Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

Supporting information

Access to Chiral Dihydrophenanthridines via a

Palladium(0)-Catalyzed Suzuki Coupling and C-H Arylation Cascade

Reaction Using New Chiral-Bridged Biphenyl Bifunctional Ligands

Bin Chen, ^a Bendu Pan, ^a Xiaobo He, ^a Long Jiang, ^a Albert S. C. Chan, ^a Liqin Qiu*^a

B. Chen, B. Pan, X. He, Prof. Dr. L. Jiang, Prof. Dr. A. S. C. Chan, Prof. Dr. L. Qiu
 School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province,
 Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery
 Sun Yat-sen University
 Guangzhou 510006, People's Republic of China.
 *E-mail: qiuliqin@mail.sysu.edu.cn

Contents

General Considerations	2
Experimental Section	2
Reference	39
NMR Spectra	39
HPLC Data	158

General Considerations

Unless otherwise noted, all reactions were carried out in a nitrogen-filled glove box or under nitrogen atmosphere using standard Schlenk techniques. Commercially available compounds were purchased from commercial suppliers and directly used without further purification. Solvents were dried and degassed according to standard procedures. The heat source for all reactions is oil bath. Column chromatography was carried out using silica gel (200-300 mesh). ¹H NMR, ¹⁹F NMR, ³¹P NMR and ¹³C NMR spectra were recorded on a Bruker Avance III 400MHz spectrometer (400, 376, 162 and 100 MHz respectively). High-resolution mass spectra (HRMS) were obtained with Thermo Q Exactive mass spectrometer. Optical rotations were measured on a Perkin-Elmer 341 polarimeter. Enantiomeric excesses (ee values) of the products were determined by chiral HPLC analysis using an Aglient HP 1200 instrument (n-hexane/2-propanol as eluent) with a Chiral IA-3, IB-, IC-3, IE-3, OD-H or OJ-H column.

Experimental Section

(1) Preparation of ligands

General procedure A for the synthesis of L6-L11

The preparation method of M1 can referred to references [1, 2]

Under the protection of N_2 , to a mixture of **M1** (1.5 mmol, 1 equiv) and K_2CO_3 (5 equiv) in anhydrous acetone (15 mL/mmol), methyl bromoacetate (5-8 equiv) was added. The mixture was refluxed for 12-24 h. After completion of the reaction (monitored by TLC), the system was cooled to room temperature, the mixture was filtered and concentrated to give the crude product **M2**.

The crude ester **M2** (1 equiv) was dissolved in dry toluene (15 mL/mmol), then triethylamine (11-15 equiv) was added to the solution under N₂. The system was cooled to 0 $^{\circ}$ C, then trichlorosilane (4 equiv) was added via syringe. The reaction was heated and refluxed overnight until the reaction was complete (monitored by TLC). Upon cooling to room temperature, the reaction was diluted with toluene and a solution of saturated aqueous NaHCO₃ was then added, and the mixture was stirred for 20 min. The resulting suspension was filtered through a pad of celite and washed with toluene. The combined filtrate was dried over Na₂SO₄. The solvent was

then removed by rotary evaporation under vacuum to obtain the crude solid product of **M3** as a white foam, which was passed through a short pad of silica gel for purification using petroleum ether/ethyl acetate as an eluent if needed.

Under N₂, the above intermediate **M3** (1 equiv) was added to a tube with LiOH (2 equiv) and a mixture of THF/H₂O (1:1, 10 mL/mmol). The reaction was stirred at room temperature overnight. To the resulting solution aqueous HCl was added and the mixture was acidified (pH = 2), followed by quick extraction with ethyl acetate. The combined organic phase was dried over Na₂SO₄. The concentrated residue was then purified by flash column chromatography over silica gel to get the desired chiral ligand.

(*R*)-2-(6,6'-(2*S*,3*S*-butadioxyl)-2'-(diphenylphosphaneyl)-[1,1'-biphenyl]-2-yl) oxy) acetic acid (L6)

L6 was obtained according to the General procedure A, as a white solid (76% yield over three steps).

¹H NMR (400 MHz, CDCl₃) δ 11.38 (brs, 1H), 7.41-7.29 (m, 6H), 7.24-7.14 (m, 5H), 7.07-7.03 (m, 2H), 6.80-6.77 (m, 1H), 6.58-6.55 (m, 2H), 4.67 (d, *J* = 16.7 Hz, 1H), 4.61 (d, *J* = 16.7 Hz, 1H), 3.87-3.73 (m, 2H), 1.36 (d, *J* = 6.3 Hz, 3H), 1.31 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.50, 160.65, 159.41, 159.33, 153.27, 137.06, 134.77, 134.31, 134.12, 133.36, 133.17, 130.35, 129.53, 129.51, 129.33, 128.81, 128.77, 128.70, 128.09, 128.01, 122.97, 119.43, 116.06, 106.35, 99.98, 86.70, 85.90, 65.59, 18.99, 18.92 (observed complexity due to P-C splitting). [α]_D²⁵ = -76.2 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 118-119 °C. ³¹P NMR (162 MHz, CDCl₃) δ -5.85. ESI-HRMS calcd. for C₃₀H₂₇O₅P [M+H]⁺ = 499.1669; found 499.1662. IR (neat): v (cm⁻¹) 2230, 1705, 1448, 1322, 1248, 1018, 843, 738, 694, 615.

(*R*)-2-(6,6'-(2*S*,3*S*-butadioxyl)-2'-(bis(3,5-dimethylphenyl)phosphaneyl)-[1,1'-biphenyl]-2-yl) oxy)acetic acid (L7)

L7 was obtained according to the General procedure A, as a white solid (68% yield over three steps).

¹H NMR (400 MHz, CDCl₃) δ 11.89 (brs, 1H), 7.32-7.28 (m, 1H), 7.18-7.10 (m, 2H), 7.06-7.00 (m, 3H), 6.80 (s, 1H), 6.70 (t, J = 6.4 Hz, 1H), 6.63 (s, 1H), 6.61 (s, 1H), 6.53 (d, J = 8.4 Hz, 1H), 6.48 (d, J = 8.1 Hz, 1H), 4.72 (d, J = 16.8 Hz, 1H), 4.67 (d, J = 16.8 Hz, 1H), 3.87-3.71 (m, 2H), 2.31 (s, 6H), 2.15 (s, 6H), 1.37 (d, J = 6.3 Hz, 3H), 1.32 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 170.84, 160.50, 159.28, 153.01, 138.28, 138.20, 137.62, 137.28, 137.19, 133.93, 133.21, 132.41, 132.22, 131.52, 131.46, 131.30, 130.96, 130.78, 130.52, 130.07, 129.44, 129.41, 128.31, 122.52, 119.48, 115.83, 106.11, 86.80, 85.59, 65.59, 21.30, 20.99, 19.09, 19.00 (observed complexity due to P-C splitting). ³¹P NMR (162 MHz, CDCl₃) δ -4.36. [α]_D²⁵ = -125.3 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 125-127 °C. ESI-HRMS calcd. for C₃₄H₃₅O₅P [M+H]⁺ = 555.2295; found 555.2286. IR (neat): v (cm⁻¹) 2976, 1685, 1449, 1325, 1271, 1049, 879, 737, 695, 618.

(*R*)-2-(6,6'-(2*S*,3*S*-butadioxyl)-2'-(bis(4-methoxyphenyl)phosphaneyl)-[1,1'-biphenyl]-2-yl)ox y)acetic acid (L8)

L8 was obtained according to the General procedure A, as a white solid (73% yield over three steps).

¹H NMR (400 MHz, CDCl₃) δ 11.79 (brs, 1H), 7.32-7.26 (m, 4H), 7.18-7.14 (m, 2H), 6.97-6.92 (m, 4H), 6.77-6.74 (m, 1H), 6.69-6.66 (m, 1H), 6.56-6.52 (m, 2H), 4.70 (d, J = 16.7 Hz, 1H), 4.66 (d, J = 16.7 Hz, 1H), 3.89-3.70 (m, 8H), 1.35 (d, J = 6.3 Hz, 3H), 1.30 (d, J = 6.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.72, 160.72, 160.56, 160.16, 159.36, 159.28, 153.16, 138.09, 135.88, 135.68, 134.79, 134.59, 131.49, 131.27, 130.24, 129.37, 129.34, 128.32, 125.60, 122.64, 119.50, 116.00, 114.50, 114.42, 113.81, 113.72, 106.17, 86.64, 85.83, 65.61, 55.22, 55.10, 18.99, 18.94 (observed complexity due to P-C splitting). ³¹P NMR (162 MHz, CDCl₃) δ -8.68. [α]_D²⁵ = -114.4 (c = 1.0 mg/mL in CHCl₃). Melting point: 115-117 °C. ESI-HRMS calcd. for C₃₂H₃₁O₇P [M+H]⁺ = 559.1880; found 559.1871. IR (neat): v (cm⁻¹) 2932, 1760, 1593, 1497, 1440, 1242, 1176, 1044, 1027, 940, 825, 793, 725, 616

(*R*)-2-(6,6'-(2*S*,3*S*-butadioxyl)-2'-(bis(3,5-di-tert-butylphenyl)phosphaneyl)-[1,1'-biphenyl]-2 -yl)oxy)acetic acid (L9)

L9 was obtained according to the General procedure A, as a white solid (62% yield over three steps).

¹H NMR (400 MHz, CDCl₃) δ 11.93 (brs, 1H), 7.45 (s, 1H), 7.31-7.24 (m, 4H), 7.16-7.09 (m, 2H),

6.83 (d, J = 9.9 Hz, 2H), 6.77-6.73 (m, 1H), 6.57 (d, J = 8.4 Hz, 1H), 6.40 (d, J = 8.1 Hz, 1H), 4.78 (d, J = 16.8 Hz, 1H), 4.72 (d, J = 16.8 Hz, 1H), 3.83-3.64 (m, 2H), 1.34 (d, J = 6.2 Hz, 3H), 1.28 (s, 18 H), 1.24 (d, J = 6.3 Hz, 3H), 1.18 (s, 18 H). ¹³C NMR (101 MHz, CDCl₃) δ 170.94, 160.55, 159.37, 159.29, 153.27, 150.89, 150.81, 149.92, 149.84, 138.97, 133.38, 132.68, 131.18, 130.97, 130.16, 129.19, 129.15, 128.64, 128.45, 128.09, 127.73, 127.53, 123.44, 123.30, 122.27, 119.70, 119.66, 115.85, 106.04, 86.81, 86.02, 65.76, 34.93, 34.65, 31.36, 31.23, 19.03, 18.96 (observed complexity due to P-C splitting). ³¹P NMR (162 MHz, CDCl₃) δ -2.76. [α]_D²⁵ = -78.1 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 169-171 °C. ESI-HRMS calcd. for C₄₆H₅₉O₅P [M+H]⁺ = 723.4173; found 723.4163. IR (neat): v (cm⁻¹) 2963, 1765, 1582, 1442, 1361, 1248, 1046, 873, 773, 709.

(*R*)-2-(6,6'-(2*S*,3*S*-butadioxyl)-2'-(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphaneyl)-[1,1'biphenyl]-2-yl)oxy)acetic acid (L10)

L10 was obtained according to the General procedure A, as a white solid (67% yield over three steps).

¹H NMR (400 MHz, CDCl₃) δ 12.03 (brs, 1H), 7.32-7.29 (m, 1H), 7.31 (t, J = 7.9 Hz, 1H), 7.25 (s, 1H), 7.23 (s, 1H), 7.15-7.11 (m, 2H), 6.86 (s, 1H), 6.83 (s, 1H), 6.75 (t, J = 6.3 Hz, 1H), 6.58 (d, J = 8.4 Hz, 1H), 6.41 (d, J = 8.1 Hz, 1H), 4.78 (d, J = 16.8 Hz, 1H), 4.72 (d, J = 16.8 Hz, 1H), 3.79-3.60 (m, 8H), 1.37 (s, 18H), 1.32 (d, J = 6.2 Hz, 3H), 1.26 (s, 18H), 1.23 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.96, 160.74, 160.59, 160.54, 159.43, 159.35, 153.33, 143.96, 143.89, 142.94, 142.85, 139.46, 132.90, 132.70, 132.43, 132.22, 130.83, 130.62, 130.18, 129.14, 129.10, 127.52, 127.39, 122.20, 119.68, 115.84, 106.10, 86.76, 86.07, 65.75, 64.28, 64.25, 35.89, 35.59, 32.01, 31.74, 19.09, 18.95 (observed complexity due to P-C splitting). ³¹P NMR (162 MHz, CDCl₃) δ -5.09. [α]_D²⁵ = -71.3 (c = 1.0 mg/mL in CHCl₃). Melting point: 220-223 °C. ESI-HRMS calcd. for C₄₈H₆₃O₇P [M+H]⁺ = 783.4384; found 783.4374. IR (neat): v (cm⁻¹) 2957, 1766, 1445, 1314, 1221, 1112, 1007,939, 790, 784, 609.

(*R*)-2-(6,6'-(2*S*,3*S*-butadioxyl)-2'-(bis(4-methylphenyl)phosphaneyl)-[1,1'-biphenyl]-2-yl)oxy) acetic acid (L11)

L11 was obtained according to the General procedure A, as a white solid (72% yield over three

steps).

¹H NMR (400 MHz, CDCl₃) δ 7.33-7.17 (m, 7H), 6.98-6.92 (m, 4H), 6.83-6.80 (m, 1H), 6.58-6.56 (m, 2H), 4.67 (d, *J* = 16.8 Hz, 1H), 4.64 (d, *J* = 16.8 Hz, 1H), 3.87-3.74 (m, 2H), 2.40 (s, 3H), 2.28 (s, 3H), 1.37 (d, *J* = 6.3Hz, 3H), 1.32 (d, *J* = 6.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.74, 160.65, 159.39, 159.30, 153.21, 134.26, 134.07, 133.21, 133.03, 130.40, 129.67, 129.59, 129.53, 129.49, 128.99, 128.90, 123.16, 115.98, 106.29, 86.70, 85.90, 65.59, 21.40, 21.31, 19.00, 18.94 (observed complexity due to P-C splitting). ³¹P NMR (162 MHz, CDCl₃) δ -7.36. [α]_D²⁵ = 102.5 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 120-123 °C. ESI-HRMS calcd. for C₃₂H₃₁O₅P [M+H]⁺ = 527.1982; found 527.1973. IR (neat): v (cm⁻¹) 2948, 1691, 1454, 1254, 774, 713, 651.

(2) Synthesis of substrates

General procedure B: nucleophilic substitution reaction [2]

N-aryl-carbamate derivative (3 mmol, 1 equiv) was dissolved in dry DMF, then NaH (1.3-1.5 equiv) was added to the solution and the mixture was stirred at room temperature for 20 min. Bromodiarylmethane (1.5 equiv) was added to the mixture, then the system was heated to 60° C and stirred for 4-8 h. The reaction mixture was poured into ice-cooled 1N HCl and extracted with ethyl acetate. The combined organic phase was washed with water, brine and dried over Na₂SO₄. The concentrated residue was then purified by flash column chromatography over silica gel to get the desired product.

General procedure C: Mitsunobu reaction^[3]

$$R^{1} \xrightarrow{\mathsf{NHCO}_{2}\mathsf{Me}} \mathsf{OH} \xrightarrow{\mathsf{OH}} \mathsf{PPh}_{3}, \mathsf{DIAD} \xrightarrow{\mathsf{NHCO}_{2}\mathsf{Me}} \mathsf{Ar} \xrightarrow{\mathsf{Ar}} \mathsf{Ar}$$

To a solution of benzhydryl alcohol (3 mmol, 1 equiv) in anhydrous THF (10 mL), *N*-aryl-carbamate derivative (3 mmol, 1 equiv) and triphenylphosphine (2 equiv) were added at 0° C under N₂ atmosphere. Then diisopropylazodicarboxylate (DIAD) (2 equiv) was added within 5 min, the orange-red color of DIAD disappeared immediately with slight heat release. The mixture was stirred at room temperature overnight in N₂ atmosphere. The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography over silica gel to get the desired product.

Methyl benzhydryl(2-bromo-5-methoxyphenyl) carbamate (1c)

1c

1c was obtained according to the General procedure B, as a white solid (89% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.29 (m, 6H), 7.20-7.10 (m, 5H), 6.75-6.73 (m, 2H), 6.61 (dd, J = 8.8, 2.9 Hz, 1H), 3.76 (s, 3H), 3.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.71, 155.97, 140.78, 139.73, 137.19, 133.02, 130.85, 128.50, 128.30, 127.78, 127.76, 127.12, 126.55, 116.71, 116.42, 114.47, 66.73, 55.37, 53.37. Melting point: 132.1-135.3 °C. ESI-HRMS calcd. for C₂₂H₂₀BrNO₃ [M+Na]⁺ = 448.0519; found 448.0519. IR (neat): v (cm⁻¹) 2955, 1693, 1441,1309,1030,722,702.

methyl benzhydryl(2-bromo-5-fluorophenyl) carbamate (1d)

1d was obtained according to the General procedure B, as a white solid (84% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.40-7.33 (m, 6H), 7.18-7.11 (m, 5H), 7.02-6.99 (m, 1H), 6.80-6.75 (m, 2H), 3.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.25 (d, J = 246.7 Hz), 155.66, 140.45, 140.41 (d, J = 10.0 Hz), 137.03, 133.54 (d, J = 8.7 Hz), 130.95, 128.48, 127.99, 127.87, 127.49, 127.29, 120.87 (d, J = 3.8 Hz), 118.16 (d, J = 23.1 Hz), 115.88 (d, J = 22.0 Hz), 66.85, 53.47. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.48. Melting point: 112.3-114.3 °C. ESI-HRMS calcd. for C₂₁H₁₇BrFNO₂ [M+Na]⁺ = 436.0319; found 436.0318. IR (neat): v (cm⁻¹) 2975, 1711, 1438, 1318, 1064, 817, 716, 700.

Methyl benzhydryl(2-bromo-4-methoxyphenyl) carbamate (1f)

1f

1f was obtained according to the General procedure B, as a white solid (89% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.42-7.36 (m, 4H), 7.32-7.29 (m, 1H), 7.22-7.07 (m, 6H), 6.94 (d, *J* = 2.8 Hz, 1H), 6.73 (brs, 1H), 6.67 (dd, *J* = 8.8 Hz, 2.9 Hz, 1H), 3.75 (s, 3H), 3.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.79, 156.37, 141.00, 137.34, 131.88, 131.05, 130.72, 128.25, 127.72, 127.69, 127.00, 126.68, 118.08, 113.10, 66.83, 55.54, 53.33. Melting point: 107.5-109.3 °C. ESI-HRMS calcd. for C₂₂H₂₀BrNO₃ [M+Na]⁺ = 448.0519; found 448.0518. IR (neat): v (cm⁻¹) 2960, 1704, 1436,1285, 1030, 743, 699.

Methyl benzhydryl(2-bromo-3-methylphenyl) carbamate (1j)

1 j was obtained according to the General procedure B, as a white solid (82% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.43-7.36 (m, 4H), 7.32-7.29 (m, 1H), 7.17-7.01 (m, 8H), 6.71 (s, 1H), 3.74 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.13, 141.10, 139.39, 139.32, 137.30, 130.99, 129.57, 128.84, 128.23, 127.86, 127.68, 127.66, 127.51, 126.98, 126.63, 66.98, 53.29, 23.81. Melting point: 144.3-146.7 °C. ESI-HRMS calcd. for C₂₂H₂₀BrNO₂ [M+Na]⁺ = 432.0570; found 432.0569. IR (neat): v (cm⁻¹) 2977, 1698, 1437, 1317, 775, 700.

Methyl benzhydryl(2-bromo-3-methoxyphenyl) carbamate (1k)

1k was obtained according to the General procedure B, as a white solid (90% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.43-7.36 (m, 4H), 7.32-7.28 (m, 1H), 7.17-7.09 (m, 6H), 6.89 (dd, J = 8.0, 1.1 Hz, 1H), 6.74-6.71 (m, 2H), 3.81 (s, 3H), 3.73 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.61, 155.98, 140.99, 140.65, 137.32, 130.85, 128.22, 127.72, 127.65, 127.60, 127.35, 126.98, 122.66, 116.10, 110.80, 66.97, 56.46, 53.30. Melting point: 125.8-127.3 °C. ESI-HRMS calcd. for C₂₂H₂₀BrNO₃ [M+Na]⁺ = 448.0519; found 448.0517. IR (neat): v (cm⁻¹) 2978, 1695, 1438, 1315,1261, 1023, 770, 726, 701.

Methyl benzhydryl(6-bromobenzo[d][1,3]dioxol-5-yl)carbamate (1m)

1m was obtained according to the General procedure B, as a white solid (77% yield).

¹H NMR (400 MHz, CDCl₃) δ 7,40-7.36 (m, 4H), 7.32-7.28 (m, 1H), 7.22-7.16 (m, 3H), 7.13-7.11 (m, 2H), 6.83 (s, 1H), 6.72 (s, 1H), 6.70 (s, 1H), 5.95-5.94 (m, 2H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.20, 147.24, 146.91, 140.81, 137.14, 132.38, 131.04, 128.32, 127.82, 127.73, 127.55, 127.08, 117.54, 112.27, 110.65, 102.14, 66.76, 53.41. Melting point: 131.4-133.0 °C. ESI-HRMS calcd. for C₂₂H₁₈BrNO₄ [M+Na]⁺ = 462.0311; found 462.0306. IR (neat): v (cm⁻¹) 2924, 1714, 1477, 1317, 1204, 1028, 772, 747, 701.

Methyl (2-bromophenyl)(di(thiophen-2-yl)methyl)carbamate (1u)

1u was obtained according to the General procedure C, as a pale yellow solid (53% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.52-7.50 (m, 1H), 7.33-7.32 (m, 1H), 7.28-7.21 (m, 3H), 7.18-7.13 (m, 2H), 7.05-7.04 (m, 1H), 7.00-6.98 (m, 1H), 6.89-6.82 (m, 2H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.28, 144.97, 138.76, 133.06, 130.42, 129.30, 128.73, 127.76, 127.15, 126.92,

126.64, 126.16, 125.61, 57.22, 53.48. Melting point: 115.2-116.9 °C. ESI-HRMS calcd. for $C_{17}H_{14}BrNO_2S_2$ [M+Na]⁺ = 429.9542; found 429.9538. IR (neat): v (cm⁻¹) 2977, 1697, 1439, 1220, 1050, 772, 749.

Methyl benzhydryl(5-bromoquinoxalin-6-yl)carbamate (1v)

1v was obtained according to the General procedure B, as a white solid (88% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 1.8 Hz, 1H), 8.83 (d, J = 1.8 Hz, 1H), 7.91 (d, J = 8.9 Hz, 1H), 7.67 (d, J = 8.9 Hz, 1H), 7,49-7.33 (m, 5H), 7.16-7.15 (m, 2H), 7.06-7.04 (m, 3H), 6.82 (s, 1H), 3.74 (s, 3H). 13C NMR (101 MHz, CDCl₃) δ 155.56, 145.52, 145.50, 142.38, 141.63, 141.00, 140.42, 137.22, 131.92, 130.58, 128.46, 128.39, 127.98, 127.85, 127.53, 127.29, 99.96, 67.20, 53.49. Melting point: 178.2-180.3 °C. ESI-HRMS calcd. for C₂₃H₁₈BrN₃O₂ [M+Na]⁺ = 470.0475; found 470.0471. IR (neat): v (cm⁻¹) 2953, 1702, 1435, 1307, 1079, 959, 883, 717, 704. **Methyl benzhydryl(3-bromopyridin-4-yl)carbamate (1x)**

1x was obtained according to the General procedure B, as a white solid (88% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.31 (d, J = 5.2 Hz, 1H), 7.28-7.27 (m, 10H), 7.12 (d, J = 5.2 Hz, 1H), 6.80 (s, 1H), 3.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.92, 152.78, 148.70, 146.98, 128.28, 127.83, 124.94, 124.07, 66.64, 53.58. Melting point: 112.8-114.5 °C.ESI-HRMS calcd. for C₂₀H₁₇BrN₂O₂ [M+H]⁺ = 397.0546; found 397.0543. IR (neat): v (cm⁻¹) 2976, 1727, 1574, 1435, 1320, 1112, 771, 627.

Methyl benzhydryl(4-bromopyridin-3-yl)carbamate (1y)

1y was obtained according to the General procedure B, as a white solid (84% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.15 (d, J = 5.1 Hz, 1H), 7.41-7.32 (m, 6H), 7.19-7.07 (m, 5H), 6.78 (s, 1H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.61, 150.94, 148.62, 140.19, 136.94, 136.59, 136.41, 130.90, 128.48, 128.06, 128.02, 127.90, 127.42, 127.35, 66.95, 53.53. Melting point:122.4-124.1 °C. ESI-HRMS calcd. for r C₂₀H₁₇BrN₂O₂ [M+H]⁺ = 397.0546; found 397.0544. IR (neat): v (cm⁻¹) 2955, 1701, 1439, 1309, 1006, 732, 700, 659.

Methyl benzhydryl(3-bromopyridin-2-yl)carbamate (1z)

1z was obtained according to the General procedure B, as a white solid (85% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, J = 4.6, 1.6 Hz, 1H), 7.77-7.68 (m, 3H), 7.42-7.19 (m, 8H), 6.93 (dd, J = 7.9, 4.6 Hz, 1H), 6.70 (s, 1H), 3.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.88, 151.78, 146.93, 141.50, 128.50, 127.81, 127.19, 126.54, 123.43, 122.56, 67.11, 53.24. Melting point: 149.8-152.1 °C. ESI-HRMS calcd. for C₂₀H₁₇BrN₂O₂ [M+H]⁺ = 397.0546; found 397.0544. IR (neat): v (cm⁻¹) 2955, 1712, 1434, 1329, 1086, 1020, 699, 626.

Methyl benzhydryl(3-bromo-5-methylpyridin-2-yl)carbamate (1aa)

1aa was obtained according to the General procedure B, as a white solid (76% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.51 (s, 1H), 7.42-7.10 (m, 10H), 6.66 (s, 1H), 3.70 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.07, 149.26, 147.24, 143.84, 141.84, 133.72, 130.68, 128.49, 127.95, 127.56, 126.54, 121.86, 67.11, 53.19, 17.48. Melting point: 165.7-167.4 °C. ESI-HRMS calcd. for C₂₁H₁₉BrN₂O₂ [M+H]⁺ = 411.0703; found 411.0696. IR (neat): v (cm⁻¹) 2952, 1719, 1437 1315, 1084, 758, 704.

Methyl benzhydryl(2,4-dibromophenyl)carbamate (3a)

3a was obtained according to the General procedure B, as a white solid (80% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.39-7.32 (m, 5H), 7.17-7.15 (m, 4H), 7.08-7.06 (m, 3H), 6.74 (s, 1H), 3.74 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.71, 140.48, 138.43, 136.94, 135.47, 131.49, 130.86, 130.62, 128.36, 127.99, 127.90, 127.60, 127.20, 127.15, 121.36, 99.98, 66.72, 53.42. Melting point: 119.6-121.3 °C. ESI-HRMS calcd. for C₂₁H₁₇Br₂NO₂ [M+Na]⁺ = 495.9518; found 495.9508. IR (neat): v (cm⁻¹) 2977, 1706, 1470, 1302, 1219, 772, 740. **Methyl benzhydryl(2,5-dibromophenyl)carbamate (30)**

30 was obtained according to the General procedure B, as a white solid (78% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.41-7.34 (m, 6H), 7.27-7.31 (m, 7H), 6.73 (brs, 1H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.59, 140.52, 137.09, 133.94, 133.80, 131.66, 130.91, 128.48, 127.99, 127.87, 127.46, 127.29, 125.17, 120.33, 67.00, 53.48. Melting point: 122.9-124.3 °C. ESI-HRMS calcd. for C₂₁H₁₇Br₂NO₂ [M+Na]⁺ = 495.9518; found 495.9512. IR (neat): v (cm⁻¹) 2976, 1715, 1438, 1320, 1219, 913, 772, 743, 699.

Methyl benzhydryl(2,6-dibromopyridin-3-yl)carbamate (3p)

3p was obtained according to the General procedure B, as a white solid (82% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.42-7.24 (m, 7H), 7.22-7.18 (m, 3H), 7.09-7.07 (m, 2H), 6.77 (s, 1H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.21, 144.92, 139.96, 137.89, 136.63, 136.53, 130.69, 128.58, 128.41, 128.28, 127.47, 127.41, 126.75, 66.62, 53.63. Melting point: 183.1-184.9 °C. ESI-HRMS calcd. for C₂₀H₁₆Br₂N₂O₂ [M+Na]⁺ = 496.9471; found 496.9544. IR (neat): v (cm⁻¹) 2976, 1708, 1427, 1325, 1089, 771, 743, 700.

Methyl benzhydryl(3,5-dibromopyridin-2-yl)carbamate (3q)

3q was obtained according to the General procedure B, as a white solid (83% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.81 (s, 1H), 7.58-7.19 (m, 10H), 6.66 (s, 1H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.60, 150.70, 147.83, 143.36, 127.90, 127.37, 122.79, 118.47, 67.12, 53.30. Melting point: 162.3-165.4 °C. ESI-HRMS calcd. for C₂₀H₁₆Br₂N₂O₂ [M+Na]⁺ = 496.9471; found 496.9461. IR (neat): v (cm⁻¹) 2976, 1708, 1504, 1219, 1029, 772. **Methyl benzhydryl(3,5-dibromo-6-methylpyridin-2-yl)carbamate (3r)**

3r was obtained according to the General procedure B, as a white solid (79% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.65-7.18 (m, 10H), 6.65 (s, 1H), 3.68 (s, 3H), 2.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.97, 154.65, 149.67, 143.90, 127.79, 127.27, 118.94, 118.85, 67.12, 53.23, 24.01. Melting point: 134.7-136.1 °C. ESI-HRMS calcd. for C₂₁H₁₈Br₂N₂O₂ [M+Na]⁺ = 510.9627; found 510.9621. IR (neat): v (cm⁻¹) 2956, 1721, 1424, 1311, 1043, 770, 751, 699.

Methyl benzhydryl(3,5-dibromo-4-methylpyridin-2-yl)carbamate (3s)

3s was obtained according to the General procedure B, as a white solid (75% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.82(s, 1H), 7.82-7.58 (m, 2H), 7.46-7.35 (m, 2H), 7.34-7.07 (m, 5H), 6.61 (s, 1H), 3.67 (s, 3H), 2.42 (s, 3H). Melting point: 169.3-172.0 °C. ESI-HRMS calcd. for C₂₁H₁₈Br₂N₂O₂ [M+Na]⁺ = 510.9627; found 510.9617. IR (neat): v (cm⁻¹) 2977, 1717, 1433, 1324, 1094, 769, 750, 701.

Methyl (di-p-tolylmethyl)(2,4-dibromophenyl)carbamate (3t)

3t was obtained according to the General procedure C, as a white solid (54% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.23-7.14 (m, 5H), 7.03 (d, J = 8.4 Hz, 1H), 6.95-6.91 (m, 4H), 6.62 (s, 1H), 3.71 (s, 3H), 2.35 (s, 3H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.68, 138.64, 137.74, 137.57, 136.71, 135.45, 134.18, 131.49, 130.66, 130.57, 129.02, 128.58, 127.54, 127.16, 121.24, 66.34, 53.33, 21.11, 21.05. Melting point: 117.8-119.3 °C. ESI-HRMS calcd. for C₂₃H₂₁Br₂NO₂ [M+Na]⁺ = 523.9831; found 523.9824. IR (neat): v (cm⁻¹) 2976, 1718, 1439, 1315, 1219, 1011, 771, 745.

Methyl (bis(4-methoxyphenyl)methyl)(2,4-dibromophenyl)carbamate (3u)

3u was obtained according to the General procedure C, as a white solid (56% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 2.2 Hz, 1H), 7.29-7.25 (m, 3H), 7.03-6.90 (m, 5H), 6.71-6.66 (m, 3H), 3.84 (s, 3H), 3.77 (s, 3H), 3.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.10, 158.63, 155.70, 138.44, 135.50, 132.80, 131.92, 131.39, 130.62, 129.28, 128.78, 127.25, 121.34,

113.70, 113.22, 65.57, 55.28, 55.16, 53.36. Melting point: 131.0-133.3 °C. ESI-HRMS calcd. for $C_{23}H_{21}Br_2NO_4 \ [M+Na]^+ = 555.9730$; found 555.9725. IR (neat): v (cm⁻¹) 2951, 1711, 1509, 1469, 1296, 1246, 775, 752.

Methyl (bis(4-fluorophenyl)methyl)(2,4-dibromophenyl)carbamate (3v)

3v was obtained according to the General procedure C, as a white solid (52% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 2.2 Hz, 1H), 7.34-7.28 (m, 3H), 7.10-6.99 (m, 5H), 6.90-6.86 (m, 2H), 6.67 (s, 1H), 3.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.36 (d, J = 246.4 Hz), 161.99 (d, J = 245.0 Hz), 155.63, 138.13, 136.03 (d, J = 2.3 Hz), 135.71, 132.70 (d, J = 3.2 Hz), 132.37 (d, J = 8.2 Hz), 131.32, 130.83, 129.21 (d, J = 7.9 Hz), 127.06, 121.74, 115.34 (d, J = 21.3 Hz), 115.01 (d, J = 21.4 Hz), 65.40, 53.52. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.28, -115.24. Melting point: 127.6-129.3 °C. ESI-HRMS calcd. for C₂₁H₁₅Br₂F₂NO₂ [M+Na]⁺ = 531.9330; found 531.9323. IR (neat): v (cm⁻¹)2976, 2951, 1717, 1506, 1470, 1439, 1316, 1219, 7723, 746. **Methyl (di-o-tolylmethyl)(2,4-dibromophenyl)carbamate (3w)**

3w was obtained according to the General procedure C, as a white solid (45% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.53-7.46 (m, 1H), 7.28-7.03 (m, 8H), 6.88 (brs, 1H), 6.73 (brs, 1H), 3.75 (s, 3H), 2.58 (s, 3H), 2.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.57, 138.27, 135.67, 131.41, 130.91, 130.47, 130.06, 127.70, 126.57, 126.43, 125.92, 125.29, 120.52, 61.52, 53.45, 20.18, 19.83. Melting point: 135.7-137.8 °C. ESI-HRMS calcd. for C₂₃H₂₁Br₂NO₂ [M+Na]⁺ = 523.9831; found 523.9822. IR (neat): v (cm⁻¹) 2947, 1714, 1436, 1307, 1058, 775, 743.

Methyl (bis(2-fluorophenyl)methyl)(2,4-dibromophenyl)carbamate (3x)

3x was obtained according to the General procedure C, as a white solid (46% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.63-7.60 (m, 3H), 7.34-7.12 (m, 6H), 7.05-6.91 (m, 4H), 3.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.46 (d, J = 247.9 Hz), 160.19 (d, J = 245.4 Hz), 155.34, 138.85, 135.56, 131.68, 131.53, 130.71, 129.93 (d, J = 8.4 Hz), 129.31 (d, J = 8.0 Hz), 128.91, 127.17 (d, J = 11.7 Hz), 126.64, 124.44 (d, J = 12.4 Hz), 123.84 (d, J = 2.8 Hz), 123.47 (d, J = 2.8

Hz), 121.52, 115.74 (d, J = 20.7 Hz), 115.53 (d, J = 21.6 Hz), 55.92, 53.44. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.54, -115.08. Melting point: 115.0-117.8 °C. ESI-HRMS calcd. for C₂₁H₁₅Br₂F₂NO₂ [M+Na]⁺ = 531.9330; found 531.9329. IR (neat): v (cm⁻¹) 2954, 1701, 1472, 1310, 1222, 1062, 771, 757.

Methyl (bis(3,5-dimethylphenyl)methyl)(2,4-dibromophenyl)carbamate (3y)

3y was obtained according to the General procedure C, as a white solid (53% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.28-7.25 (m, 1H), 7.10-7.08 (m, 1H), 6.98-6.95 (m, 3H), 6.82 (s, 1H), 6.65-6.63 (m, 3H), 3.76 (s, 3H), 2.34 (s, 6H), 2.17 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.72, 140.53, 138.62, 137.75, 137.08, 136.75, 135.25, 131.54, 130.32, 129.36, 128.83, 128.76, 127.18, 125.37, 121.07, 66.69, 53.36, 21.50, 21.12. Melting point: 123.1-125.5 °C. ESI-HRMS calcd. for C₂₅H₂₅Br₂NO₂ [M+Na]⁺ = 552.0150; found 552.0143. IR (neat): v (cm⁻¹) 2924, 1702, 1437, 1219, 1051, 771, 743.

Methyl (di(thiophen-2-yl)methyl)(2,4-dibromophenyl)carbamate (3z)

3z was obtained according to the General procedure C, as a white solid (59% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 2.2 Hz, 1H), 7.36-7.24 (m, 4H), 7.05 -7.04(m, 1H), 7.00-6.95 (m, 2H), 6.91 (dd, J = 5.1, 3.6 Hz, 1H), 6.85-6.84 (m, 1H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.14, 144.55, 138.34, 137.17, 135.52, 131.41, 130.95, 128.82, 127.92, 127.35, 126.77, 126.34, 125.80, 122.17, 56.98, 53.58. Melting point: 117.0-119.6 °C. ESI-HRMS calcd. for C₁₇H₁₃Br₂NO₂S₂ [M+Na]⁺ = 507.8647; found 507.8640. IR (neat): v (cm⁻¹) 2976, 1706, 1471, 1306, 1005, 771, 715.

Methyl benzhydryl(2-bromo-4-iodophenyl)carbamate (3aa)

3aa was obtained according to the General procedure B, as a white solid (71% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.46-7.32 (m, 6H), 7.22-7.06 (m, 5H), 6.91 (d, J = 8.3 Hz, 1H), 6.73 (s, 1H), 3.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.68, 141.14, 140.50, 139.20, 136.99, 136.67, 131.86, 130.85, 128.37, 128.00, 127.93, 127.66, 127.33, 127.22, 92.66, 66.77, 53.43. Melting point: 120.1-123.3 °C. ESI-HRMS calcd. for C₂₁H₁₇BrINO₂ [M+Na]⁺ = 543.9380;

found 543.9373. IR (neat): v (cm⁻¹) 2977, 1709, 1435, 1300, 1055, 1005, 772, 738, 690. Methyl benzhydryl(4-bromo-2-iodophenyl)carbamate (3ab)

3ab was obtained according to the General procedure B, as a white solid (78% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.39-7.28 (m, 6H), 7.23-7.16 (m, 3H), 7.09-7.02 (m, 3H), 6.79 (s, 1H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.46, 141.60, 141.56, 140.52, 136.61, 131.46, 131.25, 130.71, 128.37, 128.05, 127.91, 127.67, 127.21, 121.34, 104.63, 66.60, 53.45. Melting point: 129.9-132.1 °C. ESI-HRMS calcd. for C₂₁H₁₇BrINO₂ [M+Na]⁺ = 543.9380; found 543.9377. IR (neat): v (cm⁻¹) 2949, 1716, 1437, 1321, 1051, 773, 732, 703.

Methyl (2-bromophenyl)(phenyl(p-tolyl)methyl)carbamate (5)

5 was obtained according to the General procedure C, as a viscous oil (45% yield). Two isomers (1:1) were observed by NMR.

¹H NMR (400 MHz, CDCl₃) δ 7.42-7.36 (m, 3H), 7.31-7.07 (m, 7H), 7.05-7.00 (m, 1H), 6.98-6.92 (m, 2H), 6.71 (s, 1H), 3.75 (s, 3H), 2.32 (d, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.01, 141.17, 139.25, 139.20, 137.84, 137.44, 137.39, 136.66, 134.28, 133.03, 133.02, 130.92, 130.84, 130.56, 129.00, 128.65, 128.38, 128.25, 127.69, 127.66, 127.60, 127.58, 127.44, 126.97, 126.25, 66.70, 66.62, 53.34, 21.13, 21.10. ESI-HRMS calcd. for C₂₂H₂₀BrNO₂ [M+Na]⁺ = 432.0570; found 432.0561. IR (neat): v (cm⁻¹) 2952, 1699, 1439, 1317, 1012, 740, 621.

Methyl (2-bromophenyl)((4-fluorophenyl)(phenyl)methyl)carbamate (6)

6 was obtained according to the General procedure C, as a viscous oil (43% yield). Two isomers (5:4) were observed by NMR.

¹H NMR (400 MHz, CDCl₃) δ 7.45-7.32 (m, 5H), 7.26-7.03 (m, 7H), 6.85-6.66 (m, 2H), 3.76 (d, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.45, 163.14, 161.00, 160.70, 156.06, 155.99, 140.74, 139.23, 138.85, 137.20, 136.64, 133.21, 133.18, 133.11, 132.81, 132.73, 130.72, 130.58, 130.46, 129.47, 129.39, 128.93, 128.88, 128.63, 128.45, 127.94, 127.88, 127.75, 127.60, 127.49, 127.24, 126.33, 126.14, 115.28, 115.06, 114.75, 114.53, 66.56, 65.92, 53.48, 53.45. The assignment of all peaks in ¹³C NMR is difficult due to complexity of the spectrum (the rotamers and C-F coupling)

and they are listed as singlets. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.02, -115.82. ESI-HRMS calcd. for C₂₁H₁₇BrFNO₂ [M+Na] ⁺ = 436.0319; found 436.0323. IR (neat): v (cm⁻¹) 2951, 1702, 1440, 1316, 1013, 773, 727, 698.

Ethyl (2-bromophenyl) ((4-methoxyphenyl) (phenyl) methyl) carbamate (7)

7 was obtained according to the General procedure C, as a viscous oil (48% yield). Two isomers (7:5) were observed by NMR.

¹H NMR (400 MHz, CDCl₃) δ 7.43-7.31 (m, 5H), 7.26-7.10 (m, 4H), 7.05-6.91 (m, 3H), 6.73-6.64 (m, 2H), 4.32-4.13 (m, 2H), 3.80 (d, 3H), 1.20 (t, *J* = 6 Hz. 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.95, 158.59, 155.57, 155.52, 133.03, 132.26, 130.75, 130.56, 129.58, 129.04, 128.63, 128.27, 127.72, 127.66, 127.50, 127.45, 127.41, 126.91, 126.35, 126.25, 113.62, 112.99, 66.39, 66.06, 62.17, 55.32, 55.15, 14.63. ESI-HRMS calcd. for C₂₃H₂₂BrNO₃ [M+Na] ⁺ = 462.0675; found 462.0679. IR (neat): v (cm⁻¹) 2836, 1711, 1511, 1322, 1247, 1029, 774, 732.

(3) Optimization Studies

N _{CO2} Me Br		Pd₂dba₃ (2.5 mol %) L6 (10 mol %) Base, Solvent, T, 48 h		MeO ₂ C N N 2a	
Entry	Temp. (°C)	Solvent	Base	Yield (%) [b]	ee (%) ^[c]
1	120	DME	Cs_2CO_3	93	86.0
2	100	DME	Cs_2CO_3	93	86.8
3	80	DME	Cs_2CO_3	92	92.2
4	60	DME	Cs_2CO_3	79	93.8
5	80	toluene	Cs_2CO_3	93	92.0
6	80	DMF	Cs_2CO_3	90	87.0
7	80	DME	Na ₂ CO ₃	42	92.2
8	80	DME	K_2CO_3	80	66.0
9	80	DME	K_3PO_4	29	69.0

[a] Reaction conditions: 1a (0.1 mmol), Pd₂dba₃ (2.5 mol%), L6 (10 mol%), base (1.5 equiv), 0.05 M in solvent, 48
h. [b] Yield of isolated product. [c] ee values were determined by HPLC analysis using a chiral stationary phase.

				MeO ₂ C	
Br CC	D₂Me HO∖	₃ _OH [Pd] (5	5 mol%), L8 (10 mo	I%)	
N.	Ph +	Base	toluono T 19 h	Ph	
Br	Ph ∥	Dase,	toluelle, 1, 40 li		
3a	3	b			4a
Entry	Temp. (°C)	Base	Pd	Yield (%) ^[b]	ee (%) ^[c]
1	120	Cs_2CO_3	Pd ₂ dba ₃	39	65.4
2	100	Cs_2CO_3	Pd_2dba_3	58	89.4
3	80	Cs_2CO_3	Pd ₂ dba ₃	63	94.2
4	60	Cs_2CO_3	Pd_2dba_3	77	97.0
5	50	Cs_2CO_3	Pd_2dba_3	52	97.5
6	40	Cs_2CO_3	Pd ₂ dba ₃	trace	~
7	60	K_3PO_4	Pd_2dba_3	N.D.	~
8	60	K_2CO_3	Pd_2dba_3	N.D.	~
9	60	CSF	Pd ₂ dba ₃	23	94.0
10	60	NaOMe	Pd_2dba_3	14	96.0
11	60	Cs_2CO_3	Pd (OAc) ₂	62	91.6
12	60	Cs_2CO_3	Pd (PPh ₃) ₄	59	70.8

[a] Reaction conditions: **3a** (0.1 mmol), **3b** (1.1 equiv), Pd (5 mol%), **L8**(10 mol%), base (1.5 equiv), 0.05 M in toluene, 48 h. [b] Yield of isolated product. [c] ee values were determined by HPLC analysis using a chiral stationary phase.

(4) Catalytic asymmetric reaction

General procedure D: the asymmetric C-H arylation

An oven-dried sealing tube was charged with 1a (0.1 mmol, 1 equiv), pd₂dba₃ (0.025 equiv), chiral ligand (0.1 equiv) and cesium carbonate (1.5 equiv) in glovebox, then dry and degassed DME (2 mL) was added into the tube. The reaction was performed at 80 °C for 48 h. After the required time, the reaction was cooled to room temperature and diluted with ethyl acetate. Followed by filtration through a pad of celite and washed with ethyl acetate, the combined filtrate was evaporated under reduced pressure. The concentrated residue was then purified by flash column chromatography over silica gel to get the desired enantio-enriched dihydrophenanthridine **2a**.

General procedure E: the preparation of racemic phenanthridine products

An oven-dried sealed tube was charged with **1a** (0.2 mmol, 1 equiv), pd_2dba_3 (0.025 equiv), s-phos (0.1 equiv), pivallic acid (0.3 equiv) and cesium carbonate (1.5 equiv) in glove box, then dry and degassed toluene (3 mL) was added into the tube. The reaction was performed at 140 °C for 24 h. After the required time, the reaction was cooled to room temperature and diluted with ethyl acetate. Followed by filtration through a pad of celite and washed with ethyl acetate, the filtrate was evaporated under reduced pressure. The concentrated residue was then purified by flash column chromatography over silica gel to get the desired racemic dihydrophenanthridine **2a**. General procedure F: the Suzuki coupling and asymmetric C-H arylation cascade

An oven-dried sealed tube was charged with **3a** (0.1 mmol, 1.0 equiv), **3b** (1.1 equiv), pd_2dba_3 (0.025 equiv), chiral ligand (0.1 equiv) and cesium carbonate (3 equiv) in glove box, then dry and degassed toluene (2 mL) or DMF (2 mL) was added into the tube. The reaction was performed at 60°C for 48 h. After the required time, the reaction was cooled to room temperature and diluted with ethyl acetate. Followed by filtration through a pad of celite and washed with ethyl acetate, the filtrate was evaporated under reduced pressure (when solvent was DMF, the filtrate was washed with water and dried over Na₂SO₄). The concentrated residue was then purified by flash column chromatography over silica gel to get the desired enantioenriched dihydrophenanthridine **4a**.

General procedure G: the preparation of racemic cascade products

An oven-dried sealed tube was charged with **3a** (0.2 mmol, 1.0 equiv), **3b** (1.1 equiv), pd_2dba_3 (0.025 equiv), s-phos (0.1 equiv), pivallic acid (0.3 equiv) and cesium carbonate (3.0 equiv) in glove box, then dry and degassed toluene (4 mL) was added into the tube. The reaction was performed at 140°C for 24 h. After the required time, the reaction was cooled to room temperature and diluted with ethyl acetate. Followed by filtration through a pad of celite and washed with ethyl acetate, the filtrate was evaporated under reduced pressure. The concentrated residue was then purified by flash column chromatography over silica gel to get the desired

dihydrophenanthridine **4a**. General procedure H: the preparation of substrate **3ac**

An oven-dried sealed tube was charged with 3a (0.2 mmol, 1.0 equiv), 3c (1.1 equiv), pd_2dba_3 (0.025 equiv), s-phos (0.1 equiv) and cesium carbonate (1.5 equiv) in glove box, then dry and degassed toluene (4 mL) was added into the tube. The reaction was performed at 40 for 12 h. After the required time, the reaction was cooled to room temperature and diluted with ethyl acetate. Followed by filtration through a pad of celite and washed with ethyl acetate, the filtrate was evaporated under reduced pressure. The concentrated residue was then purified by flash column chromatography over silica gel to get the desired substrate **3ac**.

Methyl (R)-6-phenylphenanthridine-5(6H)-carboxylate (2a)^[2]

2a was obtained according to the General procedure D, as a viscous oil (99% yield, 96% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.8 Hz, 1H), 7.70 (d, *J* = 7.9 Hz, 1H), 7.43-7.39 (m, 1H), 7.35-7.32 (m, 2H), 7.22-7.01 (m, 8H), 6.72 (brs, 1H), 3.81 (s, 3H).

Methyl (R)-3-methyl-6-phenylphenanthridine-5(6H)-carboxylate (2b)^[2]

2b was obtained according to the General procedure D, as a viscous oil (99% yield, 94% ee; 83% yield, 97% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.47-7.43 (m, 1H), 7.38-7/35 (m, 2H), 7.09-7.07 (m, 5H), 6.98 (d, J = 8.0 Hz, 1H), 6.76 (brs, 1H), 3.87 (s, 3H),

2.33 (m, 3H).

Methyl (R)-3-methoxy-6-phenylphenanthridine-5(6H)-carboxylate (2c)

2c was obtained according to the General procedure D, as a white solid (99% yield, 94% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8 Hz, 1H), 7.68 (d, J = 8 Hz, 1H), 7.45 (t, J = 8 Hz, 1H), 7.37-7.32 (m, 2H), 7.20-7.09 (m, 6H), 6.78-6.75 (m, 2H), 3.89 (s, 3H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.36, 154.82, 139.92, 136.02, 134.40, 131.39, 128.37, 128.20, 127.59, 127.32, 127.22, 126.87, 124.49, 123.10, 121.35, 111.37, 58.71, 55.36, 53.32. [α]p²⁵ = -197.2 (c = 1.0 mg/mL in CHCl₃). Melting point: 140.1-143.0 °C. ESI-HRMS calcd. for C₂₂H₁₉NO₃ [M+Na]⁺ = 368.1257; found 368.1252. IR (neat): v (cm⁻¹) 2925, 2852, 1709, 1437, 1221, 1048, 769, 747.

Methyl (R)-3-fluoro-6-phenylphenanthridine-5(6H)-carboxylate (2d)

2d was obtained according to the General procedure D, as a white solid (99% yield, 94% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.8 Hz, 1H), 7.72 (dd, *J* = 8.3, 6.1 Hz, 1H), 7.50-7.38 (m, 4H), 7.21-7.17 (m, 3H), 7.08-7.06 (m, 2H), 6.93-6.88 (m, 1H), 6.79 (s, 1H), 3,90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.12 (d, *J* = 246.7 Hz) 154.69, 139.48, 134.73, 130.71, 128.54, 128.27, 127.70, 127.50, 127.17, 124.91, 124.82, 123.54, 113.00 (d, *J* = 26.2Hz), 112.42(d, *J* = 22.0 Hz), 58.56, 53.52. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.87. [α]_D²⁵ = -200.0 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 123.4-124.9 °C. ESI-HRMS calcd. for C₂₁H₁₆FNO₂ [M+Na]⁺ = 356.1057; found 356.1053. IR (neat): v (cm⁻¹) 2924, 1713, 1437, 1319, 1075, 770, 750.

2e was obtained according to the General procedure D, as a white solid (99% yield, 92% ee; 89% yield, 98% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.8 Hz, 1H), 7.55 (s, 1H), 7.47-7.37 (m, 4H), 7.16-7.03 (m, 6H), 6.78 (brs, 1H), 3.85 (s, 3H), 2.35 (s, 3H).

Methyl (R)-2-methoxy-6-phenylphenanthridine-5(6H)-carboxylate (2f)

2f was obtained according to the General procedure D, as a white solid (99% yield, 93% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8 Hz, 1H), 7.50-7.27 (m, 5H), 7.20-7.08(m, 5H), 6.83-6.81 (m, 2H), 3.85 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.88, 139.72, 135.79, 131.32, 129.26, 128.37, 128.16, 127.93, 127.77, 127.30, 123.88, 113.77, 108.48, 58.50, 55.44, 53.26. $[\alpha]_D^{25} = -177.7$ (c = 1.0 mg/mL in CHCl₃). Melting point: 124.2-125.5 °C. ESI-HRMS calcd. for C₂₂H₁₉NO₃ [M+Na]⁺ = 368.1257; found 368.1250.

Methyl (R)-2-fluoro-6-phenylphenanthridine-5(6H)-carboxylate (2g)^[2]

2g was obtained according to the General procedure D, as a white solid (99% yield, 94% ee; 92% yield, 97% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.80-7.78 (m, 1H), 7.50-7.38 (m, 5H), 7.17-7.15 (m, 3H), 7.06-7.04 (m, 2H), 6.95-6.79 (m, 2H), 3.86 (s, 3H).

Methyl (R)-2-chloro-6-phenylphenanthridine-5(6H)-carboxylate (2h)^[2]

2h was obtained according to the General procedure D, as a white solid (99% yield, 95% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.6 Hz, 1H), 7.72 (d, *J* = 2.4 Hz, 1H), 7.50-7.38 (m, 4H), 7.20-7.13 (m, 4H), 7.09-7.04 (m, 2H), 6.78 (brs, 1H), 3.87 (s, 3H).

Dimethyl (R)-6-phenylphenanthridine-2,5(6H)-dicarboxylate (2i)^[2]

2i was obtained according to the General procedure D, as a white solid (99% yield, 96% ee; 83% yield, 99% ee).

¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 2.0 Hz, 1H), 7.97-7.88 (m, 2H), 7.62 (s, 1H), 7.49 (td, J = 7.4 Hz, 1.1 Hz, 1H), 7.43-7.37 (m, 2H), 7.16-7.12 (m, 3H), 7.05-7.03 (m, 2H), 6.79 (s, 1H), 3.92 (s, 3H), 3.89 (s, 3H).

Methyl (R)-1-methyl-6-phenylphenanthridine-5(6H)-carboxylate (2j)

2 j was obtained according to the General procedure D, as a white solid (99% yield, 82% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8 Hz, 1H), 7.49-7.39 (m, 4H), 7.18-7.10 (m, 6H), 7.02 (d, J = 8 Hz, 1H), 6.74 (brs, 1H), 3.86 (s, 3H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.15, 138.99, 137.75, 136.04, 134.55, 131.69, 128.70, 128.36, 128.18, 128.02, 127.54, 127.28, 127.16, 127.03, 124.10, 58.85, 53.26, 22.98. [α]_D²⁵ = -78.5 (c = 1.0 mg/mL in CHCl₃). Melting point: 155.9-157.6 °C. ESI-HRMS calcd. for C₂₂H₁₉NO₂ [M+Na]⁺ = 352.1308; found 352.1302. IR (neat): v (cm⁻¹) 2921, 1699, 1440, 1321, 1079, 769, 746, 734, 687.

Methyl (R)-1-methoxy-6-phenylphenanthridine-5(6H)-carboxylate (2k)

2k was obtained according to the General procedure D, as a white solid (99% yield, 96% ee).

¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 8 Hz, 1H), 7.47-7.35 (m, 3H), 7.19-7.11 (m, 7H), 6.75-6.73 (m, 2H), 3.89 (s, 3H), 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.73, 139.25, 136.63, 136.16, 129.69, 128.57, 128.03, 127.82, 127.56, 127.26, 127.22, 127.14, 127.07, 118.90, 117.97, 108.01, 58.69, 55.62, 53.27. [α]_D²⁵ = -129.6 (c = 1.0 mg/mL in CHCl₃). Melting point: 145.0-146.8 °C. ESI-HRMS calcd. for C₂₂H₁₉NO₃ [M+Na]⁺ = 368.1257; found 368.1252. IR (neat): v (cm⁻¹) 2925, 1692, 1435, 1252, 1132, 773, 745.

Methyl (R)-2,4-dimethyl-6-phenylphenanthridine-5(6H)-carboxylate (21)^[2]

21 was obtained according to the General procedure D, as a white solid (99% yield, 92% ee; 86% yield, 97% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.6 Hz, 1H), 7.49-7.42 (m, 1H), 7.40-7.36 (m, 3H), 7.16-7.11 (m, 3H), 7.04-7.00 (m, 2H), 6.87 (s, 1H), 6.78 (brs, 1H), 3.74 (s, 3H), 2.31 (s, 3H), 2.13 (s, 3H).

Methyl (R)-5-phenyl-[1,3]dioxolo[4,5-b]phenanthridine-6(5H)-carboxylate (2m)

2m was obtained according to the General procedure D, as a viscous oil (97% yield, 94% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.8 Hz, 1H), 7.47-7.43 (m, 1H), 7.37-7.33 (m, 2H), 7.21-7.16 (m, 4H), 7.09-7.07 (m, 2H), 6.89-6.79 (m, 1H), 5.97-5.93 (m, 2H), 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.12, 147.18, 145.43, 139.58, 131.56, 128.42, 128.16, 127.58, 127.34, 127.25, 127.15, 123.34, 122.36, 107.22, 103.04, 101.38, 58.45, 53.37. [α]_D²⁵ = -151.8 (c = 1.0 mg/mL in CHCl₃). ESI-HRMS calcd. for C₂₂H₁₇NO₄ [M+Na]⁺ = 382.1050; found 382.1044. IR (neat): v (cm⁻¹) 2926, 1702, 1494, 1329, 1218, 935, 771, 747.

Methyl (R)-9-methyl-6-(p-tolyl)phenanthridine-5(6H)-carboxylate (2n)^[2]

2n was obtained according to the General procedure D, as a viscous oil (99% yield, 94% ee; 84% yield, 97% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.8 Hz, 1H), 7.64 (s, 1H), 7.23-7.09 (m, 5H), 6.94-6.89 (m, 4H), 6.68 (brs, 1H), 3.81 (s, 3H), 2.43 (s, 3H), 2.17 (s, 3H).

Methyl (R)-9-methoxy-6-(4-methoxyphenyl)phenanthridine-5(6H)-carboxylate (2o)^[2]

2o was obtained according to the General procedure D, as a white solid (98% yield, 95% ee; 85% yield, 97% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.7 Hz, 1H), 7.54-7.41 (m, 1H), 7.34 (d, *J* = 2.5 Hz, 1H), 7.21-7.13 (m, 3H), 6.94-6.91 (m, 2H), 6.90-6.88 (m, 1H), 6.64-6.61 (m, 3H), 3.88 (s, 3H), 3.82 (s, 3H), 3.65 (s, 3H).

Methyl (R)-9-fluoro-6-(4-fluorophenyl)phenanthridine-5(6H)-carboxylate (2p)^[2]

2p was obtained according to the General procedure D, as a white solid (99% yield, 97% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.8 Hz, 1H), 7.54-7.45 (m, 2H), 7.32-7.23 (m 2H), 7.17 (t, *J* = 7.6 Hz, 1H), 7.06 (td, *J* = 8.3, 1.7 Hz, 1H), 7.00-6.97 (m, 2H), 6.80 (t, *J* = 8.5 Hz, 1H), 6.73 (brs, 1H), 3.85 (s, 3H).

Methyl (R)-7-methyl-6-(o-tolyl)phenanthridine-5(6H)-carboxylate (2q)^[2]

2q was obtained according to the General procedure D, as a white solid (85% yield, 93% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.79-7.74 (m, 2H), 7.36 (t, *J* = 7.7 Hz, 1H), 7.23-7.14 (m, 5H), 7.08 (s, 1H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.72 (t, *J* = 7.5 Hz, 1H), 6.30 (d, *J* = 7.8 Hz, 1H), 3.76 (s, 3H), 2.67 (s, 3H), 2.25 (s, 3H).

Methyl (R)-7-fluoro-6-(2-fluorophenyl)phenanthridine-5(6H)-carboxylate (2r)^[2]

2r was obtained according to the General procedure D, as a white solid (96% yield, 88% ee; 83% yield, 97% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.49-7.41 (m, 3H), 7.28-7.20 (m, 2H), 7.17-6.99 (m, 3H), 6.75 (t, J = 7.5 Hz, 1H), 6.50 (t, J = 7.6 Hz, 1H), 3.85 (s, 3H).

Methyl (R)-6-(3,5-dimethylphenyl)-8,10-dimethylphenanthridine-5(6H)-carboxylate (2s)^[2]

2s was obtained according to the General procedure D, as a white solid (99% yield, 92% ee; 86% yield, 98% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.8 Hz, 1H), 7.35 (s, 1H), 7.18-7.04 (m, 4H), 6.74-6.47 (m, 4H), 3.84 (s, 3H), 2.67 (s, 3H), 2.39 (s, 3H), 2.15 (s, 3H) .¹³C NMR (101 MHz, CDCl₃) δ 154.95, 139.32, 138.64, 137.52, 137.00, 135.87, 134.89, 132.63, 129.49, 129.05, 128.37, 127.59, 127.02, 126.41, 125.34, 124.39, 59.45, 53.25, 23.00, 21.34, 21.11.

Methyl (R)-6-(3,5-dimethoxyphenyl)-8,10-dimethoxyphenanthridine-5(6H)-carboxylate (2t)

2t was obtained according to the General procedure D, as a viscous oil (99% yield, 91% ee). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.8 Hz, 1H), 7.34 (s, 1H), 7.15-7.10 (m, 2H), 6.58-6.55

(m, 3H), 6.27 (s, 2H), 6.23 (s, 1H), 3.93 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.65 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 160.46, 159.91, 158.40, 141.60, 139.39, 134.26, 127.56, 127.10, 126.29, 124.61, 113.63, 105.87, 104.17, 99.09, 98.93, 59.20, 55.63, 55.43, 55.17, 53.18. [α]_D²⁵ = -137.1 (*c* = 1.0 mg/mL in CHCl₃). ESI-HRMS calcd. for C₂₂H₁₇NO₄ [M+Na]⁺ = 458.1574; found 458.1582. IR (neat): v (cm⁻¹) 2924, 1689, 1596, 1460, 1322, 1149, 1025, 770, 747.

Methyl (R)-4-(thiophen-2-yl)thieno[2,3-c]quinoline-5(4H)-carboxylate (2u)

2u was obtained according to the General procedure D (50 $^{\circ}$ C), as a viscous oil (88% yield, 92% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.60-7.58 (m, 2H), 7.42-7.35 (m, 2H), 7.26-7.12 (m, 4H), 6.82-6.79 (dd, J = 4.8, 3.6 Hz, 1H), 6.73-6.72 (m, 1H), 3.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.65, 143.22, 133.57, 132.48, 127.02, 126.50, 125.88, 125.64, 125.54, 125.20, 125.06, 123.28, 122.54, 53.52, 51.77. [α]_D²⁵ = -197.2 (c = 1.0 mg/mL in CHCl₃). ESI-HRMS calcd. for C₁₇H₁₃NO₂S₂ [M+Na]⁺ = 350.0280; found 350.0273. IR (neat): v (cm⁻¹) 2924, 1701, 1376, 1220, 1031, 913, 772, 719.

Methyl (*R*)-8-phenylpyrazino[2,3-a]phenanthridine-7(8H)-carboxylate (2v)

2v was obtained according to the General procedure D (60 $^{\circ}$ C), as a pale yellow solid (91% yield, 99% ee).

¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, J = 7.9 Hz, 1H), 8.90 (d, J = 1.6 Hz, 1H), 8.81 (d, J = 1.6 Hz, 1H), 8.02-7.94 (m, 2H), 7,62-7.56 (m, 1H), 7.53-7.49 (m, 2H), 7.15-7.06 (m, 5H), 6.83 (s, 1H), 3.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.66, 143.95, 143.66, 141.17, 140.51, 138.70, 136.85, 131.00, 129.51, 129.22, 128.61, 128.21, 128.13, 127.90, 127.41, 127.27, 127.18, 124.84, 58.77, 53.69. [α]_D²⁵ = -175.7 (c = 1.0 mg/mL in CHCl₃). Melting point: 189.0-190.3 °C. ESI-HRMS calcd. for C₂₃H₁₇N₃O₂ [M+H]⁺ = 368.1394; found 368.1387. IR (neat): v (cm⁻¹) 2957, 2926, 1693, 1318, 1243, 1028, 772, 742, 700.

Methyl (R)-6-phenylbenzo[c][1,5]naphthyridine-5(6H)-carboxylate (2w)^[2]

2w was obtained according to the General procedure D, as a white solid (96% yield, 96% ee). ¹H NMR (400 MHz, CDCl₃) δ 8.42-8.39 (m, 2H), 7.84 (s, 1H), 7.54-7.43 (m, 2H), 7.33 (d, *J* = 7.1 Hz, 1H), 7.17-7.14 (m, 4H), 7.06-7.03 (m, 2H), 6.79 (brs, 1H), 3.89 (s, 3H).^[2]

Methyl (R)-6-phenylbenzo[c][1,6]naphthyridine-5(6H)-carboxylate (2x)

MeO₂C

2x was obtained according to the General procedure D as a pale yellow solid (91% yield, 97% ee). ¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 8.43 (d, *J* = 4.9 Hz, 1H), 7.95 (d, *J* = 7.7 Hz, 1H), 7.59-7.58 (m, 1H), 7.54-7.38 (m, 3H), 7.19-7.17 (m, 3H), 7.06-7.04 (m, 2H), 6.78 (s, 1H), 3.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.23, 148.79, 145.22, 142.29, 139.32, 135.09, 128.80, 128.74, 128.45, 127.84, 127.80, 127.06, 123.26, 118.96, 58.65, 53.77. [α]_D²⁵ = -167.9 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 139.0-141.3 °C. ESI-HRMS calcd. for C₂₀H₁₆N₂O₂ [M+H]⁺ = 317.1285; found 317.1281. IR (neat): v (cm⁻¹) 2952, 2925, 1705, 1446, 1269, 1220, 773, 752. **Methyl (***R***)-6-phenylbenzo[c][1,7]naphthyridine-5(6H)-carboxylate (2y)**

2y was obtained according to the General procedure D as a pale yellow solid (91% yield, 97% ee). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.39 (d, *J* = 5.2 Hz, 1H), 7.94-7.92 (m, 1H), 7.64 (d, *J* = 5.2 Hz, 1H), 7.54-7.49 (m, 2H), 7.44-7.41 (m, 1H), 7.20-7.16 (m, 3H), 7.05-7.03 (m, 2H), 6.84 (s, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.61, 147.53, 145.50, 139.06, 136.47, 134.47, 131.10, 129.87, 128.78, 128.68, 128.37, 128.04, 127.71, 127.17, 124.31, 117.00, 58.19, 53.64. [α]_D²⁵ = -135.6 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 145.9-147.3 °C. ESI-HRMS calcd. for C₂₀H₁₆N₂O₂ [M+H]⁺ = 317.1285; found 317.1279. IR (neat): v (cm⁻¹) 2922, 1700, 1380, 1259, 1076, 770, 744, 695.

Methyl (R)-6-phenylbenzo[c][1,8]naphthyridine-5(6H)-carboxylate (2z)

2z was obtained according to the General procedure D as a pale yellow solid (99% yield, 95% ee). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (dd, J = 4.8, 1.8 Hz, 1H), 8.04 (dd, J = 7.8, 1.7 Hz, 1H), 7.83 (d, J = 7.2 Hz, 1H), 7.52-7.46 (m, 3H), 7.18-7.11 (m, 6H), 6.83 (s, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.96, 148.43, 147.98, 139.36, 135.68, 131.83, 129.96, 128.58, 128.52, 128.22, 127.87, 127.37, 127.10, 123.95, 123.32, 120.84, 59.26, 53.67. [α]_D²⁵ = -169.9 (c = 1.0mg/mL in CHCl₃). Melting point: 167.7-169.2 °C. ESI-HRMS calcd. for C₂₀H₁₆N₂O₂ [M+H]⁺ = 317.1285; found 317.1282. IR (neat): v (cm⁻¹) 2925, 1694, 1421, 1219, 913, 770, 756, 708.

Methyl (R)-2-methyl-6-phenylbenzo[c][1,8]naphthyridine-5(6H)-carboxylate (2aa)

2aa was obtained according to the General procedure D as a pale yellow solid (99% yield, 95% ee).

¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 1.6 Hz, 1H), 7.84-7.82 (m, 2H), 7.51-7.43 (m, 3H), 7.19-7.10 (m, 5H), 6.82 (s, 1H), 3.90 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.06,

148.32, 146.11, 139.45, 135.72, 132.36, 130.36, 130.05, 128.44, 128.19, 127.90, 127.31, 127.11, 123.91, 122.73, 59.24, 53.61, 18.08. $[\alpha]_D{}^{25} = -167.6$ (*c* = 1.0 mg/mL in CHCl₃). Melting point: 179.2-180.9 °C. ESI-HRMS calcd. for C₂₁H₁₈N₂O₂ [M+H]⁺ = 331.1441; found 331.1439. IR (neat): v (cm⁻¹) 2922, 1696, 1433, 1243, 1045, 773, 718.

(*R*)-6-phenyl-5-tosyl-5,6-dihydrophenanthridine (2ab)^[2]

2ab was obtained according to the General procedure D, as a white solid (88% yield, 95% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 7.5 Hz, 1H), 7,26 (d, *J* = 7.4 Hz, 1H), 7.20-7.10 (m, 4H), 7.08-7.02 (m, 6H), 6.92 (d, *J* = 8.1 Hz,2H), 6.65 (d, *J* = 8.0 Hz, 2H), 6.41 (s, 1H), 2.09 (s, 3H).

4a was obtained according to the General procedure F as a white solid (77% yield, 97% ee) ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.96 (m, 2H), 7.65-7.38 (m, 10H), 7.20-7.13 (m, 5H), 6.83 (brs, 1H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.13, 140.61, 139.77, 137.94, 135.53, 134.11, 131.28, 128.78, 128.45, 128.35, 128.24, 127.90, 127.77, 127.39, 127.29, 126.98, 126.80, 123.84, 122.22, 58.63, 53.39. [α]_D²⁵ = -171.9 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 120.0-124.0 °C. ESI-HRMS calcd. for C₂₇H₂₁NO₂ [M+Na]⁺ = 414.1465; found 414.1455. IR (neat): v (cm⁻¹) 2921, 1700, 1447, 1321, 1254, 769, 743, 698.

Methyl (R)-6-phenyl-2-(p-tolyl)phenanthridine-5(6H)-carboxylate (4b)

4b was obtained according to the General procedure F as a pale yellow solid (76% yield, 95% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.95 (m, 2H), 7.55-7.41 (m, 7H), 7.29-7.27 (m, 2H), 7.22-7.12 (m, 5H), 6.82 (brs, 1H), 3.91 (s, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.89, 139.79, 137.88, 137.72, 135.51, 131.34, 129.50, 128.43, 128.29, 128.23, 127.85, 127.77, 127.37, 127.26, 126.81, 126.62, 126.15, 123.83, 121.99, 58.61, 53.39, 21.12. [α]p²⁵ = -128.8 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 124.6-126.6 °C. ESI-HRMS calcd. for C₂₈H₂₃NO₂ [M+Na]⁺ = 428.1621; found 428.1610. IR (neat): v (cm⁻¹) 2912, 1709, 1491, 1219, 913, 772, 742.

Methyl (R)-2-(4-methoxyphenyl)-6-phenylphenanthridine-5(6H)-carboxylate (4c)

4c was obtained according to the General procedure F as a pale yellow solid (73% yield, 98% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.94 (m, 2H), 7.58-7.56 (m, 2H), 7.51-7.41 (m, 5H), 7.20-7.13 (m, 5H), 7.02-7.00 (m, 2H), 6.83 (brs, 1H), 3.91 (s, 3H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.17, 139.80, 137.59, 135.56, 133.17, 131.35, 130.95, 130.45, 128.43, 128.29, 128.23, 128.06, 128.01, 127.85, 127.77, 127.37, 127.26, 127.09, 126.42, 125.47, 123.83, 121.74, 114.30, 114.23, 58.60, 55.37, 53.38. $[\alpha]_D^{25} = -170.4$ (*c* = 1.0 mg/mL in CHCl₃). Melting point: 134.1-135.8 °C. ESI-HRMS calcd. for C₂₈H₂₃NO₃ [M+Na]⁺ = 444.1570; found 444.1560. IR (neat): v (cm⁻¹) 2954, 1693, 1490, 1244, 1244, 913, 820, 772, 747.

Methyl (R)-2-(4-chlorophenyl)-6-phenylphenanthridine-5(6H)-carboxylate (4d)

4d was obtained according to the General procedure F as a pale yellow solid (90% yield, 98% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.94 (m, 2H), 7.66-7.49 (m, 4H), 7.44-7.42 (m, 5H), 7.19-7.12 (m, 5H), 6.82 (brs, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.02, 139.71, 139.07, 136.66, 135.53, 134.43, 133.38, 131.09, 128.92, 128.48, 128.25, 128.21, 128.02, 127.81, 127.41, 127.22, 126.60, 126.30, 123.81, 122.02, 58.62, 53.42. [α]_D²⁵ = -113.5 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 128.6-129.7 °C. ESI-HRMS calcd. for C₂₇H₂₀ClNO₂ [M+Na]⁺ = 448.1075; found 448.1064. IR (neat): v (cm⁻¹) 2925, 1710, 1484, 1219, 1065, 913, 772, 746.

Methyl (R)-2-(4-fluorophenyl)-6-phenylphenanthridine-5(6H)-carboxylate (4e)

4e was obtained according to the General procedure F as a viscous oil (87% yield, 95% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.93 (m, 2H), 7.60-7.42 (m, 7H), 7.22-7.13 (m, 7H), 6.83 (brs, 1H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.45 (d, J = 244.9 Hz), 155.05, 139.73, 136.97, 136.75 (d, J = 3.1 Hz), 134.10, 131.15, 128.55 (d, J = 8.1 Hz), 128.35 (d, J = 11.8 Hz), 128.41, 128.25, 127.91 (d, J = 17.6 Hz), 127.41, 127.24 126.67, 126.24, 123.82, 122.06, 115.65 (d, J = 21.3 Hz), 58.60, 53.43. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.62. [α]_D²⁵ = -120.6 (c = 1.0 mg/mL in CHCl₃). ESI-HRMS calcd. for C₂₈H₂₃NO₃ [M+Na]⁺ = 444.1570; found 444.1560. ESI-HRMS calcd. for C₂₇H₂₀FNO₂ [M+Na]⁺ = 432.1370; found 432.1362. IR (neat): v (cm⁻¹) 2919, 1703, 1491, 1321, 1188, 964, 821, 771, 743, 696. Methyl (R)-6-phenyl-2-(4-(trifluoromethoxy)phenyl)phenanthridine-5(6H)-carboxylate (4f)

4f was obtained according to the General procedure F as a pale yellow solid (62% yield, 97% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.94 (m, 2H), 7.64-7.62 (m, 3H), 7.53-7.43 (m, 4H), 7.32-7.29 (m, 2H), 7.22-7.12 (m, 5H), 6.83 (brs, 1H), 3.92(s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.94, 148.65, 139.69, 139.39, 136.52, 135.54, 134.49, 131.06, 128.51, 128.32, 128.26, 128.07, 127.83, 127.44, 127.23, 126.73, 126.32, 123.82, 122.20, 121.25, 120.54 (q, *J* = 255.6 Hz), 58.60, 53.45. ¹⁹F NMR (376MHz, CDCl₃) δ -57.80. $[\alpha]_D^{25} = -133.4$ (*c* = 1.0 mg/mL in CHCl₃). Melting point: 132.0-135.0 °C. ESI-HRMS calcd. for C₂₈H₂₀F₃NO₃ [M+Na]⁺ = 498.1288; found 498.1276. IR (neat): v (cm⁻¹) 2924, 1711, 1491, 1219, 913, 771, 742.

Methyl (R)-2-(4-nitrophenyl)-6-phenylphenanthridine-5(6H)-carboxylate (4g)

4g was obtained according to the General procedure F as a white solid (55% yield, 96% ee). ¹H NMR (400 MHz, CDCl₃) δ 8.34-8.31 (m, 2H), 8.01 (d, J = 2.0 Hz, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.79-7.77 (m, 2H), 7.55-7.42 (m, 5H), 7.20-7.10 (m, 5H), 6.83 (brs, 1H), 3.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.38, 147.03, 139.57, 135.49, 135.30, 130.72, 128.75, 128.61, 128.31, 127.89, 127.59, 127.52, 127.20, 126.94, 126.53, 124.16, 123.82, 122.51, 58.60, 53.54. [α]_D²⁵ = -139.0 (c = 1.0 mg/mL in CHCl₃). Melting point: 124.0-126.7 °C. ESI-HRMS calcd. for C₂₇H₂₀N₂O₄ [M+Na]⁺ = 459.1315; found 459.1301. IR (neat): v (cm⁻¹) 2920, 1715, 1324, 1244, 1063, 818, 769, 742.

Methyl (R)-6-phenyl-2-(o-tolyl)phenanthridine-5(6H)-carboxylate (4h)

4h was obtained according to the General procedure F as a viscous oil (81% yield, 98% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 1.7 Hz, 1H), 7.49-7.42 (m, 4H), 7.31-7.29 (m, 3H), 7.25-7.15 (m, 7H), 6.85 (brs, 1H), 3.93 (s, 3H), 2.33 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 155.04, 143.34, 141.29, 139.83, 138.59, 135.43, 134.83, 131.31, 130.50, 130.38, 129.77, 128.98, 128.88, 128.41, 128.21, 127.82, 127.72, 127.36, 127.29, 125.79, 125.45, 124.34, 123.77, 58.61, 53.37, 20.54. [α]_D²⁵ = -124.3 (c = 1.0 mg/mL in CHCl₃). ESI-HRMS calcd. for C₂₈H₂₃NO₂ [M+Na]⁺ = 428.1621; found 428.1610. IR (neat): v (cm⁻¹) 2924, 1708, 1450, 1219, 913, 771, 743.

Methyl (R)-2-(2-methoxyphenyl)-6-phenylphenanthridine-5(6H)-carboxylate (4i)

4i was obtained according to the General procedure F as a white solid (50% yield, 94% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.92 (d, J = 7.7 Hz, 1H), 7.55-7.32 (m, 7H), 7,21-7,14 (m, 5H), 7.07-7.01 (m, 2H), 6.82 (brs, 1H), 3.90 (s, 3H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.55, 139.95, 135.19, 131.46, 130.77, 130.03, 129.26, 128.66, 128.33, 128.21, 127.74, 127.63, 127.30, 125.33, 124.62, 123.82, 120.90, 99.99, 58.61, 55.62, 53.30. [α]_D²⁵ = -123.6 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 126.0-128.7 °C.ESI-HRMS calcd. for C₂₈H₂₃NO₃ [M+Na]⁺ = 444.1570; found 444.1558. IR (neat): v (cm⁻¹) 2954, 1693, 1490, 1320, 1245, 820, 771, 747. **Methyl (***R***)-2-(2-chlorophenyl)-6-phenylphenanthridine-5(6H)-carboxylate (4j)**

4j was obtained according to the General procedure F as a viscous oil (47% yield, 96% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.88 (m, 2H), 7.52-7.45 (m, 3H), 7.41-7.30 (m, 6H), 7.20-7.13 (m, 5H), 6.83 (brs, 1H), 3.92 (s, 3H). 13C NMR (101 MHz, CDCl₃) δ 155.03, 139.88, 139.80, 135.92, 135.43, 134.22, 132.53, 131.35, 131.18, 130.05, 129.10, 128.77, 128.57, 128.43, 128.24, 127.89, 127.71, 127.39, 127.29, 126.97, 126.85, 124.77, 123.85, 58.63, 53.38. [α]_D²⁵ = -122.0 (*c* = 1.0 mg/mL in CHCl₃). ESI-HRMS calcd. for C₂₇H₂₀ClNO₂ [M+Na]⁺ = 448.1075; found 448.1063. IR (neat): v (cm⁻¹) 2923, 1701, 1320, 1219, 913, 771, 745.

Methyl (R)-6-phenyl-2-(m-tolyl)phenanthridine-5(6H)-carboxylate (4k)

4k was obtained according to the General procedure F as a white solid (65% yield, 96% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.99-7.97 (m, 2H), 7.54-7.35 (m, 8H), 7.22-7.14 (m, 6H), 6.84 (brs, 1H), 3.92 (s, 3H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.09, 143.33, 140.62, 139.81, 138.36, 138.09, 135.56, 134.04, 131.35, 130.50, 128.98, 128.70, 128.45, 128.31, 128.24, 128.06, 127.88, 127.78, 127.39, 127.27, 126.84, 126.15, 124.11, 123.86, 122.23, 58.66, 53.37, 21.55. [α]_D²⁵ = -145.9 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 123.0-125.0 °C. ESI-HRMS Calcd. For C₂₇H₂₀N₂O₄ [M+Na]⁺ = 459.1315; found 459.1301. ESI-HRMS calcd. for C₂₈H₂₃NO₂ [M+Na]⁺ = 428.1621; found 428.1610. IR (neat): v (cm⁻¹) 2921, 1702, 1219, 913, 772, 743.

Methyl (R)-2-(3-chlorophenyl)-6-phenylphenanthridine-5(6H)-carboxylate (41)

41 was obtained according to the General procedure F as a white solid (77% yield, 98% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.95 (m, 2H), 7.61 (t, *J* = 1.8 Hz, 1H), 7.56-7.33 (m, 8H), 7.21-7.11 (m, 5H), 6.83 (brs, 1H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.00, 142.46, 139.67, 136.47, 135.52, 134.69, 131.05, 130.02, 128.52, 128.27, 128.07, 127.80, 127.45, 127.28, 127.24, 127.12, 126.73, 126.29, 125.14, 123.87, 122.20, 58.60, 53.46. [α]_D²⁵ = -154.8 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 124.5-127.8 °C. ESI-HRMS calcd. for C₂₇H₂₀ClNO₂ [M+Na]⁺ = 448.1075; found 448.1063. IR (neat): v (cm⁻¹) 2953, 1701, 1448, 1321, 1269, 768, 699.

Methyl (R)-2-(benzo[d][1,3]dioxol-5-yl)-6-phenylphenanthridine-5(6H)-carboxylate (4m)

4m was obtained according to the General procedure F as a white solid (43% yield, 95% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.8 Hz, 1H), 7.90 (d, J = 2.0 Hz, 1H), 7.52-7.39 (m, 5H), 7.21-7.08 (m, 7H), 6.91-6.89 (m, 1H), 6.81 (brs, 1H), 6.03 (s, 2H), 3.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.13, 147.08, 139.75, 137.66, 135.49, 135.00, 133.77, 131.23, 128.44, 128.29, 128.22, 127.89, 127.78, 127.37, 127.24, 126.53, 123.81, 121.90, 120.48, 108.58, 107.52, 101.17, 58.58, 53.39. [α]_D²⁵ = -127.8 (c = 1.0 mg/mL in CHCl₃). Melting point: 126.0-128.4 °C. ESI-HRMS calcd. for C₂₈H₂₁NO₄ [M+Na]⁺ = 458.1363; found 458.1350. IR (neat): v (cm⁻¹) 2924, 1709, 1219, 913, 772, 743.

Methyl (R)-6-phenyl-2-(thiophen-2-yl)phenanthridine-5(6H)-carboxylate (4n)

4n was obtained according to the General procedure F as a viscous oil (50% yield, 92% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.94 (m, 2H), 7.51-7.41 (m, 5H), 7.33-7.30 (m, 2H), 7.18-7.10 (m, 6H), 6.80 (brs, 1H), 3.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.98, 143.89, 143.32, 139.67, 135.55, 131.28, 130.99, 130.48, 128.96, 128.47, 128.39, 128.24, 128.04, 128.01, 127.74, 127.42, 127.22, 126.28, 125.64, 125.46, 124.70, 123.83, 123.07, 121.01, 58.62, 53.38. $[\alpha]_D^{25} =$ -120.9 (*c* = 1.0 mg/mL in CHCl₃). ESI-HRMS calcd. for C₂₅H₁₉NO₂S [M+Na]⁺ = 420.1029; found 420.1021. IR (neat): v (cm⁻¹) 2919, 1710, 1472, 1318, 1219, 964, 773.

Methyl (R)-3,6-diphenylphenanthridine-5(6H)-carboxylate (40)

4o was obtained according to the General procedure F as a white solid (80% yield, 96% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.7 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.64-7.36 (m, 10H), 7.19-7.13 (m, 5H), 6.85 (brs, 1H), 3.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.99, 140.78, 140.36, 139.78, 135.34, 135.18, 131.13, 128.77, 128.47, 128.25, 127.78, 127.53, 127.38, 127.25, 127.13, 127.07, 124.60, 123.95, 123.87, 123.78, 58.63, 53.44. [α]_D²⁵ = -171.0 (c = 1.0mg/mL in CHCl₃). Melting point: 120.0-122.7 °C. ESI-HRMS calcd. for C₂₇H₂₁NO₂ [M+Na]⁺ = 414.1465; found 414.1453. IR (neat): v (cm⁻¹) 2923, 1709, 1439, 1219, 913, 771, 744, 696. **Methyl (***R***)-2,6-diphenylbenzo[c][1,5]naphthyridine-5(6H)-carboxylate (4p)**

4p was obtained according to the General procedure F as a white solid (95% yield, 97% ee).

¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 7.7 Hz, 1H), 8.17-8.15 (m, 2H), 7.95-7.37 (m, 8H), 7.20-7.14 (m, 5H), 6.85 (brs, 1H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.82, 152.71, 144.99, 139.91, 138.89, 135.99, 133.21, 131.65, 129.55, 128.82, 128.70, 128.53, 128.41, 127.68, 127.36, 127.07, 126.73, 125.33, 119.20, 58.46, 53.56. [α]_D²⁵ = -126.9 (c = 1.0 mg/mL in CHCl₃). Melting point: 145.0-148.0 °C. ESI-HRMS calcd. for C₂₆H₂₀N₂O₂ [M+H]⁺ = 393.1598; found 393.1587. IR (neat): v (cm⁻¹) 2922, 1715, 1442, 1219, 913, 772, 744, 699.

Methyl (R)-2,6-diphenylbenzo[c][1,8]naphthyridine-5(6H)-carboxylate (4q)

4q was obtained according to the General procedure F as a white solid (99% yield, 98% ee). ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 1.9 Hz, 1H), 8.24 (d, J = 2.3 Hz, 1H), 7.93 (d, J = 7.1 Hz, 1H), 7.63-7.61 (m, 2H), 7.54-7.48 (m, 5H), 7.44-7.40 (m, 1H), 7.22-7.15 (m, 5H), 6.87 (s, 1H), 3.95 (s, 3H). 13C NMR (101 MHz, CDCl₃) δ 154.94, 147.45, 146.27, 139.41, 137.31, 135.72, 133.96, 130.25, 129.87, 129.09, 128.74, 128.59, 128.31, 128.08, 127.98, 127.45, 127.13, 127.02, 124.00, 123.07, 59.41, 53.78. [α]_D²⁵ = -116.9 (c = 1.0 mg/mL in CHCl₃). Melting point: 183.8-185.4 °C. ESI-HRMS calcd. for C₂₆H₂₀N₂O₂ [M+H]⁺ = 393.1598; found 393.1588. IR (neat): v (cm⁻¹) 2923, 1701, 1432, 1220, 913, 771, 749, 696.

Methyl (R)-3-methyl-2,6-diphenylbenzo[c][1,8]naphthyridine-5(6H)-carboxylate (4r)

4r was obtained according to the General procedure F as a white solid (94% yield, 97% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.83-7.81 (m, 1H), 7.49-7.37 (m, 8H), 7.21-7.15 (m, 5H), 6.87 (s, 1H), 3.93 (s, 3H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.05, 154.56, 146.47, 139.63, 139.42, 135.22, 134.47, 133.10, 129.17, 128.44, 128.26, 127.95, 127.57, 127.37, 127.35, 123.66, 59.40, 53.63, 23.03. [α]_D²⁵ = -152.0 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 180.0-182.7 °C. ESI-HRMS calcd. for C₂₇H₂₂N₂O₂ [M+H]⁺ = 407.1754; found 407.1746. IR (neat): v (cm⁻¹) 2920, 1703, 1422, 1274, 1072, 772, 752, 698.

Methyl (R)-1-methyl-2,6-diphenylbenzo[c][1,8]naphthyridine-5(6H)-carboxylate (4s)

4s was obtained according to the General procedure F as a white solid (98% yield, 84% ee). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.89-7.87 (m, 1H), 7.56-7.38 (m, 6H), 7.34-7.32 (m, 2H), 7.21-7.14 (m, 5H), 6,78 (s, 1H), 3.92 (s, 3H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.98, 148.37, 147.29, 142.32, 138.86, 138.25, 138.16, 136.62, 130.48, 129.66, 128.82, 128.43, 128.18, 127.90, 127.85, 127.65, 127.39, 127.23, 127.14, 123.71, 59.45, 53.70, 20.81. $[\alpha]_D^{25} =$ -100.3 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 182.3-185.0 °C. ESI-HRMS calcd. for C₂₇H₂₂N₂O₂ [M+H]⁺ = 407.1754; found 407.1744. IR (neat): v (cm⁻¹)2920, 1730, 1430, 1254, 1082, 772, 747, 704.

Methyl (R)-9-methyl-2-phenyl-6-(p-tolyl)phenanthridine-5(6H)-carboxylate (4t)

4t was obtained according to the General procedure F as a white solid (92% yield, 97% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 2.0 Hz, 1H), 7.78 (s, 1H), 7.67-7.65 (m, 2H), 7.50-7.46 (m, 4H), 7.40-7.36 (m, 1H), 7.31-7.29 (m, 1H), 7.25-7.23 (m, 1H), 7.04-6.98 (m, 4H), 6.77 (s, 1H), 3.91 (s, 3H), 2.51 (s, 3H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.99, 140.71, 138.01, 137.82, 137.06, 136.98, 132.97, 131.03, 128.93, 128.77, 128.71, 128.49, 127.59, 127.25, 127.19, 127.01, 126.63, 126.17, 124.32, 122.15, 58.23, 53.33, 21.55, 21.00. [α]_D²⁵ = -146.9 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 181.0-183.7 °C. ESI-HRMS calcd. for C₂₉H₂₅NO₂ [M+Na]⁺ = 442.1778; found 442.1765. IR (neat): v (cm⁻¹) 2918, 1693, 1486, 1317, 1256, 1028, 755, 694. **Methyl (***R***)-9-methoxy-6-(4-methoxyphenyl)-2-phenylphenanthridine-5(6H)-carboxylate (4u)**

4u was obtained according to the General procedure F as a white solid (89% yield, 98% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.66-7.29 (m, 9H), 7.05-7.96 (m, 3H), 6.73-6.71 (m, 3H), 3.94-3.91 (m, 6H), 3.71 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.73, 158.76, 140.63, 137.88, 134.20, 132.36, 128.80, 128.62, 128.49, 128.36, 127.32, 127.02, 126.91, 126.25, 122.21, 113.60, 113.56, 109.07, 57.66, 55.56, 55.12, 53.35. [α]_D²⁵ = -156.8 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 182.0-185.0 °C. ESI-HRMS calcd. for C₂₉H₂₅NO₄ [M+Na]⁺ = 474.1676; found 474.1660. IR (neat): v (cm⁻¹) 2955, 2920, 1692, 1488, 1246, 1134, 1023, 771, 757, 692.

Methyl (R)-9-fluoro-6-(4-fluorophenyl)-2-phenylphenanthridine-5(6H)-carboxylate (4v)

4v was obtained according to the General procedure F as a white solid (66% yield, 96% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.67-7.62 (m, 4H), 7.53-7.46 (m, 3H), 7.41-7.35 (m, 2H), 7.15-7.05 (m, 3H), 6.90-6.85 (m, 2H), 6.80 (brs, 1H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.99 (d, J = 244.3 Hz), 162.09 (d, J = 245.0 Hz), 154.91, 140.23, 138.25, 135.36 (d, J = 3.1 Hz), 133.76, 133.32 (d, J = 8.1 Hz), 131.08, 129.20 (d, J = 8.2 Hz), 128.94 (d, J = 7.8 Hz), 128.86, 127.51, 127.41 (d, J = 1.5 Hz), 126.97, 126.24, 122.33, 115.19 (d, J = 21.3 Hz), 114.93 (d, J = 22.0 Hz), 110.73 (d, J = 22.9 Hz), 57.41, 53.54. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.92, -114.79. [α]_D²⁵ = -165.8 (c = 1.0 mg/mL in CHCl₃). Melting point: 131.0-133.4 °C. ESI-HRMS calcd. for C₂₇H₁₉F₂NO₂ [M+Na]⁺ = 450.1276; found 450.1263. IR (neat): v (cm⁻¹) 2957, 2919, 1684, 1489, 1443, 1325, 1313, 1258, 1225, 1181, 959, 764, 757, 695.

4w was obtained according to the General procedure F as a viscous oil (37% yield, 89% ee). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 1.9 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.68-7.65 (m, 2H), 7.50-7.36 (m, 7H), 7.25-7.18 (m, 2H), 7.07 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 7.5 Hz, 1H), 6.40 (s, 1H), 3.82 (s, 3H), 2.72 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.95, 140.73, 138.70, 137.43, 136.31, 135.41, 134.78, 133.92, 132.11, 130.79, 130.20, 129.98, 128.77, 128.57, 127.85, 127.75, 127.30, 127.04, 126.39, 125.50, 122.35, 121.50, 53.37, 53.31, 20.02, 18.81. $[\alpha]_D^{25}$ = -105.5 (*c* = 1.0 mg/mL in CHCl₃). ESI-HRMS calcd. for C₂₉H₂₅NO₂ [M+Na]⁺ = 442.1778; found 442.1766. IR (neat): v (cm⁻¹)2921, 1706, 1492, 1316, 1188, 1081, 964, 771, 745, 697. **Methyl (***R***)-7-fluoro-6-(2-fluorophenyl)-2-phenylphenanthridine-5(6H)-carboxylate (4x)**

4x was obtained according to the General procedure F as a white solid (86% yield, 91% ee). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 2.0 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.67-7.61 (m, 3H), 7.54-7.38 (m, 6H), 7.21-7.04 (m, 3H), 6.81 (td, J = 7.6, 0.9 Hz, 1H), 6.59 (td, J = 7.6, 1.2Hz, 1H), 3.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.82 (d, J = 192.7 Hz), 158.35 (d, J = 190.1Hz), 154.32, 140.40, 138.32, 134.14, 133.92 (d, J = 4.2 Hz), 129.82 (d, J = 8.2 Hz), 129.60 (d, J =8.3 Hz), 129.21 (d, J = 3.2 Hz), 128.86, 127.86 (d, J = 3.0 Hz), 127.47, 127.40, 127.00, 126.77, 125.35 (d, J = 13.7 Hz), 123.74 (d, J = 3.6 Hz), 122.81 (d, J = 16.4 Hz), 122.38, 119.25 (d, J = 3.2Hz), 115.82 (d, J = 21.8 Hz), 114.68 (d, J = 21.0 Hz), 53.50, 47.04. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.49, -118.83. [α]_D²⁵ = -123.0 (c = 1.0 mg/mL in CHCl₃). Melting point: 124.0-126.6 °C. ESI-HRMS calcd. for C₂₇H₁₉F₂NO₂ [M+Na]⁺ = 450.1276; found 450.1268. IR (neat): v (cm⁻¹) 2920, 1713, 1460, 1217, 1277, 1238, 755, 697.

Methyl(*R*)-6-(3,5-dimethylphenyl)-8,10-dimethyl-2-phenylphenanthridine-5(6H)-carboxylate (4y)

4y was obtained according to the General procedure F as a white solid (91% yield, 97% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.99-7.35 (m, 7H), 7.18 (s, 1H), 7.10 (s, 1H), 6.78-6.53 (m, 4H), 3.90 (s, 3H), 2.77 (s, 3H), 2.43 (s, 3H), 2.18 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.01, 140.94, 139.26, 138.50, 137.52, 137.13, 134.85, 132.68, 129.62, 129.05, 128.82, 128.26, 127.16, 126.95, 126.46, 126.23, 125.71, 125.29, 59.44, 53.27, 23.16, 21.30, 21.06. [α]_D²⁵ = -99.0 (*c* = 1.0 mg/mL in CHCl₃). Melting point: 171.8-174.0 °C. ESI-HRMS calcd. for C₃₁H₂₉NO₂ [M+Na]⁺ = 470.2091; found 470.2081. IR (neat): v (cm⁻¹) 2920, 1693, 1474, 1324, 1257, 1023, 771, 758, 747, 692.

Methyl (R)-8-phenyl-4-(thiophen-2-yl)thieno[2,3-c]quinoline-5(4H)-carboxylate (4z)

4z was obtained according to the General procedure F as a white solid (97% yield, 93% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 2.2 Hz, 1H), 7.66-7.64 (m, 3H), 7.50-7.46 (m, 4H), 7.40-7.36 (m, 2H), 7.22 (s, 1H), 7.15 (dd, J = 5.1, 1.2 Hz, 1H), 6.83 (dd, J = 5.0, 3.6 Hz, 1H), 6.77-6.76 (m, 1H), 3.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.71, 143.27, 140.51, 138.09, 133.57, 131.74, 128.80, 127.35, 127.01, 126.57, 125.81, 125.72, 125.62, 125.19, 122.55, 121.90, 53.62, 51.91. [α]_D²⁵ = -132.4 (c = 1.0 mg/mL in CHCl₃). Melting point: 140.1-143.3 °C. ESI-HRMS calcd. for C₂₃H₁₇NO₂S₂ [M+Na]⁺ = 426.0593; found 426.0580. IR (neat): v (cm⁻¹) 2920, 1710, 1439, 1372, 1287, 1108, 765, 759, 693, 661.

Methyl benzhydryl(4,4"-dimethyl-[1,1':3',1"-terphenyl]-4'-yl)carbamate (4bb)

4bb was obtained from rival side reaction in the cascade reaction as a viscous oil.

¹H NMR (400 MHz, CDCl₃) δ 7.51-7.43 (m, 4H), 7.26-7.14 (m, 11H),7.04-6.95 (m, 6H), 6.00 (s, 1H), 3.64 (s, 3H), 2.44 (s, 3H), 2.41 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 159.05, 141.59, 140.30, 138.63, 138.09, 137.35, 137.17, 136.96, 136.79, 129.97, 129.63, 129.49, 128.86, 128.83, 128.40, 128.01, 127.77, 127.42, 126.87, 126.75, 125.93, 68.90, 52.80, 21.17, 21.10. ESI-HRMS calcd. for C₃₅H₃₁NO₂ [M+Na]⁺ = 520.2247; found 520.2249. IR (neat): v (cm⁻¹) 2925, 1698, 1437, 1219, 1036, 772, 743. IR (neat): v (cm⁻¹) 2983, 1705, 1440, 1313, 1065, 764, 730, 611.

Methyl benzhydryl(3-bromo-4'-methyl-[1,1'-biphenyl]-4-yl)carbamate (3ac)

3ac was obtained according to the General procedure H as a viscous oil. (57% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.63-7.62 (m, 1H), 7.45-7.39 (m, 6H), 7.36-7.32 (m, 2H), 7.25-7.23 (m, 3H), 7.18-7.13 (m, 5H), 6.76 (s, 1H), 3.77 (s, 3H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.08, 141.62, 140.84, 137.91, 137.86, 137.28, 135.87, 131.19, 130.92, 130.44, 129.57, 128.84, 128.27, 127.76, 127.08, 126.78, 126.44, 125.73, 66.96, 53.37, 21.09. ESI-HRMS calcd. for C₂₈H₂₄BrNO₂ [M+Na]⁺ = 508.0883; found 508.0881. IR (neat): v (cm⁻¹) 2925, 1698, 1437, 1219, 1036, 772, 743.

Methyl (*R*)-6-(p-tolyl) phenanthridine-5(6H)-carboxylate and methyl (*R*)-9-methyl-6-phenylphenanthridine-5(6H)-carboxylate (8a/8b)

8a/8b mixture was obtained according to the General procedure D, as a viscous oil (91% combined yield with 1:1 ratio determined by ¹H NMR). 2.4:97.4 e.r. and 2.4:97.6 e.r.

¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.8 Hz, 1H), 7.80-7.75 (m, 2H), 7.69 (s, 1H), 7.49-7.31 (m, 5H), 7.28-7.07 (m, 11H, 6.96 (s, 4H), 6.76 (s, 2H), 3.87 (s, 6H), 2.48 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.06, 143.35, 139.94, 138.03, 136.98, 136.77, 135.75, 134.83, 132.72, 131.29, 131.12, 130.52, 128.99, 128.89, 128.57, 128.41, 128.30, 128.20, 128.14, 127.92, 127.76, 127.61, 127.56, 127.25, 127.21, 127.17, 125.99, 125.45, 125.06, 124.36, 123.76, 123.58, 123.51, 58.30, 53.28, 21.55, 20.98. ESI-HRMS calcd. for C₂₂H₁₉NO₂ [M+Na] ⁺ = 352.1308; found 352.1301. IR (neat): v (cm⁻¹) 2920, 1706, 1435, 1271, 1045, 772, 758.

Methyl (*R*)-6-(4-fluorophenyl) phenanthridine-5(6H)-carboxylate and methyl (*R*)-9-fluoro-6-phenylphenanthridine-5(6H)-carboxylate (9a/9b)

9a/9b mixture was obtained according to the General procedure D, as a viscous oil (93% combined yield with 1:1 ratio determined by ¹⁹F NMR). 3.3:96.7 e.r. and 1.2:98.8 e.r.

¹H NMR (400 MHz, CDCl₃) δ 7.91-7.69 (m, 3H), 7.59-7.35 (m, 6H), 7.31-7.04 (m, 14H), 6.88-6.80 (m, 3H), 3.90 (d, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 164.13, 163.24, 161.69, 160.80, 155.10, 154.95, 139.53, 135.55, 135.53, 134.80, 134.76, 133.46, 133.38, 131.31, 129.29, 129.21, 129.08, 129.00, 128.68, 128.60, 128.28, 128.11, 127.93, 127.61, 127.51, 127.35, 127.18, 126.09, 125.29, 123.94, 123.78, 123.68, 115.19, 114.98, 114.80, 114.58, 110.77, 110.54, 57.95, 57.87, 53.47, 53.43. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.41, -115.19. ESI-HRMS calcd. for C₂₁H₁₆FNO₂ [M+Na] ⁺ = 356.1057; found 356.1055. IR (neat): v (cm⁻¹) 2952, 1700, 1438, 1326, 1250, 1020, 773, 762.

Ethyl (*R*)-6-(4-methoxyphenyl)phenanthridine-5(6H)-carboxylate and ethyl (*R*)-9-methoxy-6-phenylphenanthridine-5(6H)-carboxylate (10a/10b)

10a/10b mixture was obtained according to the General procedure D, as a viscous oil (90% combined yield with 1:1 ratio determined by ¹H NMR). 1.8:98.2 e.r. and 0.7:99.3 e.r. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.9 Hz, 1H), 7.80-7.74 (m, 2H), 7.50-7.31 (m, 6H), 7.26-7.09 (m, 10H), 7.02-6.95 (m, 3H), 6.77-6.69 (m, 4H), 4.41-4.32 (m, 4H), 3.94 (s, 3H), 3.71 (s, 3H), 1.38 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 159.74, 158.75, 140.29, 135.91, 135.04, 134.93, 132.56, 132.14, 131.37, 128.70, 128.55, 128.29, 128.16, 128.04, 127.93, 127.77, 127.57, 127.24, 126.04, 124.92, 123.76, 123.59, 113.56, 113.42, 109.10, 62.42, 62.38, 57.87, 55.52, 55.15, 14.60. ESI-HRMS calcd. for C₂₃H₂₁NO₃ [M+Na] ⁺ = 382.1414; found 382.1415. IR (neat): v (cm⁻¹) 2954, 1705, 1440, 1223, 1057, 759, 743.

Single crystal of 2s (CCDC Number: 2307693)

Bond precision: C-C = 0.0022 A Wavelength=1.54184 Cell: a=11.43405(6) b=11.43405(6) c=25.89293(13) alpha=90 beta=90 gamma=120 Temperature: 150 K Calculated Reported Volume 2931.65(3) 2931.65(3) Space group P 31 2 1 P 31 2 1 Hall group P 31 2" P 31 2" Moiety formula C25 H25 N O2, 0.083(H2 O) C25 H25 N O2, 0.08(H2 O1) Sum formula C25 H25.17 N O2.08 C25 H25.17 N O2.08 Mr 372.96 372.96 Dx,g cm-3 1.268 1.268 Z 6 6 Mu (mm-1) 0.628 0.628 F000 1193.0 1193.0 F000' 1196.35 h,k,lmax 14,14,32 14,14,32 Nref 4090[2353] 3980 Tmin,Tmax 0.963,0.975 0.735,1.000 Tmin' 0.910 Correction method= # Reported T Limits: Tmin=0.735 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 1.69/0.97 Theta(max)= 76.125R(reflections) = 0.0272(3934)wR2(reflections)= 0.0733(3980) S = 1.026 Npar= 268

Reference

- [1] S. Wang, J. Li, T. Miao, W. Wu, Q. Li, Y. Zhuang, Z. Zhou, L. Qiu, Org. Lett. 2012, 14, 8
- [2] L.Yang, M. Neuburger, O. Baudoin, Angew. Chem. Int. Ed. 2018, 57, 1394
- [3] A. Tait, A. Luppi, R. Avallone, M. Baraldi, Il Farmaco. 2005, 60, 653.

NMR Spectra

L10

L11

MeO Br

1k

1v

1x

Зр

7.82 7.58 7.58 7.7.46 7.7.14 7.07 -2.42 -3.67 -23000 -22000 CO₂Me --21000 -20000 -19000 18000 -17000 -16000 -15000 14000 -13000 12000 -11000 -10000 90.00 -8000 7000 -60.00 5000 -40 00 -3000 -2000 -1000 NU 0 3.07-€ 0.96-2.17 2.09 4 5.02 1.03-3.00-= -1000 -2000 16 -1 -2 -3 15 14 10 f1 (ppm) 3 0 13 12 11 9 8 5 4 2 1 Me Me

3t

F

2u

<u>__N</u>

2у

4d

9a/9b

10a/10b

HPLC Data

2a (The top one is racemic, the middle one is chiral when leaving group was Br and the bottom one is chiral when leaving group was I)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 11.3 min (major isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 245 nm, n-hexane: i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 10.8 min (major isomer) and 16.0 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IC-3, 243 nm, n-hexane : i-PrOH = 80 : 20 as the eluent, flow rate: 1

mL/min, temperature 25 °C, retention time: 7.0 min (major isomer) and 9.8 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase

column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 11.2 min (major isomer) and 16.2 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 244 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 10.0 min (major isomer) and 16.6 min (minor isomer)].

MeO

2f

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 19.4 min (major isomer) and 24.3 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 10.2 min (major isomer) and 19.2 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 247 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 9.7 min (major isomer) and 13.8 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 17.5 min (major isomer) and 19.3 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 244 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 10.0 min (major isomer) and 11.6 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 98 : 2 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 22.1 min (major isomer) and 25.5 min (minor isomer)].

(The top one is racemic, and the following part is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 271 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 9.5 min (major isomer) and 12.3 min (minor isomer)].

Peak RetTin	ne Type	Width	Area	Height	Area
# [min	.]	[min]	[mAU*s]	[mAU]	8
1 9.5	37 BB	0.2726	4809.47607	276.93069	98.6095
2 12.3	54 BB	0.3186	67.82098	3.08335	1.3905

2m

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 80 : 20 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 9.1 min (major isomer) and 13.8 min (minor isomer)].

2n

(The top one is racemic, and the following part is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 271 nm, n-hexane : i-PrOH = 97 : 3 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 14.4 min (major isomer) and 17.1 min (minor isomer)].

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	*
1	14.414	BB	0.3491	8776.15625	366.85803	98.6540
2	17.145	BB	0.4320	119.74224	4.06138	1.3460

20

(The top one is racemic, and the following part is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 272 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 24.4 min (major isomer) and 32.6 min (minor isomer)].

2p (The top one is racemic, and the bottom one is chiral) The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 239 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1

mL/min, temperature 25 °C, retention time: 10.1 min (major isomer) and 12.9 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] OD-H, 268 nm, n-hexane : i-PrOH = 99 : 1 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 20.2 min (major isomer) and 8.4 min (minor isomer)].

2r

(The top one is racemic, and the following part is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 271 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 9.8 min (major isomer) and 8.4 min (minor isomer)].

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	*
1	8.476	BB	0.2703	102.38579	6.02310	1.5488
2	9.860	BB	0.3137	6508.35596	327.73257	98.4512

T

(The top one is racemic, and the following part is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IC-3, 269 nm, n-hexane : i-PrOH = 99 : 1 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 11.8 min (major isomer) and 15.3 min (minor isomer)].

2t (The top one is racemic, and the bottom one is chiral) The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 80 : 20 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 10.0 min (major isomer) and 19.5 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 2.0 min (major isomer) and 15.2 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IC-3, 243 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 15.3 min (major isomer) and 13.0 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 311 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 19.0 min (major isomer) and 13.6 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel® IA-3, 243 nm, n-hexane : i-PrOH =80 : 20 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 23.3 min (major isomer) and 21.0 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IC-3, 243 nm, n-hexane : i-PrOH = 50 : 50 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 22.0 min (major isomer) and 29.9 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 80 : 20 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 10.0 min (major isomer) and 12.6 min (minor isomer)].

2aa (The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 80 : 20 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 8.0 min (major isomer) and 11.6 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] OJ-H, 243 nm, n-hexane : i-PrOH = 98 : 2 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 14.3 min (major isomer) and 23.8 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1

mL/min, temperature 25 °C, retention time: 14.9 min (major isomer) and 20.1 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 18.4 min (major isomer) and 20.1 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 97 : 3 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 28.1 min (major isomer) and 30.1 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 26.7 min (major isomer) and 30.0 min (minor isomer)].

4e

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 20.0 min (major isomer) and 25.4 min (minor isomer)].

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	*
1 19.970 BB	0.4362	4959.86572	176.28453	97.6304
2 25.419 BB	0.5067	120.38057	3.47019	2.3696
MeO _a C		2		
MCC20		ļ		
	' _' '' ``			
	\checkmark			
F ₃ CO				

4f

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 17.6 min (major isomer) and 19.7 min (minor isomer)].

Реак	Retime	туре	width	Area	пеідпі	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	17.623	BB	0.3955	2698.31885	106.52623	98.4893
2	19.743	BB	0.3691	41.38799	1.60369	1.5107

4g

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 80 : 20 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 29.5 min (major isomer) and 31.8 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase

column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 10.0 min (major isomer) and 12.8 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 16.9 min (major isomer) and 28.6 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 11.4 min (major isomer) and 14.2 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 11.2 min (major isomer) and 17.7 min (minor isomer)].

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	육
1	11.286	VB	0.2376	7106.49609	466.73471	49.5025
2	17.865	BB	0.3974	7249.33838	284.38239	50.4975

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 13.8 min (major isomer) and 21.5 min (minor isomer)].

Реак	Rettime	туре	width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	13.761	BB	0.2989	3824.47241	196.63258	49.8513	
2	21.505	BB	0.4679	3847.28833	128.26395	50.1487	

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 85 : 15 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 18.1 min (major isomer) and 19.3 min (minor isomer)].

Peak	RetTime	Туре	Width	Area	Height	Area
ŧ	[min]		[min]	[mAU*s]	[mAU]	용
1	18.181	BB	0.3886	2708.89307	108.02280	50.0043
2	19.485	BB	0.4178	2708.42896	100.70557	49.9957

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 18.1 min (major isomer) and 22.5 min (minor isomer)].

Retlime	Туре	Width	Area	Height	Area	
[min]		[min]	[mAU*s]	[mAU]	8	
18.075	BB	0.3594	1213.87585	52.18439	50.3130	
22.715	BB	0.4706	1198.77283	39.44518	49.6870	
	[min] [min] 18.075 22.715	[min] [min] 18.075 BB 22.715 BB	Retlime Type Width [min] [min] 18.075 BB 0.3594 22.715 BB 0.4706	Retlime Type Width Area [min] [min] [mAU*s] 18.075 BB 0.3594 1213.87585 22.715 BB 0.4706 1198.77283	Retlime Type Width Area Height [min] [min] [mAU] 18.075 BB 0.3594 1213.87585 52.18439 22.715 BB 0.4706 1198.77283 39.44518	Retlime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % 18.075 BB 0.3594 1213.87585 52.18439 50.3130 22.715 BB 0.4706 1198.77283 39.44518 49.6870

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] OD-H, 243 nm, n-hexane : i-PrOH = 98 : 2 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 12.0 min (major isomer) and 13.8 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IC-3, 254 nm, n-hexane : i-PrOH = 97 : 3 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 10.1 min (major isomer) and 9.0 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 85 : 15 as the eluent, flow rate: 1

mL/min, temperature 25 °C, retention time: 11.3 min (major isomer) and 19.8 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel® IC-3, 254 nm, n-hexane : i-PrOH = 80 : 20 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 10.1 min (major isomer) and 6.9 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IE-3, 243 nm, n-hexane : i-PrOH =80 : 20 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 21.6 min (major isomer) and 24.5 min (minor isomer)].

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	21.726	BB	0.4898	5220.98828	164.72147	50.9865
2	24.426	BB	0.6540	5018.96143	116.17943	49.0135

4t (The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] OD-H, 243 nm, n-hexane : i-PrOH = 98 : 2 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 12.2 min (major isomer) and 9.2 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 243 nm, n-hexane : i-PrOH = 85 : 15 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 12.3 min (major isomer) and 15.4 min (minor isomer)].

ŧ	[min]	_	[min]	[mAU*s]	[mAU]	8
	10.000					
2	12.283	BB	0.4190	32.50900	1.69324	0.5273

4v

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 11.0 min (major isomer) and 14.8 min (minor isomer)].

203

4w (The top one is racemic, and the bottom one is chiral) The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 5.8 min (major isomer) and 6.4 min (minor isomer)].

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IA-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 15.2 min (major isomer) and 9.4 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IC-3, 243 nm, n-hexane : i-PrOH = 99 : 1 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 17.0 min (major isomer) and 21.9 min (minor isomer)].

(The top one is racemic, and the bottom one is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] OD-H, 254 nm, n-hexane : i-PrOH = 80 : 20 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 20.2 min (major isomer) and 7.2 min (minor isomer)].

8a/8b

(The top one is racemic, and the following part is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IB-3, 237 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 6.5 min (major isomer) and 5.7 min (minor isomer); 11.1 min (major isomer) and 7.2 min (minor isomer)].

9a/9b

(The top one is racemic, and the following part is chiral)

The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IB-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 7.0 min (major isomer) and 6.2 min (minor isomer); 10.8 min (major isomer) and 7.5 min (minor isomer)].

6.215	BB	0.0959	65.49081	10.33287	1.5757
7.061	BB	0.1132	1929.11633	252.32632	46.4153
7.513	BV	0.1260	26.50812	3.09367	0.6378
10.847	BB	0.1808	2135.09668	176.91974	51.3712
	6.215 7.061 7.513 10.847	6.215 BB 7.061 BB 7.513 BV 10.847 BB	6.215 BB 0.0959 7.061 BB 0.1132 7.513 BV 0.1260 10.847 BB 0.1808	6.215 BB 0.0959 65.49081 7.061 BB 0.1132 1929.11633 7.513 BV 0.1260 26.50812 10.847 BB 0.1808 2135.09668	6.215 BB 0.0959 65.49081 10.33287 7.061 BB 0.1132 1929.11633 252.32632 7.513 BV 0.1260 26.50812 3.09367 10.847 BB 0.1808 2135.09668 176.91974

209

10a/10b (The top one is racemic, and the following part is chiral) The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] IC-3, 254 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, temperature 25 °C, retention time: 12.9 min (major isomer) and 9.8 min (minor isomer); 11.1 min (major isomer) and 10.4 min (minor isomer)].

