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Supporting tables and figures 
 

 
Figure S1: Recorded reactions associated with compounds (6)-(10). (6) is the test 
set molecule, and (7)-(10) are precedent molecules in the knowledgebase chemically 
similar to (6). The approach hypothesizes that reactions associated with (7) - (10) are 
likely applicable to (6). Applying the reaction template associated with (7) to the test set 
molecule (6) will recover the recorded product.   
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Figure S2: Different fingerprint settings and similarity metrics for one-step 
enumeration are evaluated using the validation dataset. ‘TverskyA’ and ‘TverskyB’ 
are Tversky similarity metrics with (=1.5, =1.0) and (=1.0, =1.5), respectively (see 
equation 3). ‘Morgan2Feat’ and ‘Morgan2noFeat’ refer to Morgan fingerprints of radius 
=2 with and without features, respectively.  ‘Morgan3Feat’ and ‘Morgan3noFeat’ refer to 
Morgan fingerprints of radius =3 with and without features, respectively. The top-N 
accuracy is not a strong function of the fingerprint settings and similarity metrics tested. 
As a result, the Morgan2Feat fingerprint and Tanimoto similarity metric were used for this 
study. 
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Figure S3: Randomly selected example from the test set (Example 1). For every 
proposed reaction, the co-reactant is shown in blue. The product is shown in black and 
any structural change resulting from the reaction is highlighted in pink. The rank and 
overall similarity score are labeled above and below every suggestion, respectively. The 
similarity-based approach is unable to find an analog of the recorded product. 
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Figure S4: Randomly selected example from the test set (Example 2). For every 
proposed reaction, the co-reactant is shown in blue. The product is shown in black and 
any structural change resulting from the reaction is highlighted in pink. The rank and 
overall similarity score are labeled above and below every suggestion, respectively. The 
similarity-based approach proposes an analog of the recorded product with rank 2. 
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Figure S5: Randomly selected example from the test set (Example 3). For every 
proposed reaction, the co-reactant is shown in blue. The product is shown in black and 
any structural change resulting from the reaction is highlighted in pink.  The rank and 
overall similarity score are labeled above and below every suggestion, respectively. The 
similarity-based approach proposes the recorded product with rank 1. 
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Figure S6: Randomly selected example from the test set (Example 4). For every 
proposed reaction, the co-reactant is shown in blue. The product is shown in black and 
any structural change resulting from the reaction is highlighted in pink.  The rank and 
overall similarity score are labeled above and below every suggestion, respectively. The 
similarity-based approach proposes the recorded product with rank 1. 
  



 8 

 
Figure S7: Randomly selected example from the test set (Example 5). For every 
proposed reaction, the co-reactant is shown in blue. The product is shown in black and 
any structural change resulting from the reaction is highlighted in pink.  The rank and 
overall similarity score are labeled above and below every suggestion, respectively. The 
similarity-based approach proposes a close analog of the recorded product with rank 8. 
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Figure S8: Example diversification schemes from the literature. (associated with 
Figure 6) (A) A selected reaction scheme for lead compound diversification by Mann and 
co-authors. Reactive intermediate 13 was treated with amines to obtain N-substituted-
sulfonamides. Exemplary analogs generated in the study are described here. (B) A 
selected reaction scheme for lead compound diversification by Lagisetty and co-authors. 
Reaction intermediate 14 was diversified using different chemistries at different sites 
(marked with different colors). Each reaction described here is likely to contain its own 
distinct SMARTS pattern. 
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Table S1: Time taken, and number of analogs generated for every iteration. 
 

Iteration Number of 
analogs 

Time 
taken 

1 28 1.3s# 

2 410 2.7 min# 

3 3,566 2.05 min 
4 27,725 7.25 min 
5 275,718 35 min 
6 2,540,954 5 hr 

  
# These iterations were not parallelized, and computations were performed on a single 
core.  
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Methods 
 
Enumeration algorithm evaluation: Top-k accuracy analysis 
 
Here, we restate our approach to performing the top-k accuracy analysis in greater detail. 
 
Data Processing: 
 
USPTO 500k dataset previously published by Jin et al. was used for this study.1 The 
chemical reactions in this dataset often have multiple reactants; we process the dataset 
so that each multi-reactant reaction is converted into a single-reactant ‘pseudo’ reaction. 
This pseudo reaction comprises the most complex reactant and the corresponding 
reaction products; the other less complex reactants were removed to facilitate this 
approach. Molecular complexity was evaluated using SCScore. This procedure is 
described in the following algorithm: 

1. For every reaction SMILES, individual reactant SMILES was extracted. 
2. If the reactant contributes atoms towards the product molecule(s), the SCScore of 

the molecules was computed. Reactants that do not contribute atoms towards the 
product molecule(s) were not further considered in this analysis. 

3. The reactant molecule with the highest SCScore was identified. 
4. Then, a pseudo reaction SMILES was constructed. This pseudo reaction 

comprises the reactant with the highest SCScore and products that contain at least 
one atom originating from this reactant. 

 
Reaction templates were extracted, and their quality was verified computationally. Only 
reactions with high quality templates were used in this study, and other reactions were 
filtered out from the dataset. This procedure is described in the following algorithm: 

1. For every pseudo reaction, a reaction template that describes the underlying 
transformation in a generalized fashion is extracted. Template extraction 
procedure and minor changes to RDChiral2 are described separately in this 
Supporting Information (See section titled ‘Template Extraction’). 

2. The extracted template is applied to the reactant. If the recorded reaction products 
were successfully recovered, this pseudo reaction was used in the study. 
Otherwise, the pseudo reaction was filtered out and not used in this study. 

 
We canonicalize the reaction SMILES string to remove duplicate transformations. Then, 
we split the dataset randomly into training (80%), validation (10%), and test (10%) splits 
using the reactant SMILES string. There were ca. 348196, 43525, 43525 reactants in the 
training, validation, and test splits, respectively.   
 
Enumeration Approach: 

1. Calculate the Morgan fingerprint (radius =2, using features) of the target 
compound. 

2. Calculate a reactant Tanimoto similarity score, sreac, between the target compound 
and each reactant that appears in the training set. 
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3. Iterate through each of the precedent reactions from the knowledge base in order 
of decreasing reactant similarity. For computational efficiency, this considers the 
100 most similar reactants only. For each of these reaction precedents, extract a 
localized reaction template based on the atom mapped transformation, using 
RDChiral (modified).  

4. Still iterating through the precedent reactions, apply the extracted template to the 
target molecule to get candidate products. 

5. For each candidate product generated in the previous step, compute the candidate 
product’s Morgan fingerprint. Then, compare it to the reaction precedent’s 
products’ fingerprint to get a second similarity score, sprod. This score reflects how 
similar the products of the known reaction are to the proposed products of this 
theoretical reaction. 

6. Still for each candidate precursor set, multiply the reactant similarity score sreac 
with the product similarity score sprod to get the overall similarity s = sprod ꞏ sreac. 
This score represents the extent to which the proposed enumeration reaction is 
analogous to the precedent reaction. 

7. Rank all enumerated products by their overall scores, s.  Remove any duplicates 
in the candidate product list as determined by their isomeric SMILES string, while 
retaining only the highest score when there are multiple entries. 

 
Top-k accuracy evaluation 

1. Calculate the Morgan fingerprint (radius =2, using features) of the recorded 
reactant and product. 

2. Calculate the baseline Tanimoto similarity score, sbaseline, between the recorded 
reactant and product 

3. Iterate through the ranked enumerated product list in the order of increasing ranks. 
For each of these enumerated products, compute the enumerated product’s 
Morgan fingerprint. Then, compare it to the recorded product’s fingerprint to get 
the enumerated product Tanimoto similarity score, senumprod. 

4. If the baseline similarity score sbaseline is greater than or equal to the highest 
enumerated product similarity score senumprod, then no solution was found. 
Otherwise, the rank associated with highest senumprod score was recorded. 

 
Template extraction 
 
RDChiral was used for template extraction and application.2 By design, the problem was 
formulated as an inverse of the retrosynthesis problem. This allowed us to take advantage 
of the techniques that have been developed for retrosynthetic template extraction and 
application. The role of reactants and products of the pseudo reaction were reversed 
during the retrosynthetic template extraction. That is to say, the reactants of the pseudo 
reaction were fed as products to RDChiral and vice versa. This approach enabled us to 
employ RDChiral with minimal modifications. 
 
One minor change was made to RDChiral to ensure successful template extraction and 
application. The ‘MAXIMUM_NUMBER_UNMAPPED_PRODUCT_ATOMS’ parameter 
was changed from the default setting of ‘5’ to ‘5000’. This was necessary because the 
original reactions from the USPTO-500k dataset do not contain information about by-
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products. This minor setting change ensured that we were able to extract templates from 
reactions containing reactants that contributed more than 5 atoms towards by-product 
formation. 
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Buyability of co-reactants 
 
For a reaction in the dataset with multiple reactants, we constructed a corresponding 
pseudo reaction that contained the most complex reactant and the original products; the 
other less complex reactants were removed from the reaction (henceforth, these 
removed reactants are referred to as ‘coreactants’). These co-reactants can be likened 
to building blocks. Here, we evaluable the commercial availability of these compounds. 
 
Method 
For every reaction, co-reactants were searched using the ASKCOS buyable 
database.3,4 If all co-reactants associated with a given reaction are listed as 
commercially available in the ASKCOS buyable database, then the reaction is classified 
as having co-reactants that are buyable. If at least one co-reactant is not a buyable 
compound on ASKCOS, then the reaction is classified as having co-reactants that are 
not buyable. These co-reactants would have to be synthesized or searched using other 
buyable compound databases. 
 
For co-reactants that were not listed on ASKCOS as buyable, we randomly sampled ten 
compounds and used to ASKCOS tree-search algorithm to evaluate synthesizability.3,5  
 
Result 
There are a total of 435,246 reactions in the dataset. 382,086 reactions (~88% of the 
dataset) had co-reactants that were listed as buyable in the ASKCOS buyable database 
or simply did not need any co-reactants. Further, nine of the ten randomly sampled non-
buyable compounds had many ASKCOS predicted synthesis pathway (57-200 trees). 
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Top-N Accuracy: Chemical sensibility analysis using a graph-
convolutional neural network model 
 
To complement the analysis performed using the fast-filter predictor, we also employed 
the graph convolutional neural network model trained by Coley and co-authors.6 This 
serves as a second approach to understand the chemical sensibility of the reactions 
considered successful in the Top-N accuracy analysis. 
 
In the test set comprising 44k reactions, roughly 90% (38,738 reactions) of the cases 
were able to recover recorded products or close analogs, and these cases considered 
to be successful are further analyzed. For 22,233 reactions, our algorithm recovered the 
exact reaction recorded on the test set. This was determined by an exact SMILES string 
match between the algorithm proposed reaction and the recorded reaction in the test 
set (i.e., from the U.S. patent literature). The remaining 16,505 reactions were further 
analyzed using the trained graph convolutional neural network model. 
 
Method 
First, any duplicate reactions were removed. There was a total of 12804 unique 
reactions in the 16505 total reactions. We used a graph convolutional neural network 
model trained by Coley and co-authors and currently implemented on askcos.mit.edu.6,7 
The settings employed for the forward predictor were ‘wldn5’, and ‘uspto_500K’. These 
model settings match closely with the settings used in the original publication. 
Performance was measured using top-N accuracy for N = {1,3,5,10,20,50}; this is 
defined as the fraction of the 12804 reactions where the similarity algorithm suggested 
product is predicted to be chemically sensible by the trained graph convolutional neural 
network model with rank  N. 
 
Result 
 
Table S2: The trained graph convolutional neural network model ranks the 12804 
reactions proposed by our algorithm highly, indicating chemical sensibility of the 
proposed transformations. 
 

Top-n Accuracy 
(%) 

1 77 
3 85 
5 88 
10 91 
20 93 
50 94 
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Filtering analogs using a property constraint 
 
The library of analogs generated by recursive application of similarity-based 
enumeration in Figure 7 were evaluated using the ‘QED’ property filter.8 ‘QED’ is a 
property that was originally described in ‘Quantifying the chemical beauty of drugs’ by 
Bickerton and co-authors.8 QED evaluates the ‘drug-likeness’ of a molecule based on 
an analysis of observed distribution of physical-chemical properties of approved drugs. 
QED scores range from 0 to 1 (higher scores are more drug-like). QED is a model 
property for illustrative purposes only. 
 
The QED score implementation in RDKit was used for this analysis.9 The QED score for 
all ~2.5 Million analogs was calculated. The analogs were filtered to identify molecules 
with QED scores greater than the input molecule (QEDinput = 0.80235). A selection of 
molecules with improved QED scores are shown in Figure S9. 
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Figure S9: Analogs with improved QED property were identified using our algorithm 
and a ‘QED’ property prediction algorithm. Core structure is in black, and proposed 
structural modifications are in blue. 
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