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Scheme S1. The synthesis pathways of CP, TP and DP.

Synthesis and Characterization. As shown in Scheme S1, PyPDS was synthesized with
reference to a previous study.

The synthesis of cis- [Pt (NH3)2(PyPDS)CIINOs (CP), cisplatin (30.0 mg, 0.1 mmol, 1.0 eq.) and
AgNOs3 (17 mg, 0.1 mmol, 1.0 eq.) were prepared in DMF (6 mL) under nitrogen protection at 35 °C
in the dark and stirred for 12 h. After the reaction, the supernatant was filtered, PyPDS (70.0 mg,
0.1 mmol, 1.0 eq.) was added, and stirring was continued under nitrogen protection at 60 °C for 48
h in the dark. After cooling to room temperature, the samples were dried under vacuum and
purified by HPLC to give the product (10.0 mg, yield 10%). ESI-MS (m/z): [CP+3H]3** calcd. for
C39Hs2N100sPtCl, 323.77; found: 323.78. [CP+2H]?* calcd. for CsoHsiN1oOsPtCl, 485.16; found:
485.17. [CP+H]* calcd. for C3sHsoN100sPtCl, 969.32; found: 969.33. *H NMR (400 MHz, DMSO-ds) 6
12.07 (s, 2H), 8.18 (d, J = 8.0 Hz, 2H), 8.17 (S, 2H), 8.12 (s, 2H), 7.97 (d, J = 4.0 Hz, 2H), 7.95 (d, J =
4.0 Hz, 2H), 7.79 (t, J = 8.0 Hz, 2H), 7.56 (t, J = 8.0 Hz, 2H), 4.51 — 4.56 (m, 3H), 4.50 (s, 2H), 4.47 (m,
4H), 4.41 (b, 3H), 3.99 (s, 2H), 3.21 (s, 4H), 2.83 (s, 8H), 1.79 (s, 8H). 13C NMR (100 MHz, DMSO-ds)
6 167.25, 163.72, 162.46, 152.85, 151.56, 147.52, 131.15, 127.39, 125.25, 122.32, 119.66, 112.72,
95.52,67.77, 63.55, 54.65, 54.07, 23.60.

Synthesis of trans- [Pt (NHs)2(PyPDS)CI]NOs (TP): The synthesis method was the same as that
for CP, except that the reactant replaced cisplatin with transplatinum. [TP+3H]3* calcd. for

C39Hs52N1005PtCl, 323.77; found: 323.78. [TP+2H]?** calcd. for CsgHs1N10OsPtCl, 485.16; found:



485.17. [TP+H] * calcd. for C3gHsoN100sPtCl, 969.32; found: 969.33. 'H NMR (400 MHz, DMSO-ds) 6
12.09 (s, 2H), 8.35 (S, 2H), 8.14 (S, 2H), 8.12 (s, 2H), 7.99 (s, 2H), 7.95 (d, J = 4.0 Hz, 2H), 7.79 (t, J =
8.0 Hz, 2H), 7.55 (t, J = 8.0 Hz, 2H), 4.55 (s, 2H), 4.43 (t, J = 4.0 Hz, 4H), 4.10 (s, 6H), 3.84 (b, 2H),
3.04 (t, J = 4.0 Hz, 4H), 2.65 (s, 8H), 1.73 (s, 8H). 13C NMR (100 MHz, DMSO-ds) & 165.41, 163.73,
162.56, 152.91, 151.55, 147.52, 131.09, 127.40, 125.20, 122.22, 119.69, 112.76, 95.47, 68.49,
63.54, 54.68, 54.26, 23.72.

The synthesis of [Pt(dien)(PyPDS)](NOs), (DP): DienPt-Cl (Dien = diethylenetriamine) was
synthesized as described previously?. DienPt-Cl (37.0 mg, 0.1 mmol, 1.0 eq.) and AgNOs (34.0 mg,
0.2 mmol, 2.0 eq.) were dissolved in 5 ml DMF. After the reaction was protected by nitrogen at
room temperature for 12 h in the dark, the residue was filtered, and 5 ml of PyPDS (70.0 mg, 0.1
mmol, 70 mg) solution was dropped into it. The reaction was protected by nitrogen at 50 °C for 48
h in the dark, the reaction solution was filtered, the solid was washed three times with methanol,
and the methanol solution was collected and dried. The product was freeze dried to obtain a pure
product (10.0 mg, yield 10%).2H NMR (400 MHz, DMSO-ds) & 12.09 (s, 2H), 8.18 (t, J = 8.0 Hz, 2H),
8.13 (d, J= 4.0 Hz, 2H), 8.09 (b, 2H), 8.00 (s, 2H), 7.95 (t, J = 8.0 Hz, 2H), 7.80 (t, J = 8.0 Hz, 2H), 7.56
(t, J = 8.0 Hz, 2H), 5.68 (b, 2H), 5.51 (b, 2H), 4.51 (m, 6H), 3.59 (b, 2H), 3.10 (d, J = 4.0 Hz, 2H), 2.91
(s, 8H), 2.68 (m, 8H),1.81 (s, 8H). 13C NMR (100 MHz, DMSO-ds) & 170.44, 164.62, 161.71, 152.84,
150.53, 148.07, 131.17, 127.38, 125.27, 122.38, 119.63, 112.50, 95.52, 54.59, 53.45, 50.83, 45.62,

19.98.
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Fig. S1 'H NMR spectrum of CP in DMSO-ds at 25 °C.

Fig. S2 13C NMR spectrum of CP in DMSO-ds at 25 °C.
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Fig. S5 3C NMR spectrum of TP in DMSO-d; at 25 °C.
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Fig. S10 (a) Thermal stabilization of MYT1L G4 with CP, TP, DP and PyPDS while competing with

increasing ratios of ds-12CT for binding to ligands. After mixing the compound and DNA, the samples

were tested immediately. (b-d) Thermal stabilization of c-MYC, VEGF and MYT1L G4s after 48 h

interacting with CP, TP, DP and PyPDS while competing with increasing ratios of dsDNA for binding to

ligands. “G4”, meaning “c-MYC, VEGF and MYT1L”, and “dsDNA”, meaning “ds-12CT DNA”.
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Fig. S22 KEGG enrichment analysis of differentially expressed genes after CP, TP, DP and PyPDS

treated for 24 h. KEGG enrichment analysis of RNA-seq revealed that CP, TP, DP, and PyPDS mainly

affected pathways in cancer, cytosolic DNA-sensing, and immunity.
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Fig. S23 GSEA reveals positive enrichment of genes altered in cells subjected after CP, TP, DP and PyPDS

treated.
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Fig. S24 The impact of different inhibitors on cell death induced by compounds. Cells were pretreated

Cell

with the inhibitors (Nec-1: 100 uM; NSA: 10 uM) for 1 h and then subjected to compound treatment.

Errors are s.d. (n > 3). *p < 0.05.
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Fig. $26 Un-cropped western blotting images of Figure 3g.
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Fig. S27 Un-cropped western blotting images of Figure 4g.
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Fig. S28 (a) Representative photographs of mice in the CP group at 24 days before sacrifice. (b) Volume
changes of primary and distant tumors (n=4). Errors are s.d. (n>3). (c-e) the secretion of cytokines
(cGAMP, IL-18 and IL-1B) in serum on Day 16. **p<0.01, ***p<0.001.

Control

Cisplatin

Fig. S29 Hematoxylin and eosin (H&E) staining of the main organs from mice with different

treatment.
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Table S1 The representative docked free energies of the docking models between CP and c-MYC G4
DNA.

Docked free energy range
Number of AutoDock Docked free energy
of docked structures Cluster rank b
clusters a (kcal/mol)
(kcal/mol)

-10.67
-10.27
-10.22
-10.08
-10.04
-10.01
-9.79
-9.74
-9.53
10 -9.48

a. Number of GA runs are shown in parentheses. B. The cluster rank is the absolute ranking as

39(100) -10.67 to -4.64

© 00 N O U B W N -

determined by the docked free energy defined by AutoDock.

Table S2 The representative docked free energies of the docking models between CP and VEGF G4 DNA.

Docked free energy range
Number of AutoDock Docked free energy
of docked structures Cluster rank b
clusters a (kcal/mol)
(kcal/mol)

-11.51
-10.99
-10.82
-10.00
-9.84
-9.77
-9.69
-9.60
-9.01
10 -8.89

a. Number of GA runs are shown in parentheses. b. The cluster rank is the absolute ranking as

66 (100) -11.51 to -5.06

O 00 N O U1 B W N

determined by the docked free energy defined by AutoDock.
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Table S3 The representative docked free energies of the docking models between CP and MYT1L G4

DNA.

Number of AutoDock

Docked free energy range
of docked structures Cluster rank b
(kcal/mol)

clusters a

Docked free energy
(kcal/mol)

85 (100) -15.50 to -6.7

© 00 N O U B W N -

10

-15.50
-14.10
-14.00
-13.73
-13.67
-13.08
-12.92
-12.91
-12.80
-12.54

a. Number of GA runs are shown in parentheses. b. The cluster rank is the absolute ranking as

determined by the docked free energy defined by AutoDock.

Table S4. List of DNA sequences used in this research.

Name Sequence

c-MYC 5'-TGAGGGTGGGTAGGGTGGGTAA-3’

VEGF 5'-CGGGGCGGGCCTTGGGCGGGGT-3’

MYT1L 5'-AGGGAGAGGAGAGCTCTGGGTTGGGTGGG-3'
ds-12CT 5'-CTTTTGCAAAAG-3’

ds-26 5'-CAATCGGATCGAATTCGATCCGATTG-3'

Table S5. The nearest gene of ChromHMM annotation

Roadmap Standardized Epigenome name AGE (Years) SEX ETHNICITY
African-American,
E027 Breast Myoepithelial Primary Cells 36Y,33Y Female
African-American
Breast variant Human Mammary Epithelial
E028 18Y Female Caucasian
Cells (vHMEC)
Human Mammary Epithelial Primary Cells
E119 Unknown Unknown Unknown

(HMEC)
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Table S6. The Quadruplex forming G-Rich Sequences (QGRS) in the significant enrichment genes

associated with G4 deletions in the CP group.

Gene Name CDH4 SNTG2 GRTP1 C70rfS0  ATP9B CIMAP1D COL18A1 MIR3667HG EARP NGEF
QGRS in full gene sequence 6129 2313 365 1511 1468 113 1345 2133 1460 976
QGRS in promoter sequence 17 17 23 23 24 21 31 24 16 19
< Gene Name IGSF21  LARGE1  SLC16A3 COL6A1 Muc4 C4orf19 PADI4 c-MYC DHRSX  VEGF
QGRS in full gene sequence 2311 4473 518 338 592 882 493 74 1916 207
QGRS in promoter sequence 20 27 32 15 29 8 16 17 21 24
Table S7. The CP group had the highest proportion of G4 deletions in whole-genome sequencing.
SOX6 LAMAS APP URB1 DIP2C c-MYC
Inhibition of tumor growth
GNAQ BRSK2 CDH4 MYT1 VEGF
SYNE2 TNFRSF1A APLP2 HNF1A MYO10 TRAPPC9
Antitumor immunity
LGR4
PPP2R2C CACNG7 FBRSL1 PPHLN1 SAXO1 COL26A1
Other
ANKRD11 ADARB2 NKAIN3 AC000093.1
Table S8. The Quadruplex forming G-Rich Sequences (QGRS) in the genes of which the expression was
significantly regulated by CP, TP, DP and PyPDS in the RNA-seq studies.
Gene Name SOX6 AACS TACC2 CREB3L1 CDH4 ABCA3 CD44 FEZF1 FAM219A FARP1
QGRS in full gene sequence 2552 687 2041 427 6129 632 495 66 445 1880
QGRS in promoter sequence 11 19 15 23 17 26 21 12 30 16
@ Gene Name PIGX PINK1 PYROXD2 c-MYC FAM187A ITGAS APBB2 CNTNAP1 APOL2 VEGF
QGRS in full gene sequence 620 173 297 74 30 244 2208 199 137 207
QGRS in promoter sequence 15 13 15 17 14 32 24 18 22 24
Gene Name VDR KANK1 ZHX3 NR3C2 EDN1 CREB3L2 TESMIN PHACTR4 ZNF329 RTN4
QGRS in full gene sequence 797 1399 736 1394 42 757 260 720 203 553
QGRS in promoter sequence 26 13 15 26 10 21 20 15 25 15
™ Gene Name GNL3L RCBTB1 HERPUD2 RGMB AMPH AP1S3 LMO7 CHD8 PAM SRCAP
QGRS in full gene sequence 504 281 275 170 1005 927 989 401 817 337
QGRS in promoter sequence 13 13 19 7 18 28 12 17 15 25
Gene Name RCN3 NPDC1 PHLDB1 GPAA1 Cl6orf74 CREB3L1 PPARD ARHGEF10L FAM219A SPEG
QGRS in full gene sequence 200 117 546 99 577 427 681 1738 445 669
QGRS in promoter sequence 20 33 13 19 28 23 22 17 30 13
o Gene Name ZNF213 MAP4 EML2 TBC1D24 ITGAS CNTNAP1 NXPH4 SLC37A4 PTPN23 TAGLN
QGRS in full gene sequence 144 1380 409 378 244 199 116 86 278 118
QGRS in promoter sequence 21 22 26 25 32 18 23 24 11 25
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PyPDS

Gene Name
QGRS in full gene sequence
QGRS in promoter sequence
Gene Name
QGRS in full gene sequence

QGRS in promoter sequence

DPM2

40

20

ATF6B

131

17

MSRB1
78
29
NDUFS6
137
16

RPS11

50

14

TUT1

148

13

PNMA1

29

20

GCSH

92

14

RPS17
49
18

ERAL1
60
12

KRTCAP2

41

17

ECHS1

106

14

TMEM216

46

17

VPS4A

163

15

DPY30
751
18
ABCC6
586
20

SMARCD3

431

12

NAPRT

69

30

NCBP2-AS2

21

16

PDCL3

100

19
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