>S</i> ,6 <i>R</i> ,7 <i>R</i> ,8a <i>S</i>)-3,6,8,8-tetramethyloctahydro-1 <i>H</i> -3a,7-methanoazulen- 6-yl) oxalate)
Compound 2f (1-benzoylcyclohexyl methyl oxalate)
Compound 2g (1-(<i>tert</i> -butoxycarbonyl)-4-methylpiperidin-4-yl methyl oxalate)
Compound 2h (methyl (4-methyltetrahydro-2 <i>H</i> -thiopyran-4-yl) oxalate)S19
Compound 2i (2-(<i>tert</i> -butoxycarbonyl)-6-methyl-2-azaspiro[3.3]heptan-6-yl methyl oxalate) S19
Compound 2j (2-(<i>tert</i> -butoxycarbonyl)-6-methyl-2-azaspiro[3.3]heptan-6-yl methyl oxalate) S20
Compound 2k ((1 <i>R</i> ,2 <i>R</i> ,5 <i>R</i>)-(+)-2-hydroxy-3-pinanone methyl oxalate)S20
Compound 2I ((1-benzoyl-1 <i>H</i> -indol-3-yl)methyl methyl oxalate)
Compound 2m (<i>tert</i> -butyl methyl oxalate)
Compound 2n (methyl (2-methyl-4-phenylbutan-2-yl) oxalate)
Compound 2o (1-chloro-2-methylpropan-2-yl methyl oxalate)
Compound 2p ((<i>S</i>)-2-(1-(<i>tert</i> -butoxycarbonyl)-4,4-difluoropyrrolidin-2-yl)propan-2-yl methyl oxalate)
Compound 2q (methyl (2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl) oxalate)
Compound 2r (4-((<i>tert</i> -butyldimethylsilyl)oxy)-2-methylbutan-2-yl methyl oxalate)
Compound 2s (4-(benzoyloxy)-2-methylbutan-2-yl methyl oxalate)
Compound 2t (4-(4-bromobenzoyloxy)-2-methylbutan-2-yl methyl oxalate)
Compound 2u (4-(nicotinoyloxy)-2-methylbutan-2-yl methyl oxalate)
Compound 2v (4-(2-thiophenecarboxy)-2-methylbutan-2-yl methyl oxalate)

Compound 2w (2:3,4:5-diacetylidene- β -D-glucopyranosyloxy)-2-methylbutan-2-yl methyl oxalate)
Compound 2x (cyclohexyl methyl oxalate)
Compound 2y (<i>n</i> -hexyl methyl oxalate)
Compound 3a-Na (sodium 2-(1-methyl-cyclohexyloxy)-2-oxoacetate)
Compound 3x-Na (sodium 2-(cyclohexyloxy)-2-oxoacetate)
Compound 3y-Na (sodium 2-(hexyloxy)-2-oxoacetate)
Compound 5a (ethyl (R)-2-(((R)-mesitylsulfinyl)amino)-2-(1-methylcyclohexyl)acetate)
Compound 5b (ethyl (<i>R</i>)-2-(((<i>R</i>)-mesitylsulfinyl)amino)-2-(1-methylcyclopentyl)acetate)
Compound 5c (ethyl (<i>R</i>)-2-(((<i>R</i>)-mesitylsulfinyl)amino)-2-(2-methyl-2,3-dihydro-1 <i>H</i> -inden-2- yl)acetate)
Compound 5d (2-((1 <i>R</i> ,2 <i>R</i> ,4a <i>S</i> ,8a <i>S</i>)-2-((<i>R</i>)-2-ethoxy-1-(((<i>R</i>)-mesitylsulfinyl)amino)-2-oxoethyl)- 2,5,5,8a-tetramethyldecahydronaphthalen-1-yl)ethyl benzoate)
Compound 5e (ethyl (<i>R</i>)-2-(((<i>R</i>)-mesitylsulfinyl)amino)-2-((3 <i>R</i> ,3a <i>S</i> ,6 <i>S</i> ,7 <i>R</i> ,8a <i>S</i>)-3,6,8,8- tetramethyloctahydro-1 <i>H</i> -3a,7-methanoazulen-6-yl)acetate)S28
Compound 5f (ethyl (R)-2-(1-benzoylcyclohexyl)-2-(((R)-mesitylsulfinyl)amino)acetate)
Compound 5g (<i>tert</i> -butyl 4-((<i>R</i>)-2-ethoxy-1-(((<i>R</i>)-mesitylsulfinyl)amino)-2-oxoethyl)-4- methylpiperidine-1-carboxylate)
Compound 5h (ethyl (2 <i>R,</i> 3 <i>R</i>)-2-(((<i>R</i>)-mesitylsulfinyl)amino)-3-(tetrahydro-2 <i>H</i> -thiopyran-4- yl)butanoate)
Compound 5i (<i>tert</i> -butyl 6-((<i>R</i>)-2-ethoxy-1-(((<i>R</i>)-mesitylsulfinyl)amino)-2-oxoethyl)-6-methyl-2- azaspiro[3.3]heptane-2-carboxylate)
Compound 5j (<i>tert</i> -butyl 2-((<i>R</i>)-2-ethoxy-1-(((<i>R</i>)-mesitylsulfinyl)amino)-2-oxoethyl)-2-methyl-7- azaspiro[3.5]nonane-7-carboxylate)
Compound 5k (ethyl (2 <i>R</i>)-2-(((<i>R</i>)-mesitylsulfinyl)amino)-2-(2,6,6-trimethyl-3- oxobicyclo[3.1.1]heptan-2-yl)acetate)S31
Compound 5I (ethyl 1-benzoyl- N^{α} -((<i>R</i>)-mesitylsulfinyl)- <i>D</i> -tryptophanate)
Compound 5m (ethyl (<i>R</i>)-2-(((<i>R</i>)-mesitylsulfinyl)amino)-3,3-dimethylbutanoate)S32
Compound 5n (ethyl (<i>R</i>)-2-(((<i>R</i>)-mesitylsulfinyl)amino)-3,3-dimethyl-5-phenylpentanoate)
Compound 50 (ethyl (<i>R</i>)-4-chloro-2-(((<i>R</i>)-mesitylsulfinyl)amino)-3,3-dimethylbutanoate)
Compound 5p (<i>tert</i> -butyl (<i>S</i>)-2-((<i>R</i>)-4-ethoxy-3-(((<i>R</i>)-mesitylsulfinyl)amino)-2-methyl-4-oxobutan-2- yl)-4,4-difluoropyrrolidine-1-carboxylate)
Compound 5q (ethyl (2 <i>R</i>)-2-(((<i>R</i>)-mesitylsulfinyl)amino)-3-methyl-3-(5-methyl-5- vinyltetrahydrofuran-2-yl)butanoate)
Compound 5r (ethyl (<i>R</i>)-5-((tert-butyldimethylsilyl)oxy)-2-(((<i>R</i>)-mesitylsulfinyl)amino)-3,3- dimethylpentanoate)

	Compound 5s ((<i>R</i>)-5-ethoxy-4-(((<i>R</i>)-mesitylsulfinyl)amino)-3,3-dimethyl-5-oxopentyl benzoate) S35
	Compound 5t ((<i>R</i>)-5-ethoxy-4-(((<i>R</i>)-mesitylsulfinyl)amino)-3,3-dimethyl-5-oxopentyl 4- bromobenzoate)
	Compound 5u ((<i>R</i>)-5-ethoxy-4-(((<i>R</i>)-mesitylsulfinyl)amino)-3,3-dimethyl-5-oxopentyl nicotinate) S36
	Compound 5v ((<i>R</i>)-5-ethoxy-4-(((<i>R</i>)-mesitylsulfinyl)amino)-3,3-dimethyl-5-oxopentyl thiophene-2- carboxylate)
	Compound 5w (ethyl (<i>R</i>)-2-(((<i>R</i>)-mesitylsulfinyl)amino)-3,3-dimethyl-5-(((3a <i>R</i> ,4 <i>R</i> ,5a <i>R</i> ,9a <i>R</i> ,9b <i>S</i>)- 2,2,8,8-tetramethylhexahydro-[1,3]dioxolo[4',5':4,5]pyrano[3,2- <i>d</i>][1,3]dioxin-4-yl)oxy)pentanoate)
	Compound 6a ((1 <i>R</i> ,3 <i>r</i> ,5 <i>S</i>)-3-allyl-8-(<i>tert</i> -butoxycarbonyl)-8-azabicyclo[3.2.1]octan-3-yl methyl oxalate)
	Compound 6b ((1 <i>r</i> ,3 <i>r</i> ,5 <i>r</i> ,7 <i>r</i>)-2-allyladamantan-2-yl methyl oxalate)
	Compound 6c (2-allyl-2,3-dihydro-1 <i>H</i> -inden-2-yl methyl oxalate)S38
	Compound 6d ((<i>R</i>)-1-isopropyl-4-methylcyclohex-3-en-1-yl methyl oxalate, (–)-terpineolyl methyloxalate)
	Compound 7a (<i>tert</i> -butyl 4'-((<i>R</i>)-3-ethoxy-2-(((<i>R</i>)-mesitylsulfinyl)amino)-3-oxopropyl)-5'- oxodihydro-3' <i>H</i> -8-azaspiro[bicyclo[3.2.1]octane-3,2'-furan]-8-carboxylate)
	Compound 7b (ethyl (<i>R</i>)-2-(((<i>R</i>)-mesitylsulfinyl)amino)-3-((1 <i>R</i> ,3 <i>R</i>)-5'-oxodihydro-3' <i>H</i> -spiro[adamantane-2,2'-furan]-4'-yl)propanoate)
	Compound 7c (ethyl (<i>R</i>)-2-(((<i>R</i>)-mesitylsulfinyl)amino)-3-(5-oxo-1',3',4,5-tetrahydro-3 <i>H</i> -spiro[furan-2,2'-inden]-4-yl)propanoate)
	Compound 7d (ethyl (2 <i>R</i>)-2-((1 <i>S</i> ,2 <i>R</i>)-5-isopropyl-2-methyl-7-oxo-6-oxabicyclo[3.2.1]octan-2-yl)-2- (((<i>R</i>)-mesitylsulfinyl)amino)acetate)
	Compound 8a (ethyl (R)-2-amino-2-(1-methylcyclohexyl)acetate, trifluoroacetate salt)
	Compound 8d (2-((1 <i>R</i> ,2 <i>R</i> ,4aS,8aS)-2-((<i>R</i>)-1-amino-2-ethoxy-2-oxoethyl)-2,5,5,8a- tetramethyldecahydronaphthalen-1-yl)ethyl benzoate)
	Compound 8f (ethyl (<i>R</i>)-2-amino-2-(1-benzoylcyclohexyl)acetate, trifluoroacetate salt)
	Compound 8m (ethyl (R)-2-amino-3,3-dimethylbutanoate, trifluoroacetate salt)
6. N	IMR spectra
	¹ H NMR (500 MHz, MeOD) of compound SI-1
	¹³ C NMR (126 MHz, MeOD) of compound SI-1
	COSY of compound SI-1
	¹ H NMR (500 MHz, CDCl₃) of compound SI-2
	¹³ C NMR (126 MHz, CDCl ₃) of compound SI-2
	¹ H NMR (500 MHz, CDCl₃) of compound SI-3
	¹³ C NMR (126 MHz, CDCl ₃) of compound SI-3

¹ H NMR (500 MHz, CDCl ₃) of compound SI-4	S50
¹³ C NMR (126 MHz, CDCl ₃) of compound SI-4	S51
¹ H NMR (500 MHz, CDCl ₃) of compound SI-5	S52
¹³ C NMR (126 MHz, CDCl ₃) of compound SI-5	S53
¹ H NMR (500 MHz, CDCl ₃) of compound 1d	\$54
¹³ C NMR (126 MHz, CDCl ₃) of compound 1d	\$55
¹ H NMR (500 MHz, CDCl ₃) of compound 1i	S56
¹³ C NMR (126 MHz, CDCl ₃) of compound 1i	S57
¹ H NMR (500 MHz, CDCl₃) of compound 1j	S58
¹³ C NMR (126 MHz, CDCl ₃) of compound 1 j	S59
¹ H NMR (500 MHz, CDCl ₃) of compound 1I	S60
¹³ C NMR (126 MHz, CDCl ₃) of compound 1 I	S61
¹ H NMR (500 MHz, CDCl ₃) of compound 1p	S62
¹³ C NMR (126 MHz, CDCl ₃) of compound 1p	S63
¹ H NMR (500 MHz, CDCl ₃) of compound 1r	S64
¹³ C NMR (126 MHz, CDCl ₃) of compound 1r	S65
¹ H NMR (500 MHz, CDCl ₃) of compound 1s	S66
¹³ C NMR (126 MHz, CDCl ₃) of compound 1s	S67
¹ H NMR (500 MHz, CDCl ₃) of compound 1t	S68
¹³ C NMR (126 MHz, CDCl ₃) of compound 1t	S69
¹ H NMR (500 MHz, CDCl ₃) of compound 1u	S70
¹³ C NMR (126 MHz, CDCl ₃) of compound 1u	S71
¹ H NMR (500 MHz, CDCl₃) of compound 1v	S72
¹³ C NMR (126 MHz, CDCl ₃) of compound 1ν	S73
¹ H NMR (500 MHz, CDCl₃) of compound 1w	S74
¹³ C NMR (126 MHz, CDCl ₃) of compound 1w	S75
COSY of compound 1w	S76
HSQC of compound 1w	S77
¹ H NMR (500 MHz, CDCl₃) of compound 2a	S78
¹³ C NMR (126 MHz, CDCl ₃) of compound 2a	S79
¹ H NMR (500 MHz, CDCl ₃) of compound 2b	S80
¹³ C NMR (126 MHz, CDCl ₃) of compound 2b	S81
¹ H NMR (500 MHz, CDCl₃) of compound 2c	\$82

¹³ C NMR (126 MHz, CDCl ₃) of compound 2c	S83
¹ H NMR (500 MHz, CDCl₃) of compound 2d	S84
¹³ C NMR (126 MHz, CDCl ₃) of compound 2d	S85
¹ H NMR (500 MHz, CDCl₃) of compound 2e	S86
¹³ C NMR (126 MHz, CDCl ₃) of compound 2e	S87
¹ H NMR (500 MHz, CDCl₃) of compound 2f	S88
¹³ C NMR (126 MHz, CDCl ₃) of compound 2f	S89
¹ H NMR (500 MHz, CDCl₃) of compound 2g	S90
¹³ C NMR (126 MHz, CDCl ₃) of compound 2g	S91
¹ H NMR (500 MHz, CDCl₃) of compound 2h	S92
¹³ C NMR (126 MHz, CDCl ₃) of compound 2h	S93
¹ H NMR (500 MHz, CDCl₃) of compound 2i	S94
¹³ C NMR (126 MHz, CDCl ₃) of compound 2i	S95
¹ H NMR (500 MHz, CDCl₃) of compound 2j	S96
¹³ C NMR (126 MHz, CDCl ₃) of compound 2j	S97
¹ H NMR (500 MHz, CDCl₃) of compound 2k	S98
¹³ C NMR (126 MHz, CDCl ₃) of compound 2k	S99
¹ H NMR (500 MHz, CDCl₃) of compound 2I	S100
¹³ C NMR (126 MHz, CDCl ₃) of compound 2I	\$101
¹ H NMR (500 MHz, CDCl₃) of compound 2m	S102
¹³ C NMR (126 MHz, CDCl ₃) of compound 2m	\$103
¹ H NMR (500 MHz, CDCl ₃) of compound 2n	\$104
¹³ C NMR (126 MHz, CDCl ₃) of compound 2n	\$105
¹ H NMR (500 MHz, CDCl ₃) of compound 20	S106
¹³ C NMR (126 MHz, CDCl ₃) of compound 20	S107
¹ H NMR (500 MHz, CDCl ₃) of compound 2p	\$108
¹³ C NMR (126 MHz, CDCl ₃) of compound 2p	\$109
¹ H NMR (500 MHz, CDCl ₃) of compound 2q	
¹³ C NMR (126 MHz, CDCl ₃) of compound 2q	S111
¹ H NMR (500 MHz, CDCl ₃) of compound 2r	S112
¹³ C NMR (126 MHz, CDCl ₃) of compound 2r	S113
¹ H NMR (500 MHz, CDCl ₃) of compound 2s	S114
¹³ C NMR (126 MHz, CDCl ₃) of compound 2s	S115

¹ H NMR (500 MHz, CDCl ₃) of compound 2t	S116
¹³ C NMR (126 MHz, CDCl ₃) of compound 2t	S117
¹ H NMR (500 MHz, CDCl ₃) of compound 2u	S118
¹³ C NMR (126 MHz, CDCl ₃) of compound 2u	S119
¹ H NMR (500 MHz, CDCl ₃) of compound 2ν	S120
¹³ C NMR (126 MHz, CDCl ₃) of compound 2v	\$121
¹ H NMR (500 MHz, CDCl ₃) of compound 2w	S122
¹³ C NMR (126 MHz, CDCl ₃) of compound 2w	S123
COSY of compound 2w	S124
¹ H NMR (500 MHz, CDCl₃) of compound 2x	S125
¹³ C NMR (126 MHz, CDCl ₃) of compound 2x	S126
¹ H NMR (500 MHz, CDCl₃) of compound 2y	S127
¹³ C NMR (126 MHz, CDCl ₃) of compound 2y	S128
¹ H NMR (400 MHz, DMSO) of compound 3a-Na	S129
¹³ C NMR (101 MHz, DMSO) of compound 3a-Na	S130
¹ H NMR (500 MHz, DMSO) of compound 3x-Na	\$131
¹³ C NMR (126 MHz, DMSO) of compound 3x-Na	S132
¹ H NMR (500 MHz, DMSO) of compound 3y-Na	S133
¹³ C NMR (126 MHz, DMSO) of compound 3y-Na	\$134
¹ H NMR (500 MHz, CDCl ₃) of compound 5a	S135
¹³ C NMR (126 MHz, CDCl ₃) of compound 5a	S136
¹ H NMR (500 MHz, CDCl ₃) of compound 5b	S137
¹³ C NMR (126 MHz, CDCl ₃) of compound 5b	S138
¹ H NMR (500 MHz, CDCl₃) of compound 5c	S139
¹³ C NMR (126 MHz, CDCl ₃) of compound 5 c	S140
COSY of compound 5c	S141
HSQC of compound 5c	S142
¹ H NMR (500 MHz, CDCl ₃) of compound 5d	S143
¹³ C NMR (126 MHz, CDCl ₃) of compound 5d	S144
COSY of compound 5d	S145
HSQC of compound 5d	S146
HMBC of compound 5d	S147
¹ H NMR (500 MHz, CDCl₃) of compound 5e	S148

¹³ C NMR (126 MHz, CDCl ₃) of compound 5e	S149
COSY of compound 5e	S150
HSQC of compound 5e	\$151
¹ H NMR (500 MHz, CDCl ₃) of compound 5f	\$152
¹³ C NMR (126 MHz, CDCl ₃) of compound 5f	\$153
COSY of compound 5f	S154
HSQC of compound 5f	S155
¹ H NMR (500 MHz, CDCl ₃) of compound 5g	S156
¹³ C NMR (126 MHz, CDCl ₃) of compound 5g	S157
¹ H NMR (500 MHz, CDCl ₃) of compound 5h	S158
¹³ C NMR (126 MHz, CDCl ₃) of compound 5h	S159
COSY of compound 5h	S160
HSQC of compound 5h	S161
¹ H NMR (500 MHz, CDCl ₃) of compound 5i	S162
¹³ C NMR (126 MHz, CDCl ₃) of compound 5i	S163
COSY of compound 5i	S164
HSQC of compound 5i	S165
¹ H NMR (500 MHz, CDCl ₃) of compound 5 j	S166
¹³ C NMR (126 MHz, CDCl ₃) of compound 5 j	S167
COSY of compound 5j	S168
HSQC of compound 5j	S169
^{1}H NMR (500 MHz, CDCl_3) of compound 5k, β -diastereomer 5k-1	S170
$^{13}\textbf{C}$ NMR (126 MHz, CDCl3) of compound 5k, β -diastereomer 5k-1	S171
COSY of compound 5k, β -diastereomer 5k-1	S172
HSQC of compound 5k, β -diastereomer 5k-1	S173
HMBC of compound 5k , β -diastereomer 5k-1	S174
^{1}H NMR (500 MHz, CDCl3) of compound 5k, β -diastereomer 5k-2	S175
^{13}C NMR (126 MHz, CDCl3) of compound 5k, β -diastereomer 5k-2	S176
COSY of compound 5k, β -diastereomer 5k-2	S177
HSQC of compound 5k, β-diastereomer 5k-2	S178
HMBC of compound 5k , β -diastereomer 5k-2	S179
¹ H NMR (500 MHz, CDCl ₃) of compound 5 I	S180
¹³ C NMR (126 MHz, CDCl ₃) of compound 5 I	S181

COSY of compound 5I	S182
HSQC of compound 51	S183
HMBC of compound 51	S184
¹ H NMR (500 MHz, CDCl₃) of compound 5m	S185
¹³ C NMR (126 MHz, CDCl ₃) of compound 5m	S186
¹ H NMR (500 MHz, CDCl₃) of compound 5n	S187
¹³ C NMR (126 MHz, CDCl ₃) of compound 5n	S188
COSY of compound 5n	S189
HSQC of compound 5n	S190
¹ H NMR (500 MHz, CDCl ₃) of compound 50	S191
¹³ C NMR (126 MHz, CDCl ₃) of compound 50	S192
¹ H NMR (500 MHz, CDCl ₃) of compound 5p	S193
¹³ C NMR (126 MHz, CDCl ₃) of compound 5p	S194
¹ H NMR (500 MHz, CDCl₃) of compound 5q	\$195
¹³ C NMR (126 MHz, CDCl ₃) of compound 5q	S196
COSY of compound 5q	S197
HSQC of compound 5q	S198
HMBC of compound 5q	S199
¹ H NMR (500 MHz, CDCl ₃) of compound 5r	S200
¹³ C NMR (126 MHz, CDCl₃) of compound 5r	S201
COSY of compound 5r	S202
HSQC of compound 5r	S203
¹ H NMR (500 MHz, CDCl ₃) of compound 5s	S204
¹³ C NMR (126 MHz, CDCl ₃) of compound 5s	S205
COSY of compound 5s	S206
HSQC of compound 5s	S207
¹ H NMR (500 MHz, CDCl ₃) of compound 5t	S208
¹³ C NMR (126 MHz, CDCl₃) of compound 5t	S209
COSY of compound 5t	S210
HSQC of compound 5t	S211
¹ H NMR (500 MHz, CDCl₃) of compound 5u	S212
¹³ C NMR (126 MHz, CDCl ₃) of compound 5u	S213
COSY of compound 5u	

HSQC of compound 5u	S215
¹ H NMR (500 MHz, CDCl ₃) of compound 5v	S216
¹³ C NMR (126 MHz, CDCl ₃) of compound 5ν	S217
COSY of compound 5v	S218
HSQC of compound 5v	S219
¹ H NMR (500 MHz, CDCl ₃) of compound 5w	S220
¹³ C NMR (126 MHz, CDCl ₃) of compound 5w	S221
COSY of compound 5w	S222
HSQC of compound 5w	S223
¹ H NMR (500 MHz, CDCl ₃) of compound 6a	\$224
¹³ C NMR (126 MHz, CDCl ₃) of compound 6a	S225
¹ H NMR (500 MHz, CDCl ₃) of compound 6b	\$226
¹³ C NMR (126 MHz, CDCl ₃) of compound 6b	\$227
¹ H NMR (500 MHz, CDCl ₃) of compound 6c	S228
¹³ C NMR (126 MHz, CDCl ₃) of compound 6c	S229
¹ H NMR (500 MHz, CDCl ₃) of compound 6d	S230
¹³ C NMR (126 MHz, CDCl ₃) of compound 6d	\$231
¹ H NMR (500 MHz, CDCl ₃) of compound 7a	S232
¹³ C NMR (126 MHz, CDCl ₃) of compound 7a	S233
COSY of compound 7a	S234
HSQC of compound 7a	S235
¹ H NMR (500 MHz, CDCl ₃) of compound 7b	S236
¹³ C NMR (126 MHz, CDCl ₃) of compound 7b	S237
COSY of compound 7b	S238
HSQC of compound 7b	S239
¹ H NMR (500 MHz, CDCl ₃) of compound 7c	S240
¹³ C NMR (126 MHz, CDCl₃) of compound 7c	S241
COSY of compound 7c	S242
HSQC of compound 7c	S243
¹ H NMR (500 MHz, CDCl ₃) of compound 7d	S244
¹³ C NMR (126 MHz, CDCl₃) of compound 7d	S245
COSY of compound 7d	S246
HSQC of compound 7d	S247

HMBC of compound 7d	S248
¹ H NMR (500 MHz, MeOD) of compound 8a	S249
¹³ C NMR (126 MHz, MeOD) of compound 8a	S250
¹⁹ F NMR (377 MHz, MeOD) of compound 8a	S251
¹ H NMR (500 MHz, CDCl₃) of compound 8d	S252
¹³ C NMR (126 MHz, CDCl₃) of compound 8d	S253
COSY of compound 8d	S254
HSQC of compound 8d	S255
¹ H NMR (500 MHz, MeOD) of compound 8f	S256
¹³ C NMR (126 MHz, MeOD) of compound 8f	S257
¹⁹ F NMR (377 MHz, MeOD) of compound 8f	S258
¹ H NMR (500 MHz, MeOD) of compound 8m	S259
¹³ C NMR (126 MHz, CDCl₃) of compound 8m	S260
¹⁹ F NMR (377 MHz, MeOD) of compound 8m	S261
7. Cartesian coordinates and energies	S262
PC4	S262
PC4*	S263
PC4 ^{red}	S264
Sodium 1-methylcyclohexyloxalate (3 _{tert} ·Na ⁺)	S265
1-Methylcyclohexyl oxyacyl radical — CO2 — sodium complex (10 _{tert} ·CO2·Na)	S266
1-Methylcyclohexyl oxyacyl radical (axial) (10 _{tert} -ax)	S266
1-Methylcyclohexyl oxyacyl radical (equatorial) (10 _{tert} -eq)	S267
CO ₂	S267
TS for CO ₂ elimination from 1-methylcyclohexyl oxyacyl radical (axial) (TS1 _{tert} -ax)	S268
TS for CO ₂ elimination from 1-methylcyclohexyl oxyacyl radical (equatorial) (TS1 $_{tert}$ -eq) S268
1-Methylcyclohexyl radical — CO ₂ complex (11 _{tert} ·CO ₂)	S269
1-Methylcyclohexyl radical (equatorial) (11 _{tert} -eq)	S269
1-Methylcyclohexyl radical (axial) (11 _{tert} -ax)	S270
s-cis conformer of N-sulfinyl imine (4)	S270
1-Methylcyclohexyl radical (equatorial) — N-sulfinyl imine 4 re-precomplex (11 _{tert} ·4-e	q) S271
1-Methylcyclohexyl radical (axial) — N-sulfinyl imine 4 re-precomplex (11 _{tert} ·4-ax)	S272
re-TS for 1-methylcyclohexyl radical (equatorial) addition to N-sulfinyl imine 4 (TS2 $_{ m tert}$	-eq) S273
re-TS for 1-methylcyclohexyl radical (axial) addition to N-sulfinyl imine 4 (TS2 _{tert} -ax) .	S274

(R)-configured adduct of 4 with 1-methylcyclohexyl radical (equatorial) (12 _{tert} -eq)	S275
(R)-configured adduct of 4 with 1-methylcyclohexyl radical (axial) (12 _{tert} -ax)	S276
Reduced (R)-configured adduct of 4 with 1-methylcyclohexyl radical (5_{tert})	S277
Sodium cyclohexyloxalate (axial) (3 _{sec} ·Na ⁺ -ax)	S278
Sodium cyclohexyloxalate (equatorial) (3 _{sec} ·Na ⁺ -eq)	S278
Cyclohexyl oxyacyl radical (axial) – CO ₂ – sodium complex (10 _{sec} ·CO ₂ ·Na ⁺ -ax)	S279
Cyclohexyl oxyacyl radical (axial) (10 _{sec} -ax)	S279
Cyclohexyl oxyacyl radical (equatorial) (10sec-eq)	S280
TS for CO ₂ elimination from cyclohexyl oxyacyl radical (axial) (TS1 _{sec} -ax)	S280
TS for CO ₂ elimination from cyclohexyl oxyacyl radical (equatorial) (TS1 _{sec} -eq)	S281
Cyclohexyl radical — CO ₂ complex (11 _{sec} ·CO ₂)	S281
Cycloxehyl radical (11 _{sec})	S282
Cyclohexyl radical (axial) — N-sulfinyl imine 4 re-precomplex (11 _{sec} ·4-ax)	S282
Cyclohexyl radical (equatorial) — N-sulfinyl imine 4 re-precomplex (11 _{sec} ·4-eq)	S283
re-TS for cyclohexyl radical (axial) addition to N-sulfinyl imine 4 (TS2 _{sec} -ax)	S284
re-TS for cyclohexyl radical (equatorial) addition to N-sulfinyl imine 4 (TS2 _{sec} -eq)	S285
(R)-configured adduct of 4 with cycloxehyl radical (12 _{sec})	S286
Reduced (R)-configured adduct of 4 with cycloxehyl radical (5 _{sec} ⁻)	S287
Sodium n-hexyloxalate (3 _{prim} ·Na ⁺)	S288
n-Hexyl oxoacyl radical – CO ₂ – sodium complex (10_{prim} ·CO ₂ ·Na ⁺)	S288
n-Hexyl oxyacyl radical (10 _{prim})	S289
TS for CO ₂ elimination from n-hexyl oxyacyl radical (TS1 _{prim})	S289
n-Hexyl radical — CO ₂ complex (11 _{prim} ·CO ₂)	S290
n-Hexyl radical (11 _{prim})	S290
n-Hexyl radical — N-sulfinyl imine 4 re-precomplex (11 _{prim} ·4)	S291
re-TS for n-hexyl radical addition to N-sulfinyl imine 4 (TS2 _{prim})	S292
(R)-configured adduct of 4 with n-hexyl radical (12 _{prim})	S293
Reduced (R)-configured adduct of 4 with n-hexyl radical (5 _{prim} ⁻)	S294
2-Allyladamantan-2-yl oxyacyl radical (10')	S295
TS for CO₂ elimination from 2-allyladamantan-2-yl oxyacyl radical (TS3)	S295
2-Allyladamantan-2-yl radical — CO2 complex (11·CO2)	S296
TS for intramolecular cyclization of 2-allyladamantan-2-yl oxyacyl radical (TS4)	S297
Intramolecular cyclization product from 2-allyladamantan-2-yl oxyacyl radical (11')	S297

rences

1. General methods

N-sulfinyl imine **4**,¹ reference compound **8m**¹ and 4CzIPN (**PC2**) photocatalyst² were synthesized according to the previously published procedures. NMR spectra were recorded in CDCl₃, MeOH-*d*₄ or DMSO-*d*₆ on Bruker Avance DMX 500 MHz or Bruker Ascend 400 MHz NMR spectrometers and internally calibrated against the residual undeuterated solvent peaks (CHCl₃: δ 7.26 for ¹H NMR and δ 77.16 for ¹³C NMR; CHD₂OD: δ 3.31 for ¹H NMR and δ 49.00 for ¹³C NMR; DMSO-*d*₅: δ 2.50 for ¹H NMR and δ 39.52 for ¹³C NMR). The photocatalytic reactions were carried out in 8 mL or 12 mL vials equipped with a stirring bar and a septum. The reaction vials were placed in a 3D-printed polypropylene holder to maintain the distance between the reaction vial and the lamp at ca. 2 cm and illuminated with 440 nm LED (40 W, Kessil PR160L, set to maximum intensity) with continuous stirring at 1200 rpm and fan cooling. The isolated products were purified by column chromatography with silica gel (high-purity grade, 60 Å, 130–270 mesh, Sigma-Aldrich, Art. No. 288608-1KG) or by preparative thin-layer chromatography (1 mm silica gel layer on glass, 60 Å, Merk, Art. No. 1.13895.0001).

2. Electrochemical, fluorescence quenching and spectroelectrochemical studies

Electrochemical measurements were performed under Ar in a one-compartment electrochemical cell with glassy carbon as the working electrode (\emptyset 3 mm), Pt coil as the auxiliary electrode, and saturated calomel electrode (SCE) as the reference electrode, using CHI750E bipotentiostat (CH Instruments). The cyclic voltammetry (CV) measurements of alkyl oxalate salts **3a-Na**, **3x-Na** and **3y-Na** were performed at 0.05 V s⁻¹ scan rate on 3 mM solutions of the salts in DMF/MeCN/water 5.4/0.6/0.027 (vol.) with 0.1 M TBAPF₆ as the supporting electrolyte (Fig. 4B and S1).

Fig. S1. Electrochemical measurements for alkyl oxalate salts 3a-Na, 3x-Na and 3y-Na.

The steady-state fluorescence quenching measurements were performed under Ar on FS5 spectrofluorometer (Edinburgh Instruments) using 10 x 10 mm quartz cuvettes. The measurements were carried out on the solutions of photocatalyst **PC4** (15 μ M) in DMF/MeCN/water 5.4/0.6/0.027 (vol.) with varying concentration of the oxalate salt **3y-Na** (0 mM, 5 mM, 10 mM) or imine **4**. The emission spectra were recorded at 500–1000 nm with excitation at 420 nm (Fig. 4B and S2).

Fig. S2. Fluorescence quenching measurements for photocatalyst PC4 and imine 4.

Spectroelectrochemical measurements aiming at obtaining the UV-vis spectrum of unstable **PC4**^{red} species were performed using CHI750E bipotentiostat (CH Instruments), Varian Cary 50 UV-vis Spectrophotometer, and SEC-C Spectroelectrochemical Cell (ALS, 1 mm optical path length, Pt mesh as the working and the auxiliary electrodes, and Ag/AgCl reference electrode, externally calibrated against SCE for conversion of the potential values). The measurements were performed on solution of **PC4** (0.2 mM) in DMF/MeCN/water 5.4/0.6/0.027 (vol.) with 0.1 M TBAPF₆ as the supporting electrolyte (Fig. 4B).

Photoinduced reduction of oxalate salts **3a-Na**, **3x-Na** and **3y-Na** by the **PC4** photocatalyst were performed under Ar on Varian Cary 50 UV-vis Spectrophotometer, using a quartz cuvette from the SEC-C Spectroelectrochemical Cell (ALS, 1 mm optical path length). The measurements were carried out on 1 mM solutions of **3a-Na**, **3x-Na** and **3y-Na** with 0.2 mM **PC4** in DMF/MeCN/water 5.4/0.6/0.027 (vol.). The UV-vis spectra were recorded before and after irradiation of the solutions with 440 nm LED (40 W, Kessil PR160L, set to maximum intensity) for 30 s (Fig. 4B). The LED was positioned ca. 2 cm from the UV-vis cuvette.

3. Computational studies

All stationary points were optimized, first at the B3LYP/6-311+G(d,p) level of theory, and further reoptimized at the B3LYP/6-311+G(d,p) level of theory,^{3,4,5,6} as implemented in Gaussian 16 Rev D.01. In the optimizations, the Grimme correction for dispersion (D3) was used in combination with the Conductorlike Polarizable Continuum Model (CPCM) using the parameters for acetonitrile and the default Unified Force Field radii (UFF)^{7,8} as implemented in Gaussian 16 Rev D.01.⁹ All geometries were characterized as

Fig. S3. Full calculated energy diagrams for substrates 3a (3_{tert}), 3x (3_{sec}), and 3y (3_{prim}).

minima or saddle points on the potential-energy surface (PES) by using the sign of the eigenvalues of the force-constant matrix obtained from a frequency calculation. Transition states with one imaginary frequency were confirmed to describe the correct movement on the PES by mode analysis and by intrinsic reaction coordinate (IRC) calculations connecting the correct reactants and products (Fig. 4C and S3).

4. Synthetic procedures

4.1 Synthesis of starting materials

Compound **1r** (4-((*tert*-butyldimethylsilyl)oxy)-2-methylbutan-2-ol)

3-Methyl-1,3-butanediol (1.07 mL, 10 mmol, 1 equiv.) and DMAP (122 mg, 0.1 mmol, 0.1 equiv.) were dissolved in dry CH₂Cl₂ (10 mL) under N₂ and cooled with an ice bath. Thereafter, DIPEA (2.6 mL, 15 mmol,1.5 equiv.) and *tert*-butyldimethylsilyl chloride (1.808 g, 12 mmol, 1.2 equiv.) were added sequentially and the reaction mixture was stirred with an ice bath cooling under N₂. After 30 min the reaction mixture was allowed to warm to r.t. and stirred for 20 h. The reaction was quenched by sat. NH₄Cl (10 mL), the organic phase was separated, and the water phase was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic phases were dried over Na₂SO₄, filtered and concentrated *in vacuo* to obtain the crude product as a brown oil. The crude product was purified by column chromatography (petroleum ether/EtOAc $20:1 \rightarrow 4:1$) to give 2.08 g (95%) of compound **1r**.

Compound 1s (4-(benzoyloxy)-2-methylbutan-2-ol)

3-Methyl-1,3-butanediol (1.07 mL, 10 mmol, 1 equiv.) and Fe(acac)₃ (353 mg, 0.1 mmol, 0.1 equiv.) were dissolved in MeCN (10 mL) under N₂. Thereafter, DIPEA (2.09 mL, 12 mmol, 1.2 equiv.) and benzoyl chloride (1.4 mL, 12 mmol, 1.2 equiv.) were added sequentially and the reaction mixture was stirred for 20 h at r.t. The reaction mixture was concentrated *in vacuo*, the residue was dissolved in CH₂Cl₂ (20 mL) and washed with sat. aq. Na₂CO₃ (3 × 20 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated *in vacuo* to obtain the crude product as a brown oil. The crude product was purified by column chromatography (petroleum ether/EtOAc 10:1 \rightarrow 2:1) to give compound **1s** as a yellow oil (1.847 g, 89% yield).

Compound 1u (4-(benzoyloxy)-2-methylbutan-2-ol)

Nicotinoyl chloride hydrochloride (213.6 mg, 1.2 mmol, 1.2 equiv.) and DMAP (12.2 mg, 1.2 mmol, 0.1 equiv.) were dried *in vacuo*, then 3-methyl-1,3-butanediol (107 μ L, 1 mmol, 1 equiv.) was added, dissolved in dry CH₂Cl₂ (5 mL), DIPEA (260 μ L, 1.5 mmol, 1.5 equiv.) was added and the rection was refluxed for 20 h. Then it was cooled, CH₂Cl₂ (20 mL) and sat. aq. Na₂CO₃ (10 mL) were added, organic layer was separated and washed with sat.aq. Na₂CO₃ (3 × 10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified on column chromatography (CH₂Cl₂/MeOH 10:1) to give compound **1u** as yellow oil (170 mg, 81% yield).

Compound 1v (4-(2-thiophenecarboxy)-2-methylbutan-2-ol)

2-Thiophene-carboxylic acid (153.6 mg, 1.2 mmol, 1.2 equiv.) and DMAP (24.4 mg, 0.2 mmol, 0.2 equiv.) were dried *in vacuo*, then 3-methyl-1,3-butanediol (107 μ L, 1 mmol, 1 equiv.) was added, dissolved in dry CH₂Cl₂ (5 mL), EDC (212 μ L, 1.2 mmol, 1.2 equiv.) was added and the rection was stirred at r.t. for 19 h. CH₂Cl₂ (20 mL) and sat. aq. Na₂CO₃ (10 mL) were added, organic layer was separated and washed with sat. aq. Na₂CO₃ (3 × 10 mL), 5% aq. H₂SO₄ (3 × 10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo* to give compound **1v** as a yellowish oil (185 mg, 89% yield).

Compound 1t (3-hydroxy-3-methylbutyl 4-bromobenzoate)

(4-bromo)benzoylchloride (526.7 mg, 2.4 mmol, 1.2 equiv.) and DMAP (22.4 mg, 0.2 mmol, 0.1 equiv.) were dried *in vacuo*, then 3-methyl-1,3-butanediol (213 μ L, 2 mmol, 1 equiv.) was added, dissolved in dry CH₂Cl₂ (5 mL), Et₃N (335 μ L, 2.4 mmol, 1.2 equiv.) was added and stirred for 1 h. CH₂Cl₂ (20 mL) and sat. aq. Na₂CO₃ (10 mL) were added, organic layer was separated and washed with sat. aq. Na₂CO₃ (3 × 10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography CH₂Cl₂/MeOH 10:1 to give compound **1t** as a yellow oil (561 mg, 98% yield).

Compound **1d** (2-(2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-yl)ethyl benzoate)

Sclareol glycol (381.6 mg, 1.5 mmol) and DMAP (18.3 mg, 0.15 mmol, 0.1 equiv.) were dried *in vacuo*, dissolved in dry CH_2Cl_2 (5 mL), Et₃N (251 µL, 1.8 mmol, 1.2 equiv.) and benzoyl chloride (210 µL, 1.8 mL, 1.2 equiv.) were added sequentially and the reaction mixture was stirred for 1 h at r.t. CH_2Cl_2 (20 mL) and Na_2CO_3 sat (10 mL) were added, organic layer was separated and washed with sat. aq. Na_2CO_3 (3 × 10 mL), dried over Na_2SO_4 , filtered and concentrated *in vacuo*. The residue was purified by silica gel column chromatography petroleum ether/EtOAc 2:1 to give compound **1d** as a colorless oil (538 mg, quantitative yield).

To a solution of the glucopyranosyl bromide (870 mg, 2.11 mmol, 1 equiv.) in dry CH_2Cl_2 (40 mL), anhydrous Na_2SO_4 (568 mg, 4 mmol, 1.9 equiv.) and 3-methyl-1,3-butanediol (0.426 mL, 4 mmol, 1.9 equiv.) were added and stirred at r.t. for 15 min under N_2 . Ag_2CO_3 (1.103 mg, 4 equiv) was added and stirring continued for 5 h. The reaction mixture was filtered through silica gel plug, washed with $CH_2Cl_2/MeOH$ 10:1 mixture (150 mL), filtrate was collected and concentrated *in vacuo*. The residue was purified on silica gel column chromatography petroleum ether/EtOAc 3:1 \rightarrow 1:1 to give the desired glucoside as a colorless oil (580 mg) which was used directly in the next step.

The residue was dissolved in MeOH (20 mL), MeONa (10 mg) was added and stirred for 4 h at r.t. The reaction mixture was concentrated *in vacuo* and the residue was purified by silica gel column chromatography $CH_2Cl_2/MeOH 5:1 \rightarrow 3:1$ to give glucoside **SI-1** as a colorless oil (213 mg, 38% yield over 2 steps).

To the solution of glucoside **SI-1** (213 mg, 0.8 mmol, 1 equiv.) and 4-toluenesulphonic acid monohydrate (3 mg, 0.016 mmol, 0.02 equiv.) in DMF (2.5 mL) 2-methoxypropene (345 μ L, 3.6 mmol, 4.5 equiv.) was added, and the reaction mixture was stirred at r.t. for 2 h. The reaction mixture was concentrated *in vacuo* and DMF was co-evaporated with toluene (3 × 10 mL). The residue was purified by silica gel column

chromatography petroleum ether/EtOAc 5:1 \rightarrow 2:1 to give diacetonide **1w** as colorless powder (159 mg, 57% yield).

To a solution of indole-3-carbinol (883 mg, 6 mmol, 1 equiv.) and imidazole (1.021 g, 15 mmol, 2.5 equiv.) in DMF (5 mL) *tert*-butyldimethylsilyl chloride (1.808 g, 12 mmol, 2 equiv.) was added in one portion. The reaction was stirred at r.t. for 1 h, water (30 mL) was added and extracted with EtOAc (3 × 30 mL). The organic layer was washed with brine (2 × 30 mL), dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography petroleum ether/EtOAc $5:1 \rightarrow 2:1$ to give compound **SI-2** as a colorless solid (1.224 g, 78% yield).

To a solution of intermediate compound **SI-2** (522 mg, 2 mmol, 1 equiv.) and Et₃N (560 µL, 4 mmol, 2 equiv.) in CH₂Cl₂ (5 mL) benzoyl chloride (465 µL, 4 mmol, 2 equiv.) was added. The reaction mixture was stirred at r.t. for 16 h and then refluxed for 16 h. Water (20 mL) was added, extracted with CH₂Cl₂ (3 × 20 mL), organic extracts were combined and washed with sat. aq. Na₂CO₃ (2 × 30 mL). The organic extract was dried over Na₂SO₄, filtered and concentrated *in vacuo* to give the desired benzoylated intermediate product. The residue was dissolved in MeOH (6.5mL) and 36% aq. HCl (450 µL) was added. The reaction mixture was stirred at r.t. for 10 min until bright pink color, then sat. aq. Na₂CO₃ (20 mL) was added. The resulted aqueous solution was extracted with EtOAc (3 × 20 mL), the organic layers were combined, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography petroleum ether/EtOAc 2:1 \rightarrow 1:1 to give compound **1**I as a colorless oil (250 mg, 50% yield over two steps).

Compounds 2i, 2j, 2p (tert-alcohols from ketones)

General procedure A. A ketone (4 mmol, 1.0 equiv.), was dissolved in dry THF (10 mL) and was cooled on dry CO₂-acetone bath to -78 °C. Thereafter, methyl lithium 1.6 M solution in Et₂O (2.75 mL, 4.4 mmol, 2.2 equiv.) was added dropwise and the reaction mixture was stirred until warmed to r.t. The reaction mixture was quenched by sat. aq. NH₄Cl (40 mL), the organic layer was separated, and the water layer was extracted with EtOAc (3 × 25 mL). The combined organic phases were dried over Na₂SO₄, filtered, and concentrated *in vacuo* and the residue was purified by silica gel column chromatography.

Compounds SI-3, SI-4, SI-5 (homoallylic alcohols)

General procedure B. A suspension of ketone (2 mmol, 1.0 equiv.), zinc powder (196 mg, 3 mmol, 1.5 equiv.), and ammonium acetate (231 mg, 3 mmol, 1.5 equiv.) in dry THF (8 mL) was cooled with an ice bath. Thereafter, allyl bromide (260 μ L, 3 mmol, 1.5 equiv.) was added dropwise and the reaction mixture was stirred for 10 min. The reaction mixture was quenched by sat. aq. NaHCO₃ (20 mL), ice bath was removed, and the reaction allowed to warm to r.t. Water (20 mL) was added and extracted with EtOAc (3 × 40 mL). The combined organic phases were dried over Na₂SO₄, filtered, and concentrated *in vacuo*.

Compounds 2a-2w, 6a-6d (alkyl methyl oxalates)

General procedure C. An alcohol (1 mmol) and DMAP (12.5 mg, 0.1 mmol, 0.1 equiv.) were dissolved in dry CH_2Cl_2 (3 mL) under N_2 . Et₃N (0.170 mL, 1.2 equiv.) and methyl chlorooxoacetate (110 μ L, 1.2 equiv.) were added sequentially and the reaction mixture was stirred at r.t. for 5 min to 4 h until full conversion of the starting material. The reaction mixture was concentrated *in vacuo* and the residue was purified by silica gel column chromatography.

Compounds 3a-Na, 3x-Na, 3y-Na (alkyl oxalate salts)

General procedure D. Methyloxalate (1.5 mmol) was dissolved in THF (1.5 mL), then aq. 1M NaOH (1.5 mL) was added dropwise. The reaction mixture was stirred for 20 min, water (20 mL) was added, extracted with EtOAc (2 × 20 mL). Water layers were combined and evaporated in vacuo to give white powder.

4.2 General procedure for the photoredox-mediated synthesis of unnatural amino acids

Compounds **5a–5w**, **7a–7d** (unnatural α-amino acids)

Methyloxalate (0.3 mmol, 1.2 equiv.) was placed in the 8 mL reaction vial, dissolved in tetrahydrofuran (0.36 mL), aq. 1M NaOH (0.36 mL, 0.36 mmol, 1.2 equiv.) was added dropwise and stirred at room temperature for 30 min. The reaction mixture was concentrated and dried *in vacuo* overnight. The *N*-sulfinyl imine **4** (80.2 mg, 0.30 mmol, 1 equiv.), $[Ir(dFCF_3ppy)_2(5,5'-dCF_3bpy)]PF_6$ photocatalyst (**PC4**, 10.4 mg, 3 mol%), were added to the resultant sodium salt, the reaction vial was equipped with a stirring bar and a septum, the solids were evacuated and back-filled with N₂ three times followed by addition of acetonitrile (5.4 mL), dimethylformamide (0.6 mL), and water (27 µL, 0.015 mmol, 0.05 equiv.). The vial was sealed with parafilm and sonicated for 15 min. The vial was placed in a holder ca. 2 cm from the light source (440 nm LED) and stirred (1200 rpm) under illumination with a fan cooling for 2–4 h. After the reaction was complete, it was transferred to round-bottom flask, concentrated *in vacuo* and purified by silica gel column chromatography.

4.3 General procedure for N-sulfinyl amide deprotection

N-sulfinyl amide **5** (0.1 mmol) was placed in a 5 mL round-bottom flask, dissolved in 1 mL MeOH and a mixture of CF_3CO_2H and MeOH (1:1 v/v, 1 mL) was added. The reaction mixture was stirred at room temperature under nitrogen for 10 min and the solvent was removed under nitrogen flow. The residue was purified by column chromatography with a gradient $CH_2Cl_2/MeOH$ 50:1 \rightarrow 10:1 as eluent and dried in vacuo overnight, resulting in the deprotected amino acid **8** or as its salt with trifluoroacetic acid.

4.4 Unsuccessful substrates

During investigation of the substrate scope, several alcohol substrates proved non-compatible with the disclosed protocols. For various substrates, the lack of desired reactivity was observed at the stage of methyl oxalate ester installation, methyl ester hydrolysis, or the photoreaction (Fig. S4).

Fig. S4. Unsuccessful substrates.

5. Analytical data

Compound SI-1 (3-hydroxy-3-methylbutan-1-ol β-D-glucopyranoside)

Synthesized according to the procedure described in Section 4.1.

¹**H NMR** (500 MHz, MeOD) δ 4.26 (d, *J* = 7.8 Hz, 1H), 4.07 (dt, *J* = 9.8, 7.1 Hz, 1H), 3.87 (d, *J* = 11.5 Hz, 1H), 3.76–3.62 (m, 2H), 3.30–3.21 (m, 2H), 3.16 (dd, *J* = 9.1, 7.8 Hz, 1H), 1.83 (td, *J* = 7.1, 2.5 Hz, 2H), 1.23 (s, 6H).

¹³**C NMR** (126 MHz, MeOD) δ 104.4, 78.1, 78.0, 75.1, 71.7, 70.8, 67.5, 62.8, 43.4, 29.7, 29.6.

 $R_{f} = 0.33$ (CH₂Cl₂/MeOH 4:1, brown color upon treatment with 5% methanolic H₃PO₄ and heating)

Compound SI-2 (3-(((tert-butyldimethylsilyl)oxy)methyl)-1H-indole)

Synthesized according to the procedure described in Section 4.1.

¹**H NMR** (500 MHz, $CDCl_3$) δ 7.99 (s, 1H), 7.69 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 7.18–6.98 (m, 2H), 4.96 (s, 2H), 0.96 (s, 9H), 0.13 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 136.5, 126.5, 122.1, 119.5, 119.3, 116.7, 111.1, 58.3, 26.1, 18.5, -5.1.

R_f = 0.52 (petroleum ether/EtOAc 5:1)

The spectroscopic data is in agreement with the literature.¹⁰

Compound SI-3 (tert-butyl (1R,3r,5S)-3-allyl-3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate)

Synthesized according to the **General procedure B** described in **Section 4.1** on 2 mmol scale from *N*-Boc-nortropinone. The product is a colorless oil (539 mg, **quantitative yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 5.80 (ddt, J = 17.5, 10.1, 7.5 Hz, 1H), 5.20 (dd, J = 10.2, 2.0 Hz, 1H), 5.16–5.10 (dd, J = 17.5, 2.0 Hz, 1H), 4.24 (br.s, 1H), 2.15–2.07 (m, 4H), 2.06–1.95 (m, 1H), 1.93–1.81 (m, 3H), 1.61–1.56 (m, 2H), 1.46 (s, 9H).

¹³**C NMR** (126 MHz, CDCl₃) δ 153.5, 132.6, 120.1, 79.1, 70.5, 53.2, 52.5, 50.9, 42.7, 28.5, 28.1, 27.4.

R_f = 0.47 (petroleum ether/EtOAc 2:1)

HRMS (ESI): calcd for C₁₅H₂₅NaNO₃ [M + Na]⁺: 290.1726, found: 290.1727.

The spectroscopic data is in agreement with the literature.¹¹

Compound **SI-4** ((1*r*,3*r*,5*r*,7*r*)-2-allyladamantan-2-ol)

Synthesized according to the **General procedure B** described in **Section 4.1** on 2 mmol scale from 2-adamantanone. The product is a colorless amorphous solid (384 mg, **quantitative yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 5.90 (ddt, J = 17.6, 10.2, 7.5 Hz, 1H), 5.22–5.11 (m, 2H), 2.45 (d, J = 7.5 Hz, 2H), 2.27–2.16 (m, 2H), 1.94–1.84 (m, 2H), 1.82 (dt, J = 11.6, 3.0 Hz, 2H), 1.76–1.62 (m, 7H), 1.54 (ddd, J = 12.6, 3.1, 1.7 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 133.7, 118.8, 74.5, 42.7, 38.4, 37.1 (2 × CH₂), 34.4 (2 × CH₂), 32.9 (2 × CH₂), 27.4, 27.3.

R_f = 0.43 (petroleum ether/EtOAc 10:1)

HRMS (EI): calcd for $C_{13}H_{18}$ [M – OH]⁺: 175.1482, found: 175.1480.

The spectroscopic data is in agreement with the literature.¹¹

Compound **SI-5** (2-allyl-2,3-dihydro-1*H*-inden-2-ol)

Synthesized according to the **General procedure B** described in **Section 4.1** on 2 mmol scale from 2-indenone. The crude product was purified by column chromatography using *n*-hexane/EtOAc $20:1 \rightarrow 5:1$ as eluent. The product is a colorless amorphous solid (263 mg, **76% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 7.25–7.12 (m, 4H), 6.04–5.89 (m, 1H), 5.27–5.16 (m, 2H), 3.09 (d, J = 16.2 Hz, 2H), 2.96 (d, J = 16.2 Hz, 2H), 2.52 (dt, J = 7.4, 1.2 Hz, 2H), 1.90 (s, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 141.1, 133.9, 126.6, 125.0, 119.1, 81.5, 46.5, 45.0.

 R_{f} = 0.44 (petroleum ether/EtOAc 4:1, brown color upon treatment with 5% H₃PO₄ in MeOH and heating)

HRMS (ESI): calcd for C₁₂H₁₁ [M – OH]⁺: 155.0861, found: 155.0854.

The spectroscopic data is in agreement with the literature.¹²

Compound **1d** (2-((1*R*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-yl)ethyl benzoate)

Synthesized according to the procedure described in Section 4.1.

¹**H NMR** (500 MHz, CDCl₃) δ 8.13–7.90 (m, 2H), 7.61–7.49 (m, 1H), 7.44 (dd~t, J = 7.8 Hz, 2H), 4.38 (qdd, J = 10.5, 8.5, 6.5 Hz, 2H), 1.96–1.84 (m, 2H), 1.84–1.76 (m, 1H), 1.76–1.71 (m, 1H), 1.68 (dq, J = 13.8, 3.3 Hz, 1H), 1.60 (dt, J = 13.7, 3.5 Hz, 1H), 1.49–1.34 (m, 3H), 1.35–1.22 (m, 1H), 1.22–1.18 (m, 3H), 1.20–1.07 (m, 2H), 0.96 (ddd, J = 14.9, 12.7, 3.2 Hz, 2H), 0.87 (s, 3H), 0.82 (s, 3H), 0.80 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 166.8, 132.8, 130.5, 129.5, 128.4, 73.7, 67.1, 58.1, 56.1, 44.5, 41.9, 39.7, 38.8, 33.4, 33.3, 24.6, 24.0, 21.5, 20.5, 18.4, 15.4.

 $R_{\rm f}$ = 0.59 (petroleum ether/EtOAc 2:1)

HRMS (ESI): calcd for C₂₃H₃₄NaO₃ [M + Na]⁺: 381.2400, found: 381.2401.

Compound 1i (tert-butyl 6-hydroxy-6-methyl-2-azaspiro[3.3]heptane-2-carboxylate)

Synthesized according to the **General procedure A** described in **Section 4.1** on 4 mmol scale from *tert*-butyl 6-oxo-2-azaspiro[3.3]heptane-2-carboxylate. The crude product was purified by column chromatography using *n*-hexane/EtOAc $5:1 \rightarrow 1:1$ as eluent. The product is a white solid (662 mg, **73% yield**).

 ^{1}H NMR (500 MHz, CDCl₃) δ 3.92 (s, 2H), 3.89 (s, 2H), 2.20–2.31 (m, 4H), 1.43 (s, 9H), 1.32 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 156.1, 79.3, 68.8, 48.3, 28.5, 28.4, 28.0.

R_f = 0.24 (hexanes/EtOAc 1:1)

HRMS (ESI): calcd for C₁₂H₂₁NaNO₃ [M + Na]⁺: 250.1423, found: 250.1423.

Compound 1j (tert-butyl 2-hydroxy-2-methyl-7-azaspiro[3.5]nonane-7-carboxylate)

Synthesized according to the **General procedure A** described in **Section 4.1** on 4 mmol scale from 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate *tert*-butyl ester. The crude product was purified by column chromatography using *n*-hexane/EtOAc $5:1 \rightarrow 2:1$ as eluent. The product is a white solid (470 mg, **46% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 3.35–3.23 (m, 4H), 2.00–1.85 (m, 4H), 1.64–1.59 (m, 2H), 1.52–1.47 (m, 2H), 1.44 (s, 9H), 1.39 (s, 3H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl_3) δ 155.0, 79.3, 68.9, 46.9, 40.8, 40.6, 39.0, 37.3, 31.0, 28.5, 28.2.

R_f = 0.43 (hexanes/EtOAc 1:1)

HRMS (ESI): calcd for C₁₄H₂₅NaNO₃ [M + Na]⁺: 278.1721, found: 278.1712.

Compound 1I ((3-(hydroxymethyl)-1H-indol-1-yl)(phenyl)methanone)

Synthesized according to the procedure described in Section 4.1.

¹**H NMR** (500 MHz, CDCl₃) δ 8.41 (d, *J* = 8.2 Hz, 1H), 7.78–7.71 (m, 2H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.62 (tt, *J* = 6.8, 1.2 Hz, 2H), 7.57–7.51 (m, 2H), 7.42 (td, *J* = 8.3, 7.8, 1.2 Hz, 1H), 7.36 (td, *J* = 7.5, 1.1 Hz, 1H), 7.30 (s, 1H), 4.85 (s, 2H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 168.6, 136.7, 134.5, 131.9, 129.5, 129.1, 128.6, 125.4, 125.2, 124.0, 121.7, 119.3, 116.7, 57.2.

 $R_{\rm f}$ = 0.67 (petroleum ether/EtOAc 1:1)

HRMS (ESI): calcd for C₁₆H₁₃NO₂ [M + Na]⁺: 274.0839, found: 274.0838.

Compound 1p (tert-butyl (S)-4,4-difluoro-2-(2-hydroxypropan-2-yl)pyrrolidine-1-carboxylate)

Synthesized according to the **General procedure A** described in **Section 4.1**, using MeMgBr instead of MeLi, on 2 mmol scale from 1-*tert*-butyl 2-methyl (2*S*)-4,4-difluoro-1,2-pyrrolidinedicarboxylate. The crude product was purified by column chromatography using *n*-hexane/EtOAc $5:1 \rightarrow 2:1$ as eluent. The product is a white solid (318 mg, **60% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 4.12 (t, J = 8.4 Hz, 1H), 4.07 – 3.92 (m, 1H), 3.49 (ddd, J = 24.6, 12.3, 5.9 Hz, 1H), 2.49 (dddt, J = 17.2, 13.9, 8.7, 2.5 Hz, 1H), 2.12 (br.s, 1H), 1.47 (s, 9H), 1.17 (s, 3H), 1.14 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 156.8z, 81.8, 73.2 (br)z, 65.4 (br), 54.3 (t, *J* = 31.0 Hz), 36.9 (t, *J* = 24.7 Hz), 28.2, 27.2, 23.1 (br).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -97.9 (d, *J* = 230.3 Hz), -107.0 (d, *J* = 230.4 Hz).

R_f = 0.41 (hexanes/EtOAc 3:1)

HRMS (ESI): calcd for C₁₂H₂₁NaF2NO₃ [M + Na]⁺: 288.1392, found: 288.1394.

Compound 1r (4-((tert-butyldimethylsilyl)oxy)-2-methylbutan-2-ol)

Synthesized according to the procedure described in Section 4.1.

¹**H NMR** (500 MHz, CDCl₃) δ 3.91 (t, *J* = 5.7 Hz, 2H, OCH₂), 3.83 (s, 1H, OH), 1.70 (t, *J* = 5.7 Hz, 2H, CH₂), 1.24 (s, 6H, C(CH₃)₂), 0.90 (s, 9H C(CH₃)₃), 0.09 (s, 6H, Si(CH₃)₂).

¹³C NMR (126 MHz, CDCl₃) δ 70.8, 61.0, 42.9, 29.2, 25.8, 18.0, -5.6.

 $R_{f} = 0.49$ (petroleum ether/EtOAc 6:1, yellow color upon treatment with KMnO₄ stain and heating)

The spectroscopic data is in agreement with the literature.¹³

Compound 1s (4-(benzoyloxy)-2-methylbutan-2-ol)

Synthesized according to the procedure described in Section 4.1.

H NMR (500 MHz, CDCl₃) δ 8.13–8.00 (m, 2H), 7.56 (tt, *J* = 7.8, 1.3 Hz, 1H), 7.44 (dd, *J* = 8.4, 7.2 Hz, 2H), 4.51 (t, *J* = 6.8 Hz, 2H), 1.99 (t, *J* = 6.8 Hz, 2H), 1.33 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 166.6, 132.9, 130.2, 129.5, 128.4, 70.1, 61.9, 41.7, 29.8.

 $R_{\rm f}$ = 0.30 (petroleum ether/EtOAc 4:1)

The spectroscopic data is in agreement with the literature.¹⁴

Compound 1t (3-hydroxy-3-methylbutyl 4-bromobenzoate)

Synthesized according to the procedure described in **Section 4.1**.

¹**H NMR** (500 MHz, CDCl₃) δ 7.93–7.84 (m, 2H), 7.64–7.53 (m, 2H), 4.50 (t, *J* = 6.8 Hz, 2H), 1.98 (t, *J* = 6.8 Hz, 2H), 1.32 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 165.9, 131.7, 131.0, 129.1, 128.1, 70.0, 62.2, 41.7, 29.8.

R_f = 0.55 (CH₂Cl₂/MeOH 20:1)

The spectroscopic data is in agreement with the literature.¹⁵

Compound 1u (4-(nicotynoyloxy)-2-methylbutan-2-ol)

Synthesized according to the procedure described in **Section 4.1**.

¹**H NMR** (500 MHz, CDCl₃) δ 9.22 (s, 1H), 8.86–8.72 (m, 1H), 8.29 (dt, J = 8.0, 2.0 Hz, 1H), 7.40 (dd, J = 7.8, 4.9 Hz, 1H), 4.54 (t, J = 6.9 Hz, 2H), 2.00 (t, J = 6.9 Hz, 2H), 1.33 (s, 6H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl_3) δ 165.3, 153.4, 150.9, 137.0, 126.2, 123.3, 70.0, 62.3, 41.7, 29.9.

 $R_{\rm f} = 0.43 \, (CH_2CI_2/MeOH 5:1)$

HRMS (ESI): calcd for C₁₁H₁₆NO₃ [M + H]⁺: 210.1125, found: 210.1124.

Compound 1v (4-(2-thiophenecarboxy)-2-methylbutan-2-ol)

Synthesized according to the procedure described in **Section 4.1**.

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (dd, *J* = 3.7, 1.3 Hz, 1H), 7.55 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.10 (dd, *J* = 5.0, 3.7 Hz, 1H), 4.48 (t, *J* = 6.7 Hz, 2H), 1.96 (t, *J* = 6.7 Hz, 2H), 1.32 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 162.2, 133.8, 133.4, 132.3, 127.8, 70.1, 62.1, 41.7, 29.8.

 $R_{\rm f} = 0.49 \, (CH_2CI_2/MeOH 5:1)$

Compound **1w** (1-(2:3,4:6-diacetone β -D-glucopyranosyloxy) 3-hydroxy-3-methylbutane)

Synthesized according to the procedure described in Section 4.1.

¹**H NMR** (500 MHz, CDCl₃) δ 4.71 (d, J = 7.9 Hz, 1H), 4.11 (ddd, J = 9.7, 7.3, 6.1 Hz, 1H), 3.96 (dd, J = 10.8, 5.3 Hz, 1H), 3.94–3.85 (m, 2H), 3.82 (dt, J = 9.8, 6.3 Hz, 1H), 3.64 (t, J = 9.3 Hz, 1H), 3.38 (dd, J = 9.0, 7.9 Hz, 1H), 3.27 (ddd, J = 10.2, 8.8, 5.3 Hz, 1H), 1.99–1.74 (m, 2H), 1.54 (s, 3H), 1.46 (s, 3H), 1.45 (s, 3H), 1.44 (s, 3H), 1.25 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 112.2, 102.2, 99.8, 77.8, 77.5, 72.7, 70.2, 69.8, 66.9, 62.2, 41.8, 29.7, 29.4, 28.9, 26.7, 26.4, 19.1.

R_f = 0.38 (petroleum ether/EtOAc 4:1)

HRMS (ESI): calcd for C₁₇H₃₀NaO₇ [M + Na]⁺: 369.1884, found: 369.1894.

Compound 2a (methyl (1-methylcyclohexyl) oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 5 mmol scale from 1-methyl-cyclohexan-1-ol with 5 min reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 10:1 \rightarrow 5:1 as eluent. The product is a colorless oil (940 mg, **94% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 3.83 (s, 1H), 2.24–2.08 (m, 2H), 1.52 (s, 3H), 1.60– 1.39 (m, 7H), 1.33–1.19 (m, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 159.0, 156.6, 86.7, 53.1, 36.2, 25.1, 24.9, 21.9.

R_f = 0.50 (petroleum ether/EtOAc 5:1)

HRMS (ESI): calcd for $C_{10}H_{16}NaO_4$ [M + Na]⁺: 223.0941, found: 223.0943.

The spectroscopic data is in agreement with the literature.¹⁶

Compound 2b (methyl (1-methylcyclopentyl) oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 2 mmol scale from 1-methyl-cyclopentan-1-ol with 2 h reaction time. The crude product was purified by column chromatography using hexane/EtOAc 7:1 as eluent. The product is a colorless oil (542 mg, **97% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 3.86 (s, 6H), 2.28–2.12 (m, 2H), 1.85–1.71 (m, 4H), 1.70–1.64 (m, 2H), 1.63 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 159.0, 157.0, 94.3, 53.3, 38.8, 23.9, 23.7.

R_f = 0.55 (hexane/EtOAc 7:1)

HRMS (ESI): calcd for C₉H₁₄NaO₄ [M + Na]⁺: 209.0784, found: 209.0784.

The spectroscopic data is in agreement with the literature.¹⁶

Compound **2c** (methyl (2-methyl-2,3-dihydro-1*H*-inden-2-yl) oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 2.1 mmol scale from 2-methyl-2,3-dihydro-1*H*-inden-2-ol with 20 min reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $10:1 \rightarrow 6:1$ as eluent. The product is a white solid (446 mg, **91% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 7.21–7.16 (m, 4H), 3.87 (s, 3H), 3.51 (d, *J* = 16.6 Hz, 2H), 3.25 (d, *J* = 16.5 Hz, 2H), 1.74 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 158.6, 157.0, 139.7, 126.9, 124.6, 92.1, 53.4, 45.7, 24.1.

R_f = 0.49 (petroleum ether/EtOAc 5:1)

HRMS (ESI): calcd for $C_9H_{16}NaO_4$ [M + Na]⁺: 257.0784, found: 257.0785.

The spectroscopic data is in agreement with the literature.¹⁷

Compound **2d** ((1*R*,2*R*,4a*S*,8a*S*)-1-(2-(benzoyloxy)ethyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1.4 mmol scale from benzoylated sclareol glycol **1d** with 2 h reaction time. The product is a colorless oil (444 mg, **70% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 8.18–7.94 (m, 2H), 7.63–7.49 (m, 1H), 7.44 (dd~t, J = 7.7 Hz, 2H), 4.51 (dt, J = 10.4, 7.7 Hz, 1H), 4.38 (dt, J = 10.4, 8.1 Hz, 1H), 3.83 (s, 3H), 2.84 (dt, J = 12.3, 3.9 Hz, 1H), 1.88 (td, J = 8.1, 4.4 Hz, 2H), 1.81 (d, J = 12.8 Hz, 1H), 1.73 (td, J = 13.1, 12.4, 4.4 Hz, 2H), 1.64 (s, 3H), 1.67–1.56 (m, 2H), 1.46 (dt, J = 14.4, 3.7 Hz, 1H), 1.39 (d, J = 13.3 Hz, 1H), 1.37–1.23 (m, 1H), 1.16 (td, J = 13.5, 4.3 Hz, 1H), 1.07–0.96 (m, 2H), 0.88 (s, 3H), 0.87 (s, 3H), 0.80 (s, 3H).

 $^{13}\mathbf{C}$ NMR (126 MHz, CDCl₃) δ 166.5, 158.8, 155.9, 132.8, 130.5, 129.5, 128.3, 92.2, 66.1, 55.6, 55.3, 53.3, 41.7, 39.4, 39.2, 38.7, 33.3, 33.2, 25.0, 21.4, 19.90, 19.92, 18.3, 15.6.

*R*_f = 0.54 (petroleum ether/EtOAc 5:1)

HRMS (ESI): calcd for $C_{26}H_{36}NaO_6$ [M + Na]⁺: 467.2404, found: 467.2405.

The spectroscopic data is in agreement with the literature.¹⁸

Compound **2e** (methyl ((3*R*,3a*S*,6*R*,7*R*,8a*S*)-3,6,8,8-tetramethyloctahydro-1*H*-3a,7-methanoazulen-6-yl) oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 5 mmol scale from cedrol with 1 h reaction time. The product is a white solid (1.411 g, **96% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 3.86 (s, 3H), 2.51–2.42 (m, 1H), 2.20–2.13 (m, 1H), 2.07 (td, *J* = 13.0, 6.8 Hz, 1H), 1.88 (dq, *J* = 12.1, 6.0 Hz, 1H), 1.83 (t, *J* = 8.0 Hz, 1H), 1.75–1.65 (m, 2H), 1.62 (d, *J* = 1.0 Hz, 3H), 1.56 (s, 3H), 1.56–1.51 (m, 1H), 1.51–1.47 (m, 1H), 1.46–1.34 (m, 3H), 1.33–1.24 (m, 1H), 1.17 (s, 3H), 0.99 (s, 3H), 0.84 (d, *J* = 7.1 Hz, 3H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 159.0, 156.5, 91.1, 56.7, 56.6, 53.8, 53.1, 43.4, 41.1, 41.0, 36.8, 32.8, 31.2, 28.3, 26.9, 25.3, 25.2, 15.4.

R_f = 0.74 (petroleum ether/EtOAc 3:1)

HRMS (ESI): calcd for C₁₈H₂₈NaO₄ [M + Na]⁺: 331.1880, found: 331.1879.

The spectroscopic data is in agreement with the literature.¹⁹

Compound 2f (1-benzoylcyclohexyl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1.5 mmol scale from (1-hydroxycyclohexyl)(phenyl)methanone with 1 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $10:1 \rightarrow 5:1$ as eluent. The product is a colorless oil (433 mg, **99% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 8.00 (dd, J = 8.4, 1.2 Hz, 2H), 7.54–7.46 (m, 1H), 7.40 (dd, J = 8.4, 7.2 Hz, 2H), 3.85 (s, 3H), 2.48–2.43 (m, 2H), 2.02 (ddd, J = 15.3, 9.1, 3.0 Hz, 2H), 1.83–1.62 (m, 5H), 1.45–1.31 (m, 1H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 198.3, 157.8, 156.2, 134.1, 132.8, 128.6, 128.5, 89.5, 53.5, 32.3, 24.9, 21.2.

R_f = 0.46 (petroleum ether/EtOAc 5:1)

HRMS (ESI): calcd for C₁₆H₁₈NaO₅ [M + Na]⁺: 313.1046, found: 313.1050.

The spectroscopic data is in agreement with the literature.¹⁸

Compound **2g** (1-(*tert*-butoxycarbonyl)-4-methylpiperidin-4-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 2.45 mmol scale from tert-butyl 4-hydroxy-4-methylpiperidine-1-carboxylate with 1.5 h reaction time. The crude product was purified by column chromatography using hexane/EtOAc 3:1 as eluent. The product is a white solid (451 mg, **77% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 3.87 (s, 3H), 3.80 (br. s, 1H), 3.09 (t, *J* = 12.4 Hz, 2H), 2.41–2.20 (m, 2H), 1.70–1.55 (m, 3H), 1.58 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 158.6, 156.6, 154.7, 84.0, 79.7, 53.4, 35.5, 28.4, 24.7.

R_f = 0.39 (hexane/EtOAc 3:1)

HRMS (ESI): calcd for C₁₄H₂₃NaNO₆ [M + Na]⁺: 324.1418, found: 324.1418.

The spectroscopic data is in agreement with the literature.²⁰

Compound 2h (methyl (4-methyltetrahydro-2H-thiopyran-4-yl) oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 2 mmol scale from 4-methyltetrahydro-2*H*-thiopyran-4-ol with 15 min reaction time. The crude product was purified by column chromatography using hexanes/EtOAc $5:1 \rightarrow 3:1$ as eluent. The product is a colorless oil (432 mg, **99% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 3.88 (s, 3H), 2.87 (t, J = 12.5 Hz, 2H), 2.58 (dt, J = 15.5, 3.2 Hz, 2H), 2.50–2.40 (m, 2H), 1.78 (ddd, J = 14.9, 12.0, 3.6 Hz, 2H), 1.57 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 158.6, 156.4, 84.3, 53.4, 37.1, 25.9, 23.8.

R_f = 0.50 (hexane/EtOAc 4:1)

HRMS (ESI): calcd for C₉H₁₄NaO₄S [M + Na]⁺: 241.0525, found: 241.0525.

Compound 2i (2-(tert-butoxycarbonyl)-6-methyl-2-azaspiro[3.3]heptan-6-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 4 mmol scale from *tert*-butyl 6-hydroxy-6-methyl-2-azaspiro[3.3]heptane-2-carboxylate **1i** with 1 h reaction time. The crude product was purified by column chromatography using hexanes/EtOAc $3:1 \rightarrow 2:1$ as eluent. The product is a colorless oil (1.0 g, **99% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 3.98 (s, 2H), 3.93 (s, 2H), 3.88 (s, 3H), 2.63 – 2.54 (m, 2H), 2.53 – 2.44 (m, 2H), 1.55 (s, 3H), 1.42 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 158.3, 156.2, 156.1, 80.1, 78.7, 61.4, 60.1, 53.9, 53.5, 46.0, 30.3, 28.4, 23.6.

 $R_{\rm f} = 0.45$ (hexane/EtOAc 2:1)

HRMS (ESI): calcd for C₁₅H₂₃NaNO₆ [M + Na]⁺: 336.1426, found: 336.1425.

Compound **2j** (2-(*tert*-butoxycarbonyl)-6-methyl-2-azaspiro[3.3]heptan-6-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1.5 mmol scale from *tert*-butyl 2-hydroxy-2-methyl-7-azaspiro[3.5]nonane-7-carboxylate **1j** with 1 h reaction time. The crude product was purified by column chromatography using hexanes/EtOAc $3:1 \rightarrow 2:1$ as eluent. The product is a colorless oil (395 mg, **78% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 3.89 (s, 3H), 3.31 (ddd, J = 11.5, 5.6, 3.5 Hz, 4H), 2.36–2.24 (m, 2H), 2.22–2.12 (m, 2H), 1.64 (s, 3H), 1.61–1.52 (m, 4H), 1.44 (s, 9H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl_3) δ 158.5, 156.3, 154.8, 80.4, 79.4, 53.5, 44.7, 40.7, 40.5, 38.9, 36.8, 30.2, 28.4, 26.1.

R_f = 0.59 (hexane/EtOAc 2:1)

HRMS (ESI): calcd for C₁₇H₂₇NaNO₆ [M + Na]⁺: 364.1741, found: 364.1749.

Compound **2k** ((1*R*,2*R*,5*R*)-(+)-2-hydroxy-3-pinanone methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1.5 mmol scale from (1R, 2R, 5R)-(+)-2-hydroxy-3-pinanone with 20 min reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 4:1 \rightarrow 3:1 as eluent. The product is a colorless oil (380 mg, **99% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 3.85 (s, 3H), 3.01 (dd~t, J = 6.1 Hz, 1H), 2.81 (dd, J = 19.2, 2.5 Hz, 1H), 2.70 (dt, J = 19.2, 3.2 Hz, 1H), 2.47 (dtd, J = 11.3, 6.1, 2.9 Hz, 1H), 2.17 (tt, J = 6.1, 2.9 Hz, 1H), 1.69 (s, 3H), 1.63–1.50 (m, 1H), 1.39 (s, 3H), 0.89 (s, 3H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 204.7, 158.2, 156.1, 89.7, 53.4, 48.4, 43.2, 39.4, 38.1, 27.8, 27.3, 22.5, 20.8.

R_f = 0.73 (petroleum ether/EtOAc 2:1)

HRMS (ESI): calcd for C₁₃H₁₈NaO₅ [M + Na]⁺: 277.1046, found: 277.1050.

Compound **2I** ((1-benzoyl-1*H*-indol-3-yl)methyl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1 mmol scale from alcohol **1I** with 30 min reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $5:1 \rightarrow 2:1$ as eluent. The product is a white solid (337 mg, **quantitative yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 8.39 (d, *J* = 8.2 Hz, 1H), 7.76–7.70 (m, 2H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.64 (tt, *J* = 6.8, 1.1 Hz, 1H), 7.59–7.51 (m, 2H), 7.46 (s, 1H), 7.44 (ddd, *J* = 8.4, 7.3, 1.3 Hz, 1H), 7.38 (td, *J* = 7.5, 1.1 Hz, 1H), 5.46 (s, 3H), 3.87 (s, 2H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 168.5, 157.8, 157.5, 136.4, 134.0, 132.2, 129.2, 129.2, 128.7, 128.4, 125.7, 124.3, 119.1, 116.6, 115.0, 60.2, 53.6.

 R_{f} = 0.73 (petroleum ether/EtOAc 5:1, brown color upon treatment with 5% H₃PO₄ in MeOH and heating)

HRMS (ESI): calcd for C₁₉H₁₅NaNO₅ [M + Na]⁺: 360.0842, found: 360.0843.

Compound **2m** (*tert*-butyl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 3 mmol scale from *tert*-butanol with 3 h reaction time. The crude product was purified by column chromatography using hexane/EtOAc 3:1 as eluent. The product is a colorless oil (501 mg, **69% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 3.83 (s, 3H), 1.52 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 158.9, 156.7, 84.9, 53.1, 27.6.

 $R_{\rm f}$ = 0.36 (petroleum ether/EtOAc 3:1).

The spectroscopic data is in agreement with the literature.¹⁶

Compound 2n (methyl (2-methyl-4-phenylbutan-2-yl) oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 2 mmol scale from 2-methyl-4-phenylbutan-2-ol with 1 h reaction time. The crude product was purified by column chromatography using hexane/EtOAc 4:1 as eluent. The product is a colorless oil (725 mg, **97% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 7.30–7.25 (m, 2H), 7.22–7.16 (m, 3H), 3.87 (s, 3H), 2.78–2.64 (m, 2H), 2.22–2.11 (m, 2H), 1.61 (s, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 158.9, 156.7, 141.5, 128.4, 128.3, 125.9, 86.8, 53.3, 42.4, 30.2, 25.7.

R_f = 0.58 (petroleum ether/EtOAc 3:1)

HRMS (ESI): calcd for C₁₄H₁₈NaO₄ [M + Na]⁺: 273.1098, found: 273.1095.

The spectroscopic data is in agreement with the literature.²¹

Compound **2o** (1-chloro-2-methylpropan-2-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1 mmol scale from 1-chloro-2-methyl-2-propanol with 1 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $10:1 \rightarrow 5:1$ as eluent. The product is a colorless oil (151 mg, **78% yield**).

¹H NMR (500 MHz, CDCl₃) δ 3.88 (s, 3H), 3.84 (s, 2H), 1.63 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 158.3, 156.3, 84.4, 53.5, 49.8, 24.0.

R_f = 0.43 (petroleum ether/EtOAc 5:1)

HRMS (ESI): calcd for C₇H₁₁ClNaO₄ [M + Na]⁺: 217.0238, found: 217.0241.

Compound **2p** ((*S*)-2-(1-(*tert*-butoxycarbonyl)-4,4-difluoropyrrolidin-2-yl)propan-2-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1 mmol scale from *tert*-butyl (*S*)-4,4-difluoro-2-(2-hydroxypropan-2-yl)pyrrolidine-1-carboxylate **1p** with 1 h reaction time. The crude product was purified by column chromatography using hexanes/EtOAc $5:1 \rightarrow 2:1$ as eluent. The product is a colorless oil (395 mg, **78% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 4.32 – 4.00 (m, 1H), 3.87 (s, 3H), 3.73 – 3.58 (m, 1H), 2.70 – 2.28 (m, 2H), 1.63 (s, 3H), 1.55 (s, 3H), 1.47 (s, 9H).

¹³**C NMR** (126 MHz, CDCl₃) δ 158.1, 155.9, 155.4, 128.1 (t, J = 250.6 Hz), 88.7, 81.0, 62.6, 54.3 (t, J = 32.1 Hz), 53.4, 35.6 (t, J = 23.8 Hz), 28.2, 22.4.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -93.7 (d, J = 228.2 Hz), -104.8 (d, J = 228.3 Hz).

R_f = 0.52 (hexane/EtOAc 3:1)

HRMS (ESI): calcd for $C_{15}H_{23}NaF_2NO_6$ [M + Na]⁺: 374.1397, found: 374.1411.

Compound **2q** (methyl (2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl) oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1.5 mmol scale from linalool oxide (45:55 mixture of *cis/trans*-diastereomers) with 1 h reaction time. The crude product was purified by column chromatography using petroleum PhMe/EtOAc 10:1 as eluent. The product is a colorless oil (385 mg, **99% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 5.93 (dd, J = 17.4, 10.8 Hz, 1H, *cis*), 5.79 (dd, J = 17.2, 10.6 Hz, 1H, *trans*), 5.14 (dd, J = 17.4, 1.3 Hz, 1H, *cis*), 5.12 (dd, J = 17.2, 1.5 Hz, 1H, *trans*), 4.94 (dd, J = 7.0, 1.4 Hz, 1H, *trans*), 4.92 (dd, J = 7.2, 1.4 Hz, 1H, *cis*), 4.09–4.02 (m, 1H, *cis*), 4.00 (dd, J = 7.4, 6.2 Hz, 1H, *trans*), 3.79 (s, 3H, OMe, *trans*), 3.79 (s, 3H, OMe, *cis*), 2.02–1.63 (m, 8H, *cis* + *trans*), 1.524 (s, 3H, *trans*), 1.517 (s, 3H, *cis*), 1.493 (s, 3H, *cis*), 1.487 (s, 3H, *trans*), 1.28 (s, 3H, *trans*), 1.25 (s, 3H, *cis*).
¹³**C NMR** (126 MHz, CDCl₃) δ 158.75 (*trans*), 158.73 (*cis*), 156.65 (*cis*), 156.58 (*trans*), 143.93 (*cis*), 143.50 (*trans*), 111.53 (*cis*), 111.43 (*trans*), 87.36 (*trans*), 87.30 (*cis*), 83.78 (*trans*), 83.75 (*cis*), 83.66 (*trans*), 83.43 (*cis*), 53.25 (*trans*), 53.22 (*cis*), 37.58 (*cis*), 36.89 (*trans*), 26.71 (*cis*), 26.47 (*trans*), 26.43 (*trans*), 25.62 (*cis*), 22.41 (*cis*), 22.27 (*trans*), 21.47 (*trans*), 21.33 (*cis*).

*R*_f = 0.57, 0.64 (PhMe/EtOAc 10:1)

HRMS (ESI): calcd for C₁₃H₂₀NaO₅ [M + Na]⁺: 279.1203, found: 279.1204.

The spectroscopic data is in agreement with the literature.¹⁶

Compound 2r (4-((tert-butyldimethylsilyl)oxy)-2-methylbutan-2-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 5.8 mmol scale from alcohol **1r** with 1 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 1:1 as eluent. The product is a colorless oil (1.77 g, **quantitative yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 3.86 (s, 3H), 3.75 (t, *J* = 6.7 Hz, 2H), 2.10 (t, *J* = 6.7 Hz, 2H), 1.57 (s, 3H), 1.56 (s, 3H), 0.88 (s, 9H), 0.05 (s, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 158.9, 156.7, 86.5, 58.9, 53.2, 42.8, 26.2, 25.9, 18.2, -5.5.

 R_{f} = 0.66 (petroleum ether/EtOAc 5:1, visualized by treatment with basic KMnO₄ and heating)

HRMS (ESI): calcd for C₁₄H₂₈NaO₅Si [M + Na]⁺: 327.1598, found: 327.16025.

Compound 2s (4-(benzoyloxy)-2-methylbutan-2-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 7.54 mmol scale from alcohol **1s** with 1 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 1:1 as eluent. The product is a yellowish oil (2.19 g, **99% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 8.08–7.92 (m, 2H), 7.63–7.50 (m, 1H), 7.44 (dd~t, J = 7.8 Hz, 2H), 4.48 (t, J = 6.6 Hz, 2H), 3.78 (s, 3H), 2.36 (t, J = 6.6 Hz, 2H), 1.65 (s, 6H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl_3) δ 166.4, 158.6, 156.6, 133.0, 130.1, 129.5, 128.4, 85.4, 60.8, 53.2, 38.9, 26.1.

R_f = 0.32 (petroleum ether/EtOAc 5:1)

HRMS (ESI): calcd for C₁₅H₁₈NaO₆ [M + Na]⁺: 317.0996, found: 317.0998.

The spectroscopic data is in agreement with the literature.²²

Compound **2t** (4-(4-bromobenzoyloxy)-2-methylbutan-2-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1.5 mmol scale from alcohol **1t** with 30 min reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $5:1 \rightarrow 3:1$ as eluent. The product is a colorless oil (545 mg, **97% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 7.93–7.80 (m, 2H), 7.65–7.49 (m, 2H), 4.46 (t, J = 6.6 Hz, 2H), 3.80 (s, 3H), 2.35 (t, J = 6.6 Hz, 2H), 1.64 (s, 6H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl_3) δ 165.7, 158.6, 156.6, 131.7, 131.1, 128.9, 128.1, 85.3, 61.0, 53.3, 38.8, 26.1.

R_f = 0.65 (petroleum ether/EtOAc 3:1)

HRMS (ESI): calcd for C₁₅H₁₇BrNaO₆ [M + Na]⁺: 395.0101, found: 395.0102.

The spectroscopic data is in agreement with the literature.²³

Compound 2u (4-(nicotinoyloxy)-2-methylbutan-2-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1.4 mmol scale from alcohol **1u** with 2 h reaction time. The crude product was purified by column chromatography using $CH_2Cl_2/MeOH 20:1 \rightarrow 5:1$ as eluent. The product is a yellowish oil (410 mg, **99% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 9.07 (s, 1H), 8.65 (d, *J* = 3.9 Hz, 1H), 8.14 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.26 (dd, *J* = 8.0, 4.8 Hz, 1H), 4.38 (t, *J* = 6.7 Hz, 2H), 3.68 (s, 3H), 2.24 (t, *J* = 6.7 Hz, 2H), 1.52 (s, 6H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl3) δ 165.1, 158.6, 156.6, 153.5, 150.9, 137.0, 125.9, 123.3, 85.2, 61.2, 53.3, 38.9, 26.1.

 $R_{f} = 0.36$ (petroleum ether/EtOAc 1:1); 0.49 (CH₂Cl₂/MeOH 10:1)

HRMS (ESI): calcd for C₁₄H₁₇NaNO₆ [M + Na]⁺: 318.0948, found: 318.0953.

Compound 2v (4-(2-thiophenecarboxy)-2-methylbutan-2-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 0.79 mmol scale from alcohol **1v** with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $5:1 \rightarrow 2:1$ as eluent. The product is a yellowish oil (235 mg, quantitative yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.72 (dd, *J* = 3.8, 1.3 Hz, 1H), 7.50 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.04 (dd, *J* = 5.0, 3.8 Hz, 1H), 4.38 (t, *J* = 6.6 Hz, 2H), 3.76 (s, 3H), 2.27 (t, *J* = 6.6 Hz, 2H), 1.58 (s, 6H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl_3) δ 162.0, 158.6, 156.6, 133.6, 133.5, 132.5, 127.8, 85.4, 60.9, 53.3, 39.0, 26.0.

 $R_{\rm f}$ = 0.67 (petroleum ether/EtOAc 2:1)

HRMS (ESI): calcd for $C_{13}H_{16}NaO_6S$ [M + Na]⁺: 323.0560, found: 323.0563.

The spectroscopic data is in agreement with the literature.²³

Compound **2w** (2:3,4:5-diacetylidene- β -D-glucopyranosyloxy)-2-methylbutan-2-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on **OMe** 0.43 mmol scale from alcohol **1w** with 1 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 5:1 → 2:1 as eluent. The product is a white solid (186 mg, **quantitative yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 4.30 (d, J = 7.7 Hz, 1H), 4.03 (dt, J = 10.0, 6.7 Hz, 1H), 3.87 (s, 3H), 3.91–3.86 (m, 2H, overlapping with CH₃ peak) 3.68 (dt, J = 10.0, 6.7 Hz, 1H), 3.60 (dd~t, J = 9.0 Hz, 1H), 3.54 (dd~t, J = 9.0 Hz, 1H), 3.40–3.28 (m, 2H), 2.27 (dt, J = 14.0, 6.8 Hz, 1H), 2.16 (dt, J = 14.0, 6.8 Hz, 1H), 1.57 (s, 6H), 1.56 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 159.1, 156.7, 102.9 (C-1), 85.7 (2 × C), 76.3, 75.4, 73.4, 69.7, 65.8, 61.7, 53.5 (2 × CH₃), 39.2, 26.3 (2 × CH₃), 26.1 (2 × CH₃).

R_f = 0.64 (petroleum ether/EtOAc 4:1)

HRMS (ESI): calcd for C₂₀H₃₂NaO₁₀ [M + Na]⁺: 455.1887, found: 455.1894.

Compound 2x (cyclohexyl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 2 mmol scale from cyclohexanol with 5 min reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $10:1 \rightarrow 5:1$ as eluent. The product is a colorless oil (341 mg, **92% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 4.94 (td, *J* = 9.5, 4.7 Hz, 1H), 3.90 (s, 3H), 1.97–1.90 (m, 2H), 1.83–1.73 (m, 2H), 1.62–1.50 (m, 4H), 1.44–1.34 (m, 2H), 1.28 (tdd, *J* = 12.8, 9.0, 3.7 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 158.6, 157.1, 76.4, 53.4, 31.2, 25.1, 23.6.

 $R_{\rm f} = 0.64$ (petroleum ether/EtOAc 5:1)

Compound **2y** (*n*-hexyl methyl oxalate)

Synthesized according to the **General procedure B** described in **Section 4.1** on 2 mmol scale from *n*-hexanol with 20 min reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 20:1 as eluent. The product is a colorless oil (377 mg, **99% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 4.29 (t, *J* = 6.8 Hz, 2H), 3.91 (s, 3H), 1.73 (p, *J* = 7.0 Hz, 2H), 1.45–1.24 (m, 6H), 0.97–0.70 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 158.3, 157.7, 67.3, 53.5, 31.3, 28.2, 25.3, 22.5, 14.0.

 $R_{\rm f}$ = 0.50 (petroleum ether/EtOAc 10:1)

HRMS (ESI): calcd for C₉H₁₆NaO₄ [M + Na]⁺: 211.0941, found: 211.0942.

Compound 3a-Na (sodium 2-(1-methyl-cyclohexyloxy)-2-oxoacetate)

Synthesized according to the **General procedure D** described in **Section 4.1** on 0.72 mmol scale from methyl oxalate **2a** with 10 min reaction time. The product is a white solid (135.2 mg, **90% yield**).

¹**H NMR** (400 MHz, DMSO) δ 2.08–1.91 (m, 2H), 1.54–1.29 (m, 7H), 1.38 (s, 3H), 1.20 (tdd, *J* = 13.8, 9.7, 5.7 Hz, 1H).

¹³**C NMR** (101 MHz, DMSO) δ 167.1, 163.7, 79.9, 36.1, 25.3, 24.9, 21.5.

R_f = 0.00 (petroleum ether/EtOAc 10:1)

HRMS (ESI): calcd for $C_9H_{13}O_4$ [M – Na]⁻: 185.0819, found: 185.0817.

Compound 3x-Na (sodium 2-(cyclohexyloxy)-2-oxoacetate)

Synthesized according to the **General procedure D** described in **Section 4.1** on 1.5 mmol scale from methyl oxalate **2x** with 20 min reaction time. The product is a white solid (280 mg, **93% yield**).

¹**H NMR** (500 MHz, DMSO) δ 4.56 (dp, *J* = 9.1, 3.9 Hz, 1H), 1.76 (dt, *J* = 8.3, 3.8 Hz, 2H), 1.66 (dq, *J* = 12.4, 4.1 Hz, 2H), 1.50 (ddd, *J* = 12.4, 6.0, 3.1 Hz, 1H), 1.41–1.26 (m, 4H), 1.21 (td, *J* = 13.4, 6.4 Hz, 1H).

¹³C NMR (126 MHz, DMSO) δ 166.7, 163.0, 70.7, 50.1, 31.3, 24.9, 23.4.

*R*_f = 0.00 (petroleum ether/EtOAc 10:1)

HRMS (ESI): calcd for $C_8H_{11}O_4$ [M – Na]⁻: 171.0663, found: 171.0659.

Compound 3y-Na (sodium 2-(hexyloxy)-2-oxoacetate)

Synthesized according to the **General procedure D** described in **Section 4.1** on 1 mmol scale from methyl oxalate **2y** with 20 min reaction time. The product is a white solid (110 mg, **56% yield**).

¹**H NMR** (500 MHz, DMSO) δ 3.92 (t, *J* = 6.7 Hz, 2H), 1.60–1.49 (m, 2H), 1.35– 1.20 (m, 6H), 0.91–0.82 (m, 3H).

¹³**C NMR** (126 MHz, DMSO) δ 166.97, 162.61, 62.62, 50.01, 30.92, 28.21, 25.11, 22.02, 13.89.

*R*_f = 0.00 (petroleum ether/EtOAc 10:1)

HRMS (ESI): calcd for $C_8H_{13}O_4$ [M – Na]⁻: 173.0819, found: 173.0817.

Compound **5a** (ethyl (*R*)-2-(((*R*)-mesitylsulfinyl)amino)-2-(1-methylcyclohexyl)acetate)

Synthesized according to the general procedure described in **Section 4.2** on 0.3 mmol scale from methyl oxalate **2a** with 2 h reaction time. The crude product was purified by column chromatography using hexane/EtOAc/CH₂Cl₂ 8:1:1 as eluent. The product is a brownish oil (98.7 mg, **90% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H), 5.01 (d, *J* = 10.1 Hz, 1H), 4.55–4.01 (m, 2H), 3.83 (d, *J* = 10.1 Hz, 0H), 2.57 (s, 6H), 2.29 (s, 3H), 1.68–1.38 (m, 7H), 1.38–1.22 (m, 3H), 1.30 (t, *J* = 7.2 Hz, 3H), 0.84 (s, 3H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 172.7, 140.8, 138.2, 136.7, 130.7, 61.2, 37.6, 34.8, 34.7, 25.9, 21.6, 21.5, 21.0, 20.6, 19.3, 14.2.

 $R_{f} = 0.25$ (hexane/EtOAc/CH₂Cl₂ 8:1:1)

HRMS (ESI): calcd for C₂₀H₃₁NaNO₃S [M + Na]⁺: 388.1917, found: 388.1923.

The spectroscopic data is in agreement with the literature.¹

Compound **5b** (ethyl (R)-2-(((R)-mesitylsulfinyl)amino)-2-(1-methylcyclopentyl)acetate)

Synthesized according to the general procedure described in **Section 4.2** on 0.3 mmol scale from methyl oxalate **2b** with 2 h reaction time. The crude product was purified by column chromatography using hexane/CH₂Cl₂/EtOAc 8:1:1 as eluent. The product is a brownish oil (65 mg, **62% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H), 5.16 (d, *J* = 9.6 Hz, 1H), 4.44–3.93 (m, 2H), 3.74 (d, *J* = 9.6 Hz, 1H), 2.58 (s, 6H), 2.29 (s, 3H), 1.79 (dt, *J* = 12.5, 7.9 Hz, 1H), 1.73–1.57 (m, 5H), 1.42–1.31 (m, 2H), 1.30 (t, *J* = 7.2 Hz, 3H), 0.89 (s, 3H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 172.8, 140.8, 138.1, 136.8, 130.7, 65.2, 61.3, 46.6, 37.3, 36.9, 24.4, 23.8, 22.3, 21.0, 19.3, 14.2.

 $R_{f} = 0.13$ (hexane/CH₂Cl₂/EtOAc 8:1:1)

HRMS (ESI): calcd for C₁₉H₂₉NaNO₃S [M + Na]⁺: 374.1760, found: 374.1772.

Compound **5c** (ethyl (*R*)-2-(((*R*)-mesitylsulfinyl)amino)-2-(2-methyl-2,3-dihydro-1*H*-inden-2-yl)acetate)

Synthesized according to the general procedure described in **Section 4.2** on 0.45 mmol scale from methyl oxalate **2b** (1.5 equiv.) with 4 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 4:1 \rightarrow 1:1 as eluent. The product is a brownish oil (31.2 mg, **21% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 7.21–7.09 (m, 4H), 6.88 (s, 2H), 5.26 (d, J = 9.5 Hz, 1H), 4.19 (qd, J = 7.1, 1.2 Hz, 2H), 3.97 (d, J = 9.5 Hz, 1H), 3.24 (d, J = 15.8 Hz, 1H), 3.13 (d, J = 15.8 Hz, 1H), 2.66 (d, J = 15.8 Hz, 1H), 2.60 (d, J = 15.8 Hz, 2H), 2.60 (s, 6H), 2.30 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H), 1.04 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 172.4, 141.9, 141.4, 141.0, 137.9, 136.8, 130.8, 126.4, 126.4, 124.8, 124.7, 64.7, 61.7, 47.4, 44.1, 43.5, 22.8, 21.0, 19.4, 14.2.

 $R_{\rm f}$ = 0.20 (petroleum ether/EtOAc 1:1)

HRMS (ESI): calcd for C₂₃H₂₉NaNO₃S [M + Na]⁺: 422.1760, found: 422.1760.

Compound **5d** (2-((1*R*,2*R*,4a*S*,8a*S*)-2-((*R*)-2-ethoxy-1-(((*R*)-mesitylsulfinyl)amino)-2-oxoethyl)-2,5,5,8atetramethyldecahydronaphthalen-1-yl)ethyl benzoate)

Synthesized according to the general procedure described in **Section 4.2** on 0.36 mmol scale from methyl oxalate **2d** with 4 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 4:1 \rightarrow 1:1 as eluent. The product is a brownish oil (87 mg, **48% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 8.17–8.04 (m, 2H), 7.61–7.52 (m, 1H), 7.46 (t, J = 7.7 Hz, 2H), 6.86 (s, 2H), 5.07 (d, J = 10.1 Hz, 1H), 4.48 (td, J = 10.8, 6.1 Hz, 1H), 4.41 (td, J = 10.7, 5.8 Hz, 1H), 4.36–4.22 (m, 2H), 3.83 (d, J = 10.1 Hz, 1H), 2.57 (s, 6H), 2.28 (s, 3H), 1.88–1.73 (m, 3H), 1.64–1.52 (m, 2H), 1.49–1.39 (m, 2H), 1.37 (d, J = 7.1 Hz, 4H), 1.31–1.18 (m, 2H), 1.17–1.07 (m, 2H), 1.04 (s, 3H), 0.94 (s, 3H), 0.91–0.85 (m, 1H), 0.83 (s, 4H), 0.78 (s, 3H), 0.70 (dd, J = 12.1, 2.0 Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 172.7, 166.6, 141.0, 138.1, 136.7, 132.8, 130.8, 130.5, 129.6, 128.3, 66.2, 65.6, 61.8, 56.0, 51.5, 43.2, 41.7, 40.8, 39.6, 34.1, 33.2, 33.2, 25.9, 21.6, 21.1, 19.3, 18.4, 18.3, 17.9, 16.5, 14.2.

 $R_{\rm f} = 0.39$ (petroleum ether/EtOAc 4:1)

HRMS (ESI): calcd for C₃₆H₅₁NaNO₅S [M + Na]⁺: 632.3380, found: 632.3372.

Compound **5e** (ethyl (*R*)-2-(((*R*)-mesitylsulfinyl)amino)-2-((3*R*,3a*S*,6*S*,7*R*,8a*S*)-3,6,8,8-tetramethyloctahydro-1*H*-3a,7-methanoazulen-6-yl)acetate)

Synthesized according to the general procedure described in **Section 4.2** on 0.3 mmol scale from methyl oxalate **2e** with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $5:1 \rightarrow 4:1$ as eluent. The product is a brownish oil (30 mg, **21% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H), 5.04 (d, J = 9.7 Hz, 1H), 4.33 (d, J = 9.7 Hz, 1H), 4.28 (dq, J = 10.7, 7.1 Hz, 1H), 4.15 (dq, J = 10.7, 7.1 Hz, 1H), 2.58 (s, 6H), 2.29 (s, 3H), 1.98–1.86 (m, 3H), 1.75 (dd~t, J = 8.4 Hz, 1H), 1.71 (q, J = 7.1 Hz, 1H), 1.64 (ddd, J = 13.1, 4.8, 2.6 Hz, 1H), 1.56–1.46 (m, 2H), 1.45–1.35 (m, 3H), 1.35–1.30 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H), 1.20 (s, 3H), 1.01 (s, 3H), 0.89 (s, 3H), 0.88 (d, J = 7.1 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 173.1, 140.8, 138.2, 136.7, 130.8, 61.2, 61.1, 57.8, 56.8, 53.5, 45.0, 43.1, 41.7, 40.2, 37.0, 30.0, 29.9, 29.5, 29.3, 25.4, 21.0, 20.2, 19.3, 15.5, 14.1.

 $R_{\rm f}$ = 0.50 (petroleum ether/EtOAc 3:1)

HRMS (ESI): calcd for C₂₈H₄₃NaNO₃S [M + Na]⁺: 469.2856, found: 496.2853.

The spectroscopic data is in agreement with the literature.²⁴

Compound **5f** (ethyl (*R*)-2-(1-benzoylcyclohexyl)-2-(((*R*)-mesitylsulfinyl)amino)acetate)

Synthesized according to the general procedure described in Section 4.2 on 0.36 mmol scale from methyl oxalate **2f** with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $3:1 \rightarrow 2:1$ as eluent. The product is a brownish oil (60 mg, 44% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.66–7.59 (m, 2H), 7.49–7.42 (m, 1H), 7.37 (dd~t, J = 7.7 Hz, 2H), 6.86 (s, 1H), 5.37 (d, J = 9.5 Hz, 0H), 4.49 (d, J = 9.5 Hz, 0H), 4.20 (ABqq, J = 7.2, 4.1 Hz, 1H), 2.51 (s, 6H), 2.29 (s, 3H), 2.27–2.11 (m, 2H), 1.75–1.65 (m, 1H), 1.61–1.44 (m, 4H), 1.22 (t, J = 7.2 Hz, 3H), 1.20–1.11 (m, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 206.3, 171.2, 141.1, 139.7, 137.8, 136.7, 130.8, 128.1, 127.4, 62.5, 62.0, 56.4, 31.1, 30.5, 25.4, 22.5, 22.4, 21.0, 19.2, 13.9.

R_f = 0.18 (petroleum ether/EtOAc 5:1)

HRMS (ESI): calcd for C₂₆H₃₃NaNO₄S [M + Na]⁺: 478.2022, found: 478.2025.

Compound **5g** (*tert*-butyl 4-((*R*)-2-ethoxy-1-(((*R*)-mesitylsulfinyl)amino)-2-oxoethyl)-4-methylpiperidine-1-carboxylate)

Synthesized according to the general procedure described in **Section 4.2** on 0.3 mmol scale from methyl oxalate **2g** with 2 h reaction time. The crude product was purified by column chromatography using hexane/CH₂Cl₂/EtOAc 8:1:1 as eluent. The product is a brownish oil (64 mg, **46% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H), 5.04 (d, J = 10.0 Hz, 1H), 4.31–4.12 (m, 2H), 3.77 (d, J = 10.0 Hz, 1H), 3.70 (br.s, 2H), 3.19–3.07 (m, 2H), 2.56 (s, 6H), 2.28 (s, 3H), 1.67 (ddd, J = 14.0, 10.0, 4.3 Hz, 1H), 1.55 (ddd, J = 14.0, 9.9, 4.8 Hz, 1H), 1.44 (s, 9H), 1.43–1.37 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H), 1.33–1.23 (m, 1H), 0.91 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 172.0, 154.8, 141.0, 137.7, 136.7, 130.8, 79.5, 64.7, 61.5, 36.3, 33.9, 33.8, 28.4, 21.0, 19.3, 18.8, 14.1.

 $R_{\rm f}$ = 0.11 (hexane/CH₂Cl₂/EtOAc 8:1:1)

HRMS (ESI): calcd for C₂₄H₃₈NaN₂O₅S [M + Na]⁺: 489.2394, found: 489.2394.

The spectroscopic data is in agreement with the literature.¹

Compound **5h** (ethyl (2*R*,3*R*)-2-(((*R*)-mesitylsulfinyl)amino)-3-(tetrahydro-2*H*-thiopyran-4-yl)butanoate)

Synthesized according to the general procedure described in **Section 4.2** on 0.36 mmol scale from methyl oxalate **2h** with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $5:1 \rightarrow 3:1$ as eluent. The product is a brownish oil (72 mg, **76% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 6.86 (s, 2H), 5.00 (d, J = 10.2 Hz, 1H), 4.42 – 4.15 (m, 2H), 3.81 (d, J = 10.2 Hz, 1H), 2.80 – 2.57 (m, 4H), 2.54 (s, 6H), 2.27 (s, 3H), 1.94 – 1.77 (m, 2H), 1.72 – 1.55 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), 0.87 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 172.0, 141.0, 137.7, 136.6, 130.8, 64.1, 61.5, 36.6, 35.3, 35.1, 23.2, 23.2, 21.0, 20.3, 19.2, 14.1.

R_f = 0.40 (hexanes/EtOAc 3:1)

HRMS (ESI): calcd for C₁₉H₂₉NaNO₃S₂ [M + Na]⁺: 406.1495, found: 406.1508.

Compound **5i** (*tert*-butyl 6-((*R*)-2-ethoxy-1-(((*R*)-mesitylsulfinyl)amino)-2-oxoethyl)-6-methyl-2azaspiro[3.3]heptane-2-carboxylate)

Synthesized according to the general procedure described in **Section 4.2** on 0.36 mmol scale from methyl oxalate **2i** with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $5:1 \rightarrow 3:1$ as eluent. The product is a brownish oil (38 mg, **27% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H), 5.14 (d, *J* = 8.4 Hz, 1H), 4.31 – 4.12 (m, 2H), 3.87 (d, *J* = 8.4 Hz, 1H), 2.57 (s, 6H), 2.51 – 2.43 (m, 1H), 2.29 (s, 4H, CH₃ overlapped with CH₂), 2.01 – 1.90 (m, 2H), 1.42 (s, 9H), 1.28 (t, J = 7.2 Hz, 3H), 0.96 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 171.7, 156.0, 141.0, 137.8, 136.7, 131.8, 130.8, 79.3, 64.6, 61.7, 43.1, 43.0, 37.0, 31.6, 28.4, 28.4, 21.7, 21.0, 19.4, 14.2.

 $R_{\rm f} = 0.56$ (hexanes/EtOAc 2:1)

HRMS (ESI): calcd for C₂₅H₃₈NaN₂O₅S [M + Na]⁺: 501.2409, found: 501.2412.

Compound **5j** (*tert*-butyl 2-((*R*)-2-ethoxy-1-(((*R*)-mesitylsulfinyl)amino)-2-oxoethyl)-2-methyl-7-azaspiro[3.5]nonane-7-carboxylate)

Synthesized according to the general procedure described in Section 4.2 on 0.36 mmol scale from methyl oxalate 2j with 3 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 5:1 \rightarrow 2:1 as eluent. The product is a brownish oil 39 mg, 26% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H), 5.14 (d, *J* = 8.7 Hz, 1H), 4.30 – 4.12 (m, 2H), 3.87 (d, *J* = 8.7 Hz, 1H), 3.47 – 3.20 (m, 4H), 2.58 (s, 6H), 2.28 (s, 3H), 2.18

(d, *J* = 12.6 Hz, 1H), 1.95 (d, *J* = 12.6 Hz, 1H), 1.69 – 1.53 (m, 4H), 1.50 – 1.45 (m, 2H), 1.44 (s, 9H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.05 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 172.0, 154.9, 140.9, 137.9, 136.7, 131.8, 130.8, 79.3, 65.6, 61.5, 41.6 (br), 41.5, 40.2 (br), 38.7 (br), 35.2, 29.9, 28.4, 24.6 (br), 21.0, 19.4, 14.2.

*R*_f = 0.55 (hexanes/EtOAc 2:1)

HRMS (ESI): calcd for C₂₇H₄₂NaN₂O₅S [M + Na]⁺: 529.2721, found: 529.2726.

Compound **5k** (ethyl (2*R*)-2-(((*R*)-mesitylsulfinyl)amino)-2-(2,6,6-trimethyl-3-oxobicyclo[3.1.1]heptan-2-yl)acetate)

Synthesized according to the general procedure described in **Section 4.2** on 0.36 mmol scale from methyl oxalate **2k** with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 4:1 \rightarrow 1:1 as eluent. Two β -diastereomers of **5k** were isolated (**5k-1** and **5k-2**) as brownish oils (**5k-1**: 47 mg, **37% yield**; **5k-2**: 50 mg, 40% yield, for **5k-2**; in total for **5k**: 97 mg, 77%).

¹**H NMR** for β-diastereomer **5k-1** (500 MHz, CDCl₃) δ 6.85 (s, 2H), 5.13 (d, J = 8.5 Hz, 1H), 4.28 (d, J = 8.5 Hz, 1H), 4.16–4.08 (m, 2H), 2.72–2.58 (m, 2H), 2.57 (s, 6H), 2.55–2.46 (m, 2H), 2.28 (s, 3H), 2.09 (tq, J = 6.0, 2.6 Hz, 1H), 1.92 (t, J = 6.2 Hz, 1H), 1.73 (d, J = 11.6 Hz, 1H), 1.32 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.16 (s, 3H), 0.91 (s, 3H).

¹³**C NMR** for β-diastereomer **5k-1** (126 MHz, CDCl₃) δ 211.6, 170.8, 140.9, 137.2, 130.8, 61.6, 59.6, 54.7, 48.8, 45.1, 40.6, 38.7, 30.1, 27.5, 23.1, 21.0, 19.3, 19.0, 14.0.

 $R_{\rm f}$ for β -diastereomer **5k-1** = 0.44 (petroleum ether/EtOAc 2:1)

HRMS (ESI) for β -diastereomer **5k-1**: calcd for C₂₃H₃₃NaNO₄S [M + Na]⁺: 442.2022, found: 442.2029.

¹**H NMR** for β-diastereomer **5k-2** (500 MHz, CDCl₃) δ 6.86 (s, 2H), 6.76 (dt, J = 6.0, 1.7 Hz, 1H), 5.03 (d, J = 10.3 Hz, 1H), 4.45–4.13 (m, 2H), 3.86 (d, J = 10.3 Hz, 1H), 2.59–2.56 (m, 1H), 2.53 (s, 6H), 2.47 (dd, J = 16.0, 6.0 Hz, 1H), 2.28 (s, 3H), 2.25–2.10 (m, 3H), 1.77 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H), 0.91 (s, 3H), 0.88 (s, 3H).

¹³**C NMR** for β-diastereomer **5k-2** (126 MHz, CDCl₃) δ 199.6, 172.3, 144.9, 141.1, 137.8, 136.8, 135.3, 130.8, 63.0, 61.6, 41.1, 39.7, 39.6, 27.2, 21.0, 20.4, 20.0, 19.2, 15.5, 14.1.

 $R_{\rm f}$ for β -diastereomer 5k-2 = 0.38 (petroleum ether/EtOAc 2:1)

HRMS (ESI) for β-diastereomer **5k-2**: calcd for C₂₃H₃₃NaNO₄S [M + Na]⁺: 442.2022, found: 442.2031.

Compound **5** (ethyl 1-benzoyl- N^{α} -((*R*)-mesitylsulfinyl)-*D*-tryptophanate)

Synthesized according to the general procedure described in Section 4.2 on 0.36 mmol scale from methyl oxalate 2I with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 5:1 \rightarrow 1:1 as eluent. The product is a brownish oil (50 mg, 33% NBz yield).

¹**H NMR** (500 MHz, CDCl₃) δ 8.37 (d, J = 8.2 Hz, 1H), 7.67–7.61 (m, 2H), 7.62– 7.55 (m, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.46 (dd, J = 8.2, 7.3 Hz, 2H), 7.38 (dd, J =7.9, 7.0 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 6.79 (s, 2H), 5.12 (d, J = 8.3 Hz, 1H), 4.32 (ddd, J = 8.3, 7.8, 5.0 Hz, 1H), 4.20–4.08 (m, 2H), 3.23 (dd, J = 14.8, 5.0 Hz, 1H), 3.03 (dd, J = 14.8, 7.7 Hz, 1H), 2.36 (s, 6H), 2.27 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 172.6, 168.3, 140.9, 137.6, 136.6, 136.2, 134.5, 131.8, 130.8, 130.6, 129.0, 128.6, 125.9, 125.3, 123.9, 118.9, 116.8, 116.5, 62.0, 57.2, 29.8, 21.0, 19.1, 14.0.

R_f = 0.23 (petroleum ether/EtOAc 2:1)

HRMS (ESI): calcd for C₂₉H₃₀NaN₂O₄S [M + Na]⁺: 525.1819, found: 525.1816.

Compound 5m (ethyl (R)-2-(((R)-mesitylsulfinyl)amino)-3,3-dimethylbutanoate)

Synthesized according to the general procedure described in **Section 4.2** on 0.3 mmol scale from methyl oxalate **2m** with 2 h reaction time. The crude product was purified by column chromatography using hexane/CH₂Cl₂/EtOAc 8:1:1 as eluent. The product is a brownish oil (65 mg, **67% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H), 5.05 (d, *J* = 10.0 Hz, 1H), 4.47–4.10 (m, 2H), 3.60 (d, *J* = 10.0 Hz, 1H), 2.57 (s, 6H), 2.29 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H), 0.96 (s, 9H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl_3) δ 172.7, 140.8, 138.1, 136.7, 130.8, 66.5, 61.3, 35.0, 26.5, 21.0, 19.3, 14.2

R_f = 0.32 (hexane/EtOAc 4:1)

HRMS (ESI): calcd for C₁₇H₂₇NaNO₃S [M + Na]⁺: 348.1604, found: 348.1609.

The spectroscopic data is in agreement with the literature.¹

Compound **5n** (ethyl (*R*)-2-(((*R*)-mesitylsulfinyl)amino)-3,3-dimethyl-5-phenylpentanoate)

Synthesized according to the general procedure described in Section 4.2 on 0.36 mmol scale from methyl oxalate **2n** with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 20:1 \rightarrow 5:1 as eluent. The product is a brownish oil (117 mg, 94% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.30–7.23 (m, 2H), 7.21–7.10 (m, 3H), 6.87 (s, 2H), 5.08 (d, J = 10.1 Hz, 1H), 4.32–4.19 (m, 2H), 3.81 (d, J = 10.1 Hz, 1H), 2.71–2.57 (m, 2H), 2.56 (s, 6H), 2.29 (s, 3H), 1.66 (ddd, J = 13.6, 12.3, 5.3 Hz, 1H), 1.63–1.48 (m, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.00 (s, 6H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 172.7, 142.5, 141.0, 138.0, 136.8, 130.8, 128.4, 128.3, 125.8, 64.7, 61.5, 41.5, 37.7, 30.3, 23.9, 23.7, 21.0, 19.3, 14.2.

R_f = 0.32 (petroleum ether/EtOAc 5:1)

HRMS (ESI): calcd for C₂₄H₃₃NaNO₃S [M + Na]⁺: 438.2073, found: 438.2073.

Compound **50** (ethyl (*R*)-4-chloro-2-(((*R*)-mesitylsulfinyl)amino)-3,3-dimethylbutanoate)

Synthesized according to the general procedure described in **Section 4.2** on 0.3 mmol scale from methyl oxalate **20** with 2 h reaction time. The crude product was purified by preparative TLC using hexane/EtOAc 9:1 as eluent. The product is a brownish oil (24 mg, **22% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 6.88 (s, 2H), 5.07 (d, *J* = 10.2 Hz, 1H), 4.42–4.13 (m, 2H), 4.04 (d, *J* = 10.2 Hz, 1H), 3.61 (d, *J* = 10.8 Hz, 2H), 3.30 (d, *J* = 10.8 Hz, 2H), 2.58 (s, 6H), 2.30 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.25 (s, 3H), 1.09 (s, 3H), 0.94 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 172.3, 141.1, 137.9, 136.8, 130.8, 61.9, 61.8, 52.8, 39.6, 29.7, 22.7, 21.2, 21.0, 19.2, 14.1.

*R*_f = 0.36 (hexane/EtOAc 9:1)

HRMS (ESI): calcd for C₁₇H₂₆ClNaNO₃S [M + Na]⁺: 382.1214, found: 382.1219.

Compound **5p** (*tert*-butyl (*S*)-2-((*R*)-4-ethoxy-3-(((*R*)-mesitylsulfinyl)amino)-2-methyl-4-oxobutan-2-yl)-4,4-difluoropyrrolidine-1-carboxylate)

Synthesized according to the general procedure described in Section 4.2 on 0.36 mmol scale from methyl oxalate **2p** with 4 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 5:1 \rightarrow 2:1 as eluent. The product is a brownish oil 50.0 mg, **32% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 6.88 (s, 2H), 5.11 (d, J = 9.9 Hz, 1H), 4.37 – 4.19 (m, 3H), 4.13 (t, J = 8.9 Hz, 1H), 3.66 (br.s, 1H), 3.50 (ddd, J = 25.3, 12.8, 6.1 Hz, 1H),

3.36 (ddd, J = 24.9, 13.3, 6.1 Hz, 1H), 2.59 (s, 6H), 2.29 (s, 3H), 1.48 (s, 6H), 1.43 (s, 9H), 1.34 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 171.8, 171.7, 141.1, 136.8, 131.9, 130.8, 81.8, 65.3, 62.8, 61.8, 54.3, 43.7, 28.2, 28.2, 21.0, 19.3, 14.1.

R_f = 0.50 (hexanes/EtOAc 2:1)

HRMS (ESI): calcd for C₂₅H₃₈NaF₂N₂O₅S [M + Na]⁺: 539.2378, found: 539.2387.

Compound **5q** (ethyl (2*R*)-2-(((*R*)-mesitylsulfinyl)amino)-3-methyl-3-(5-methyl-5-vinyltetrahydrofuran-2-yl)butanoate)

Synthesized according to the general procedure described in **Section 4.2** on 0.36 mmol scale from methyl oxalate **2q** with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $10:1 \rightarrow 3:1$ as eluent. The product is a brownish oil (58 mg, **46% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H, CH, Mes), 6.84 (s, 2H, CH, Mes), 5.84 (dd, J = 17.2, 10.7 Hz, 1H, H-6), 5.80 (dd, J = 17.2, 10.7 Hz, 1H, H-6), 5.40 (d, J = 10.4 Hz, 1H, NH), 5.24 (dd, J = 17.2, 1.5 Hz, 1H, H-7b), 5.20 (d, J = 9.8 Hz, 1H, NH), 5.20 (dd, J = 17.2, 1.7 Hz, 1H, H-7b), 4.96 (dd, J = 8.2, 1.5 Hz, 1H, H-7a), 4.94 (dd, J = 8.1, 1.7 Hz, 1H, H-7a), 4.25–4.14 (m, 4H, H-10), 3.99 (d, J = 10.2 Hz, 1H, H-8), 3.97 (dd, J = 9.2, 7.3 Hz, 1H, H-2), 3.93 (d, J = 9.6 Hz, 1H, H-8), 3.83 (t, J = 7.2 Hz, 1H, H-2), 2.571 (s, 6H, 2 × CH₃, Mes), 2.573 (s, 6H, 2 × CH₃, Mes), 2.29 (s, 3H, CH₃, Mes), 2.27 (s, 3H, CH₃, Mes), 1.87–1.58 (m, 8H, H-3, H-4), 1.30 (t, J = 7.2 Hz, 6H, H-11), 1.27 (s, 3H, CH₃), 1.22 (s, 3H, CH₃), 1.01 (s, 3H, CH₃), 0.92 (s, 3H, CH₃), 0.85 (s, 3H, CH₃), 0.82 (s, 3H, CH₃).

¹³C NMR (126 MHz, CDCl₃) δ 172.8, 172.6 (C-9), 143.9, 143.8 (C-6), 140.8, 140.5 (C, Mes), 138.4, 138.1 (C, Mes), 136.8, 136.7 (2 × C, Mes), 130.8, 130.7 (2 × CH, Mes), 111.2, 111.1 (C-7), 82.8, 82.7 (C-5), 81.8, 81.5 (C-2), 64.2, 63.6 (C-8), 61.4, 61.1 (C-10), 41.1, 40.2 (C-1), 37.2, 37.1 (C-3 or C-4), 26.96, 27.01 (CH₃), 26.4, 26.2 (C-3 or C-4), 21.0, 21.0 (CH₃, Mes), 20.2, 20.0 (CH₃), 19.4, 19.3 (2 × CH₃, Mes), 19.1, 18.5 (CH₃), 14.1 (C-11).

 $R_{\rm f}$ = 0.49, 0.47 (petroleum ether/EtOAc 5:1)

HRMS (ESI): calcd for C₂₃H₃₅NaNO₄S [M + Na]⁺: 444.2179, found: 444.2181.

Compound **5r** (ethyl (*R*)-5-((tert-butyldimethylsilyl)oxy)-2-(((*R*)-mesitylsulfinyl)amino)-3,3-dimethylpentanoate)

Synthesized according to the general procedure described in Section 4.2 on 0.36 mmol scale from methyl oxalate 2r with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 20:1 \rightarrow 10:1 as eluent. The product is a brownish oil (124 mg, 88% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H), 5.07 (d, J = 10.1 Hz, 1H), 4.31–4.11 (m, 2H), 3.74 (d, J = 10.1 Hz, 1H), 3.71 (ddd, J = 7.6, 6.6, 1.3 Hz, 2H), 2.57 (s, 6H), 2.29 (s, 3H), 1.63 (dt, J = 14.3, 7.1 Hz, 1H), 1.57–1.50 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H), 0.97 (s, 3H), 0.94 (s, 3H), 0.89 (s, 9H), 0.05 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 172.6, 140.9, 138.0, 136.8, 130.8, 65.4, 61.3, 59.5, 41.2, 36.9, 25.9, 24.1, 23.8, 21.0, 19.3, 18.2, 14.1, -5.35, -5.38.

R_f = 0.23 (petroleum ether/EtOAc 10:1)

HRMS (ESI): calcd for C₂₄H₄₃NaNO₄SSi [M + Na]⁺: 492.2574, found: 492.2575.

Compound **5s** ((*R*)-5-ethoxy-4-(((*R*)-mesitylsulfinyl)amino)-3,3-dimethyl-5-oxopentyl benzoate)

Synthesized according to the general procedure described in Section 4.2 on 0.3 mmol scale from methyl oxalate 2s with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 20:1 \rightarrow 5:1 as eluent. The product is a brownish oil (106 mg, 77% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 8.07–7.96 (m, 2H), 7.64–7.51 (m, 1H), 7.44 (t, J = 7.7 Hz, 2H), 6.87 (s, 2H), 5.10 (d, J = 10.0 Hz, 1H), 4.42 (qt, J = 11.1, 7.0 Hz, 2H), 4.34–4.15 (m, 2H), 3.76 (d, J = 10.0 Hz, 1H), 2.57 (s, 6H), 2.29 (s, 3H), 1.84 (td, J = 7.2, 2.5 Hz, 2H), 1.38–1.28 (m, 3H), 1.06 (s, 3H), 1.04 (s, 3H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 172.3, 166.5, 141.0, 137.8, 136.8, 132.9, 130.8, 130.2, 129.5, 128.4, 65.5, 61.6, 37.1, 37.0, 24.1, 23.7, 21.0, 19.3, 14.1.

HRMS (ESI): calcd for C₂₅H₃₃NaNO₅S [M + Na]⁺: 482.1972, found: 482.1972.

Compound **5t** ((*R*)-5-ethoxy-4-(((*R*)-mesitylsulfinyl)amino)-3,3-dimethyl-5-oxopentyl 4-bromobenzoate)

Synthesized according to the general procedure described in Section 4.2 on 0.17 mmol scale from methyl oxalate **2t** (1.5 equiv.) with 4 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $5:1 \rightarrow 3:1$ as eluent. The product is a brownish oil (46.2 mg, **58% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 7.92–7.82 (m, 2H), 7.64–7.53 (m, 2H), 6.87 (s, 2H), 5.10 (d, J = 10.0 Hz, 1H), 4.47–4.35 (m, 2H), 4.34–4.18 (m, 2H), 3.75 (d, J = 10.0 Hz, 1H), 2.56 (s, 6H), 2.29 (s, 3H), 1.83 (td, J = 7.2, 3.3 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H), 1.04 (d, J = 7.2 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 172.3, 165.8, 141.1, 137.8, 136.8, 131.7, 131.1, 130.9, 129.1, 128.1, 65.4, 61.9, 61.6, 37.0, 37.0, 24.1, 23.7, 21.1, 19.3, 14.2.

 $R_{\rm f}$ = 0.48 (petroleum ether/EtOAc 3:1)

HRMS (ESI): calcd for C₂₅H₃₂BrNaNO₅S [M + Na]⁺: 560.1077, found: 560.1078.

Compound **5u** ((*R*)-5-ethoxy-4-(((*R*)-mesitylsulfinyl)amino)-3,3-dimethyl-5-oxopentyl nicotinate)

Synthesized according to the general procedure described in **Section 4.2** on 0.36 mmol scale from methyl oxalate **2u** with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $5:1 \rightarrow 3:1$ as eluent. The product is a brownish oil (98 mg, **71% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 9.20 (s, 1H), 8.78 (dd, *J* = 4.8, 1.9 Hz, 1H), 8.28 (dt, *J* = 8.0, 1.9 Hz, 1H), 7.40 (dd, *J* = 8.0, 4.8 Hz, 1H), 6.87 (s, 2H), 5.11 (d, *J* = 10.0 Hz, 1H), 4.51–4.39 (m, 2H), 4.34–4.17 (m, 2H), 3.74 (d, *J* = 10.0 Hz, 1H), 2.57 (s, 6H), 2.29 (s, 3H), 1.90–1.80 (m, 2H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.06 (s, 3H), 1.05 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 172.3, 165.1, 153.4, 150.8, 141.1, 137.8, 137.1, 136.8, 130.9, 126.1, 123.3, 65.4, 62.1, 61.7, 37.0, 37.0, 24.1, 23.7, 21.0, 19.3, 14.2.

 $R_{\rm f}$ = 0.32 (petroleum ether/EtOAc 1:1)

HRMS (ESI): calcd for C₂₄H₃₂NaN₂O₅S [M + Na]⁺: 483.1924, found: 483.1924.

Compound 5v ((*R*)-5-ethoxy-4-(((*R*)-mesitylsulfinyl)amino)-3,3-dimethyl-5-oxopentyl thiophene-2-carboxylate)

Synthesized according to the general procedure described in Section 4.2 on 0.36 mmol scale from methyl oxalate 2v with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 5:1 \rightarrow 3:1 as eluent. The product is a brownish oil (81 mg, 58% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 8.13 (dd, *J* = 3.7, 1.3 Hz, 1H), 7.89 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.44 (dd, *J* = 5.0, 3.7 Hz, 1H), 7.21 (s, 2H), 5.44 (d, *J* = 10.0 Hz, 1H), 4.79–4.66 (m, 2H), 4.68–4.51 (m, 2H), 4.09 (d, *J* = 10.0 Hz, 1H), 2.91 (s, 6H), 2.63 (s, 3H), 2.22–2.07 (m, 2H), 1.91 (s, 6H), 1.65 (t, *J* = 7.1 Hz, 3H), 1.39 (s, 3H), 1.37 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 172.3, 162.1, 141.0, 137.9, 136.8, 133.8, 133.4, 132.4, 130.8, 127.8, 65.4, 61.8, 61.6, 37.0, 37.0, 24.1, 23.8, 23.7, 21.0, 19.3, 14.1.

R_f = 0.60 (petroleum ether/EtOAc 2:1)

HRMS (ESI): calcd for $C_{23}H_{31}NaNO_5S_2$ [M + Na]⁺: 488.1536, found: 488.1535.

Compound **5w** (ethyl (*R*)-2-(((*R*)-mesitylsulfinyl)amino)-3,3-dimethyl-5-(((3aR,4*R*,5aR,9aR,9b*S*)-2,2,8,8-tetramethylhexahydro-[1,3]dioxolo[4',5':4,5]pyrano[3,2-*d*][1,3]dioxin-4-yl)oxy)pentanoate)

Synthesized according to the general procedure described in **Section 4.2** on 0.36 mmol scale from methyl oxalate **2w** with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $3:1 \rightarrow 2:1$ as eluent. The product is a brownish oil (132 mg, **74% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H), 5.04 (d, J = 10.2 Hz, 1H), 4.67 (d, J = 7.9 Hz, 1H), 4.23 (ABqq, J = 10.8, 7.1 Hz, 2H), 4.01–3.92 (m, 2H), 3.93–3.84 (m, 2H), 3.70 (d, J = 10.2 Hz, 1H), 3.70–3.64 (m, 1H), 3.63 (dd~t, J = 9.0 Hz, 1H), 3.38 (dd, J = 9.0, 7.9 Hz, 1H), 3.26 (ddd, J = 10.3, 8.8, 5.2 Hz, 1H), 2.56 (s, 6H), 2.29 (s, 3H), 1.75 (ddd, J = 13.7, 9.1, 6.2 Hz, 1H), 1.67 (ddd, J = 13.7, 9.1, 5.7 Hz, 1H), 1.54 (s, 3H), 1.46 (s, 6H), 1.44 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H), 0.97 (s, 3H), 0.95 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 172.4, 140.9, 137.9, 136.7, 130.8, 112.1, 102.3 (C-1), 99.7, 77.8, 77.6, 72.7, 69.7, 66.1, 65.2, 62.2, 61.5, 37.8, 36.8, 29.0, 26.7, 26.4, 24.1, 23.8, 21.0, 19.3, 19.1, 14.1.

R_f = 0.47 (petroleum ether/EtOAc 2:1)

HRMS (ESI): calcd for C₃₀H₄₇NaNO₉S [M + Na]⁺: 620.2864, found: 620.2861.

Compound 6a ((1R,3r,5S)-3-allyl-8-(tert-butoxycarbonyl)-8-azabicyclo[3.2.1]octan-3-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1 mmol scale from alcohol **SI-3** with 2 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $10:1 \rightarrow 4:1$ as eluent. The product is a colorless oil (140 mg, **40% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 5.66 (ddt, *J* = 17.5, 10.2, 7.4 Hz, 1H), 5.18–5.03 (m, 2H), 4.26 (br.s, 1H), 4.16 (br.s, 1H), 3.88 (s, 3H), 2.67 (dd, *J* = 12.8, 7.1 Hz, 2H), 2.38 (dd~t, *J* = 15.3 Hz, 2H), 2.07–1.82 (m, 6H), 1.46 (s, 9H).

¹³**C NMR** (126 MHz, CDCl₃) δ 158.6, 156.4, 153.3, 131.0, 119.9, 87.1, 79.5, 53.4, 52.7 (br), 52.0 (br), 43.9, 38.8 (br), 38.2 (br), 28.5, 27.9 (br), 27.1 (br).

 $R_{\rm f}$ = 0.40 (petroleum ether/EtOAc 5:1)

The spectroscopic data is in agreement with the literature.¹¹

Compound **6b** ((1*r*,3*r*,5*r*,7*r*)-2-allyladamantan-2-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1.8 mmol scale from alcohol **SI-4** with 10 min reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $10:1 \rightarrow 4:1$ as eluent. The product is a colorless oil (330 mg, **66% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 5.81–5.68 (m, 1H), 5.12–5.05 (m, 2H), 3.87 (s, 3H), 2.97 (d, *J* = 7.3 Hz, 2H), 2.45 (s, 2H), 2.11–1.98 (m, 2H), 1.95–1.82 (m, 4H), 1.82–1.71 (m, 4H), 1.66–1.59 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 159.0, 156.2, 131.9, 118.5, 93.2, 53.2, 38.1, 36.8, 34.2, 33.9, 32.9, 27.0, 26.7.

*R*_f = 0.50 (petroleum ether/EtOAc 10:1)

HRMS (ESI): calcd for C₁₆H₂₂NaO₄ [M + Na]⁺: 301.1410, found: 301.1410.

Compound 6c (2-allyl-2,3-dihydro-1H-inden-2-yl methyl oxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1.4 mmol scale from alcohol **SI-5** with 10 min reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc $20:1 \rightarrow 10:1$ as eluent. The product is a colorless amorphous solid (354 mg, **97% yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 7.23–7.15 (m, 4H), 5.86–5.73 (m, 1H), 5.20–5.08 (m, 2H), 3.85 (s, 3H), 3.49 (d, J = 16.9 Hz, 2H), 3.33 (d, J = 16.9 Hz, 2H), 2.90 (dt, J = 7.3, 1.3 Hz, 2H).

 $^{13}\textbf{C}$ NMR (126 MHz, CDCl₃) δ 158.4, 156.8, 139.5, 131.9, 126.9, 124.5, 119.3, 93.8, 53.3, 43.7, 40.7.

 R_{f} = 0.29 (petroleum ether/EtOAc 20:1, brown color upon treatment with 5% H₃PO₄ in MeOH)

HRMS (ESI): calcd for C₁₅H₁₆NaO₄ [M + Na]⁺: 283.0941, found: 283.0942.

Compound **6d** ((*R*)-1-isopropyl-4-methylcyclohex-3-en-1-yl methyl oxalate, (–)-terpineolyl methyloxalate)

Synthesized according to the **General procedure C** described in **Section 4.1** on 1 mmol scale from (–)-terpinen-4-ol with 1 h reaction time. The crude product was purified by filtration through silica gel washing with CH₂Cl₂. The product is a yellowish oil (240 mg, **quantitative yield**).

¹**H NMR** (500 MHz, CDCl₃) δ 5.22 (br.s, 1H), 3.82 (s, 3H), 2.68 (hept, J = 6.9 Hz, 1H), 2.52–2.40 (m, 2H), 2.28–2.15 (m, 1H), 2.05–1.95 (m, 1H), 1.90 (dd, J = 17.8, 5.9 Hz, 1H), 1.70 (ddd, J = 13.4, 11.5, 6.1 Hz, 1H), 1.63 (br.s, 3H), 0.92 (d, J = 6.9 Hz, 3H), 0.91 (d, J = 6.9 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 159.1, 157.1, 133.7, 117.0, 91.2, 53.2, 32.6, 29.7, 27.7, 27.1, 23.1, 17.6, 17.0.

Compound **7a** (*tert*-butyl 4'-((*R*)-3-ethoxy-2-(((*R*)-mesitylsulfinyl)amino)-3-oxopropyl)-5'-oxodihydro-3'*H*-8-azaspiro[bicyclo[3.2.1]octane-3,2'-furan]-8-carboxylate)

Synthesized according to the general procedure described in **Section 4.2** on 0.36 mmol scale from methyl oxalate **6a** with 4 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 5:1 \rightarrow 1:1 as eluent. The product is a brownish oil (43 mg, **28% yield**). The product is a mixture of two γ -diastereomers (1:1).

¹**H NMR** (500 MHz, CDCl₃) δ 6.88 (s, 2H), 6.87 (s, 2H), 5.13 (d, *J* = 8.9 Hz, 0.5H), 5.11 (d, *J* = 8.5 Hz, 0.5H), 4.32–4.25 (m, 1.5H), 4.24–4.16 (m, 3H), 3.92–3.84 (m, 0.5H), 2.97–2.75 (m, 1H), 2.58 (s, 6H), 2.57–2.50 (m, 1H), 2.38 (d, *J* = 13.8 Hz, 0.5H), 2.29 (s, 1.5H), 2.29 (s, 1.5H), 2.26–2.16 (m, 1H), 2.17–2.00 (m, 3.5H), 1.97–1.89 (m, 3H), 1.89–1.82 (m, 3H), 1.81–1.70 (m, 1.5H), 1.67–1.57 (m, 1.5H), 1.48 (s, 4.5H), 1.46 (s, 4.5H), 1.32–1.25 (m, 3H). *Mixture of two γ*-*diastereomers is reported*.

¹³C NMR (126 MHz, CDCl₃) δ 177.5, 177.5, 172.7, 172.4, 153.3, 153.2, 141.3, 141.2, 137.3 (d, *J* = 21.5 Hz), 136.8, 136.6, 131.0, 130.9, 82.5, 82.3, 79.7, 79.6, 62.2, 62.0, 55.3, 55.1, 43.7, 43.4, 36.2, 35.7, 34.6, 28.5, 28.5, 21.0, 19.3, 14.1, 14.1. *Mixture of two γ-diastereomers is reported.*

 $R_{\rm f}$ = 0.45 (petroleum ether/EtOAc 1:1)

HRMS (ESI): calcd for C₂₉H₄₂NaN₂O₇S [M + Na]⁺: 585.2605, found: 585.2603.

Compound **7b** (ethyl (*R*)-2-(((*R*)-mesitylsulfinyl)amino)-3-((1*R*,3*R*)-5'-oxodihydro-3'*H*-spiro[adamantane-2,2'-furan]-4'-yl)propanoate)

Synthesized according to the general procedure described in **Section 4.2** on 0.36 mmol scale from methyl oxalate **6b** with 4 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 5:1 \rightarrow 2:3 as eluent. The product is a brownish oil (35 mg, **24% yield**). The product is a mixture of two γ -diastereomers (1:1).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H), 5.15 (d, J = 8.9 Hz, 0.5H), 5.13 (d, J = 8.4 Hz, 0.5H), 4.32 (td, J = 7.9, 5.5 Hz, 0.5H), 4.28–4.17 (m, 2H), 2.98 (tdd, J = 11.7, 8.8, 3.8 Hz, 0.5H), 2.88 (dtd, J = 11.6, 8.5, 5.9 Hz, 0.5H), 2.75 (dd, J = 12.6, 8.9 Hz, 0.5H), 2.69–2.61 (m, 0.5H), 2.58 (s, 3H), 2.58 (s, 3H), 2.39 (dt, J = 14.2, 5.8 Hz, 0.5H), 2.29 (s, 3H), 2.26–2.18 (m, 1.5H), 2.18–2.11 (m, 1H), 1.92–1.69 (m, 11H), 1.68–1.58 (m, 5H), 1.29 (t, J = 7.1, Hz, 1.5H), 1.27 (t, J = 7.1, Hz, 1.5H). *Mixture of two* γ-diastereomers is reported.

¹³**C NMR** (126 MHz, CDCl₃) δ 177.60, 177.52, 172.90, 172.60, 141.27, 141.10, 137.38, 136.81, 136.52, 130.97, 130.87, 88.70, 88.49, 62.13, 61.95, 55.43, 55.31, 39.28, 39.26, 38.28, 37.87, 37.35, 37.01, 36.48, 35.56, 35.49, 35.38, 35.28, 35.16, 33.76, 33.63, 33.60, 32.72, 32.70, 26.69, 26.67, 26.60, 21.03, 19.31, 19.24, 14.10, 14.08. *Mixture of two γ-diastereomers is reported*.

R_f = 0.48 (petroleum ether/EtOAc 2:1)

HRMS (ESI): calcd for C₂₇H₃₇NaNO₅S [M + Na]⁺: 510.2285, found: 510.2284.

Compound **7c** (ethyl (*R*)-2-(((*R*)-mesitylsulfinyl)amino)-3-(5-oxo-1',3',4,5-tetrahydro-3*H*-spiro[furan-2,2'-inden]-4-yl)propanoate)

Synthesized according to the general procedure described in **Section 4.2** on 0.36 mmol scale from methyl oxalate **6c** with 4 h reaction time. The crude product was purified by column chromatography using petroleum ether/EtOAc 5:1 \rightarrow 2:3 as eluent. The product is a brownish oil (40 mg, **29% yield**). The product is a mixture of two γ -diastereomers (1:1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.25–7.15 (m, 4H), 6.89 (s, 1H), 6.88 (s, 1H), 5.16 (d, J = 9.2 Hz, 0.5H), 5.14 (d, J = 8.1 Hz, 0.5H), 4.39–4.30 (m, 1H), 4.22 (qd, J = 7.2, 4.3 Hz, 2H), 3.94 (ddd, J = 10.9, 9.1, 4.1 Hz, 0.5H), 3.40 (dd, J = 16.6, 14.3 Hz, 1H), 3.29–3.18 (m, 1H), 3.15 (d, J = 15.4 Hz, 0.5H), 3.13–3.05 (m, 1.5H), 3.05–2.97 (m, 0.5H), 2.69–2.62 (m, 0.5H), 2.60 (s, 3H), 2.59 (s, 3H), 2.58–2.49 (m, 1H), 2.49–2.42 (m, 1H), 2.30 (s, 1.5H), 2.29 (s, 1.5H), 2.28–2.23 (m, 1H), 2.13 (t, J = 12.3 Hz, 0.5H), 2.08–2.01 (m, 0.5H), 1.96 (ddd, J = 14.4, 10.6, 4.1 Hz, 0.5H), 1.87 (dt, J = 14.2, 8.0 Hz, 0.5H), 1.29 (d, J = 7.1, 4.5 Hz, 1.5H). *Mixture of two γ-diastereomers is reported*.

¹³**C NMR** (126 MHz, CDCl₃) δ 177.33, 177.33, 172.76, 172.48, 141.32, 141.16, 139.51, 139.49, 139.36, 139.28, 137.44, 137.24, 136.81, 136.60, 131.00, 130.94, 130.91, 127.23, 127.16, 127.11, 124.62, 124.60, 124.47, 124.42, 91.29, 91.17, 62.15, 62.02, 55.34, 55.15, 45.35, 44.88, 44.79, 39.95, 39.59, 37.86, 37.27, 34.75, 34.50, 21.03, 19.30, 14.08, 14.06. *Mixture of two γ-diastereomers is reported*.

 $R_{\rm f}$ = 0.51 (petroleum ether/EtOAc 1:1)

HRMS (ESI): calcd for C₂₆H₃₁NaNO₅S [M + Na]⁺: 492.1815, found: 492.1815.

Compound **7d** (ethyl (2*R*)-2-((1*S*,2*R*)-5-isopropyl-2-methyl-7-oxo-6-oxabicyclo[3.2.1]octan-2-yl)-2-(((*R*)-mesitylsulfinyl)amino)acetate)

Synthesized according to the general procedure described in **Section 4.2** on 0.3 mmol scale from methyl oxalate **6d** with 2 h reaction time. The crude product was purified by column chromatography using hexane/EtOAc 9:1 as eluent. The product is a brown solid (17.5 mg, **13% yield**). The product is a mixture of two β -diastereomers (1:3.5).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (s, 2H), 5.12 (d, J = 10.1 Hz, 1H), 4.34–4.20 (m, 2H), 4.18 (d, J = 10.1 Hz, 1H), 2.64 (dd, J = 5.6, 1.8 Hz, 1H), 2.53 (s, 6H), 2.28 (s, 3H), 2.16–2.05 (m, 2H), 2.01–1.92 (m, 2H), 1.83–1.74 (m, 2H), 1.43 (dt, J = 15.1, 9.7 Hz, 1H), 1.32 (d, J = 7.1 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H), 0.97 (d, J = 6.9 Hz, 3H), 0.90 (s, 1H). *Mixture of two* β*-diastereomers is reported*.

¹³**C NMR** (126 MHz, CDCl₃) δ 177.3, 171.6, 141.5, 137.2, 136.7, 131.0, 89.1, 62.17, 62.03, 59.1, 48.8, 38.5, 38.1, 35.1, 35.1, 34.9, 34.2, 29.3, 26.0, 21.1, 20.0,

19.28, 19.17, 17.1, 16.8, 14.2, 14.1. Mixture of two β -diastereomers is reported.

R_f = 0.19 (hexane/EtOAc 9:1)

HRMS (ESI): calcd for C₂₄H₃₅NaNO₅S [M + Na]⁺: 472.2128, found: 472.2127.

Compound 8a (ethyl (R)-2-amino-2-(1-methylcyclohexyl)acetate, trifluoroacetate salt)

Synthesized according to the general procedure described in Section 4.2 on 0.1 mmol scale from *N*-sulfinyl amide 5a. The product is a colorless solid (31 mg, 99% yield). ¹H NMR (500 MHz, MeOD) δ 4.30 (ABqq, *J* = 16.0, 7.1, Hz, 2H), 3.88 (s, 1H), 1.70– 1.40 (m, 10H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.04 (s, 3H). ¹³C NMR (126 MHz, MeOD) δ 169.6, 63.4, 62.2, 37.1, 36.0, 35.2, 26.6, 22.4, 22.3, 19.9, 14.4. ¹⁹F NMR (377 MHz, MeOD) δ -77.0. *R*_f = 0.80 (CH₂Cl₂/MeOH 10:1, red color upon treatment with ninhydrin stain) [α]²⁵_D = -12.8 (*c* 3.4, MeOH)

Compound **8d** (2-((1*R*,2*R*,4a*S*,8a*S*)-2-((*R*)-1-amino-2-ethoxy-2-oxoethyl)-2,5,5,8atetramethyldecahydronaphthalen-1-yl)ethyl benzoate)

Synthesized according to the general procedure described in **Section 4.2** on 0.1 mmol scale from *N*-sulfinyl amide **5d**. The product is a colorless solid (44 mg, **99% yield**).

HRMS (ESI): calcd for $C_{11}H_{22}NO_2 [M - CF_3CO_2H + H]^+$: 200.1645, found: 200.1644.

¹**H NMR** (500 MHz, CDCl₃) δ 8.04–7.97 (m, 2H), 7.59–7.51 (m, 1H), 7.42 (dd~t, J = 7.6 Hz, 2H), 4.52 (td, J = 11.0, 5.4 Hz, 1H), 4.38–4.27 (m, 1H), 4.30–4.17 (m, 2H), 4.15 (s, 1H), 1.84 (tt, J = 9.6, 4.8 Hz, 1H), 1.81–1.74 (m, 2H), 1.74–1.63 (m, 1H), 1.60 (dt, J = 13.4, 6.7 Hz, 2H), 1.54–1.41 (m, 2H), 1.39 (dd, J = 13.4, 3.4 Hz, 1H), 1.34 (m, 1H), 1.30 (t, J = 7.0 Hz, 3H), 1.21 (dd~t, J = 12.6 Hz, 1H), 1.15 (s, 3H), 1.11 (dd, J = 13.6, 4.2 Hz, 1H), 0.95 (s, 3H), 0.89 (ddd, J = 12.8, 9.0, 3.7 Hz, 1H), 0.84 (s, 3H), 0.79 (s, 3H), 0.73 (d, J = 11.5 Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 168.5, 167.3, 133.2, 129.9, 129.5, 128.4, 65.9, 63.3, 61.3, 56.1, 50.1, 41.7, 41.6, 40.6, 39.6, 35.1, 33.1, 33.1, 25.5, 21.5, 18.1, 17.7, 17.6, 16.5, 13.8.

 $R_{f} = 0.80 (CH_{2}Cl_{2}/MeOH 10:1, red color upon treatment with ninhydrin stain)$

[α]²⁵_D = -0.8 (*c* 4.0, MeOH)

HRMS (ESI): calcd for C₂₇H₄₂NO₄ [M + H]⁺: 444.3108, found: 444.3109.

Compound **8f** (ethyl (*R*)-2-amino-2-(1-benzoylcyclohexyl)acetate, trifluoroacetate salt)

Synthesized according to the general procedure described in **Section 4.2** on 0.07 mmol scale from *N*-sulfinyl amide **5f**. The product is a colorless solid (28 mg, **99% yield**).

¹**H NMR** (500 MHz, MeOD) δ 7.76–7.64 (m, 2H), 7.65–7.52 (m, 1H), 7.49 (dd~t, J = 7.6 Hz, 2H), 4.65 (s, 1H), 4.26 (q, J = 7.1 Hz, 2H), 2.42–2.29 (m, 1H), 2.29–2.13 (m, 1H), 1.93 (ddd, J = 13.5, 9.6, 3.4 Hz, 1H), 1.67 (ddd, J = 13.3, 9.0, 3.7 Hz, 1H), 1.64–1.27 (m, 6H), 1.23 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (126 MHz, MeOD) δ 207.0, 169.0, 139.8, 132.7, 129.5, 128.8, 64.0, 58.0, 55.3, 32.7, 31.2, 26.1, 23.1, 23.0, 14.1.

¹⁹**F NMR** (377 MHz, MeOD) δ -77.0.

R_f = 0.80 (CH₂Cl₂/MeOH 10:1, red color upon treatment with ninhydrin stain)

 $[\alpha]^{25}_{D} = -20.1 (c 3.4, MeOH)$

HRMS (ESI): calcd for $C_{17}H_{24}NO_3 [M-CF_3CO_2H+H]^+$: 290.1751, found: 290.1752.

Compound 8m (ethyl (R)-2-amino-3,3-dimethylbutanoate, trifluoroacetate salt)

 $H_2N \xrightarrow{CO_2Et} CF_3CO_2H$

Synthesized according to the general procedure described in **Section 4.2** on 0.1 mmol scale from *N*-sulfinyl amide **5m**. The product is a colorless solid (27 mg, **99% yield**).

¹**H NMR** (500 MHz, MeOD) δ 5.87 (ABqq, *J* = 16.0, 7.2 Hz, 2H), 5.33 (s, 1H), 2.89 (t, *J* = 7.2 Hz, 3H), 2.67 (s, 9H).

¹³**C NMR** (126 MHz, MeOD) δ 169.7, 63.4, 62.9, 34.3, 26.7, 14.4.

¹⁹**F NMR** (377 MHz, MeOD) δ -77.04.

R_f = 0.70 (CH₂Cl₂/MeOH 10:1, red color upon treatment with ninhydrin stain)

 $[\alpha]^{25}_{D} = -5.9 (c 4.0, MeOH)$

HRMS (ESI): calcd for C₈H₁₈NO₂ [M-CF₃CO₂H+H]⁺: 160.1332, found: 160.1331.

The spectroscopic data is in agreement with the literature.¹

¹H NMR (500 MHz, MeOD) of compound SI-1

¹H NMR (500 MHz, CDCl₃) of compound **1u**

2.20

11.0 10.5 10.0

9.5

8.5

8.0

9.0

7.5

7.0

6.5

¹H NMR (500 MHz, CDCl₃) of compound **2a**

5.5 ppm

5.0

4.5

6.0

3.00

4.0

3.5

3.0

2.01

2.0

1.5

1.0

0.5

0.0

2.5

¹H NMR (500 MHz, CDCl₃) of compound **2b**

6 6 5 53 58 2 81 Ξ $\dot{}$ in 10 in in iÓ 10 .97..96..96..96..96..91..911.931.831.8516.00 5.99 5.89 5.86 5.85 5.83 5.20 5.20 5.17 5.16 5.01 5.01 4.99 4.99 4.12 4.08 4.07 4.06 4.05 ഹ 0 NI/ Im ,OMe ö Mé 0.43 0.43 0.50 0.55-0.49 4.11 -6.1 6.0 5.9 5.8 5.7 5.3 5.2 5.1 5.0 4.9 4.2 4.1 4.0 2.1 2.0 1.9 1.8 1.7 ppm ppm 0.50 0.48 0.49 0.51 0.43 0.58 1.52 1.31 4.11 6.72 3.02 0.43₁ 0.55₁ 10.5 10.0 9.0 8.5 8.0 7.5 3.5 2.0 11.0 9.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.0 2.5 1.5 1.0 0.5 0.0

¹H NMR (500 MHz, CDCl₃) of compound **2**q

ppm

S114

S120

¹H NMR (500 MHz, DMSO) of compound 3x-Na

COSY of compound 5h

HSQC of compound 5h

S164

S165

COSY of compound 5j

¹H NMR (500 MHz, CDCl₃) of compound **5k**, β-diastereomer **5k-1**

S173

S174

¹H NMR (500 MHz, CDCl₃) of compound **5k**, β-diastereomer **5k-2**

¹H NMR (500 MHz, CDCl₃) of compound **5**I

¹H NMR (500 MHz, CDCl₃) of compound **5q**

COSY of compound 5r

¹H NMR (500 MHz, CDCl₃) of compound **5t**

¹H NMR (500 MHz, CDCl₃) of compound **5**u

¹H NMR (500 MHz, CDCl₃) of compound **5w**

¹H NMR (500 MHz, CDCl₃) of compound **7a**

COSY of compound 7d باللطيل - 0.5 - 1.0 Ø 8 - 1.5 $rac{1}{2}$ - 2.0 00 - 2.5 0 - 3.0 - 3.5 f1 (ppm) -4.0 Ø e P 8 ヺ - 4.5 - 5.0 Ø 0 - 5.5 Me. Ме - 6.0 H CO₂Et - 6.5 ``s´ || 0 Me Ме - 7.0 0 • - 7.5 Me-Me - 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 ppm 3.5 3.0 2.5 2.0 1.5 1.0

HSQC of compound 7d

HMBC of compound 7d Me Me. - 0 н ,CO₂Et œ S II O Me - 20 6 8 Ńе ٩ 0 Ò 0 00 0 C - 40 0 ⊂o 29 0 Me Me 88 - 60 0 - 80 o o o o - 100 f1 (ppm) - 120 ٥ 640 40 - 140 - 160 . Ø o' O O - 180 - 200 - 220 $11.5 \ 11.0 \ 10.5 \ 10.0 \ 9.5 \ 9.0 \ 8.5 \ 8.0 \ 7.5 \ 7.0 \ 6.5 \ 6.0 \ 5.5 \ 5.0 \ 4.5 \ 4.0 \ 3.5 \ 3.0 \ 2.5 \ 2.0 \ 1.5 \ 1.0 \ 0.5 \ 0.0$ ppm

10

7. Cartesian coordinates and energies

PC4

Charge: 1

Multiplicity: 1

E = -3303.375752

H = -3302.863402

G = -3303.002736

lr	-0.002752	0.001445	0.379864
С	0.597885	0.430411	-2.570519
С	2.141203	1.590581	-1.263331
С	1.189801	0.912904	-3.737561
С	2.767064	2.102684	-2.391234
Н	2.482263	1.833363	-0.266327
С	2.287291	1.757398	-3.650698
Н	0.802725	0.644607	-4.709071
С	-2.145032	-1.594981	-1.258612
С	-0.580220	-0.467195	-2.568771
С	-2.757997	-2.127590	-2.383743
Н	-2.500473	-1.815019	-0.261492
С	-1.157696	-0.972726	-3.733561
С	-2.258473	-1.812023	-3.643676
Н	-0.756816	-0.725771	-4.705120
С	1.094015	0.896587	1.823186
С	2.191991	0.345639	2.487730
С	0.690475	2.229076	2.125660
С	2.869442	1.111018	3.421902
Н	2.532118	-0.662458	2.293176
С	1.425543	2.942013	3.082012
С	2.515581	2.413071	3.744806
Н	3.061848	2.991292	4.476483
С	-1.101709	-0.887634	1.825445
С	-2.199938	-0.333605	2.487001
С	-0.699532	-2.219375	2.132954
С	-2.878404	-1.094885	3.423827
Н	-2.539422	0.673904	2.288301
С	-1.435378	-2.927952	3.091827
С	-2.525372	-2.395764	3.752160
Н	-3.072091	-2.970699	4.486088
С	2.030394	-2.157434	-0.255935
С	0.454159	-2.725091	1.396101
С	2.647063	-3.391180	-0.155010

Н	2.387736	-1.409165	-0.946820
С	1.051953	-3.986634	1.529764
С	2.148555	-4.322429	0.756697
Н	0.654497	-4.696198	2.236070
Н	2.607804	-5.297613	0.857377
С	-2.039482	2.155166	-0.263680
С	-0.464195	2.730095	1.387245
С	-2.663949	3.383946	-0.159049
Н	-2.395524	1.403551	-0.951486
С	-1.068754	3.988716	1.522827
С	-2.168764	4.317946	0.752863
Н	-0.676367	4.698484	2.231745
Н	-2.638084	5.287643	0.862061
F	-3.944466	-0.549712	4.058867
F	-1.093724	-4.201615	3.412576
F	1.083578	4.216985	3.397131
F	3.935452	0.569027	4.059682
С	3.856350	-3.701883	-0.988132
С	-3.848089	3.717116	-1.018742
F	-4.896876	4.148881	-0.277887
F	-4.276236	2.661807	-1.742495
F	-3.564768	4.712409	-1.896325
F	5.003640	-3.591430	-0.270704
F	3.822977	-4.967009	-1.465647
F	3.977042	-2.873194	-2.047726
Ν	1.085451	0.773693	-1.351368
Ν	-1.083938	-0.784842	-1.349592
Ν	0.968052	-1.831232	0.494339
Ν	-0.974785	1.834019	0.486589
С	-3.972659	-3.005506	-2.236346
С	3.975457	2.988547	-2.239930
F	4.035250	3.920829	-3.213826
F	3.984575	3.634715	-1.055535
F	5.124601	2.273452	-2.308972

F	-4.050772	-3.564365	-1.011196
F	-5.115734	-2.302953	-2.425369
F	-3.974930	-4.006758	-3.142219

Н	2.752465	2.144694	-4.547685

H -2.712230 -2.217158 -4.538723

PC4*

Charge: 1

Multiplicity: 3

E = -3303.293702

H = -3302.784

G = -3302.925035

lr	0.000009	-0.000037	0.461912
С	0.645940	0.294743	-2.503990
С	2.429226	1.126378	-1.190903
С	1.372979	0.635171	-3.677686
С	3.157915	1.476293	-2.307079
Н	2.823667	1.299945	-0.200243
С	2.607784	1.215356	-3.591855
Н	0.944161	0.436787	-4.649495
С	-2.429290	-1.126208	-1.190949
С	-0.646050	-0.294422	-2.504002
С	-3.158032	-1.475963	-2.307140
Н	-2.823691	-1.299903	-0.200296
С	-1.373141	-0.634689	-3.677711
С	-2.607950	-1.214869	-3.591906
Н	-0.944361	-0.436185	-4.649513
С	1.312923	0.689296	1.806070
С	2.315588	-0.060832	2.437017
С	1.190904	2.093089	2.067900
С	3.160206	0.572433	3.327755
Н	2.441699	-1.117908	2.249394
С	2.077527	2.660912	2.982772
С	3.066159	1.928559	3.621830
Н	3.739155	2.403226	4.322628
С	-1.312871	-0.689559	1.806010
С	-2.315534	0.060480	2.437064
С	-1.190828	-2.093381	2.067665
С	-3.160122	-0.572903	3.327748
Н	-2.441667	1.117576	2.249566
С	-2.077418	-2.661324	2.982495
С	-3.066045	-1.929062	3.621664
Н	-3.739015	-2.403819	4.322425

С	1.582545	-2.490438	-0.233933
С	-0.136783	-2.798883	1.342254
С	1.908537	-3.835964	-0.196815
н	2.111158	-1.795199	-0.868949
С	0.161061	-4.163980	1.410661
С	1.188054	-4.685325	0.640031
Н	-0.409076	-4.809740	2.057521
н	1.418881	-5.741951	0.686493
С	-1.582532	2.490463	-0.233568
С	0.136845	2.798693	1.342607
С	-1.908506	3.835987	-0.196277
н	-2.111175	1.795308	-0.868654
С	-0.160983	4.163785	1.411191
С	-1.187989	4.685237	0.640653
н	0.409180	4.809457	2.058115
н	-1.418799	5.741862	0.687251
F	-4.119726	0.140877	3.946263
F	-2.006149	-3.973785	3.284076
F	2.006287	3.973339	3.284508
F	4.119812	-0.141435	3.946167
С	3.047415	-4.360066	-1.027934
С	-3.047391	4.360213	-1.027308
F	-4.152653	4.577869	-0.273464
F	-3.400121	3.503792	-2.007813
F	-2.734919	5.539156	-1.608480
F	4.152743	-4.577651	-0.274166
F	2.735008	-5.539014	-1.609126
F	3.400012	-3.503579	-2.008430
Ν	1.220014	0.546014	-1.262835
Ν	-1.220072	-0.545854	-1.262855
Ν	0.594437	-1.990123	0.517241

Ν	-0.594409	1.990043	0.517516
С	-4.500992	-2.101358	-2.180164
С	4.500874	2.101685	-2.180077
F	-4.568068	-3.311387	-2.805622
F	-4.871512	-2.305792	-0.895604
F	-5.480646	-1.344487	-2.753920

PC4^{red}

Charge: 1

Multiplicity: 2

E = -3303.514387

H = -3303.005126

G = -3303.144879

Ir	-0.000002	0.000054	0.400714
С	-0.589870	-0.398946	-2.539740
С	-2.217464	-1.500355	-1.228081
С	-1.251199	-0.853351	-3.715566
С	-2.886042	-1.965795	-2.346707
Н	-2.570298	-1.732352	-0.231947
С	-2.379621	-1.622385	-3.629592
Н	-0.859256	-0.592466	-4.688617
С	2.217565	1.500242	-1.228145
С	0.590116	0.398559	-2.539757
С	2.886255	1.965467	-2.346792
Н	2.570291	1.732439	-0.232019
С	1.251569	0.852732	-3.715603
С	2.379975	1.621793	-3.629663
Н	0.859733	0.591647	-4.688643
С	-1.108854	-0.892433	1.841098
С	-2.196331	-0.336314	2.522874
С	-0.722263	-2.234668	2.130746
С	-2.875531	-1.100577	3.454859
Н	-2.524262	0.678240	2.337787
С	-1.458053	-2.946336	3.086816
С	-2.536094	-2.410703	3.764040
Н	-3.083218	-2.988234	4.495617
С	1.108760	0.892724	1.841053
С	2.196213	0.336698	2.522943
С	0.722134	2.234985	2.130529
С	2.875360	1.101080	3.454870
Н	2.524166	-0.677873	2.337987

F	4.567923	3.311775	-2.805419
F	5.480519	1.344878	-2.753933
F	4.871427	2.305996	-0.895507
Н	-3.157137	-1.472467	-4.488630
Н	3.156931	1.473077	-4.488569

С	1.457871	2.946775	3.086549
С	2.535891	2.411237	3.763883
Н	3.082974	2.988862	4.495415
С	-1.992097	2.169266	-0.276030
С	-0.419646	2.744857	1.377078
С	-2.587608	3.416177	-0.206628
Н	-2.348975	1.409087	-0.954733
С	-0.997020	4.019538	1.479548
С	-2.081460	4.358041	0.690506
Н	-0.592042	4.737316	2.173292
Н	-2.524284	5.343087	0.766413
С	1.992107	-2.169261	-0.275670
С	0.419543	-2.744645	1.377404
С	2.587562	-3.416187	-0.206131
Н	2.349057	-1.409151	-0.954410
С	0.996864	-4.019342	1.480016
С	2.081323	-4.357957	0.691054
Н	0.591824	-4.737043	2.173804
Н	2.524096	-5.343020	0.767068
F	3.931514	0.552292	4.108841
F	1.128681	4.230606	3.390545
F	-1.128894	-4.230134	3.390980
F	-3.931705	-0.551697	4.108718
С	-3.782002	3.730094	-1.057498
С	3.781931	-3.730311	-1.056957
F	4.940864	-3.648480	-0.351805
F	3.904857	-2.887215	-2.105236
F	3.727495	-4.987906	-1.555157

F	-4.941020	3.647202	-0.352602
F	-3.728198	4.987977	-1.555013
F	-3.904258	2.887476	-2.106246
Ν	-1.119280	-0.741924	-1.299983
Ν	1.119397	0.741783	-1.300012
Ν	-0.943261	1.840833	0.491092
Ν	0.943237	-1.840722	0.491367
С	4.106417	2.799041	-2.222515
С	-4.106231	-2.799324	-2.222393

Sodium 1-methylcyclohexyloxalate (3_{tert}·Na⁺)

Charge: 0

Multiplicity: 0

E = -814.360512714

H = -814.130602

G = -814.188234

С	-0.787966	-1.952466	0.968853
Н	-0.057543	-1.787257	0.172929
Н	-1.785603	-1.957969	0.523374
0	0.888378	-3.356482	2.091573
0	0.788572	-1.664265	3.581225
С	1.398500	-2.548693	3.001531
С	2.928495	-2.834577	3.292553
0	3.401454	-2.108938	4.204273
0	3.492216	-3.710559	2.618700
Na	2.094360	-0.483830	5.211855
Н	-0.729014	-1.131562	1.682481
С	-0.535499	-3.295026	1.646667
С	-1.475716	-3.548277	2.834781
С	-0.620514	-4.453891	0.644038

F	3.974312	4.015803	-2.831947
F	4.454359	3.047401	-0.938385
F	5.196776	2.224802	-2.815732
F	-3.974096	-4.016193	-2.831607
F	-5.196527	-2.225167	-2.815802
F	-4.454290	-3.047459	-0.938251
Н	2.878677	1.964906	-4.527714
Н	-2.878228	-1.965676	-4.527628

С	-1.239258	-4.911849	3.496594
Н	-2.495071	-3.510872	2.433217
Н	-1.384895	-2.737632	3.557584
С	-0.390802	-5.824830	1.294683
Н	-1.619126	-4.420969	0.194597
Н	0.100944	-4.279418	-0.159685
С	-1.343828	-6.052804	2.475527
Н	-1.963040	-5.053535	4.304799
Н	-0.245266	-4.925538	3.958603
Н	-0.518447	-6.609849	0.543141
Н	0.644332	-5.885139	1.646210
Н	-1.128913	-7.012888	2.955095
Н	-2.375290	-6.107348	2.10349

1-Methylcyclohexyl oxyacyl radical — CO_2 — sodium complex (10_{tert} · CO_2 ·Na)

Charge: 1

Multiplicity: 2

E = -814.161127388

H = -813.931619

G = -813.996267

Cartesian coordinates:

С	-1.553007	-1.993989	0.630533
Н	-1.118531	-1.835774	-0.358645
Н	-2.596308	-2.294225	0.504696
0	0.689572	-2.688509	1.408892
0	0.558061	-0.789529	2.681632
С	1.101730	-1.635319	2.029322
С	3.141839	-4.607004	4.220726
0	3.111792	-4.173666	5.297980
0	3.166857	-5.038765	3.144515
Na	1.055237	-1.753577	5.720571
Н	-1.532859	-1.055729	1.186330
С	-0.811822	-3.093197	1.370559
С	-1.300771	-3.299477	2.803751
С	-0.769007	-4.406072	0.591364

С	-0.549939	-4.416430	3.537594
Н	-2.362159	-3.562966	2.724962
Н	-1.253279	-2.358042	3.353985
С	-0.028899	-5.528020	1.332440
Н	-1.810689	-4.700626	0.419944
Н	-0.322735	-4.222966	-0.389919
С	-0.585475	-5.730092	2.747772
Н	-0.975597	-4.547568	4.536079
Н	0.492624	-4.114029	3.674637
Н	-0.106401	-6.453198	0.754284
Н	1.034865	-5.278962	1.395386
Н	-0.012522	-6.500831	3.271911
Н	-1.621119	-6.087902	2.687394

1-Methylcyclohexyl oxyacyl radical (axial) (10_{tert}-ax)

Charge: 0

Multiplicity: 2

E = -463.250066377

H = -463.040389

G = -463.086175

С	-0.944456	-2.001374	0.876174
Н	-0.233751	-1.845407	0.061891
Н	-1.953687	-2.004412	0.456747
0	0.791552	-3.345142	2.017291
0	0.752458	-1.622913	3.526854
С	1.245497	-2.511251	2.893770
Н	-0.870646	-1.172402	1.581038

С	-0.691872	-3.334504	1.558446
С	-1.583556	-3.573312	2.777002
С	-0.734693	-4.511909	0.586235
С	-1.329562	-4.925622	3.455187
Н	-2.615001	-3.538368	2.406116
Н	-1.477479	-2.748296	3.483899
С	-0.487378	-5.866148	1.264552

Н	-1.731250	-4.504421	0.129865
Н	-0.013424	-4.337065	-0.216879
С	-1.435120	-6.081378	2.451661
Н	-2.044851	-5.058705	4.271786
Н	-0.331564	-4.924974	3.907783

Н	-0.607804	-6.665450	0.527606
Н	0.549225	-5.909324	1.614369
Н	-1.212460	-7.032331	2.944923
Н	-2.467643	-6.147230	2.085155

1-Methylcyclohexyl oxyacyl radical (equatorial) (10_{tert}-eq)

Charge: 0

Multiplicity: 2

E = -463.248612971

H = -463.038714

G = -463.084422

Cartesian coordinates:

С	0.754276	-2.992575	2.007687
Н	1.178482	-3.831345	2.562337
Н	1.398728	-2.793209	1.149263
0	-1.136293	-2.180648	0.640757
0	-1.121530	-0.473112	2.168225
С	-1.284576	-0.977946	1.095507
Н	0.750360	-2.122969	2.665199
С	-0.651908	-3.341488	1.543857
С	-1.662875	-3.515908	2.678627
С	-0.694344	-4.527314	0.580578
С	-1.446709	-4.849576	3.418624
Н	-2.667321	-3.507263	2.242472

-	
5	

Н	-1.596612	-2.677619	3.374267
С	-0.476716	-5.862665	1.312306
Н	-1.678744	-4.537252	0.101681
Н	0.051463	-4.385279	-0.206064
С	-1.486707	-6.040642	2.453214
Н	-2.216728	-4.953150	4.188100
Н	-0.484556	-4.831103	3.942428
Н	-0.564817	-6.679835	0.591002
Н	0.542583	-5.909358	1.711216
Н	-1.287010	-6.970951	2.993278
Н	-2.495517	-6.127691	2.030636

CO2

Charge: 0

Multiplicity: 1

E = -188.6499252

H = -188.634783

G = -188.659051

Cartesian coordinates:

С	-2.707242	-0.060464	0.062454
0	-3.013289	0.446113	-0.936041

0 -2.401194 -0.567040 1.060950

TS for CO₂ elimination from 1-methylcyclohexyl oxyacyl radical (axial) (TS1_{tert}-ax)

Charge: 0

Multiplicity: 2

E = -463.241405180

H = -463.034740

G = -463.082648

Cartesian coordinates:

С	-1.919926	-0.954166	-0.002623
С	-0.888150	0.135694	-0.026082
С	-0.749794	0.909499	-1.299163
Н	0.127969	1.557742	-1.286794
Н	-1.834452	-1.563557	-0.906322
Н	-0.701693	0.248175	-2.165962
0	0.714713	-1.028422	-0.142871
0	2.490356	0.383059	0.292802
С	1.846735	-0.590500	0.029755
Н	-1.635325	1.549925	-1.416801
Н	-2.896054	-0.445830	-0.065134
С	-0.690417	0.890382	1.258494

Н	-1.552729	1.574910	1.330065
Н	0.196352	1.524198	1.193475
С	-1.881251	-1.824041	1.262608
Н	-2.749889	-2.488382	1.269915
Н	-0.990519	-2.458783	1.227866
С	-0.658286	0.001525	2.509433
Н	0.277540	-0.567482	2.522362
Н	-0.657760	0.634738	3.400919
С	-1.845672	-0.968635	2.534929
Н	-1.787863	-1.611271	3.418459
Н	-2.779221	-0.397418	2.618047

TS for CO₂ elimination from 1-methylcyclohexyl oxyacyl radical (equatorial) (TS1_{tert}-eq)

Charge: 0

Multiplicity: 2

E = -463.238581975

H = -463.031537

G = -463.079351

С	-1.966074	-0.791303	-0.005817
С	-0.665494	-0.042570	0.082983
С	0.565755	-0.735812	-0.407050
Н	0.833154	-1.541004	0.289803
Н	-2.015028	-1.384734	-0.921413
Н	0.402800	-1.187466	-1.387172
0	-0.782904	1.273960	-1.401073
0	-2.653994	2.543498	-0.920604
С	-1.675353	2.111154	-1.455511

Н	1.412708	-0.049483	-0.459832
Н	-2.800899	-0.084891	-0.012779
С	-0.537105	0.817887	1.309043
Н	-1.342263	1.557711	1.328691
Н	0.415610	1.351898	1.315186
С	-2.107521	-1.699912	1.245438
Н	-3.073680	-2.210419	1.203612
Н	-1.335736	-2.477105	1.220922
С	-0.670622	-0.080713	2.568409

Н	0.182248	-0.766494	2.619117
Н	-0.623323	0.551274	3.459580
С	-1.979703	-0.880597	2.536551

Н	-2.035560	-1.541827	3.406540
Н	-2.827094	-0.187682	2.608856

1-Methylcyclohexyl radical — CO₂ complex (11_{tert}·CO₂)

Charge: 0

Multiplicity: 2

E = -463.279840345

H = -463.072085

G = -463.125917

Cartesian coordinates:

С	0.952948	1.975127	0.822783
Н	1.301018	2.497780	-0.074041
Н	0.511591	2.742227	1.483739
0	1.720397	0.061099	-2.142438
0	2.409034	-1.131404	-0.272336
С	2.049288	-0.525970	-1.195849
Н	1.822968	1.570742	1.350104
С	-0.041325	0.909568	0.493490
С	-0.342086	-0.138460	1.522644
С	-1.098030	1.201496	-0.529325
С	-1.029450	-1.384935	0.936978
Н	-1.011794	0.298965	2.288489

	2
-	- 8
-	J-S
9	J

Н	0.572999	-0.420612	2.054593
С	-1.773918	-0.065709	-1.083017
Н	-1.877675	1.834321	-0.062346
Н	-0.679770	1.799936	-1.345995
С	-2.218442	-1.001499	0.047633
Н	-1.352508	-2.045472	1.747832
Н	-0.302123	-1.948021	0.339754
Н	-2.626967	0.212947	-1.709780
Н	-1.064901	-0.596561	-1.729614
Н	-2.686838	-1.900169	-0.366642
Н	-2.980999	-0.498466	0.657255

1-Methylcyclohexyl radical (equatorial) (11_{tert}-eq)

Charge: 0

Multiplicity: 2

E = -274.624469948

H = -274.433392

G = -274.473826

С	-1.004721	-1.996141	0.836455
Н	-0.225041	-1.910360	0.072528
Н	-1.956919	-1.722460	0.346490
Н	-0.821199	-1.239592	1.606330

-1.068211	-3.372404	1.413486
-1.805063	-3.583558	2.702575
-0.951611	-4.549519	0.491490
-1.429668	-4.901740	3.404192
	-1.068211 -1.805063 -0.951611 -1.429668	-1.068211 -3.372404 -1.805063 -3.583558 -0.951611 -4.549519 -1.429668 -4.901740

Н	-2.892801	-3.602625	2.492762
Н	-1.648999	-2.733175	3.375838
С	-0.587387	-5.855282	1.221635
Н	-1.923112	-4.699970	-0.019483
Н	-0.228252	-4.341247	-0.304860
С	-1.497422	-6.088077	2.434248

1-Methylcyclohexyl radical (axial) (11_{tert}-ax)

Charge: 0

Multiplicity: 2

E = -274.622668692

H = -274.431303

G = -274.471864

Cartesian coordinates:

С	-0.631635	-3.555096	1.662666
С	-1.614200	-3.661965	2.792439
С	-0.775413	-4.613969	0.608466
С	-1.544730	-5.070192	3.441462
Н	-2.637507	-3.519814	2.413637
Н	-1.439343	-2.888803	3.547109
С	-0.701071	-6.027736	1.244784
Н	-1.754974	-4.521466	0.115756
Н	-0.012172	-4.508620	-0.168865
С	-1.721329	-6.169013	2.383573

s-ris	con	former	of	้ N-รมไ	fin	1	imine	(4)	1
3-013	con	jonner	υj	14-3UI	נייינ	71 1	iiiiie	(7/	

Charge: 0

Multiplicity: 1

E = -1184.479051

H = -1184.17913

G = -1184.251809

С	-2.352725	0.385213	1.305839
С	-3.344444	1.193599	0.745057
С	-3.560310	1.249518	-0.632491

Н	-2.090029	-5.067564	4.261481
Н	-0.409195	-4.820203	3.798223
Н	-0.648863	-6.699140	0.526909
Н	0.453715	-5.797197	1.562211
Н	-1.216173	-7.013628	2.947149
Н	-2.532771	-6.217678	2.091316

Н	-2.308661	-5.161393	4.221196
Н	-0.570604	-5.189924	3.931336
Н	-0.871556	-6.792493	0.479296
Н	0.309556	-6.188906	1.639616
Н	-1.633780	-7.156962	2.847843
Н	-2.735289	-6.105252	1.966359
С	0.695080	-2.903449	1.888209
Н	1.190567	-2.656372	0.943617
Н	0.600529	-1.986618	2.479222
Н	1.386880	-3.563465	2.44191

С	-2.744721	0.479366	-1.464839
С	-1.730833	-0.341414	-0.966591
С	-1.555487	-0.375344	0.430393

Н	-3.964870	1.790755	1.405123
Н	-2.895652	0.520038	-2.538959
С	-2.172726	0.373855	2.808818
Н	-2.311545	-0.626874	3.226350
Н	-1.175071	0.712371	3.099522
Н	-2.900905	1.035466	3.278879
Н	-1.315179	-1.092673	-2.933285
Н	0.123848	-0.655975	-2.013861
Н	-0.730786	-2.145080	-1.630006
С	-0.868557	-1.109790	-1.938631
С	-4.665658	2.097258	-1.209288
Н	-4.393477	2.490965	-2.191020
Н	-5.575774	1.501356	-1.336107
Н	-4.909357	2.935516	-0.553564
S	-0.329747	-1.461086	1.234508

0	-0.358936	-2.831844	0.593994
Ν	1.071504	-0.547472	0.688340
С	1.942558	-1.204640	0.042040
Н	1.835658	-2.258639	-0.226083
С	3.216753	-0.567508	-0.441089
0	4.023603	-1.203454	-1.086997
Н	5.410642	0.866580	-0.123054
Н	4.597387	1.343057	-1.624300
0	3.338604	0.707437	-0.097757
С	4.550257	1.397552	-0.535002
С	4.459690	2.821491	-0.034026
Н	5.352322	3.370017	-0.344054
Н	3.584055	3.325416	-0.448660
Н	4.399864	2.848193	1.056058

1-Methylcyclohexyl radical (equatorial) — N-sulfinyl imine 4 re-precomplex (11_{tert}·4-eq)

Charge: 0

Multiplicity: 2

E = -1459.11875175

H = -1458.625110

G = -1458.719000

С	-3.460447	-0.707483	1.157327
С	-4.767234	-0.243537	0.984261
С	-5.204279	0.297056	-0.225738
С	-4.294816	0.381833	-1.282830
С	-2.974263	-0.057388	-1.168593
С	-2.578136	-0.604761	0.066680
Н	-5.459358	-0.311197	1.817283
Н	-4.618765	0.807603	-2.227390
С	-3.052723	-1.282591	2.497202
Н	-2.717802	-2.319409	2.408000
Н	-2.235443	-0.714948	2.949194
Н	-3.896890	-1.262300	3.187239
Н	-2.610859	0.330576	-3.248806
Н	-1.353187	0.939719	-2.171965
Н	-1.440874	-0.783525	-2.515096
С	-2.042461	0.108396	-2.344856
С	-6.631471	0.751404	-0.400734
Н	-6.697568	1.598959	-1.086493
Н	-7.240361	-0.056938	-0.819525

Н	-7.078305	1.040230	0.552721
S	-0.909043	-1.289870	0.336705
0	-0.535709	-2.184975	-0.830067
Ν	-0.072454	0.236784	0.247792
С	0.908547	0.288693	-0.572114
Н	1.158690	-0.512550	-1.266764
С	1.687763	1.547246	-0.779532
0	2.442151	1.677740	-1.724147
Н	3.238943	3.527103	-0.014689
Н	1.896782	4.187890	-0.962669
0	1.448366	2.482599	0.136776
С	2.168488	3.742339	-0.003555
С	1.773226	4.615068	1.167186
Н	2.293563	5.573280	1.097223
Н	0.697809	4.805444	1.165269
Н	2.045565	4.142713	2.113493
С	3.128317	-0.586045	0.969770
С	2.779218	0.283902	2.130356
Н	3.042169	1.329395	1.959165

Н	1.711208	0.228148	2.364087
Н	3.321286	-0.052055	3.029494
С	4.344171	-0.258253	0.159258
Н	4.391281	0.816969	-0.040636
Н	5.229076	-0.482472	0.784920
С	2.703079	-2.022226	1.043747
Н	1.677210	-2.096322	1.421080
Н	3.328120	-2.500565	1.821515
С	2.866936	-2.811016	-0.264816

Н	2.726975	-3.877540	-0.063469
Н	2.074340	-2.522772	-0.961996
С	4.452429	-1.059086	-1.148171
Н	3.699643	-0.690366	-1.852846
Н	5.430024	-0.879611	-1.605864
С	4.236136	-2.557201	-0.905330
Н	5.026622	-2.937383	-0.244655
Н	4.318632	-3.108663	-1.847232

1-Methylcyclohexyl radical (axial) — N-sulfinyl imine 4 re-precomplex (11_{tert}·4-ax)

Charge: 0

Multiplicity: 2

E = -1459.11686737

H = -1458.622707

G = -1458.716876

С	-3.588743	-0.855803	1.162337
С	-4.910108	-0.402634	1.118895
С	-5.432036	0.243954	-0.002003
С	-4.594140	0.449534	-1.101056
С	-3.263092	0.028074	-1.113977
С	-2.780558	-0.630063	0.033508
Н	-5.545493	-0.563986	1.983634
Н	-4.984554	0.958999	-1.976523
С	-3.087176	-1.549397	2.411226
Н	-2.745198	-2.566100	2.200542
Н	-2.249809	-1.012065	2.863647
Н	-3.884953	-1.612033	3.152055
Н	-3.037487	0.638288	-3.160239
Н	-1.710770	1.136978	-2.109057
Н	-1.822209	-0.540005	-2.627613
С	-2.410928	0.324996	-2.324331
С	-6.873404	0.685459	-0.041060
Н	-6.992665	1.601872	-0.623405
Н	-7.495442	-0.083949	-0.510769
Н	-7.265404	0.858423	0.963193
S	-1.089905	-1.307458	0.125925
0	-0.791182	-2.086359	-1.142256
Ν	-0.267644	0.228104	0.132296
С	0.659194	0.363136	-0.741439

Н	0.839181	-0.353081	-1.543400
С	1.456103	1.620048	-0.844404
0	2.054544	1.911858	-1.862698
Н	3.210694	3.381866	-0.062299
Н	1.741713	4.265149	-0.508364
0	1.428655	2.362070	0.261944
С	2.186444	3.606681	0.240868
С	2.119004	4.193410	1.633588
Н	2.674735	5.133819	1.658899
Н	1.085319	4.395587	1.922392
Н	2.561340	3.510916	2.362637
С	2.954618	-0.667813	0.375060
С	2.897721	-1.953626	-0.393347
Н	2.021646	-2.546323	-0.118611
Н	2.829332	-1.744285	-1.468964
С	2.377671	-0.596573	1.748863
Н	2.162762	0.436998	2.034164
Н	1.461292	-1.183481	1.841545
Н	3.093701	-0.993618	2.486275
С	4.128807	0.201682	0.043010
Н	4.092004	0.496472	-1.012962
Н	4.127062	1.116767	0.641580
С	4.203184	-2.760986	-0.153755
С	5.444909	-0.589841	0.278373

С	5.436047	-1.914137	-0.496879
Н	6.350183	-2.478215	-0.285754
Н	5.436839	-1.700864	-1.573613
Н	4.247486	-3.068306	0.897546

Н	4.181484	-3.675303	-0.754923
Н	5.553850	-0.792620	1.350154
Н	6.298114	0.027545	-0.019432

re-TS for 1-methylcyclohexyl radical (equatorial) addition to N-sulfinyl imine 4 (TS2_{tert}-eq)

Charge: 0

Multiplicity: 2

E = -1459.11655137

H = -1458.623267

G = -1458.712555

С	-3.428852	-0.897323	1.034540
С	-4.724118	-0.400818	0.860693
С	-5.087641	0.332637	-0.269322
С	-4.115826	0.579823	-1.242645
С	-2.804265	0.117153	-1.120534
С	-2.482378	-0.624357	0.031725
Н	-5.465716	-0.597791	1.628075
Н	-4.383270	1.153962	-2.124377
С	-3.102501	-1.690043	2.282348
Н	-2.752362	-2.697324	2.041944
Н	-2.320888	-1.207629	2.874596
Н	-3.989131	-1.785445	2.910205
Н	-2.312362	0.783493	-3.102515
Н	-1.155273	1.278675	-1.864483
Н	-1.158684	-0.386741	-2.436224
С	-1.800577	0.460043	-2.195061
С	-6.502291	0.821584	-0.454307
Н	-6.526168	1.779956	-0.977919
Н	-7.077925	0.107547	-1.052945
Н	-7.013747	0.936498	0.503467
S	-0.828423	-1.358419	0.274268
0	-0.465169	-2.166917	-0.962497
Ν	0.033948	0.122018	0.343312
С	1.131073	0.198067	-0.380779
Н	1.336946	-0.516386	-1.175508
С	1.721878	1.545514	-0.637552
0	2.376226	1.779116	-1.636094
Н	3.063749	3.722225	0.019674

Н	1.573270	4.185046	-0.817865
0	1.450158	2.443958	0.309339
С	1.978006	3.788106	0.115348
С	1.559797	4.608671	1.315788
Н	1.936361	5.628711	1.207770
Н	0.471550	4.649630	1.399206
Н	1.967584	4.185949	2.236630
С	2.865049	-0.592825	0.908187
С	2.566780	0.118000	2.193806
Н	2.698592	1.196969	2.108428
Н	1.551207	-0.086214	2.538156
Н	3.261679	-0.247097	2.963335
С	4.125341	-0.185422	0.191965
Н	4.176381	0.899663	0.073270
Н	4.949075	-0.444271	0.880268
С	2.570692	-2.071194	0.903295
Н	1.556342	-2.264023	1.263628
Н	3.232997	-2.498042	1.676430
С	2.842140	-2.791511	-0.424516
Н	2.771388	-3.871308	-0.263184
Н	2.057289	-2.537192	-1.142158
С	4.357644	-0.902738	-1.145081
Н	3.637353	-0.533416	-1.881165
Н	5.351473	-0.644896	-1.522503
С	4.216772	-2.422078	-0.994144
Н	5.002387	-2.794129	-0.323683
Н	4.366967	-2.912839	-1.960550

re-TS for 1-methylcyclohexyl radical (axial) addition to N-sulfinyl imine 4 (TS2_{tert}-ax)

н

 \sim

Charge: 0

Multiplicity: 2

E = -1459.11580089

H = -1458.622207

G = -1458.712723

С	-3.393794	-1.176344	0.990206
С	-4.725392	-0.750406	0.977596
С	-5.223939	0.082969	-0.024145
С	-4.352897	0.505280	-1.032023
С	-3.011513	0.119880	-1.067959
С	-2.551675	-0.728014	-0.042414
Н	-5.387311	-1.083391	1.770468
Н	-4.725683	1.159294	-1.814368
С	-2.920045	-2.083827	2.105770
Н	-2.542429	-3.034923	1.721243
Н	-2.114742	-1.625554	2.685215
Н	-3.742512	-2.302140	2.787903
Н	-2.728936	1.053113	-2.981722
Н	-1.494322	1.462219	-1.788281
Н	-1.463594	-0.117480	-2.564468
С	-2.124045	0.652452	-2.167185
С	-6.674421	0.495685	-0.039904
Н	-6.793849	1.512353	-0.421350
Н	-7.253333	-0.167618	-0.691380
Н	-7.115056	0.445395	0.957762
S	-0.843097	-1.371327	-0.011361
0	-0.523875	-1.975458	-1.371021
Ν	-0.069151	0.150591	0.207455
С	0.930623	0.414172	-0.597594
Н	1.113921	-0.167733	-1.500665
С	1.456891	1.809320	-0.671979
0	2.044822	2.222516	-1.653788
Н	2.774496	3.891452	0.249581

U	1.20/333	2.550945	0.41/541
С	1.695627	3.909242	0.418154
С	1.337904	4.509727	1.760100
Н	1.687807	5.544100	1.800487
Н	0.256444	4.505268	1.912934
Н	1.810337	3.953440	2.572691
С	2.864720	-0.476837	0.321916
С	2.498805	-1.936537	0.271742
Н	1.730571	-2.173616	1.012076
Н	2.102821	-2.197133	-0.714395
С	2.875705	0.161089	1.677122
Н	3.123563	1.222162	1.635425
Н	1.910315	0.040659	2.174575
Н	3.630340	-0.332294	2.305903
С	3.934821	-0.086652	-0.658172
Н	3.593998	-0.281334	-1.681242
Н	4.171992	0.976405	-0.587876
С	3.763738	-2.797938	0.531633
С	5.206707	-0.939801	-0.400014
С	4.884274	-2.437574	-0.450521
Н	5.781775	-3.023181	-0.228078
Н	4.573292	-2.705862	-1.468031
Н	4.108322	-2.639338	1.559544
Н	3.495099	-3.854822	0.445734
Н	5.620508	-0.683079	0.581654
Н	5.964518	-0.678799	-1.144548
(R)-configured adduct of 4 with 1-methylcyclohexyl radical (equatorial) (12_{tert}-eq)

Charge: 0

Multiplicity: 2

E = -1459.13999376

H = -1458.643184

G = -1458.731493

С	-3.135864	-1.570564	0.630270
С	-4.465819	-1.144582	0.684176
С	-4.909709	-0.019257	-0.013061
С	-3.987219	0.701737	-0.776388
С	-2.643812	0.331786	-0.862150
С	-2.248171	-0.811095	-0.147391
Н	-5.170437	-1.711250	1.283774
Н	-4.318453	1.581753	-1.318517
С	-2.709201	-2.800083	1.399861
Н	-2.298311	-3.567195	0.737654
Н	-1.941957	-2.563476	2.141425
Н	-3.561570	-3.233560	1.923830
Н	-2.226058	1.804267	-2.370926
Н	-1.122731	1.832669	-0.993331
Н	-0.970643	0.567750	-2.218588
С	-1.684886	1.176600	-1.661977
С	-6.359184	0.394375	0.030001
Н	-6.464677	1.479749	-0.031306
Н	-6.903310	-0.035940	-0.817469
Н	-6.845950	0.048931	0.944137
S	-0.535229	-1.428507	-0.265274
0	-0.200466	-1.737550	-1.711522
Ν	0.262665	-0.162856	0.408607
С	1.565076	0.168280	-0.140519
Н	1.739393	-0.323517	-1.099025
С	1.609103	1.665724	-0.468671
0	2.239590	2.103738	-1.405887
Н	1.926954	4.218483	0.218738

н	0.545115	4.036611	-0.875031
0	0.904156	2.415925	0.375849
С	0.900079	3.856084	0.141621
С	-0.007457	4.471790	1.183560
Н	-0.039180	5.554900	1.043297
Н	-1.023634	4.081956	1.092359
Н	0.359925	4.264439	2.190888
С	2.734605	-0.235964	0.855001
С	2.568490	0.494755	2.195588
Н	2.667635	1.576578	2.081700
Н	1.592160	0.288638	2.638495
Н	3.340309	0.158336	2.892855
С	4.109774	0.114125	0.235484
Н	4.166148	1.182210	0.011029
Н	4.858949	-0.077760	1.013305
С	2.683228	-1.765232	1.093256
Н	1.710111	-2.048380	1.504628
Н	3.419499	-1.988251	1.874484
С	3.020975	-2.605526	-0.146872
Н	3.008734	-3.665970	0.124070
Н	2.252124	-2.478911	-0.916826
С	4.472602	-0.713767	-1.006146
Н	3.805260	-0.459132	-1.836545
Н	5.482167	-0.445783	-1.333450
С	4.391339	-2.219341	-0.719805
Н	5.169899	-2.487233	0.006241
Н	4.597610	-2.790771	-1.630312

(R)-configured adduct of 4 with 1-methylcyclohexyl radical (axial) (12_{tert}-ax)

Charge: 0

Multiplicity: 2

E = -1459.13909630

H = -1458.642388

G = -1458.731350

С	-3.170409	-1.701420	0.565014
С	-4.495012	-1.309897	0.779012
С	-5.011899	-0.129259	0.242397
С	-4.169180	0.684023	-0.520626
С	-2.834871	0.351885	-0.761035
С	-2.364205	-0.849931	-0.205858
Н	-5.136923	-1.948001	1.377301
Н	-4.557458	1.607673	-0.938032
С	-2.663054	-2.992848	1.165705
Н	-2.297846	-3.679177	0.396781
Н	-1.839983	-2.814925	1.862502
Н	-3.462133	-3.496823	1.710119
Н	-2.569918	1.977298	-2.142105
Н	-1.351339	1.892300	-0.868641
Н	-1.290280	0.759799	-2.225664
С	-1.960670	1.293430	-1.550008
С	-6.455971	0.249616	0.454264
Н	-6.573937	1.332240	0.538580
Н	-7.064853	-0.080588	-0.394046
Н	-6.863099	-0.215588	1.354036
S	-0.662111	-1.420358	-0.538859
0	-0.465080	-1.590603	-2.032476
Ν	0.177147	-0.198985	0.167302
С	1.400005	0.232150	-0.481109
Н	1.475229	-0.133358	-1.509915
С	1.384250	1.761548	-0.609053
0	1.853019	2.336159	-1.566819
Н	1.799427	4.206116	0.377039

Н	0.273008	4.139124	-0.519966
0	0.821116	2.373386	0.430774
С	0.774252	3.831376	0.399864
С	0.025792	4.276652	1.636699
Н	-0.032833	5.367585	1.653093
Н	-0.990320	3.876121	1.639668
Н	0.537939	3.944531	2.542290
С	2.688786	-0.277452	0.290844
С	2.656156	-1.826553	0.244342
Н	1.823035	-2.193313	0.850577
Н	2.463030	-2.141187	-0.789088
С	2.678863	0.224668	1.743801
Н	2.747108	1.313425	1.789227
Н	1.761010	-0.079509	2.250184
Н	3.522744	-0.183522	2.300751
С	3.939688	0.228008	-0.468860
Н	3.814546	0.011751	-1.536714
Н	4.016313	1.314932	-0.378711
С	3.963118	-2.482739	0.712913
С	5.244301	-0.426426	0.010741
С	5.168588	-1.955009	-0.072786
Н	6.094032	-2.404478	0.300830
Н	5.071845	-2.253642	-1.124826
Н	4.114087	-2.296804	1.782064
Н	3.876690	-3.567797	0.598212
Н	5.457341	-0.126456	1.042877
Н	6.073681	-0.051578	-0.597195

Reduced (R)-configured adduct of 4 with 1-methylcyclohexyl radical (5_{tert}-)

Charge: –1

Multiplicity: 1

E = -1459.29514860

H = -1458.799478

G = -1458.887306

С	-3.099684	-0.951175	-0.524884
С	-4.348668	-0.995210	0.106983
С	-4.898639	0.123283	0.732106
С	-4.158773	1.309032	0.724117
С	-2.906711	1.405331	0.110190
С	-2.383410	0.258960	-0.520584
Н	-4.901187	-1.930415	0.109156
Н	-4.564997	2.188253	1.216816
С	-2.563894	-2.211449	-1.171313
Н	-2.392084	-2.075351	-2.242314
Н	-1.609413	-2.512620	-0.733524
Н	-3.270083	-3.034105	-1.043158
Н	-2.740953	3.468043	0.704766
Н	-1.197670	2.578429	0.668284
Н	-1.931831	3.074872	-0.836275
С	-2.158524	2.715577	0.168889
С	-6.263491	0.066796	1.375407
Н	-6.313570	0.706451	2.260208
Н	-7.036195	0.412836	0.680009
Н	-6.522932	-0.951799	1.673109
S	-0.760644	0.262696	-1.375535
0	-0.839741	1.490524	-2.335513
Ν	0.199154	0.495440	-0.076451
С	1.496764	-0.160710	-0.239651
Н	1.496663	-0.847665	-1.095701
С	2.549671	0.869731	-0.648771
0	3.121877	0.864912	-1.725977
Н	4.662969	2.443335	-0.298027

н	3.330196	3.386519	-0.979058
0	2.760991	1.826693	0.268672
С	3.689160	2.886532	-0.076198
С	3.752742	3.830237	1.106755
Н	4.441834	4.649651	0.887107
Н	2.768601	4.254780	1.318312
Н	4.108164	3.310768	1.999690
С	1.894766	-1.008654	1.020739
С	1.767145	-0.192519	2.317162
Н	2.470700	0.640690	2.336434
Н	0.757948	0.211281	2.416232
Н	1.971223	-0.834909	3.180220
С	3.346841	-1.532605	0.892873
Н	4.038540	-0.691334	0.767815
Н	3.615308	-2.004415	1.846934
С	0.933129	-2.220580	1.109215
Н	-0.095764	-1.849519	1.110777
Н	1.098764	-2.708232	2.078290
С	1.126467	-3.267871	0.002635
Н	0.458435	-4.116767	0.184682
Н	0.832000	-2.851199	-0.967166
С	3.548360	-2.562360	-0.228852
Н	3.393645	-2.089722	-1.204968
Н	4.584671	-2.916733	-0.217903
С	2.583002	-3.745458	-0.071792
Н	2.829883	-4.286057	0.851868
Н	2.710808	-4.454656	-0.896509

Sodium cyclohexyloxalate (axial) (3_{sec}·Na⁺-ax)

Charge: 0

Multiplicity: 1

E = -775.031095063

H = -774.830005

G = -774.887304

Cartesian coordinates:

0	0.883375	-3.945626	2.625943
0	0.943800	-2.073563	3.868485
С	1.449478	-3.117280	3.488507
С	2.865399	-3.602410	3.990770
0	3.461229	-2.746659	4.693345
0	3.231775	-4.740633	3.661117
Na	2.427619	-0.767321	5.278450
С	-0.447184	-3.606377	2.090463
С	-1.519489	-4.043039	3.090067
С	-0.561082	-4.337019	0.756416
С	-1.566295	-5.568538	3.257195
Н	-2.481684	-3.682109	2.708239

Н	-1.349074	-3.544996	4.047418
С	-0.616354	-5.862104	0.928183
Н	-1.480552	-3.985868	0.274059
Н	0.271814	-4.043485	0.111441
С	-1.729041	-6.273801	1.902923
Н	-2.384712	-5.838326	3.931226
Н	-0.639106	-5.907475	3.732935
Н	-0.766039	-6.335751	-0.046609
Н	0.347843	-6.216090	1.309076
Н	-1.728602	-7.359673	2.039648
Н	-2.703731	-6.008590	1.472691
Н	-0.472655	-2.525264	1.947882

Sodium cyclohexyloxalate (equatorial) (3_{sec}·Na⁺-eq)

Charge: 0

Multiplicity: 1

E = -775.031660733

H = -774.830536

G = -774.885745

0	-0.952339	-2.128458	1.219159
0	-0.008410	-1.092114	2.976704
С	-0.583842	-1.053976	1.901798
С	-0.959483	0.306404	1.193222
0	-0.635887	1.318039	1.865395
0	-1.517066	0.242693	0.087222
Na	0.421786	1.088128	3.916644
С	-0.681695	-3.450775	1.794941
С	-1.784806	-3.817005	2.784613
С	-0.606157	-4.427820	0.629864

С	-1.581559	-5.249061	3.304591
Н	-2.748869	-3.742080	2.268330
Н	-1.793612	-3.100617	3.609348
С	-0.401432	-5.860429	1.148146
Н	-1.541337	-4.368573	0.061306
Н	0.205588	-4.135887	-0.042165
С	-1.497080	-6.255730	2.148658
Н	-2.397889	-5.511141	3.983765
Н	-0.656256	-5.292828	3.892559
Н	-0.383046	-6.555884	0.304247

Н	0.578204	-5.932322	1.637077
Н	-1.308755	-7.261493	2.536559

Cyclohexyl oxyacyl radical (axial) – CO_2 – sodium complex (10_{sec} · CO_2 · Na^+ -ax)

Charge: 1

Multiplicity: 2

E = -774.829121888

H = -774.628269

G = -774.689503

Cartesian coordinates:

0	0.902691	-2.820189	1.792075
0	0.560132	-0.687473	2.527123
С	1.218636	-1.632908	2.207618
С	3.169418	-4.184028	3.665597
0	3.228412	-3.206233	4.289454
0	3.113214	-5.162922	3.046381
Na	0.809887	-1.876200	5.849445
Na C	0.809887 -0.570387	-1.876200 -3.137582	5.849445 1.551687
Na C C	0.809887 -0.570387 -1.267398	-1.876200 -3.137582 -3.354162	5.849445 1.551687 2.887303
Na C C C	0.809887 -0.570387 -1.267398 -0.571220	-1.876200 -3.137582 -3.354162 -4.374205	5.849445 1.551687 2.887303 0.669392
Na C C C C	0.809887 -0.570387 -1.267398 -0.571220 -0.740515	-1.876200 -3.137582 -3.354162 -4.374205 -4.592224	5.849445 1.551687 2.887303 0.669392 3.624251
Na C C C H	0.809887 -0.570387 -1.267398 -0.571220 -0.740515 -2.331694	-1.876200 -3.137582 -3.354162 -4.374205 -4.592224 -3.487819	5.849445 1.551687 2.887303 0.669392 3.624251 2.658578

Cyclohexyl oxyacyl radical (axial) (10_{sec}-ax)

Charge: 0

Multiplicity: 2

E = -423.918307204

H = -423.737403

G = -423.781080

0	0.800730	-3.364889	2.191273
0	0.736394	-1.207635	2.929917
С	1.242986	-2.272435	2.730857
С	-0.635017	-3.388200	1.687085
С	-1.563583	-3.633280	2.869368
С	-0.677814	-4.492049	0.643835

Н	-1.196014	-2.451927	3.496825
С	-0.063927	-5.621739	1.408435
Н	-1.608280	-4.527444	0.348310
Н	0.016710	-4.180695	-0.231376
С	-0.813055	-5.839428	2.731641
Н	-1.311726	-4.740430	4.544726
Н	0.298788	-4.423330	3.925704
Н	-0.173404	-6.495791	0.760268
Н	1.005028	-5.509523	1.612206
Н	-0.399586	-6.704412	3.258707
Н	-1.865406	-6.068738	2.520973
н	-0.965841	-2.265045	1.030443

С	-1.382403	-5.032603	3.474303
Н	-2.586628	-3.521951	2.490136
Н	-1.421080	-2.852078	3.620248
С	-0.503648	-5.888412	1.259338
Н	-1.656379	-4.423028	0.153986
Н	0.077139	-4.298207	-0.122431

С	-1.502444	-6.124147	2.401276
Н	-2.123680	-5.185896	4.263612
Н	-0.396778	-5.096396	3.948680
Н	-0.624626	-6.646511	0.480407

Н	0.517338	-5.988243	1.643658
Н	-1.339721	-7.110158	2.846751
Н	-2.522826	-6.122998	1.996639
Н	-0.801403	-2.405529	1.244239

Cyclohexyl oxyacyl radical (equatorial) (10_{sec}-eq)

Charge: 0

Multiplicity: 2

E = -423.918785154

H = -423.737782

G = -423.781655

Cartesian coordinates:

0	-1.210559	-2.143192	0.690232
0	-0.209807	-0.605635	2.047243
С	-0.847126	-0.966481	1.102682
С	-0.804648	-3.346308	1.510197
С	-1.800218	-3.536596	2.643631
С	-0.769714	-4.519940	0.549601
С	-1.473429	-4.829841	3.412635
Н	-2.806388	-3.603828	2.215601
Н	-1.778474	-2.672748	3.312498
С	-0.445336	-5.814182	1.317646

Н	-1.750872	-4.610078	0.070438
Н	-0.032041	-4.335832	-0.235445
С	-1.431813	-6.041628	2.471462
Н	-2.215853	-4.978494	4.201413
Н	-0.501761	-4.720643	3.909536
Н	-0.461284	-6.659201	0.623959
Н	0.574195	-5.752376	1.717225
Н	-1.156675	-6.941785	3.029153
Н	-2.434383	-6.215076	2.061143
Н	0.192158	-3.122890	1.897996

TS for CO₂ elimination from cyclohexyl oxyacyl radical (axial) (TS1_{sec}-ax)

Charge: 0

Multiplicity: 2

E = -423.905169774

H = -423.727627

G = -423.773202

0	0.928723	-3.351707	2.195931
0	1.022420	-1.302779	3.255659
С	1.317534	-2.369912	2.811540
С	-0.933718	-3.396647	1.558954
С	-1.733964	-3.627084	2.801791

С	-0.839162	-4.510652	0.567786
С	-1.479029	-5.004436	3.433642
Н	-2.792197	-3.561054	2.496637
Н	-1.576000	-2.817781	3.518422
С	-0.598588	-5.879280	1.226370

Н	-1.802820	-4.529887	0.032192	Н	-0.692327	-6.666328	0.473087
Н	-0.077391	-4.286138	-0.182885	Н	0.428855	-5.914637	1.602489
С	-1.572569	-6.123736	2.387311	Н	-1.364471	-7.091375	2.853567
Н	-2.195513	-5.171599	4.242505	Н	-2.598020	-6.172989	1.998879
Н	-0.480218	-5.009655	3.882871	Н	-0.941131	-2.387746	1.157594

TS for CO₂ elimination from cyclohexyl oxyacyl radical (equatorial) (TS1_{sec}-eq)

Charge: 0

Multiplicity: 2

E = -423.902449587

H = -423.724539

G = -423.769742

Cartesian coordinates:

С	-2.011489	-0.773970	0.008461
С	-0.736882	0.002424	0.105665
Н	-2.054792	-1.354818	-0.914934
0	-0.724274	1.236669	-1.418598
0	-2.572118	2.579687	-1.054511
С	-1.590728	2.093357	-1.525632
Н	-2.867673	-0.091985	0.024965
С	-0.574604	0.844578	1.330941
Н	-1.384068	1.579188	1.390444
Н	0.375347	1.382562	1.321717

С	-2.101339	-1.707685	1.247638
Н	-3.054254	-2.243959	1.219143
Н	-1.307196	-2.460783	1.190076
С	-0.663746	-0.088342	2.570767
Н	0.199169	-0.763973	2.576500
Н	-0.600455	0.520064	3.477566
С	-1.961137	-0.908171	2.550282
Н	-1.987782	-1.586013	3.408826
Н	-2.818101	-0.231112	2.652746

H 0.157032 -0.507135 -0.241944

Cyclohexyl radical — CO_2 complex (11_{sec} · CO_2)

Charge: 0

Multiplicity: 2

E = -423.945113006

H = -423.766817

G = -423.817706

0	1.717265	0.081765	-2.128994
0	2.413380	-1.098909	-0.254368
С	2.053440	-0.500040	-1.181891
С	-0.106823	0.925619	0.527895

С	-0.386246	-0.121339	1.557480
С	-1.145681	1.225342	-0.504159
С	-1.034993	-1.380610	0.946569
Н	-1.084919	0.288088	2.310951

Н	0.525329	-0.383175	2.103016
С	-1.780263	-0.057283	-1.080400
Н	-1.952600	1.825448	-0.043464
Н	-0.730543	1.843879	-1.305569
С	-2.215954	-1.015042	0.036939
Н	-1.359738	-2.055116	1.745094

Cycloxehyl radical (11_{sec})

Charge: 0

Multiplicity: 2

E = -235.290758250

H = -235.129144

G = -235.165865

Cartesian coordinates:

С	-1.030131	-3.392864	1.437102
С	-1.785464	-3.576131	2.714228
С	-0.927865	-4.546903	0.492167
С	-1.428456	-4.906290	3.411065
Н	-2.870532	-3.590018	2.498476
Н	-1.624159	-2.730694	3.390153
С	-0.583570	-5.862670	1.221946
Н	-1.899460	-4.689238	-0.017595
Н	-0.200220	-4.342541	-0.299305

Н	-0.283309	-1.921473	0.359357
Н	-2.631868	0.203492	-1.716647
Н	-1.046828	-0.561749	-1.720569
Н	-2.654326	-1.921277	-0.393433
Н	-3.001871	-0.537798	0.637477
Н	0.701419	1.631725	0.691535

С	-1.503137	-6.085261	2.430798
Н	-2.096991	-5.071733	4.262041
Н	-0.409881	-4.838065	3.812316
Н	-0.654833	-6.704205	0.525375
Н	0.456863	-5.819188	1.566563
Н	-1.236765	-7.016888	2.940613
Н	-2.538105	-6.200537	2.081717
Н	-0.787063	-2.392537	1.093891

Cyclohexyl radical (axial) — N-sulfinyl imine 4 re-precomplex $(11_{sec} \cdot 4-ax)$

Charge: 0

Multiplicity: 2

E = -1419.78229489

H = -1419.318052

G = -1419.408936

С	-3.280278	-0.877590	1.078920
С	-4.596059	-0.414726	0.993619
С	-5.059829	0.290306	-0.117693
С	-4.168721	0.544051	-1.163419

С	-2.840314	0.115364	-1.132907
С	-2.416770	-0.599987	0.003634
Н	-5.273840	-0.615698	1.816814
Н	-4.514219	1.097600	-2.030904

С	-2.843975	-1.637728	2.313449
Н	-2.489527	-2.642004	2.066874
Н	-2.032718	-1.126416	2.837828
Н	-3.679660	-1.739218	3.006608
Н	-2.517786	0.801133	-3.141616
Н	-1.253978	1.277171	-2.006590
Н	-1.316546	-0.381943	-2.589884
С	-1.930741	0.464845	-2.286173
С	-6.495759	0.742382	-0.204683
Н	-6.583833	1.682492	-0.753760
Н	-7.098904	-0.003375	-0.733461
Н	-6.932816	0.876669	0.786810
S	-0.736315	-1.291222	0.146202
0	-0.381189	-2.015445	-1.139206
Ν	0.084006	0.246462	0.241398
С	1.057986	0.409077	-0.570006
Н	1.318290	-0.305120	-1.352493
С	1.822917	1.693547	-0.634642
0	2.553101	1.945616	-1.573337
Н	3.379834	3.569380	0.350538
Н	2.026488	4.332899	-0.500923
0	1.595095	2.507299	0.393808

С	2.309096	3.778920	0.396461
С	1.922788	4.506390	1.665181
Н	2.440176	5.468063	1.703071
Н	0.846973	4.692127	1.695730
Н	2.205837	3.927398	2.546937
С	3.360121	-0.321068	0.848814
С	4.483887	-0.383842	-0.130488
Н	4.566049	0.560061	-0.677768
Н	5.426665	-0.483215	0.438698
С	2.804700	-1.574113	1.438297
Н	1.820688	-1.384027	1.880698
Н	3.452468	-1.863504	2.286109
С	2.749512	-2.747180	0.442644
Н	2.530690	-3.673482	0.982220
Н	1.925266	-2.590311	-0.260375
С	4.371756	-1.575164	-1.098064
Н	3.572393	-1.376748	-1.822027
Н	5.298757	-1.672122	-1.670733
С	4.058220	-2.876109	-0.347663
Н	4.882916	-3.107694	0.339279
Н	3.989588	-3.710723	-1.052354
Н	3.216468	0.600909	1.403841

Cyclohexyl radical (equatorial) — N-sulfinyl imine 4 re-precomplex (11_{sec}·4-eq)

Charge: 0

Multiplicity: 2

E = -1419.77974483

H = -1419.315239

G = -1419.407580

С	-3.600894	-0.730433	1.259921
С	-4.901750	-0.234768	1.138925
С	-5.373210	0.318143	-0.052387
С	-4.504530	0.382740	-1.144585
С	-3.191081	-0.087176	-1.082955
С	-2.759382	-0.645151	0.135747
Н	-5.561933	-0.287726	1.998475
Н	-4.855549	0.817028	-2.075442
С	-3.156076	-1.319414	2.581777
Н	-2.844978	-2.362101	2.476302
Н	-2.312297	-0.769681	3.006298
Н	-3.974250	-1.286177	3.301928

н	-2.902833	0.302415	-3.1/4368
Н	-1.579824	0.860502	-2.149968
Н	-1.742561	-0.856511	-2.497566
С	-2.304561	0.054787	-2.296764
С	-6.794805	0.807030	-0.169897
Н	-6.869149	1.651809	-0.858169
Н	-7.440817	0.011549	-0.556456
Н	-7.193175	1.112567	0.799701
S	-1.098678	-1.371070	0.338637
0	-0.793612	-2.271165	-0.843751
Ν	-0.221712	0.135190	0.223423
С	0.715737	0.159061	-0.643266

Н	0.888058	-0.637510	-1.367994
С	1.572326	1.370057	-0.842809
0	2.233104	1.516211	-1.852468
Н	3.350091	3.161301	-0.155774
Н	1.946251	4.012691	-0.821624
0	1.516275	2.236140	0.164858
С	2.315560	3.449767	0.038103
С	2.170309	4.217483	1.333131
Н	2.754272	5.139149	1.275300
Н	1.126367	4.481356	1.515590
Н	2.537854	3.628183	2.176023
С	3.037769	-0.898669	0.457771
С	3.366890	-1.821577	-0.667546
Н	2.585141	-2.570235	-0.816469

Н	3.453623	-1.244384	-1.599877
С	4.062590	0.129551	0.802426
Н	4.203844	0.809253	-0.050082
Н	3.758308	0.733417	1.660170
С	4.737303	-2.506603	-0.407681
С	5.429278	-0.559821	1.071685
С	5.823486	-1.465689	-0.103086
Н	6.771861	-1.967828	0.113597
Н	5.989282	-0.846734	-0.994301
Н	4.638205	-3.191125	0.442783
Н	5.013627	-3.111076	-1.277430
Н	5.355753	-1.157557	1.987568
Н	6.194098	0.203890	1.245248
Н	2.325669	-1.211068	1.21420

re-TS for cyclohexyl radical (axial) addition to N-sulfinyl imine 4 (TS2_{sec}-ax)

Charge: 0

Multiplicity: 2

E = -1419.78131868

H = -1419.317569

G = -1419.405182

C		
ι αιτρείαη	coordin	ατρς·
Curtesiun	coorann	uics.

С	-3.200540	-1.023054	0.986626
С	-4.518739	-0.564839	0.907338
С	-4.955144	0.249762	-0.138153
С	-4.034388	0.619191	-1.122141
С	-2.703138	0.199412	-1.092896
С	-2.307218	-0.627390	-0.024572
Н	-5.220008	-0.856614	1.682382
Н	-4.358648	1.258065	-1.937758
С	-2.794583	-1.907002	2.146799
Н	-2.424280	-2.877487	1.806143
Н	-2.003124	-1.449730	2.745817
Н	-3.649365	-2.086149	2.799928
Н	-2.320541	1.068637	-3.019214
Н	-1.121808	1.478452	-1.789960
Н	-1.105893	-0.123292	-2.520151
С	-1.759120	0.675475	-2.170655
С	-6.392844	0.696835	-0.224052
Н	-6.474069	1.690666	-0.669969
Н	-6.969670	0.008687	-0.851182

Н	-6.863763	0.718409	0.760787
S	-0.620906	-1.312072	0.094658
0	-0.259289	-1.962979	-1.232040
Ν	0.185804	0.199266	0.293361
С	1.230643	0.398208	-0.461121
Н	1.471773	-0.246935	-1.305692
С	1.826084	1.764808	-0.554816
0	2.495723	2.105760	-1.511461
Н	3.178506	3.825044	0.382577
Н	1.712530	4.407765	-0.423781
0	1.543295	2.547274	0.486754
С	2.091897	3.897512	0.463810
С	1.658870	4.578216	1.743633
Н	2.052162	5.597511	1.763360
Н	0.569758	4.627582	1.809220
Н	2.040509	4.044330	2.616709
С	3.155235	-0.299289	0.729323
С	4.252208	-0.400873	-0.282703
Н	4.291808	0.498762	-0.902572

Н	5.198248	-0.408499	0.287263	С	4.183324	-1.672434	-1.142257
С	2.701911	-1.537789	1.433323	Н	3.356456	-1.585915	-1.856880
Н	1.735012	-1.369973	1.917835	Н	5.099414	-1.760913	-1.732917
Н	3.415353	-1.696049	2.260900	С	3.971501	-2.920537	-0.276053
С	2.683472	-2.794317	0.547677	Н	4.830130	-3.047316	0.396107
Н	2.537880	-3.676959	1.176975	Н	3.927283	-3.814036	-0.906021
Н	1.832400	-2.749837	-0.137960	Н	3.121392	0.612281	1.319327

re-TS for cyclohexyl radical (equatorial) addition to N-sulfinyl imine 4 (TS2_{sec}-eq)

Charge: 0

Multiplicity: 2

E = -1419.78024846

H = -1419.316370

G = -1419.405507

С	-3.360671	-1.187116	0.903746
С	-4.645991	-0.702034	1.162751
С	-5.206437	0.336612	0.418889
С	-4.449295	0.900270	-0.611806
С	-3.157536	0.464717	-0.911956
С	-2.630862	-0.586456	-0.137069
Н	-5.222957	-1.155001	1.962368
Н	-4.875028	1.705870	-1.201951
С	-2.815987	-2.320490	1.746917
Н	-2.566444	-3.194154	1.138989
Н	-1.909131	-2.026679	2.281389
Н	-3.556411	-2.628309	2.486068
Н	-3.058350	1.760391	-2.621875
Н	-1.619770	1.802455	-1.599556
Н	-1.887546	0.428188	-2.665090
С	-2.388766	1.147128	-2.017555
С	-6.585803	0.859697	0.732006
Н	-7.117327	1.146785	-0.178217
Н	-7.184003	0.117091	1.263552
Н	-6.521531	1.749859	1.366792
S	-0.991368	-1.309363	-0.476309
0	-0.886972	-1.634317	-1.957917
Ν	-0.062417	0.090194	-0.065703
С	0.832118	0.437670	-0.935114
Н	0.842164	0.065532	-1.959228
С	1.679525	1.647223	-0.714245

0	2.225736	2.222901	-1.635572
Н	3.595818	2.995391	0.462115
Н	2.166044	4.037107	0.366422
0	1.770477	2.006838	0.565021
С	2.597307	3.168497	0.868300
С	2.612327	3.324124	2.373020
Н	3.222617	4.189472	2.642448
Н	1.602648	3.480537	2.758868
Н	3.038562	2.438965	2.850245
С	2.720353	-1.062890	-0.541590
С	3.964807	-0.532062	-1.171621
Н	3.880509	-0.487031	-2.259591
Н	4.173196	0.482553	-0.812033
С	2.726695	-1.186393	0.945234
Н	2.860233	-0.197607	1.399045
Н	1.784890	-1.595736	1.316747
С	5.159032	-1.437493	-0.751146
С	3.921505	-2.085522	1.368809
С	5.237317	-1.563255	0.776200
Н	6.062109	-2.227189	1.053860
Н	5.462150	-0.579745	1.207868
Н	5.031811	-2.430755	-1.196398
Н	6.085313	-1.018516	-1.156188
Н	3.743258	-3.109431	1.020596
Н	3.974054	-2.121690	2.461343
Н	2.160174	-1.806638	-1.10260

(R)-configured adduct of 4 with cycloxehyl radical (12_{sec})

Charge: 0

Multiplicity: 2

E = -1419.81171359

H = -1419.344208

G = -1419.431395

С	-3.243099	-1.548452	0.633444
С	-4.517740	-1.034232	0.887018
С	-4.938024	0.189429	0.362582
С	-4.051657	0.913227	-0.440323
С	-2.763172	0.456580	-0.722475
С	-2.386436	-0.779111	-0.168838
Н	-5.198623	-1.610526	1.504624
Н	-4.369876	1.861967	-0.860599
С	-2.842291	-2.883702	1.218554
Н	-2.569792	-3.600151	0.438617
Н	-1.983978	-2.786846	1.888227
Н	-3.667793	-3.310277	1.789070
Н	-2.401268	2.048239	-2.120574
Н	-1.123645	1.824840	-0.921646
Н	-1.271624	0.696734	-2.275035
С	-1.837199	1.300044	-1.562430
С	-6.308894	0.734508	0.674665
Н	-6.711132	1.303108	-0.166646
Н	-7.010350	-0.064920	0.921152
Н	-6.262719	1.411020	1.534706
S	-0.758739	-1.507608	-0.557589
0	-0.656504	-1.760750	-2.049785
Ν	0.206794	-0.312258	0.030741
С	1.413276	-0.030407	-0.720020
Н	1.322601	-0.317573	-1.773180
С	1.697722	1.473246	-0.729337

0	2.350200	1.996761	-1.606454
Н	2.513559	3.713555	0.451150
Н	1.068086	4.018710	-0.527474
0	1.184792	2.121534	0.313483
С	1.434723	3.556963	0.391324
С	0.710992	4.067472	1.617667
Н	0.872944	5.143822	1.713369
Н	-0.363021	3.885658	1.537880
Н	1.084543	3.580458	2.521034
С	2.626383	-0.825604	-0.118398
С	3.864148	-0.765526	-1.026835
Н	3.603412	-1.095200	-2.037712
Н	4.207134	0.270942	-1.109308
С	2.973464	-0.402216	1.316512
Н	3.291691	0.647647	1.317291
Н	2.085795	-0.464652	1.950579
С	4.996778	-1.634380	-0.458061
С	4.106943	-1.268864	1.883791
С	5.346876	-1.229502	0.980388
Н	6.128511	-1.884249	1.378735
Н	5.757110	-0.211331	0.977580
Н	4.686231	-2.686892	-0.472032
Н	5.878528	-1.557326	-1.101933
Н	3.757172	-2.305324	1.973594
Н	4.359553	-0.932998	2.894371
Н	2.284559	-1.868103	-0.092928

Reduced (R)-configured adduct of 4 with cycloxehyl radical (5_{sec} -)

Charge: –1

Multiplicity: 1

E = -1419.96650123

H = -1419.499996

G = -1419.586283

С	-3.327597	-0.820168	-0.955847
С	-4.501723	-1.201745	-0.294840
С	-4.910746	-0.592845	0.890900
С	-4.109220	0.424292	1.416854
С	-2.927697	0.841673	0.797520
С	-2.544096	0.206328	-0.400442
Н	-5.108375	-1.995004	-0.721859
Н	-4.410854	0.909339	2.341238
С	-2.941024	-1.537336	-2.232234
Н	-2.888657	-0.851618	-3.081982
Н	-1.958424	-2.008803	-2.144714
Н	-3.670092	-2.315018	-2.467717
Н	-2.540009	2.225517	2.399896
Н	-1.080612	1.618399	1.574998
Н	-2.073464	2.815735	0.782955
С	-2.113151	1.941633	1.435591
С	-6.163805	-1.036846	1.606920
Н	-6.689400	-0.188180	2.052246
Н	-6.851071	-1.548748	0.929622
Н	-5.922547	-1.731359	2.419100
S	-1.043473	0.701933	-1.327893
0	-1.154571	2.254071	-1.443136
Ν	0.069374	0.179589	-0.248099
С	1.354202	-0.089517	-0.892950
Н	1.243496	-0.315381	-1.967656

0	2.672734	1.688796	-1.907889
Н	4.288684	2.647347	-0.058833
н	2.816472	3.626776	-0.122873
0	2.523629	1.621384	0.330807
С	3.324344	2.827572	0.422241
С	3.477939	3.153951	1.893231
Н	4.076000	4.061493	2.008185
Н	2.503452	3.322104	2.357556
Н	3.980681	2.340377	2.421285
С	2.047089	-1.328560	-0.269210
С	3.419230	-1.606306	-0.909008
Н	3.325649	-1.641269	-2.000261
Н	4.101875	-0.776951	-0.678672
С	2.166874	-1.310461	1.262832
Н	2.805453	-0.474849	1.566279
Н	1.181578	-1.133291	1.699938
С	4.033796	-2.912970	-0.386906
С	2.766575	-2.624110	1.785803
С	4.131543	-2.911893	1.144999
Н	4.528937	-3.868467	1.501078
Н	4.844126	-2.137143	1.457913
Н	3.407033	-3.755821	-0.706472
Н	5.022137	-3.069302	-0.832104
Н	2.081762	-3.452241	1.558591
Н	2.860947	-2.585825	2.876530
Н	1.382316	-2.164322	-0.531051

Sodium n-hexyloxalate (3_{prim}·Na⁺)

Charge: 0

Multiplicity: 1

E = -776.234782022

H = -776.011915

G = -776.074672

Cartesian coordinates:

0	0.822524	-3.999957	2.704431
0	1.011024	-2.025772	3.751212
С	1.460318	-3.123392	3.467305
С	2.866048	-3.627770	3.979231
0	3.479129	-2.768570	4.661174
0	3.209426	-4.778194	3.669191
Na	2.535780	-0.704078	5.088485
С	-0.482085	-3.608650	2.183426
Н	-0.362181	-2.685920	1.610733
Н	-1.143634	-3.405144	3.028960
С	-0.992288	-4.748212	1.323550
Н	-0.268764	-4.943155	0.524874
Н	-1.052498	-5.656371	1.932609

С	-2.364753	-4.434860	0.717472
Н	-2.300101	-3.516137	0.121311
Н	-3.082539	-4.231914	1.521957
С	-2.897931	-5.570501	-0.161394
Н	-2.961907	-6.490104	0.434325
Н	-2.178590	-5.774293	-0.964945
С	-4.268888	-5.270425	-0.775635
Н	-4.203946	-4.349819	-1.368313
Н	-4.987026	-5.068034	0.028286
С	-4.791219	-6.410320	-1.654958
Н	-5.770102	-6.172026	-2.080614
Н	-4.105591	-6.611170	-2.484577
Н	-4.893374	-7.335289	-1.078179

n-Hexyl oxoacyl radical – CO_2 – sodium complex ($10_{prim} \cdot CO_2 \cdot Na^+$)

Charge: 0

Multiplicity: 2

E = -776.028670875

H = -775.806094

G = -775.874700

0	1.383253	-3.186368	1.129348
0	1.931170	-2.180285	3.096321
С	2.139327	-2.575450	1.986182
С	1.132030	-3.777398	5.473588
0	1.396534	-2.895638	6.180754
0	0.865684	-4.666058	4.776402
Na	4.149978	-1.552572	5.056662
С	-0.027058	-3.486377	1.545967

Н	-0.503771	-2.528418	1.758995
Н	0.032235	-4.079432	2.458485
С	-0.686293	-4.228753	0.408007
Н	-0.664925	-3.605570	-0.491585
Н	-0.112949	-5.135976	0.192397
С	-2.135226	-4.598506	0.754671
Н	-2.701056	-3.687093	0.982615
Н	-2.147923	-5.208793	1.665819

С	-2.835764	-5.360699	-0.374488
Н	-2.265796	-6.269470	-0.605885
Н	-2.825060	-4.749408	-1.285773
С	-4.280840	-5.742292	-0.037897
Н	-4.848497	-4.833103	0.194429

H-4.288885-6.3511210.874321C-4.975109-6.505376-1.169681H-6.003433-6.766535-0.904287H-5.007761-5.905468-2.084899H-4.443027-7.433919-1.400549

n-Hexyl oxyacyl radical (10_{prim})

Charge: 0

Multiplicity: 2

E = -425.121330071

H = -424.918536

G = -424.970868

Cartesian coordinates:

С	-0.285774	-0.321248	-0.035113
С	-1.518103	0.558122	-0.048817
Н	-0.323092	-0.973691	0.843331
Н	-0.296491	-0.965808	-0.920109
0	-2.692383	-0.335440	-0.070479
0	-4.939053	-0.314001	0.033754
С	-3.877060	0.223162	0.036579
Н	-1.562135	1.186837	-0.939622
Н	-1.584722	1.182565	0.843350
С	1.000779	0.512885	-0.012003
Н	0.999044	1.163753	0.870839

Н	1.023738	1.174915	-0.886191
С	2.264581	-0.352678	0.000273
Н	2.265635	-1.004588	-0.882568
Н	2.240162	-1.016886	0.873581
С	3.558659	0.466859	0.024865
Н	3.555252	1.118463	0.907078
Н	3.580709	1.131060	-0.847617
С	4.816983	-0.405953	0.036900
Н	4.859339	-1.045157	-0.850941
Н	5.725923	0.202006	0.054741
Н	4.833364	-1.058187	0.916084

TS for CO₂ elimination from n-hexyl oxyacyl radical (TS1_{prim})

Charge: 0

Multiplicity: 2

E = -425.104396975

H = -424.905031

G = -424.957884

С	-0.673518	0.198141	0.447314	C	1.913603	-0.018859	-0.391703
0	0.903059	0.649729	-0.547725	C	-1.645830	1.223776	-0.019700
0	2.425295	-0.935310	0.166143	Н	-1.262187	2.225239	0.198581

Н	-1.774969	1.146131	-1.103698
Н	-0.275801	0.293682	1.452256
Н	-0.806369	-0.822802	0.104906
С	-3.019567	1.047165	0.667561
Н	-3.404483	0.042639	0.458327
Н	-2.894277	1.116354	1.754081
С	-4.038458	2.093260	0.201914
Н	-4.156152	2.024449	-0.886871

n-Hexyl radical — CO_2 complex ($11_{prim} \cdot CO_2$)

Charge: 0

Multiplicity: 2

E = -425.147232466

H = -424.947708

G = -425.007897

Cartesian coordinates:

<u> </u>	1 (1)()	0 21 2000	0.010775
C	-1.023050	-0.213090	0.810//5
0	1.070177	0.723659	-1.019164
0	1.616191	-1.116233	0.287812
С	1.331698	-0.196400	-0.361251
С	-2.189736	0.948396	0.076733
Н	-1.608365	1.852418	0.293562
Н	-2.120523	0.776137	-1.003913
Н	-1.220152	-0.091693	1.815891
Н	-1.759022	-1.224555	0.450160
С	-3.673330	1.233544	0.425827
Н	-4.270410	0.339902	0.209404

H -3.646395 3.097228

H -7.390140 2.852415

H -6.070060 3.997684

C -5.408051 1.937089 0.870595 H -5.796603 0.932321 0.665274 H -5.287381 2.003981 1.958552 C -6.421908 2.984901 0.401538 H -6.582846 2.918522 -0.679326

0.407761

0.892557

0.623005

н	-3 759460	1 413599	1 503834
	5.755400	1.413333	1.505054
С	-4.241544	2.430557	-0.342773
Н	-4.146042	2.247334	-1.420908
Н	-3.635511	3.320185	-0.127475
С	-5.707503	2.725151	-0.008499
Н	-6.311597	1.835260	-0.223329
Н	-5.801508	2.907167	1.069008
С	-6.267267	3.923315	-0.781356
Н	-6.212737	3.753107	-1.861539
Н	-7.313691	4.112262	-0.525067
Н	-5.699042	4.832634	-0.560003

n-Hexyl radical (11_{prim})

Charge: 0

Multiplicity: 2

E = -236.494728406

H = -236.311832

G = -236.355504

Cartesian coordinates:

С	2.254252	-1.492371	-0.001601
С	1.764772	-0.085519	-0.000026
Н	1.876692	-2.025297	0.879557
Н	1.876566	-2.023366	-0.883871
Н	1.665010	0.468151	-0.927025
Н	1.665154	0.466123	0.928198
С	3.801693	-1.603837	-0.001834
Н	4.197345	-1.080380	-0.880305
Н	4.197470	-1.082304	0.877726
С	4.291450	-3.055140	-0.003457

Н	3.885939	-3.573485	-0.882257
Н	3.886064	-3.575408	0.874263
С	5.818602	-3.180123	-0.003703
Н	6.222376	-2.659339	-0.880652
Н	6.222501	-2.661260	0.874327
С	6.299675	-4.634418	-0.005329
Н	5.934464	-5.167004	-0.889672
Н	7.391975	-4.695737	-0.005474
Н	5.934590	-5.168938	0.877898

n-Hexyl radical — N-sulfinyl imine 4 re-precomplex (11_{prim}·4)

Charge: 0

Multiplicity: 2

E = -1420.98086882

H = -1420.495624

G = -1420.596941

С	-3.950272	-0.973997	1.185307
С	-5.281810	-0.824135	0.789142
С	-5.637222	-0.625568	-0.545495
С	-4.620920	-0.565178	-1.502184
С	-3.271893	-0.698681	-1.167975
С	-2.958771	-0.905519	0.189408
Н	-6.058762	-0.868502	1.545280
Н	-4.882608	-0.404390	-2.543352
С	-3.636838	-1.189037	2.650722
Н	-3.109628	-2.131959	2.818187
Н	-3.009199	-0.389503	3.052232
Н	-4.559237	-1.214570	3.231736
Н	-2.704664	-0.655496	-3.237733
Н	-1.726800	0.385069	-2.203036
Н	-1.469699	-1.355836	-2.174689
С	-2.232838	-0.583044	-2.257200
С	-7.084321	-0.509126	-0.952704
Н	-7.205293	0.169982	-1.799583
Н	-7.474087	-1.485990	-1.258195
Н	-7.703366	-0.150401	-0.128025
S	-1.249706	-1.177410	0.763328
0	-0.562652	-2.178951	-0.143656

Ν	-0.687315	0.449098	0.436954
С	0.353745	0.530147	-0.291432
Н	0.812488	-0.325037	-0.790551
С	0.977410	1.851837	-0.633506
0	1.771931	1.951086	-1.546469
Н	2.216804	4.097398	-0.042595
Н	0.891002	4.438728	-1.168163
0	0.563050	2.853010	0.134724
С	1.131380	4.169738	-0.137753
С	0.530995	5.132658	0.862092
Н	0.934968	6.132827	0.687891
Н	-0.555166	5.176479	0.757049
Н	0.775197	4.835272	1.884156
С	2.688846	0.192708	1.317533
С	3.552548	-0.431613	0.281060
Н	3.122826	-1.385406	-0.044606
Н	3.601331	0.219716	-0.600344
Н	2.807269	1.241272	1.568714
Н	2.088769	-0.412998	1.986371
С	5.001194	-0.686046	0.771404
Н	5.439596	0.263734	1.099182
Н	4.974011	-1.339452	1.650922

С	5.883967	-1.315049	-0.310881
Н	5.433693	-2.259763	-0.641932
Н	5.902417	-0.658133	-1.190058
С	7.319694	-1.575908	0.156101
Н	7.298926	-2.231353	1.035253

Н	7.767817	-0.631310	0.487566
С	8.195616	-2.205042	-0.931628
Н	9.214052	-2.381300	-0.573710
Н	7.784765	-3.165758	-1.258678
Н	8.257388	-1.554473	-1.810073

re-TS for n-hexyl radical addition to N-sulfinyl imine 4 (TS2_{prim})

Charge: 0

Multiplicity: 2

E = -1420.98010710

H = -1420.495207

G = -1420.592202

С	-3.002715	-0.854302	0.104340
С	-3.919806	-1.072546	1.147919
С	-5.264896	-0.781039	0.904194
С	-5.704263	-0.300702	-0.329889
С	-4.759263	-0.097785	-1.339050
С	-3.401089	-0.361619	-1.153137
С	-3.512703	-1.592044	2.510384
С	-7.166846	-0.033864	-0.582106
С	-2.436855	-0.077478	-2.279485
S	-1.275845	-1.324550	0.455574
Ν	-0.610202	0.273168	0.359132
С	0.428630	0.395447	-0.400736
С	1.064304	1.734894	-0.614253
0	0.792577	2.613915	0.346739
С	1.382575	3.941148	0.211579
С	0.956607	4.745212	1.419989
0	-0.759856	-2.207988	-0.667122
0	1.754329	1.960539	-1.588537
С	2.340806	-0.335905	0.879730
С	3.469678	-0.488718	-0.076015
Н	1.805752	-1.218935	1.212200
Н	-5.985016	-0.938519	1.700480
Н	-5.085902	0.282857	-2.301763
Н	-3.034874	-2.573015	2.444195
Н	-2.807497	-0.919379	3.005125
Н	-4.388933	-1.690280	3.152064
Н	-2.979342	0.067506	-3.214489

Н	-1.871705	0.836372	-2.076425
Н	-1.717178	-0.884754	-2.411115
Н	-7.305483	0.816819	-1.253180
Н	-7.637194	-0.902860	-1.054468
Н	-7.702560	0.166390	0.347897
Н	0.727377	-0.363335	-1.124586
Н	2.467031	3.828320	0.151718
Н	1.028192	4.380074	-0.723164
Н	1.380591	5.750100	1.354058
Н	-0.131092	4.832265	1.466305
Н	1.312718	4.280438	2.341949
Н	3.216665	-1.226051	-0.845489
Н	3.666010	0.460755	-0.584587
Н	2.325967	0.510417	1.558434
С	4.770207	-0.942865	0.635897
Н	4.590058	-1.895855	1.145757
Н	5.028159	-0.213534	1.412067
С	5.942182	-1.093127	-0.339669
Н	5.675067	-1.819108	-1.118011
Н	6.110490	-0.137906	-0.852990
С	7.240141	-1.536849	0.343098
Н	7.069261	-2.490740	0.856523
Н	7.503549	-0.811134	1.122003
С	8.407918	-1.683806	-0.637092
Н	9.321488	-2.001241	-0.126384
Н	8.180737	-2.426110	-1.409058
Н	8.618533	-0.734972	-1.141024

(R)-configured adduct of 4 with n-hexyl radical (12_{prim})

Charge: 0

Multiplicity: 2

E = -1421.01932445

H = -1420.530232

G = -1420.624796

С	2.263646	-2.463363	-0.501033
С	3.610467	-2.728297	-0.764611
С	4.630278	-1.889509	-0.311354
С	4.284051	-0.749266	0.419525
С	2.956921	-0.426258	0.707471
С	1.967975	-1.304286	0.232408
Н	3.865080	-3.615051	-1.335585
Н	5.067878	-0.087369	0.773817
С	1.198786	-3.408815	-1.008933
Н	0.600449	-3.818013	-0.190134
Н	0.512635	-2.908785	-1.697186
Н	1.656241	-4.245338	-1.537962
Н	3.530183	1.219320	1.965269
Н	2.284819	1.607961	0.774368
Н	1.865082	0.677175	2.216313
С	2.639499	0.838550	1.464213
С	6.077575	-2.220263	-0.575467
Н	6.673812	-1.315047	-0.709776
Н	6.503103	-2.769940	0.270832
Н	6.188668	-2.844772	-1.463996
S	0.208897	-1.017695	0.630963
0	0.020807	-1.007466	2.134814
Ν	-0.011267	0.420873	-0.131655
С	-0.854868	1.398351	0.526286
Н	-0.935595	1.222257	1.605276
С	-0.276149	2.810117	0.383187
0	-0.658814	3.724571	1.080095

Н	0.435384	4.930667	-1.072701
Н	1.648267	4.581595	0.171854
0	0.640560	2.923132	-0.573157
С	1.230539	4.243239	-0.778159
С	2.288994	4.093922	-1.848545
Н	2.757586	5.063615	-2.032898
Н	3.063201	3.390855	-1.533489
Н	1.850455	3.739205	-2.783738
С	-2.287546	1.402717	-0.078275
С	-3.055021	0.105846	0.180727
Н	-2.538762	-0.734320	-0.296495
Н	-3.064473	-0.101175	1.257637
Н	-2.211463	1.592534	-1.153500
Н	-2.819863	2.245663	0.372092
С	-4.494372	0.164708	-0.340738
Н	-5.020913	0.998731	0.139910
Н	-4.481201	0.386049	-1.415420
С	-5.271968	-1.132662	-0.099842
Н	-4.744236	-1.965974	-0.581659
Н	-5.280513	-1.355651	0.974989
С	-6.713595	-1.082976	-0.615990
Н	-7.239950	-0.250352	-0.133553
Н	-6.703715	-0.858766	-1.689637
С	-7.481329	-2.385358	-0.371304
Н	-8.506197	-2.323887	-0.748358
Н	-6.991654	-3.228517	-0.869355
Н	-7.531497	-2.615921	0.697850

Reduced (R)-configured adduct of 4 with n-hexyl radical (5_{prim})

Charge: –1

Multiplicity: 1

E = -1421.17690774

H = -1420.688804

G = -1420.781411

С	-2.334696	-1.423736	0.849424
С	-3.506160	-1.780473	0.169967
С	-3.490720	-2.649123	-0.920571
С	-2.257358	-3.159663	-1.335356
С	-1.059196	-2.834029	-0.693489
С	-1.110760	-1.958289	0.409322
Н	-4.452095	-1.364457	0.504414
Н	-2.223770	-3.828770	-2.190895
С	-2.432338	-0.469349	2.021318
Н	-2.078530	-0.930706	2.947210
Н	-1.828559	0.426977	1.861522
Н	-3.467838	-0.158202	2.172266
Н	0.054019	-4.016499	-2.106595
Н	0.936683	-2.612169	-1.459437
Н	0.720469	-4.020789	-0.451503
С	0.234832	-3.411365	-1.215711
С	-4.767556	-3.049038	-1.620246
Н	-4.616346	-3.147647	-2.698311
Н	-5.126301	-4.016876	-1.253073
Н	-5.561652	-2.318344	-1.450671
S	0.388916	-1.462643	1.341476
0	1.111536	-2.810025	1.642779
Ν	1.110014	-0.557911	0.186004
С	1.853325	0.574159	0.753650
Н	1.679854	0.691647	1.835892
С	3.338084	0.252698	0.634390
0	4.024227	-0.194141	1.536796

Н	5.845226	0.615001	-0.183116
Н	5.294293	-1.001644	-0.644836
0	3.816349	0.456411	-0.605626
С	5.190114	0.064220	-0.862019
С	5.486892	0.377986	-2.313487
Н	6.516660	0.095753	-2.546912
Н	4.818941	-0.177193	-2.976170
Н	5.369198	1.445761	-2.512637
С	1.468490	1.893293	0.064526
С	0.022602	2.291819	0.362656
Н	-0.639033	1.485198	0.031804
Н	-0.112329	2.374940	1.449649
Н	1.612734	1.783372	-1.014959
Н	2.147976	2.689119	0.397543
С	-0.400563	3.606220	-0.297753
Н	0.265375	4.414374	0.032388
Н	-0.268119	3.525436	-1.384688
С	-1.851398	3.991266	0.007547
Н	-2.517145	3.184194	-0.325700
Н	-1.983918	4.065836	1.095070
С	-2.288853	5.307182	-0.643424
Н	-1.621793	6.112039	-0.310782
Н	-2.159371	5.231568	-1.730099
С	-3.739795	5.680050	-0.324756
Н	-4.027016	6.622253	-0.800495
Н	-4.429456	4.904839	-0.674486
Н	-3.887482	5.791707	0.754446

2-Allyladamantan-2-yl oxyacyl radical (10')

Charge: 0

Multiplicity: 2

E = -695.557897876

H = -695.238011

G = -695.292585

Cartesian coordinates:

С	-1.949149	-0.320647	-0.644725
С	-2.658261	-0.615717	-1.980639
С	-1.606094	-0.683069	-3.102825
С	-0.848440	0.659837	-3.197354
С	-1.199041	1.026670	-0.735223
С	-3.666354	0.507815	-2.291883
С	-1.866815	1.783230	-3.503416
С	-2.923143	1.855199	-2.382568
С	-2.225666	2.141969	-1.038663
С	3.145294	2.273782	-2.628444
С	1.841457	2.241498	-2.904522
С	1.585060	-0.666431	-2.338472
0	0.755271	-0.154754	-1.457855
С	-0.141320	0.976677	-1.860528
С	0.756172	2.231502	-1.865706
0	2.384249	-1.534537	-2.153098
Н	-4.181233	0.298949	-3.236407
Н	-4.430760	0.554681	-1.508239

Н	-0.913252	-1.509354	-2.922054
Н	-2.089558	-0.880154	-4.065159
Н	-3.181773	-1.574551	-1.912821
Н	-1.254860	-1.127247	-0.397493
Н	-2.681487	-0.262393	0.167203
Н	-0.687751	1.233785	0.209873
Н	-3.634070	2.657223	-2.603849
Н	-1.751065	3.126498	-1.054245
Н	-2.963161	2.164535	-0.230056
Н	-1.365075	2.747840	-3.620676
Н	-2.349578	1.562360	-4.460639
Н	1.193379	2.324065	-0.867312
Н	1.521812	2.246337	-3.943620
Н	0.120445	3.106311	-2.015188
Н	3.891435	2.298410	-3.414946
Н	3.508158	2.272414	-1.604685
Н	-0.105982	0.604384	-3.997019

TS for CO₂ elimination from 2-allyladamantan-2-yl oxyacyl radical (TS3)

Charge: 0

Multiplicity: 2

E = -695.548151204

H = -695.230749

G = -695.285962

С	1.684189	0.661460	1.380828
С	2.230952	1.058304	-0.003045
С	1.048857	1.295008	-0.958961

С	0.195227	0.013374	-1.074835
С	0.842549	-0.627955	1.262550
С	3.118846	-0.072749	-0.557218

С	1.101892	-1.132084	-1.633205
С	2.289061	-1.366255	-0.678844
С	1.759426	-1.764771	0.711354
С	-3.810202	-1.138199	-0.155898
С	-2.558183	-1.317296	-0.570166
С	-1.944043	1.823502	0.485579
0	-1.272376	0.996049	1.104482
С	-0.289853	-0.464836	0.273710
С	-1.385428	-1.504617	0.351141
0	-2.254143	2.193409	-0.609714
Н	3.518178	0.209815	-1.537546
Н	3.974193	-0.239785	0.106607
Н	0.435986	2.128549	-0.610470
Н	1.414433	1.561089	-1.956140
Н	2.817332	1.978103	0.086517

Н	1.074122	1.466939	1.794680
Н	2.509434	0.481150	2.077369
Н	0.443545	-0.916433	2.238613
Н	2.915265	-2.172652	-1.073268
Н	1.215635	-2.711969	0.660649
Н	2.588513	-1.909161	1.411245
Н	0.523506	-2.051596	-1.762021
Н	1.457731	-0.833827	-2.624285
Н	-1.721996	-1.570276	1.389125
Н	-2.350591	-1.349466	-1.636734
Н	-0.917441	-2.473091	0.121582
Н	-4.628439	-1.020412	-0.857733
Н	-4.058366	-1.100333	0.900934
Н	-0.642615	0.181873	-1.751694

2-Allyladamantan-2-yl radical — CO₂ complex (11·CO₂)

Charge: 0

Multiplicity: 2

E = -695.588167042

H = -695.269738

G = -695.330835

С	1.418292	0.896817	1.141583
С	2.085138	1.163643	-0.221462
С	1.032999	1.035728	-1.340406
С	0.425081	-0.386224	-1.323679
С	0.803609	-0.522608	1.153494
С	3.207330	0.130745	-0.450096
С	1.565755	-1.422532	-1.558100
С	2.614515	-1.293194	-0.435083
С	1.947532	-1.558424	0.930127
С	-3.773498	-1.138164	0.046055
С	-2.581919	-1.231827	-0.542839
С	-2.159557	1.658550	0.974077
0	-2.137071	1.178835	2.031100
С	-0.183476	-0.675692	0.025564
С	-1.311767	-1.664868	0.147036
0	-2.190874	2.170662	-0.067527
Н	3.700945	0.319923	-1.410294
Н	3.970063	0.226790	0.331244

Н	0.240949	1.777941	-1.202418
Н	1.497000	1.226243	-2.315053
Н	2.507755	2.174056	-0.230497
Н	0.642897	1.644612	1.336094
Н	2.157949	0.983767	1.945873
Н	0.318731	-0.711844	2.116239
Н	3.413101	-2.025157	-0.597555
Н	1.541411	-2.575176	0.963071
Н	2.684773	-1.474658	1.737405
Н	1.151876	-2.436569	-1.575435
Н	2.030104	-1.244169	-2.535126
Н	-1.520152	-1.867131	1.202278
Н	-2.492535	-0.976787	-1.596544
Н	-0.996839	-2.628547	-0.295772
Н	-4.653637	-0.817729	-0.501242
Н	-3.908041	-1.377177	1.097209
Н	-0.317012	-0.480240	-2.121869

TS for intramolecular cyclization of 2-allyladamantan-2-yl oxyacyl radical (TS4)

Charge: 0

Multiplicity: 2

E = -695.553022764

H = -695.234797

G = -695.286598

Cartesian coordinates:

С	-1.976436	-0.338181	-0.661594
С	-2.731093	-0.599099	-1.979271
С	-1.714351	-0.678334	-3.134765
С	-0.935299	0.651141	-3.240305
С	-1.191886	0.987849	-0.761848
С	-3.720542	0.553767	-2.239791
С	-1.939054	1.795779	-3.505755
С	-2.947140	1.883317	-2.343129
С	-2.187988	2.140225	-1.025659
С	3.235790	2.278846	-2.446118
С	1.981879	1.912433	-2.827351
С	1.810030	-0.294696	-2.321018
0	0.690248	-0.249593	-1.623358
С	-0.178641	0.924697	-1.919716
С	0.768972	2.135943	-1.957716
0	2.629331	-1.164194	-2.296643
Н	-4.275151	0.371276	-3.167178
Н	-4.454261	0.609053	-1.427726

Н	-1.025656	-1.511977	-2.975483
Н	-2.231580	-0.861414	-4.082300
Н	-3.276306	-1.545570	-1.907453
Н	-1.296488	-1.165086	-0.442921
Н	-2.683614	-0.268764	0.171731
Н	-0.643585	1.168661	0.167917
Н	-3.645570	2.705520	-2.527342
Н	-1.673187	3.104697	-1.062406
Н	-2.892788	2.191730	-0.189681
Н	-1.423617	2.750908	-3.638794
Н	-2.464008	1.590263	-4.444201
Н	1.088745	2.355591	-0.934754
Н	1.798365	1.737700	-3.883573
Н	0.225056	3.010492	-2.317593
Н	4.069764	2.233371	-3.136481
Н	3.451913	2.561484	-1.420896
Н	-0.213004	0.589285	-4.060081

Intramolecular cyclization product from 2-allyladamantan-2-yl oxyacyl radical (11')

Charge: 0

Multiplicity: 2

E = -695.590987928

H = -695.271356

G = -695.323992

С	-1.946908	-0.363265	-0.695332
С	-2.759441	-0.602163	-1.982486
С	-1.794405	-0.662323	-3.183768

С	-1.023988	0.670183	-3.302608
С	-1.169446	0.964117	-0.808781
С	-3.758924	0.555200	-2.176385

С	-2.038340	1.817974	-3.503956	Н	-1.254209	-1.191116	-0.523788
С	-2.991205	1.886692	-2.295104	Н	-2.616057	-0.312513	0.170329
С	-2.166555	2.126137	-1.013998	Н	-0.576814	1.130126	0.096442
С	3.311848	2.193093	-2.290252	Н	-3.697568	2.711268	-2.433237
С	2.050840	1.508019	-2.670575	Н	-1.637920	3.082956	-1.076797
С	1.957885	0.049773	-2.185700	Н	-2.827995	2.184366	-0.143641
0	0.701643	-0.229490	-1.809893	Н	-1.528854	2.776095	-3.640023
С	-0.213152	0.921572	-2.010910	Н	-2.605050	1.630621	-4.421839
С	0.760465	2.111344	-2.094392	Н	0.951900	2.497748	-1.088956
0	2.840733	-0.773922	-2.135472	Н	1.981180	1.439345	-3.763268
Н	-4.357625	0.388453	-3.079046	Н	0.380054	2.929548	-2.701022
Н	-4.452995	0.596386	-1.329227	Н	4.165942	2.198388	-2.953856
Н	-1.094765	-1.493599	-3.064971	Н	3.427988	2.583306	-1.286041
Н	-2.353083	-0.835603	-4.109588	Н	-0.334674	0.628193	-4.152369
Н	-3.301658	-1.549791	-1.902745				

8. References

- A. Shatskiy, A. Axelsson, E. V. Stepanova, J.-Q. Liu, A. Z. Temerdashev, B. P. Kore, B. Blomkvist, J. M. Gardner, P. Dinér and M. D. Kärkäs, *Chem. Sci.*, 2021, **12**, 5430–5437. https://doi.org/10.1039/D1SC00658D
- (2) J. Luo and J. Zhang, ACS Catal., 2016, 6, 873–877. https://doi.org/10.1021/acscatal.5b02204
- (3) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652. https://doi.org/10.1063/1.464913
- (4) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789. https://doi.org/10.1103/PhysRevB.37.785
- (5) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650–654. https://doi.org/10.1063/1.438955
- (6) M. J. Frisch, J. A. People and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265–3269. https://doi.org/10.1063/1.447079
- (7) V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995–2001. https://doi.org/10.1021/jp9716997
- (8) V. Barone, M. Cossi and J. Tomasi, J. Comput. Chem., 1998, 19, 404–417. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
- (9) Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara,

K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- (10) F. Grosjean, E. Cros-Perrial, A. Braka, J. Uttaro, L. Chaloin, L. P. Jordheim, S. Peyrottes and C. Mathé, *Eur. J. Org. Chem.*, 2022, **2022**, e202101175. https://doi.org/10.1002/ejoc.202101175
- (11) N. A. Weires, Y. Slutskyy and L. E. Overman, Angew. Chem. Int. Ed., 2019, 58, 8561–8565. https://doi.org/10.1002/anie.201903353
- (12) N. Jiang, Q. Hu, C. S. Reid, Y. Lu and C.-J. Li, *Chem. Commun.*, 2003, 2318–2319. https://doi.org/10.1039/B305161G
- (13) S. G. E. Amos, D. Cavalli, F. Le Vaillant and J. Waser, Angew. Chem. Int. Ed., 2021, 60, 23827–23834. https://doi.org/10.1002/anie.202110257
- (14) W. Zhang, Y.-C. Gu, J.-H. Lin and J.-C. Xiao, *Org. Lett.*, 2020, **22**, 6642–6646. https://doi.org/10.1021/acs.orglett.0c02438
- (15) K. Kiyokawa, R. Ito, K. Takemoto and S. Minakata, Chem. Commun., 2018, 54, 7609–7612. https://doi.org/10.1039/C8CC03735C
- (16) C. C. Nawrat, C. R. Jamison, Y. Slutskyy, D. W. C. MacMillan and L. E. Overman, *J. Am. Chem. Soc.*, 2015, **137**, 11270–11273. https://doi.org/10.1021/jacs.5b07678
- (17) L. Guo, F. Song, S. Zhu, H. Li and L. Chu, *Nat. Commun.*, 2018, **9**, 4543. https://doi.org/10.1038/s41467-018-06904-9
- (18) Y. Ye, G. Ma, K. Yao and H. Gong, *Synlett*, 2021, **32**, 1625–1628. https://doi.org/10.1055/a-1328-0352
- (19) É. Vincent and J. Brioche, *Eur. J. Org. Chem.*, 2021, **2021**, 2421–2430. https://doi.org/10.1002/ejoc.202100344
- (20) S. P. Pitre, M. Muuronen, D. A. Fishman and L. E. Overman, ACS Catal., 2019, 9, 3413–3418. https://doi.org/10.1021/acscatal.9b00405
- (21) F. W. Friese and A. Studer, *Angew. Chem. Int. Ed.*, 2019, **58**, 9561–9564. https://doi.org/10.1002/anie.201904028
- (22) Y. Ye, H. Chen, J. L. Sessler and H. Gong, *J. Am. Chem. Soc.*, 2019, **141**, 820–824. https://doi.org/10.1021/jacs.8b12801

- (23) Y. Ye, H. Chen, K. Yao and H. Gong, *Org. Lett.*, 2020, **22**, 2070–2075. https://doi.org/10.1021/acs.orglett.0c00561
- (24) J. L. M. Matos, S. Vásquez-Céspedes, J. Gu, T. Oguma and R. A. Shenvi, *J. Am. Chem. Soc.*, 2018, **140**, 16976–16981. https://doi.org/10.1021/jacs.8b11699