Electronic Supplementary Information

Visible-Light-Enabled Stereoselective Synthesis of Functionalized Cyclohexylamine Derivatives via [4 + 2] Cycloadditions

Yi-Nan Lu,¹ Chao Che,¹ Guangjin Zhen,¹ Xin Chang,¹ Xiu-Qin Dong,^{1*} and Chun-Jiang Wang^{1,2*}

¹College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; ²State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China.

E-mail: xiuqindong@whu.edu.cn (X.Q.D.); cjwang@whu.edu.cn (C.J.W.)

Table of Contents

I.	General Remarks	S2
II.	Optimization of Reaction Conditions	S3
III.	General Procedure for Photocatalyzed [4 + 2] Cycloadditions for the	Synthesis of
	Functionalized Cyclohexylamine Derivatives	S8
IV.	Spectral Characterization Data for Products	S9
V.	Synthetic Transformations	S30
VI.	X-ray Structures of <i>rac</i> - 3a , (1 <i>S</i> ,2 <i>S</i>)- 3a and <i>rac</i> - 5	S32
VII.	Mechanistic Investigations	S34
VIII.	References	S35
IX.	NMR and HPLC Spectra	S36

I. General Remarks

¹H NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data are reported as (s = single, d = double, t = triple, q = quarte, m = multiple or unresolved, coupling constant(s) in Hz, integration). ¹³C NMR spectra were recorded on a Bruker 100 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. ¹⁹F NMR spectra were recorded on a Bruker 376 MHz spectrometer in CDCl₃. Commercially obtained reagents were used without further purification. High resolution mass spectra (HR-MS) were recorded on a LTQ-Orbitrap Elite mass spectrometer with MeOH as solvent for the measurements. Commercially obtained reagents were used without further purification. Solvents were purified prior to use according to the standard methods. Unless otherwise noted, all reactions were performed under an atmosphere of N₂ in fire dried glassware, and set up on the bench top and conducted under nitrogen atmosphere while subject to irradiation from blue LED. All reactions were monitored by TLC with silica gel coated plates. Flash column chromatography was performed using 200-300 mesh silica gel. The enantiomeric excesses (ee) of the products were determined by high-performance liquid chromatography (HPLC) analysis performed on Agilent 1200 and 1260 Series chromatographs using a Diacel chiral column (25 cm) Optical rotations were measured on a Rudolph Research Analytical Autopol VI polarimeter with $[\alpha]_D$ values reported in degrees; concentration (c) is in g/100 mL. The racemic products were obtained by running reactions with racemic catalysts or blending equal amount of two enantiomers. The substrates $1^{[1]}$ and $2^{[2]}$ were prepared according to the literature procedure. The relative configuration of product rac-3a was unambiguously determined by X-ray diffraction analysis, and those of other cycloadducts were deduced on the basis of these results. The absolute configuration of compound (1S,2S)-3a was determined unequivocally according to the X-ray diffraction analysis, and those of other adducts were deduced on the basis of these results. The relative configuration of compound 5 was determined unequivocally according to the X-ray diffraction analysis.

II. Optimization of Reaction Conditions

Racemic version:

Table S1. Photocatalyst effect ^a

OMe H H 1a	CF_3 + Ph Bn	PC (2 mol%) diphenyl phosphate (10 mol%) THF, 7W blue LEDs, 45 °C, 48 h	F ₃ C OMe Bn 3a
	$CF_{3}^{+} PF_{6}^{+} PF_{6}^{+}$ $V \qquad V \qquad$	PC-3	PC-4
Entry	РС	Yield $(\%)^b$	Dr ^c
1	PC-1	68	>20:1
2	PC-2	58	20:1
3	PC-3	Trace	NA
4	PC-4	Trace	NA
5	Eosin Y	Trace	NA
6	Rhodamine 6G	NR	NA

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), **PC** (2 mol %), diphenyl phosphate (10 mol %), Na₂HPO₄ (0.6 equiv) in 2 mL of THF at 45 °C under irradiation of 7 W blue LED for 48 h. ^{*b*} Isolated yields. ^{*c*} Dr was determined by ¹H NMR analysis.

Table S2. Solvent effect ^a

OMe N	CF_3 + Ph Bn -	F ₃ PC-1 (2 mol%) diphenyl phosphate (10 mol%) ► solvent, 7W blue LEDs, 45 °C, 48 h	OMe Ph Bn
	1a 2a		3a
Entry	solvent	Yield $(\%)^b$	Dr ^c
1	THF	68	>20:1
2	Toluene	30	>20:1
3	MeCN	45	>20:1
4	1,4-dioxane	55	18:1
5	EA	45	>20:1
6	DCE	33	>20:1
7	MeOH	77	8:1
8	THF/MeOH = 1:1	74	7.7:1
9	THF/MeOH = $2:1$	74	12.5:1
10	THF/MeOH = $3:1$	64	18:1

11	THF/MeOH = 6:1	73	19:1
12	THF/MeOH = $10:1$	71	>20:1

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), **PC-1** (2 mol %), diphenyl phosphate (10 mol %), Na₂HPO₄ (0.6 equiv) in 2 mL of solvent at 45 °C under irradiation of 7 W blue LED for 48 h. ^{*b*} Isolated yields. ^{*c*} Dr was determined by ¹H NMR analysis.

Table S3. Additive effect ^a

		F	^{3C}
OMe H	O Bn	PC-1 (2 mol%) diphenyl phosphate (10 mol%)	
1a	2a	THF/MeOH = 10:1 7W blue LEDs, 45 °C, 48 h	3a Bn
Entry	Additive	Yield $(\%)^b$	Dr ^c
1	Na ₂ HPO ₄	71	>20:1
2	K ₂ HPO ₄	47	8:1
3	LiH ₂ PO ₄	65	>20:1
4	K ₃ PO ₄	63	3:1
5	NH ₄ PF ₆	74	>20:1
6	NaHCO ₃	59	7:1
7	NaBF ₄	56	>20:1

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), **PC** (2 mol %), diphenyl phosphate (10 mol %), additive (0.6 equiv) in 2 mL of THF/MeOH = 10:1 at 45 °C under irradiation of 7 W blue LED for 48 h. ^{*b*} Isolated yields. ^{*c*} Dr was determined by ¹H NMR analysis.

Table S4. Some other optimization of the reaction conditions^{*a*}

PC-1 (2 mol%) diphenyl phosphate (10 mol%) NΗ NH₄PF₆ (0.6 equiv.) OMe THF/MeOH = 10:1 7W blue LEDs, 45 °C, 48 h 1a 3a 2a Variation from standard conditions Yield $(\%)^b$ $\mathrm{Dr}^{\,c}$ Entry 1 74 none >20:1 2 Without diphenyl phosphate 70 >20:1 3 Without diphenyl phosphate, 24 h 70 >20:1

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), **PC** (2 mol %), NH₄PF₆ (0.6 equiv) in 2 mL of THF/MeOH = 10:1 at 45 °C under irradiation of 7 W blue LED. ^{*b*} Isolated yields. ^{*c*} Dr was determined by ¹H NMR analysis.

OMe H	CF ₃ + Ph Bn	F ₃ PC-1 (2 mol%) NH ₄ PF ₆ (0.6 equiv.) THF/MeOH = 10:1	OMe Ph Bn
1a	2a	7 W blue LEDS, 45°C, 24 H	3a
Entry	1a:2a	Yield $(\%)^b$	Dr ^c
1	1:1	57	>20:1
2	1:1.2	70	>20:1
3	1:1.5	75	>20:1
4	1:2	74	>20:1
5	1.5:1	63	>20:1
6	2:1	63	>20:1

Table S5. The ratio of 1a and 2a effect ^a

^{*a*} Conditions: **1a**, **2a**, **PC** (2 mol %), NH₄PF₆ (0.6 equiv) in 2 mL of THF/MeOH = 10:1 at 45 °C under irradiation of 7 W blue LED for 24 h. ^{*b*} Isolated yields. ^{*c*} Dr was determined by ¹H NMR analysis.

Asymmetric version:

Table S6. Bronsted Acid effect ^a

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), **PC-1** (2 mol %), (*R*)-**CPA** (10 mol %) in 2 mL of THF at 45 °C under irradiation of 7 W blue LED for 24 h. Ee was determined by HPLC analysis.

Table S7. Photocatalyst effect ^a

Entry	РС	$\text{Yield}(\%)^b$	ee (%) ^c	Dr^{d}
1	PC-1	50	70	>20:1
2	PC-2	48	66	>20:1
3	PC-3	Trace		
4	PC-4	Trace		
5	Eosin Y	Trace		
6	Rhodamine 6G	N.R.		

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), **PC** (2 mol %), (*R*)-**C7** (10 mol %) in 2 mL of THF at 45 °C under irradiation of 7 W blue LED for 24 h. ^{*b*} Isolated yields. ^{*c*} Ee was determined by HPLC analysis. ^{*d*} Dr was determined by ¹H NMR analysis.

Table S8. Solvent effect^a

OMe	$\int_{-\infty}^{H} (CF_3 + Ph + Ph + Bh - 1a)$	PC-1 (2 mo (<i>R</i>)- C7 (10 m solvent, 7W blue LED:	F ₃ C ol%) s, 45 °C, 24 h (1S	Bn Bn 2S)- 3a
Entry	solvent	Yield $(\%)^b$	ee (%) ^c	Dr ^d
1	THF	50	70	>20:1
2	Toluene	40	60	>20:1
3	1,4-dioxane	40	64	>20:1
4	EA	44	64	>20:1
5	DCE	28	54	>20:1
6	2-Methyltetrahydrofuran	46	68	>20:1
7	tert-Butyl methyl ether	41	65	>20:1
8	DME	40	66	>20:1
9	Et ₂ O	28	68	>20:1
10	1,3-Dioxolane	63	4	>20:1

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), **PC-1** (2 mol %), (*R*)-**C7** (10 mol %) in 2 mL of solvent at 45 °C under irradiation of 7 W blue LED for 24 h. ^{*b*} Isolated yields. ^{*c*} Ee was determined by HPLC analysis. ^{*d*} Dr was determined

Table S	89. Ad	ditive	effect ^a
---------	--------	--------	---------------------

OMe	$H_{CF_3} + Ph_{Bn} -$	PC-1 (2 mol ⁺ (<i>R</i>)- C7 (10 mo THF, 7W blue LEDs,	%) 01%) 45 °C, 24 h (15)	NH Ph Bn 2S)- 3 a
Entry	Additive	Yield (%) ^b	ee (%) ^c	Dr ^d
1	NaH ₂ PO ₄ (0.6 equiv.)	55	70	>20:1
2	Na_2HPO_4 (0.6 equiv.)	57	70	>20:1
3	K_2 HPO ₄ (0.6 equiv.)	50	56	>20:1
4	KH ₂ PO ₄ (0.6 equiv.)	58	66	>20:1
5	LiH_2PO_4 (0.6 equiv.)	62	66	>20:1
6	LiCl (0.6 equiv.)	-	-	-
7	NH_4PF_6 (0.6 equiv.)	57	70	>20:1
8	NaHCO ₃ (0.6equiv.)	48	20	>20:1
9	NaBF4 (0.6equiv.)	56	66	>20:1
10	NH_4PF_6 (0.4 equiv.)	55	70	>20:1
11	NH_4PF_6 (0.8 equiv.)	57	70	>20:1
12	NH_4PF_6 (1.0 equiv.)	57	70	>20:1

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), **PC-1** (2 mol %), (*R*)-**C7** (10 mol %) in 2 mL of THF at 45 °C under irradiation of 7 W blue LED for 24 h. ^{*b*} Isolated yields. ^{*c*} Ee was determined by HPLC analysis. ^{*d*} Dr was determined by ¹H NMR analysis.

Table S10. Temperature effect^a

OMe H CF ₃ + Ph Bn -		PC-1 (2 mol%), (<i>R</i>) Bn	- C7 (10 mol%) equiv.) Os, T °C, 24 h	NH Ph Bn
	1a 2a		(15	, 2S) -3a
Entry	T (°C)	Yield (%) ^b	ee (%) ^c	Dr ^d
1	65	40	56	>20:1
2	45	57	70	>20:1
3	25	38	66	>20:1
4	-10	~20	80	>20:1
5	-20	~15	83	>20:1
6	-30	-	-	-

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), **PC-1** (2 mol %), (*R*)-**C7** (10 mol %) in 2 mL of THF at T °C under irradiation of 7 W blue LED for 24 h. ^{*b*} Isolated yields. ^{*c*} Ee was determined by HPLC analysis. ^{*d*} Dr was determined by ¹H NMR analysis.

	Me H N CF ₃ + 1a	Ph Bn -	PC-1 (2 mol%), (<i>R</i>)- C7 (10 mol% NH₄PF ₆ (0.6 equiv.) THF, 7W blue LEDs, 45 °C, 24 h	F ₃ C) OMe (1S, 2S	Ph Bn)-3a
Entry	1a:2a	(x) W blue L	ED Yield (%) ^b	ee (%) ^c	Dr ^d
1	1:1.2	7	57	70	>20:1
3	1:1.5	7	60	70	>20:1
4	1:2	7	56	70	>20:1
5	1.5:1	7	48	62	>20:1
6	2:1	7	47	62	>20:1
7	1:1.5	3	41	66	>20:1
8	1:1.5	12	58	70	>20:1
9	1:1.5	18	57	70	>20:1

Table S11. Some other optimization of the reaction conditions ^a

^{*a*} Conditions: **1a**, **2a**, **PC-1** (2 mol %), (*R*)-**C7** (10 mol %) in 2 mL of THF at T °C under irradiation of x W blue LED for 24 h. ^{*b*} Isolated yields. ^{*c*} Ee was determined by HPLC analysis. ^{*d*} Dr was determined by ¹H NMR analysis.

III. General Procedure for Photocatalyzed [4 + 2] Cycloadditions for the Synthesis of Functionalized Cyclohexylamine Derivatives

General procedure A:

A 4-mL vial was cooled to ambient temperature. To this vial were added 1^1 (0.20 mmol, 1.0 equiv.), 2^2 (0.30 mmol, 1.5 equiv.), [Ir(dF(CF_3)ppy)_2(dtbbpy)]PF₆ (0.004 mmol, 2 mol %), NH₄PF₆ (0.12 mmol, 0.6 equiv.). Subsequently, bring the vial into the glove box, THF/MeOH = 10:1 (2.0 mL) was added. Then, take the vial out of the glove box. After that, this resulting solution was stirred at a distance of ~3 cm under irradiation by 7 W blue LED at 45 °C for 24 h. After filtration and evaporation, the residue was purified by column chromatography using petroleum ether/ethyl acetate as eluent (20:1 to 10:1) to generate the desired products.

General procedure B:

A 4-mL vial was cooled to ambient temperature. To this vial were added **1** (0.20 mmol, 1.0 equiv.), **2** (0.30 mmol, 1.5 equiv.), $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (0.004 mmol, 2 mol%), (*R*)-**C7** (10 mol%), NH₄PF₆ (0.12 mmol, 0.6 equiv.). Subsequently, bring the vial into the glove box, THF (2.0 mL) were added. Then, take the vial out of the glove box. After that, this resulting solution was stirred at a distance of ~3 cm under irradiation by 7W blue LED at 45 °C for 24 h. After filtration and evaporation, the residue was purified by column chromatography using petroleum ether/ethyl acetate as eluent (20:1 to 10:1) to generate the desired products. Then, enantiomer enriched product was obtained by recrystallization under petroleum ether and DCM.

IV. Spectral Characterization Data for the Products

(2-benzyl-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)-(phenyl)methanone (**3a**): yield (77.3 mg, 75%); dr > 20:1; white solid; m.p. = 216.5–218.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.08 (m, 8H), 7.05 – 6.98 (m, 2H), 6.74 (d, *J* = 7.7 Hz, 1H), 6.69 (d, *J* = 8.4 Hz, 1H), 6.58 (d, *J* = 8.1 Hz, 1H), 6.52 – 6.46 (m, 2H), 5.36 (d, *J* = 9.0 Hz, 1H), 3.52 (d, *J* = 9.0 Hz, 1H), 3.36 (s, 3H), 3.33 (d, *J* = 13.4 Hz, 1H), 3.17 – 3.03 (m, 1H), 2.96 – 2.86 (m, 1H), 2.60 (d, *J* = 13.4 Hz, 1H), 2.17 – 2.07 (m, 1H), 1.96 – 1.84 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 210.7, 158.2, 150.1, 141.7, 137.2, 135.0, 130.4, 129.4, 128.6, 128.1, 127.6, 126.8, 125.9 (q, *J* = 3.8 Hz), 125.5, 125.3, 125.1 (q, *J* = 268.9 Hz), 121.0, 119.2 (q, *J* = 32.4 Hz), 113.0, 107.9, 55.6, 54.8, 54.2, 39.3, 25.2, 22.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.82. HRMS (ESI+) Calcd. For $C_{32}H_{28}F_3NO_2Na^+$ ([M+Na]⁺): 538.1964, found: 538.1961.

(2-benzyl-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)-(phenyl)methanone (**3b**):

yield (58.2 mg, 60%); dr > 20:1; white solid; m.p. = 130.2–131.6 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.4 Hz, 2H), 7.39 – 7.35 (m, 1H), 7.29 – 7.22 (m, 5H), 7.21 – 7.16 (m, 3H), 7.15 – 7.09 (m, 3H), 7.09 – 7.05 (m, 1H), 7.04 – 7.00 (m, 1H), 6.71 (d, J = 8.4 Hz, 2H), 5.01 (d, J = 10.0 Hz, 1H), 4.77 (d, J = 10.0 Hz, 1H), 3.49 (d, J = 13.6 Hz, 1H), 3.07 (d, J = 13.6 Hz, 1H), 2.95 (s, 1H), 2.77 – 2.62 (m, 1H), 2.49 – 2.36 (m, 1H), 2.23 – 2.10 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 209.2, 150.4, 139.8, 137.3, 136.2, 133.9, 130.8, 130.7, 128.8, 128.5,

128.0, 127.5, 127.3, 127.0, 126.8, 126.7 (q, *J* = 3.8 Hz), 126.5, 125.0 (q, *J* = 268.4 Hz), 119.2 (q, *J* = 32.6 Hz), 112.6, 59.2, 56.3, 40.6, 29.9, 27.6, 25.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.91.

HRMS (ESI+) Calcd. For C₃₁H₂₆F₃NONa⁺ ([M+Na]⁺): 508.1859, found: 508.1860.

(2-benzyl-8-(benzyloxy)-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2yl)(phenyl)methanone (**3c**):

yield (70.8 mg, 60%); dr > 20:1; white solid; m.p. = 192.1–193.6 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.24 (m, 6H), 7.24 – 7.11 (m, 6H), 7.11 – 7.03 (m, 2H), 7.03 – 6.96 (m, 2H), 6.83 (d, *J* = 7.7 Hz, 1H), 6.74 (d, *J* = 8.1 Hz, 1H), 6.64 (d, *J* = 8.4 Hz, 2H), 6.44 (d, *J* = 7.6 Hz, 2H), 5.51 (d, *J* = 8.8 Hz, 1H), 4.89 (d, *J* = 11.3 Hz, 1H), 4.70 (d, *J* = 11.3 Hz, 1H), 3.65 (d, *J* = 9.3 Hz, 1H), 3.37 (d, *J* = 13.4 Hz, 1H), 3.26 – 3.11 (m, 1H), 3.07 – 2.96 (m, 1H), 2.66 (d, *J* = 13.4 Hz, 1H), 3.26 – 3.11 (m, 1H), 3.07 – 2.96 (m, 1H), 2.66 (d, *J* = 13.4 Hz, 1H), 3.26 – 3.11 (m, 1H), 3.07 – 2.96 (m, 1H), 2.66 (d, *J* = 13.4 Hz, 1H), 3.26 – 3.11 (m, 1H), 3.07 – 2.96 (m, 1H), 2.66 (d, *J* = 13.4 Hz, 1H), 3.26 – 3.11 (m, 1H), 3.07 – 2.96 (m, 1H), 2.66 (d, *J* = 13.4 Hz, 1H), 3.26 – 3.11 (m, 1H), 3.07 – 2.96 (m, 1H), 3.07 – 2.96 (m, 1H), 3.07 – 3.4 Hz, 1H), 3.26 – 3.4 Hz, 1H), 3.26 – 3.11 (m, 1H), 3.07 – 3.96 (m, 1H), 3.26 – 3.4 Hz, 1H), 3.26 – 3.11 (m, 1H), 3.07 – 3.96 (m, 1H), 3.26 – 3.4 Hz, 1H), 3.26 – 3.11 (m, 1H), 3.07 – 3.96 (m, 1H), 3.97 – 3.96 (m, 1H),

Hz, 1H), 2.24 – 2.13 (m, 1H), 2.07 – 1.92 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 210.8, 157.2, 149.3, 141.7, 137.1, 136.1, 135.2, 130.4, 129.3, 128.6, 128.4, 128.12, 128.10, 128.0, 127.5, 126.4, 125.9 (q, *J* = 3.9 Hz), 125.4, 125.2, 125.0 (q, *J* = 268.7 Hz), 121.2, 118.9 (q, *J* = 32.1 Hz), 112.6, 108.9, 70.3, 55.6, 53.5, 39.2, 25.3, 22.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.71.

HRMS (ESI+) Calcd. For $C_{38}H_{33}F_3NO_2^+$ ([M+H]⁺): 592.2458, found: 592.2454.

(2-benzyl-5,8-dimethoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2yl)(phenyl)methanone (**3d**):

yield (33.8 mg, 31%); dr > 20:1; white solid; m.p. = 202.3–203.8 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.4 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.25 – 7.19 (m, 3H), 7.12 – 7.08 (m, 2H), 6.77 (d, J = 8.4 Hz, 2H), 6.74 – 6.67 (m, 1H), 6.66 – 6.61 (m, 1H), 6.53 (d, J = 7.5 Hz, 2H), 5.45 (d, J = 9.2 Hz, 1H), 3.84 (s, 3H), 3.59 (d, J = 9.4 Hz, 1H), 3.40 (s, 3H), 3.36 (d, J = 13.4 Hz, 1H), 3.06 – 2.96 (m, 1H), 2.93 – 2.81 (m, 1H), 2.65 (d, J = 13.4 Hz, 1H), 2.30 – 2.21 (m, 1H), 1.96 – 1.83 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 210.9, 151.9, 151.1, 150.0, 141.8, 137.2, 130.5, 129.5, 128.6, 127.6, 126.8, 126.4, 125.9 (q, J = 3.7 Hz), 125.5, 125.1 (q, J = 268.9 Hz), 124.1, 119.2 (q, J = 32.1 Hz), 113.1, 108.1, 108.0, 55.6, 55.3, 54.2, 39.3, 22.1, 20.2.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.87.

HRMS (ESI+) Calcd. For C₃₃H₃₀F₃NO₃Na⁺ ([M+Na]⁺): 568.2070, found: 568.2080.

(2-benzyl-8-methoxy-1-(phenylamino)-1,2,3,4-tetrahydronaphthalen-2-yl)(phenyl)methanone (3e):

yield (29.5 mg, 33%); dr > 20:1; white solid; m.p. = 130.5–132.4 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.19 (m, 6H), 7.18 – 7.05 (m, 5H), 6.80 (d, *J* = 7.7 Hz, 1H), 6.76 – 6.68 (m, 3H), 6.66 – 6.58 (m, 3H), 5.39 (s, 1H), 3.42 (d, *J* = 13.4 Hz, 1H), 3.36 (s, 3H), 3.26 – 3.09 (m, 2H), 3.04 – 2.92 (m, 1H), 2.64 (d, *J* = 13.4 Hz, 1H), 2.20 – 2.09 (m, 1H), 2.08 – 1.94 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 211.2, 158.2, 147.8, 142.1, 137.5, 134.9, 130.5, 129.1, 128.51, 128.46,
127.7, 127.4, 126.7, 126.2, 125.5, 121.0, 118.0, 114.2, 108.0, 55.8, 55.3, 54.8, 39.2, 25.3, 22.7.
HRMS (ESI+) Calcd. For C₃₁H₂₉NO₂Na⁺ ([M+Na]⁺): 470.2091, found: 470.2095.

ethyl 4-((2-benzoyl-2-benzyl-8-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)amino)benzoate (**3f**): yield (50.9 mg, 49%); dr > 20:1; white solid; m.p. = 229.2-231.4 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H), 7.33 – 7.15 (m, 7H), 7.12 – 7.05 (m, 2H), 6.81 (d, J = 7.7 Hz, 1H), 6.71 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 8.1 Hz, 1H), 6.58 – 6.51 (m, 2H), 5.50 (d, J = 9.8 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 3.76 (d, J = 9.8 Hz, 1H), 3.46 (s, 3H), 3.42 (d, J = 13.4 Hz, 1H), 3.25 – 3.12 (m, 1H), 3.03 – 2.93 (m, 1H), 2.67 (d, J = 13.4 Hz, 1H), 2.25 – 2.15 (m, 1H), 2.03 – 1.89 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 210.4, 167.0, 158.2, 151.1, 141.6, 137.2, 135.0, 130.8, 130.4, 129.4, 128.6, 128.1, 127.5, 126.8, 125.5, 125.2, 121.0, 119.1, 112.5, 107.9, 60.1, 55.5, 54.9, 53.7, 39.2, 25.2, 22.7, 14.5.

HRMS (ESI+) Calcd. For C₃₄H₃₃NO₄Na⁺ ([M+Na]⁺): 542.2301, found: 542.2293.

(2-benzyl-1-((4-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-

(phenyl)methanone (**3g**):

yield (59.8 mg, 62%); dr > 20:1; white solid; m.p. = 190.3–192.6 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.13 (m, 7H), 7.14 – 7.05 (m, 2H), 7.09 (d, J = 8.8 Hz, 2H), 6.84 – 6.78 (m, 1H), 6.70 – 6.62 (m, 1H), 6.67 (d, J = 8.8 Hz, 2H), 6.63 – 6.55 (m, 2H), 5.32 (s, 1H), 3.42 (s, 3H), 3.39 (d, J = 13.4 Hz, 1H), 3.29 – 3.09 (m, 2H), 3.02 – 2.92 (m, 1H), 2.64 (d, J = 13.4 Hz, 1H), 2.20 – 2.10 (m, 1H), 2.03 – 1.92 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 211.0, 158.2, 146.3, 141.9, 137.3, 134.9, 130.4, 129.3, 128.6, 128.3, 127.9, 127.5, 126.8, 125.8, 125.4, 122.3, 121.0, 115.1, 107.9, 55.7, 55.2, 54.8, 39.2, 25.2, 22.7. HRMS (ESI+) Calcd. For C₃₁H₂₈ClNO₂Na⁺ ([M+Na]⁺): 504.1701, found: 504.1700.

(2-benzyl-1-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-((3-chlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-methoxy-1,2,3,4-tetrahydronaphthalen-2-methoxy-1,2,3,4-tetrahydronaphthalen-2-methoxy-1,2,3,4-tetrahydronaphthalen-2-methoxy-1,2,3,4-tetrahydronaphthalen-2-methoxy-1,2,3,4-tetrahydronaphthalen-2-methoxy-1,2,3,4-tetrahydronaphthalen-2-methoxy-

(phenyl)methanone (3h):

yield (54.0 mg, 56%); dr > 20:1; white solid; m.p. = 173.9–175.6 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 3H), 7.24 – 7.09 (m, 6H), 7.06 – 6.99 (m, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 6.73 – 6.57 (m, 6H), 5.44 – 5.30 (m, 1H), 3.44 (s, 3H), 3.42 (d, *J* = 13.5 Hz, 1H), 3.34 – 3.29 (m, 1H), 3.23 – 3.09 (m, 1H), 3.03 – 2.93 (m, 1H), 2.65 (d, *J* = 13.5 Hz, 1H), 2.21 – 2.10 (m, 1H), 2.02 – 1.88 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 210.6, 158.2, 148.8, 141.7, 137.3, 135.0, 134.1, 130.4, 129.4, 128.5, 127.9, 127.5, 126.8, 125.63, 125.61, 121.0, 117.7, 113.9, 112.2, 107.9, 55.7, 54.8, 54.7, 39.2, 25.2, 22.6.

HRMS (ESI+) Calcd. For $C_{31}H_{28}CINO_2Na^+$ ([M+Na]⁺): 504.1701, found: 504.1703.

(2-benzyl-1-((3,5-dichlorophenyl)amino)-8-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)-(phenyl)methanone (**3i**): yield (50.6 mg, 49%); dr > 20:1; white solid; m.p. = 219.6–221.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.24 (m, 4H), 7.22 – 7.11 (m, 5H), 6.81 (d, *J* = 7.8 Hz, 1H), 6.73 – 6.63 (m, 4H), 6.60 – 6.57 (m, 2H), 5.32 (d, *J* = 9.8 Hz, 1H), 3.51 (s, 3H), 3.45 – 3.36 (m, 2H), 3.21 – 3.09 (m, 1H), 3.02 – 2.93 (m, 1H), 2.67 (d, *J* = 13.5 Hz, 1H), 2.22 – 2.13 (m, 1H), 1.97 – 1.85

¹³C NMR (100 MHz, CDCl₃) δ 210.1, 158.0, 149.1, 141.3, 137.0, 135.1, 134.5, 130.3, 129.7, 128.6,
128.2, 127.7, 126.8, 125.8, 125.1, 121.1, 117.4, 112.2, 107.8, 55.5, 54.9, 54.3, 39.1, 25.1, 22.5.
HRMS (ESI+) Calcd. For C₃₁H₂₇Cl₂NO₂Na⁺ ([M+Na]⁺): 554.1050, found: 554.1057.

(m, 1H).

(2-benzyl-8-methoxy-1-((4-methoxyphenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)-(phenyl)methanone (**3j**):

yield (29.6 mg, 31%); dr = 13:1; white solid; m.p. = 119.8–121.4 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 3H), 7.24 – 7.20 (m, 3H), 7.17 – 7.06 (m, 3H), 6.80 (d, *J* = 7.9 Hz, 1H), 6.77 – 6.70 (m, 2H), 6.71 – 6.63 (m, 4H), 6.62 (d, *J* = 8.1 Hz, 1H), 5.28 (s, 1H), 3.76 (s, 3H), 3.40 (d, *J* = 13.4 Hz, 1H), 3.33 (s, 3H), 3.20 – 3.07 (m, 1H), 3.02 – 2.92 (m, 1H), 2.63 (d, *J* = 13.4 Hz, 1H), 2.16 – 2.07 (m, 1H), 2.07 – 1.94 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 211.5, 158.2, 152.5, 142.3, 137.6, 134.8, 130.5, 129.0, 128.5, 127.6, 127.4, 126.6, 126.4, 125.5, 121.1, 115.6, 114.0, 108.0, 56.7, 55.9, 55.7, 54.8, 39.2, 25.3, 22.7. HRMS (ESI+) Calcd. For C₃₂H₃₁NO₃Na⁺ ([M+Na]⁺): 500.2196, found: 500.2198.

(2-benzyl-8-methoxy-1-((3-methoxyphenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)-

(phenyl)methanone (3k):

yield (30.6 mg, 32%); dr > 20:1; white solid; m.p. = 206.9–208.7 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 3H), 7.24 – 7.19 (m, 3H), 7.18 – 7.13 (m, 1H), 7.12 – 7.07 (m, 2H), 7.06 – 7.00 (m, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 6.67 – 6.57 (m, 3H), 6.39 – 6.25 (m, 3H), 5.38 (s, 1H), 3.80 (s, 3H), 3.42 (s, 3H), 3.45 – 3.38 (m, 1H), 3.30 – 3.08 (m, 2H), 3.02 – 2.92 (m, 1H), 2.63 (d, *J* = 13.4 Hz, 1H), 2.17 – 2.08 (m, 1H), 2.07 – 1.94 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 211.1, 160.3, 158.3, 149.2, 142.1, 137.5, 134.9, 130.5, 129.1, 128.5, 127.8, 127.4, 126.7, 126.2, 125.4, 121.0, 108.0, 107.2, 103.7, 99.8, 55.8, 55.2, 55.1, 55.0, 39.2, 25.3, 22.7.

HRMS (ESI+) Calcd. For C₃₂H₃₁NO₃Na⁺ ([M+Na]⁺): 500.2196, found: 500.2199.

(2-benzyl-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)(*p*-tolyl)methanone (**3l**):

yield (77.3 mg, 73%); dr > 20:1; white solid; m.p. = 216.8–218.6 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.4 Hz, 2H), 7.32 – 7.21 (m, 3H), 7.23 – 7.14 (m, 3H), 6.92 (d, J = 8.0 Hz, 2H), 6.85 – 6.78 (m, 1H), 6.72 (d, J = 8.4 Hz, 2H), 6.69 – 6.62 (m, 1H), 6.57 (d, J = 8.0 Hz, 2H), 5.49 – 5.42 (m, 1H), 3.65 – 3.53 (m, 1H), 3.45 (s, 3H), 3.42 (d, J = 13.4 Hz, 1H), 3.24 – 3.10 (m, 1H), 3.04 – 2.93 (m, 1H), 2.67 (d, J = 13.4 Hz, 1H), 2.25 (s, 3H), 2.26 – 2.17 (m, 1H), 2.06 – 1.93 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 210.1, 158.2, 150.0, 139.9, 138.8, 137.2, 135.1, 130.3, 128.5, 128.2, 128.0, 126.8, 126.0, 125.8 (q, *J* = 4.0 Hz), 125.4, 125.1 (q, *J* = 268.9 Hz), 121.0, 119.0 (q, *J* = 32.6)

Hz), 112.9, 107.9, 55.6, 54.8, 53.9, 39.3, 25.2, 22.7, 21.2.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.81.

HRMS (ESI+) Calcd. For C₃₃H₃₀F₃NO₂Na⁺ ([M+Na]⁺): 552.2121, found: 552.2123.

(2-benzyl-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)(*m*-tolyl)methanone (**3m**):

yield (67.8 mg, 64%); dr > 20:1; white solid; m.p. = 197.1–198.9 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 7.32 – 7.25 (m, 3H), 7.23 – 7.16 (m, 3H), 7.07 – 6.97 (m, 2H), 6.82 (d, J = 7.8 Hz, 1H), 6.74 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 8.0 Hz, 1H), 6.66 (d, J = 7.5 Hz, 1H), 6.23 (s, 1H), 5.50 – 5.42 (m, 1H), 3.65 – 3.57 (m, 1H), 3.46 (s, 3H), 3.39 (d, J = 13.5 Hz, 1H), 3.24 – 3.11 (m, 1H), 3.03 – 2.94 (m, 1H), 2.67 (d, J = 13.5 Hz, 1H), 2.25 – 2.15 (m, 1H), 2.09 (s, 3H), 2.04 – 1.90 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 210.7, 158.2, 145.0, 141.6, 137.4, 137.2, 135.1, 130.4, 130.1, 128.6, 128.1, 127.4, 126.8, 126.3, 125.8 (q, *J* = 3.8 Hz), 125.3, 125.1 (q, *J* = 268.9 Hz), 122.4, 121.0, 119.0 (q, *J* = 32.3 Hz), 112.9, 107.9, 55.6, 54.9, 53.8, 39.3, 25.2, 22.7, 21.2.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.81.

HRMS (ESI+) Calcd. For C₃₃H₃₀F₃NO₂Na⁺ ([M+Na]⁺): 552.2121, found: 552.2125.

(2-benzyl-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)(*o*-tolyl)methanone (**3n**):

yield (59.3 mg, 56%); dr > 20:1; white solid; m.p. = 211.3–213.2 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.4 Hz, 2H), 7.30 – 7.24 (m, 3H), 7.20 – 7.13 (m, 3H),

7.11 - 7.04 (m, 1H), 7.00 - 6.94 (m, 1H), 6.86 - 6.79 (m, 2H), 6.71 (d, J = 8.4 Hz, 2H), 6.66 - 6.60 (m, 1H), 6.13 - 6.02 (m, 1H), 5.49 (d, J = 9.9 Hz, 1H), 3.53 (d, J = 9.9 Hz, 1H), 3.35 (s, 3H), 3.22 (d, J = 13.6 Hz, 1H), 3.26 - 3.14 (m, 1H), 3.10 - 2.99 (m, 1H), 2.76 (d, J = 13.6 Hz, 1H), 2.40 - 2.28 (m, 1H), 2.04 - 1.91 (m, 1H), 1.85 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 210.8, 158.0, 150.5, 139.4, 137.1, 137.0, 134.8, 131.4, 130.6, 128.9, 128.6, 128.0, 126.9, 126.0, 125.6 (q, *J* = 3.8 Hz), 125.0 (q, *J* = 268.7 Hz), 124.9, 123.9, 121.1, 119.4 (q, *J* = 32.3 Hz), 114.0, 108.0, 56.1, 54.6, 54.3, 40.1, 25.3, 22.9, 19.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.90.

HRMS (ESI+) Calcd. For C₃₃H₃₀F₃NO₂Na⁺ ([M+Na]⁺): 552.2121, found: 552.2126.

(2-benzyl-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)(4-chlorophenyl)methanone (**30**):

yield (83.6 mg, 76%); dr > 20:1; white solid; m.p. = 212.5–214.5 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.4 Hz, 2H), 7.34 – 7.23 (m, 3H), 7.23 – 7.15 (m, 3H), 7.07 (d, J = 8.5 Hz, 2H), 6.85 – 6.79 (m, 1H), 6.76 (d, J = 8.4 Hz, 2H), 6.69 – 6.63 (m, 1H), 6.46 (d, J = 8.5 Hz, 2H), 5.42 (d, J = 9.6 Hz, 1H), 3.58 (d, J = 9.6 Hz, 1H), 3.43 (s, 3H), 3.37 (d, J = 13.4 Hz, 1H), 3.24 – 3.11 (m, 1H), 3.04 – 2.95 (m, 1H), 2.67 (d, J = 13.4 Hz, 1H), 2.20 – 2.11 (m, 1H), 2.01 – 1.90 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 209.8, 158.2, 145.0, 139.9, 137.0, 135.6, 134.9, 130.3, 128.7, 128.2, 127.8, 127.0, 126.9, 125.9 (q, *J* = 3.9 Hz), 125.0 (q, *J* = 268.9 Hz), 125.1, 121.0, 119.4 (q, *J* = 32.5 Hz), 113.0, 108.0, 55.8, 54.8, 54.2, 39.2, 25.2, 22.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.86.

HRMS (ESI+) Calcd. For C₃₂H₂₇ClF₃NO₂Na⁺ ([M+Na]⁺): 572.1575, found: 572.1581.

(2-benzyl-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)(3chlorophenyl)methanone (**3p**): yield (68.2 mg, 62%); dr > 20:1; white solid; m.p. = 193.7–195.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.4 Hz, 2H), 7.35 – 7.26 (m, 3H), 7.22 – 7.15 (m, 4H), 7.06 – 6.99 (m, 1H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.79 (d, *J* = 8.4 Hz, 2H), 6.66 (d, *J* = 8.1 Hz, 1H), 6.40 (d, *J* = 7.7 Hz, 1H), 6.37 – 6.32 (m, 1H), 5.42 (d, *J* = 9.6 Hz, 1H), 3.62 (d, *J* = 9.6 Hz, 1H), 3.44 (s, 3H), 3.34 (d, *J* = 13.4 Hz, 1H), 3.24 – 3.12 (m, 1H), 3.06 – 2.96 (m, 1H), 2.68 (d, *J* = 13.4 Hz, 1H), 2.18 – 2.08 (m, 1H), 2.02 – 1.89 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 209.5, 158.2, 149.9, 143.2, 136.9, 134.9, 133.6, 130.4, 129.4, 129.0, 128.7, 128.2, 127.0, 125.9 (q, *J* = 3.8 Hz), 125.4, 125.1 (q, *J* = 269.0 Hz), 125.0, 123.4, 121.0, 119.5 (q, *J* = 32.4 Hz), 113.0, 108.0, 55.9, 54.8, 54.2, 39.2, 25.2, 22.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.88.

HRMS (ESI+) Calcd. For C₃₂H₂₇ClF₃NO₂Na⁺ ([M+Na]⁺): 572.1575, found: 572.1580.

(2-benzyl-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)(2-chlorophenyl)methanone (**3q**):

yield (40.7 mg, 37%); dr > 20:1; white solid; m.p. = 190.8–192.7 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 5H), 7.21 – 7.16 (m, 1H), 7.14 – 7.06 (m, 4H), 6.97 – 6.91 (m, 1H), 6.81 (d, *J* = 7.8 Hz, 1H), 6.67 (d, *J* = 8.1 Hz, 1H), 6.62 (d, *J* = 8.5 Hz, 2H), 6.17 (d, *J* = 7.8 Hz, 1H), 5.41 (d, *J* = 9.8 Hz, 1H), 3.65 (d, *J* = 9.8 Hz, 1H), 3.43 (s, 3H), 3.20 – 2.91 (m, 4H), 2.33 – 2.24 (m, 1H), 2.20 – 2.08 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 208.0, 157.9, 150.0, 140.1, 136.9, 134.9, 130.9, 130.11, 130.08, 129.6,

128.3, 128.1, 126.8, 126.3, 125.74, 125.68, 125.6 (q, J = 3.7 Hz), 125.1 (q, J = 268.5 Hz), 121.2, 119.0 (q, J = 32.4 Hz), 113.3, 108.1, 55.9, 54.8, 52.1, 39.7, 25.1, 23.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.88.

HRMS (ESI+) Calcd. For C₃₂H₂₇ClF₃NO₂Na⁺ ([M+Na]⁺): 572.1575, found: 572.1578.

(2-benzyl-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)-(thiophen-2-yl)methanone (**3r**):

yield (67.8 mg, 65%); dr = 4:1; white solid; m.p. = 210.8–212.6 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.72 (m, 1H), 7.47 (d, J = 5.0 Hz, 1H), 7.26 – 7.13 (m, 6H), 7.08 – 7.01 (m, 3H), 6.84 (d, J = 7.7 Hz, 1H), 6.68 (d, J = 8.1 Hz, 1H), 6.50 (d, J = 8.4 Hz, 2H), 5.65 – 5.55 (m, 1H), 3.76 – 3.64 (m, 2H), 3.49 (s, 3H), 3.15 – 2.94 (m, 2H), 2.78 (d, J = 14.5 Hz, 1H), 2.34 – 2.21 (m, 1H), 2.20 – 2.12 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 197.2, 158.2, 149.7, 143.9, 136.6, 135.6, 132.3, 131.3, 129.5, 128.4, 128.2, 127.4, 126.7, 125.4 (q, *J* = 3.8 Hz), 125.1, 125.0 (q, *J* = 268.9 Hz), 121.3, 118.6 (q, *J* = 32.2 Hz), 113.0, 107.9, 55.5, 54.8, 53.1, 39.0, 24.8, 21.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.90.

HRMS (ESI+) Calcd. For C₃₀H₂₇F₃NO₂S⁺ ([M+H]⁺): 522.1709, found: 522.1705.

(2-benzyl-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)-(cyclohexyl)methanone (**3s**):

yield (53.2 mg, 51%); dr = 7:1; white solid; m.p. = 216.8–218.5 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.4 Hz, 2H), 7.27 – 7.14 (m, 4H), 7.11 – 7.05 (m, 2H),

6.83 (d, *J* = 7.7 Hz, 1H), 6.71 (d, *J* = 8.4 Hz, 2H), 6.65 (d, *J* = 8.1 Hz, 1H), 5.16 – 5.06 (m, 1H), 3.60 – 3.51 (m, 1H), 3.38 (s, 3H), 3.23 – 3.12 (m, 1H), 3.16 (d, *J* = 13.4 Hz, 1H), 3.09 – 3.01 (m, 1H), 2.53 – 2.33 (m, 2H), 2.50 (d, *J* = 13.4 Hz, 1H), 2.30 – 2.20 (m, 1H), 1.58 – 1.44 (m, 3H), 1.41 – 1.31 (m, 1H), 1.09 – 0.72 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 217.5, 158.3, 150.4, 137.2, 135.2, 130.5, 128.1, 128.0, 126.5, 125.8 (q, *J* = 3.8 Hz), 125.6, 125.1 (q, *J* = 269.8 Hz), 121.0, 119.0 (q, *J* = 32.3 Hz), 113.0, 107.9, 55.5, 54.7, 54.4, 46.9, 38.7, 28.0, 27.9, 25.7, 25.7, 25.6, 25.4, 20.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.82.

HRMS (ESI+) Calcd. For C₃₂H₃₄F₃NO₂Na⁺ ([M+ Na]⁺): 544.2434, found: 544.2436.

1-(-2-benzyl-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)-3-phenylpropan-1-one (3t):

yield (62.0 mg, 57%); dr = 8:1; white solid; m.p. = 206.5–208.3 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 7.25 – 7.16 (m, 4H), 7.14 – 7.06 (m, 3H), 7.04 – 6.99 (m, 2H), 6.92 – 6.87 (m, 2H), 6.81 (d, J = 7.7 Hz, 1H), 6.77 (d, J = 8.4 Hz, 2H), 6.65 (d, J = 8.0 Hz, 1H), 5.24 (d, J = 8.6 Hz, 1H), 3.59 (d, J = 8.6 Hz, 1H), 3.42 (s, 3H), 3.18 (d, J = 13.8 Hz, 1H), 3.13 – 3.02 (m, 1H), 3.02 – 2.91 (m, 1H), 2.71 – 2.59 (m, 2H), 2.57 – 2.47 (m, 1H), 2.52 (d, J = 13.8 Hz, 1H), 2.36 – 2.27 (m, 1H), 2.25 – 2.14 (m, 1H), 2.12 – 2.01 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 213.7, 158.3, 150.3, 141.3, 136.9, 135.3, 129.6, 128.4, 128.3, 128.2, 128.1, 126.6, 125.9 (q, J = 3.8 Hz), 125.8, 125.1 (q, J = 268.8 Hz), 125.2, 121.1, 119.1 (q, J = 32.5 Hz), 113.2, 107.9, 54.8, 54.7, 53.3, 43.2, 39.2, 29.0, 25.0, 20.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.80.

HRMS (ESI+) Calcd. For C₃₄H₃₂F₃NO₂Na⁺ ([M+ Na]⁺): 566.2277, found: 566.2280.

(8-methoxy-2-(4-methoxybenzyl)-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydro-

naphthalen-2-yl)(phenyl)methanone (**3u**):

yield (69.8 mg, 64%); dr > 20:1; white solid; m.p. = 184.9–186.7 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 7.28 – 7.22 (m, 1H), 7.20 – 7.15 (m, 1H), 7.15 – 7.08 (m, 4H), 6.86 – 6.78 (m, 3H), 6.75 (d, J = 8.4 Hz, 2H), 6.68 – 6.59 (m, 3H), 5.42 (d, J = 9.4 Hz, 1H), 3.78 (s, 3H), 3.60 (d, J = 9.4 Hz, 1H), 3.43 (s, 3H), 3.35 (d, J = 13.6 Hz, 1H), 3.22 – 3.07 (m, 1H), 3.03 – 2.91 (m, 1H), 2.61 (d, J = 13.6 Hz, 1H), 2.26 – 2.14 (m, 1H), 2.02 – 1.90 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 210.8, 158.4, 158.2, 150.1, 141.7, 135.1, 131.3, 129.4, 129.1, 128.1, 127.6, 125.9 (q, J = 3.8 Hz), 125.5, 125.1 (q, J = 260.1 Hz), 125.3, 121.0, 119.1 (q, J = 32.2 Hz), 114.0, 113.0, 107.9, 55.6, 55.2, 54.8, 54.1, 38.3, 25.2, 22.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.81.

HRMS (ESI+) Calcd. For C₃₃H₃₀F₃NO₂Na⁺ ([M+ Na]⁺): 568.2070, found: 568.2076.

(8-methoxy-2-(3-methoxybenzyl)-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)(phenyl)methanone (**3**y):

yield (61.1 mg, 56%); dr > 20:1; white solid; m.p. = 195.4–197.2 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.4 Hz, 2H), 7.28 – 7.15 (m, 3H), 7.15 – 7.09 (m, 2H), 6.84 – 6.73 (m, 6H), 6.68 – 6.59 (m, 1H), 6.63 (d, J = 8.4 Hz, 2H), 5.43 (d, J = 9.4 Hz, 1H), 3.71 (s, 3H), 3.60 (d, J = 9.4 Hz, 1H), 3.43 (s, 3H), 3.40 (d, J = 13.4 Hz, 1H), 3.22 – 3.09 (m, 1H), 3.02 – 2.93 (m, 1H), 2.64 (d, J = 13.4 Hz, 1H), 2.27 – 2.17 (m, 1H), 2.03 – 1.91 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 210.7, 159.6, 158.2, 150.0, 141.7, 138.7, 135.0, 129.5, 129.4, 128.1,

127.6, 125.9 (q, *J* = 3.8 Hz), 125.5, 125.3, 125.1 (q, *J* = 268.9 Hz), 122.7, 121.0, 119.2 (q, *J* = 32.4 Hz), 116.0, 113.0, 112.4, 107.9, 55.5, 55.1, 54.8, 54.2, 39.3, 25.2, 22.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.83.

HRMS (ESI+) Calcd. For C₃₃H₃₀F₃NO₂Na⁺ ([M+ Na]⁺): 568.2070, found: 568.2070.

(8-methoxy-2-(2-methoxybenzyl)-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydro-

naphthalen-2-yl)(phenyl)methanone (**3w**):

yield (54.6 mg, 50%); dr > 20:1; white solid; m.p. = 209.5–211.4 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.14 (m, 7H), 7.11 – 7.06 (m, 1H), 6.99 – 6.93 (m, 2H), 6.89 – 6.82 (m, 2H), 6.80 (d, J = 7.7 Hz, 1H), 6.69 – 6.63 (m, 3H), 5.51 (d, J = 8.4 Hz, 1H), 3.56 (s, 3H), 3.56 – 3.53 (m, 1H), 3.46 (s, 3H), 3.33 – 3.22 (m, 1H), 3.29 (d, J = 13.6 Hz, 1H), 2.96 (d, J = 13.6 Hz, 1H), 2.94 – 2.84 (m, 1H), 2.25 – 2.14 (m, 1H), 2.02 – 1.90 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 208.5, 158.1, 157.9, 150.0, 141.5, 135.7, 132.3, 129.5, 128.1, 127.9, 127.5, 126.4, 125.7, 125.6 (q, *J* = 3.4 Hz), 125.5, 125.1 (q, *J* = 268.4 Hz), 121.0, 120.5, 118.8 (q, *J* = 32.5 Hz), 113.0, 110.4, 107.7, 54.9, 54.8, 54.5, 53.0, 33.8, 24.9, 23.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.81.

HRMS (ESI+) Calcd. For $C_{33}H_{30}F_3NO_2Na^+$ ([M+ Na]⁺): 568.2070, found: 568.2075.

(2-(4-chlorobenzyl)-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)(phenyl)methanone (**3x**):

yield (59.4 mg, 54%); dr > 20:1; white solid; m.p. = 201.5–203.1 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 7.29 – 7.23 (m, 3H), 7.21 – 7.16 (m, 3H),

7.16 – 7.11 (m, 2H), 6.83 – 6.79 (m, 1H), 6.74 (d, *J* = 8.4 Hz, 2H), 6.69 – 6.64 (m, 3H), 5.41 (d, *J* = 9.6 Hz, 1H), 3.60 (d, *J* = 9.6 Hz, 1H), 3.43 (s, 3H), 3.39 (d, *J* = 13.6 Hz, 1H), 3.17 – 3.05 (m, 1H), 3.04 – 2.95 (m, 1H), 2.64 (d, *J* = 13.6 Hz, 1H), 2.21 – 2.12 (m, 1H), 2.08 – 1.97 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 210.3, 158.2, 150.0, 141.5, 135.7, 134.8, 132.7, 131.7, 129.7, 128.7, 128.2, 127.7, 125.9 (q, *J* = 3.9 Hz), 125.5, 125.1, 125.0 (q, *J* = 268.4 Hz), 121.0, 119.3 (q, *J* = 32.4 Hz), 113.0, 108.0, 55.6, 54.8, 54.2, 38.6, 25.2, 22.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.87.

HRMS (ESI+) Calcd. For C₃₂H₂₇ClF₃NO₂Na⁺ ([M+ Na]⁺): 572.1575, found: 572.1582.

(2-(3-chlorobenzyl)-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)(phenyl)methanone (**3**y):

yield (66.0 mg, 60%); dr > 20:1; white solid; m.p. = 205.5–207.3 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.4 Hz, 2H), 7.30 – 7.11 (m, 7H), 7.10 – 7.04 (m, 1H), 6.82 (d, J = 7.7 Hz, 1H), 6.76 (d, J = 8.4 Hz, 2H), 6.71 – 6.63 (m, 3H), 5.41 (d, J = 9.6 Hz, 1H), 3.61 (d, J = 9.6 Hz, 1H), 3.43 (s, 3H), 3.39 (d, J = 13.4 Hz, 1H), 3.17 – 3.06 (m, 1H), 3.05 – 2.96 (m, 1H), 2.64 (d, J = 13.4 Hz, 1H), 2.21 – 2.13 (m, 1H), 2.11 – 1.99 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 210.3, 158.2, 150.0, 141.5, 139.3, 134.8, 134.3, 130.3, 129.8, 129.6, 129.1, 128.6, 128.2, 127.7, 127.0, 126.4, 125.9 (q, *J* = 3.8 Hz), 125.5, 125.1, 125.0 (q, *J* = 268.4 Hz), 123.7, 121.1, 121.0, 119.3 (q, *J* = 32.4 Hz), 113.0, 108.0, 55.5, 54.8, 54.2, 38.9, 25.2, 22.8.
¹⁹F NMR (376 MHz, CDCl₃) δ -60.86.

HRMS (ESI+) Calcd. For C₃₂H₂₇ClF₃NO₂Na⁺ ([M+ Na]⁺): 572.1575, found: 572.1581.

(2-(2-chlorobenzyl)-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)(phenyl)methanone (**3z**): yield (62.7 mg, 57%); dr > 20:1; white solid; m.p. = 181.6–183.7 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 4H), 7.22 – 7.16 (m, 4H), 7.16 – 7.10 (m, 2H), 6.99 – 6.95 (m, 2H), 6.79 (d, J = 7.7 Hz, 1H), 6.72 – 6.64 (m, 3H), 5.50 (d, J = 9.4 Hz, 1H), 3.60 (d, J = 9.4 Hz, 1H), 3.46 (s, 3H), 3.45 – 3.40 (m, 1H), 3.26 – 3.15 (m, 1H), 3.11 (d, J = 14.5 Hz, 1H), 2.98 – 2.87 (m, 1H), 2.36 – 2.24 (m, 1H), 2.20 – 2.07 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 209.3, 158.0, 149.9, 141.2, 135.5, 135.3, 135.0, 131.9, 130.01, 129.96, 128.1, 128.06, 127.7, 126.8, 126.3, 125.8 (q, *J* = 3.7 Hz), 125.1 (q, *J* = 268.8 Hz), 125.0, 121.1, 119.1 (q, *J* = 32.1 Hz), 113.1, 107.9, 55.1, 54.9, 53.7, 35.8, 25.0, 23.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.85.

HRMS (ESI+) Calcd. For $C_{32}H_{27}ClF_3NO_2Na^+$ ([M+ Na]⁺): 572.1575, found: 572.1575.

(8-methoxy-2-(thiophen-2-ylmethyl)-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-

tetrahydronaphthalen-2-yl)(phenyl)methanone (**3aa**):

yield (68.8 mg, 66%); dr > 20:1; white solid; m.p. = 196.1–198.3 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 7.29 – 7.25 (m, 1H), 7.22 – 7.08 (m, 4H), 6.98 – 6.92 (m, 1H), 6.86 – 6.79 (m, 2H), 6.78 – 6.71 (m, 2H), 6.75 (d, J = 8.4 Hz, 2H), 6.65 (d, J = 8.1 Hz, 1H), 5.36 (d, J = 9.4 Hz, 1H), 3.68 (d, J = 14.6 Hz, 1H), 3.63 (d, J = 9.4 Hz, 1H), 3.42 (s, 3H), 3.18 – 3.04 (m, 1H), 3.04 – 2.93 (m, 1H), 2.84 (d, J = 14.6 Hz, 1H), 2.40 – 2.28 (m, 1H), 2.12 – 1.98 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 210.6, 158.3, 150.0, 141.6, 138.7, 135.2, 129.6, 128.2, 127.6, 127.5,

127.1, 125.9 (q, *J* = 3.8 Hz), 125.7, 125.1 (q, *J* = 268.4 Hz), 125.0, 124.3, 121.1, 119.3 (q, *J* = 32.6 Hz), 112.9, 108.0, 55.7, 54.8, 54.1, 33.4, 25.2, 23.0.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.86.

HRMS (ESI+) Calcd. For $C_{30}H_{27}F_3NO_2S^+$ ([M+H]⁺): 522.1709, found: 522.1701.

(8-methoxy-2-(naphthalen-1-ylmethyl)-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-

tetrahydronaphthalen-2-yl)(phenyl)methanone (3bb):

yield (62.2 mg, 55%); dr > 20:1; white solid; m.p. = 188.3–190.2 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.1 Hz, 1H), 7.82 – 7.78 (m, 1H), 7.77 – 7.73 (m, 1H), 7.46 – 7.40 (m, 2H), 7.39 – 7.34 (m, 4H), 7.23 – 7.12 (m, 2H), 7.04 – 6.98 (m, 2H), 6.81 (d, J = 7.7 Hz, 1H), 6.76 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 8.1 Hz, 1H), 6.58 – 6.52 (m, 2H), 5.61 (d, J = 9.4 Hz, 1H), 3.93 (d, J = 14.6 Hz, 1H), 3.64 (d, J = 9.4 Hz, 1H), 3.47 (s, 3H), 3.20 – 3.06 (m, 2H), 2.99 – 2.86 (m, 1H), 2.33 – 2.24 (m, 1H), 2.16 – 2.03 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 210.5, 158.1, 150.0, 141.3, 135.2, 134.1, 133.6, 132.4, 129.5, 128.6, 128.2, 127.7, 127.6, 127.5, 125.9, 125.82 (q, *J* = 3.9 Hz), 125.78, 125.6, 125.4, 125.09 (q, *J* = 268.4 Hz), 125.06, 124.4, 121.1, 119.1 (q, *J* = 32.1 Hz), 113.1, 107.9, 55.2, 54.9, 54.3, 34.5, 25.2, 23.4.
¹⁹F NMR (376 MHz, CDCl₃) δ -60.73.

HRMS (ESI+) Calcd. For C₃₆H₃₀F₃NO₂Na⁺ ([M+ Na]⁺): 588.2121, found: 588.2124.

(8-methoxy-2-(naphthalen-2-ylmethyl)-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4tetrahydronaphthalen-2-yl)(phenyl)methanone (**3cc**):

yield (71.3 mg, 63%); dr > 20:1; white solid; m.p. = 193.5–195.3 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.77 (m, 1H), 7.78 – 7.70 (m, 2H), 7.65 (s, 1H), 7.49 – 7.40 (m, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.36 – 7.29 (m, 1H), 7.24 – 7.14 (m, 2H), 7.07 – 6.99 (m, 2H), 6.85 (d, J = 7.7 Hz, 1H), 6.76 (d, J = 8.4 Hz, 2H), 6.69 – 6.59 (m, 3H), 5.48 (d, J = 9.2 Hz, 1H), 3.62 (d, J = 9.2 Hz, 1H), 3.61 (d, J = 13.6 Hz, 1H), 3.43 (s, 3H), 3.32 – 3.17 (m, 1H), 3.05 – 2.95 (m, 1H), 2.82 (d, J = 13.6 Hz, 1H), 2.28 – 2.14 (m, 1H), 2.08 – 1.94 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 210.7, 158.2, 150.1, 141.6, 135.1, 134.8, 133.4, 132.2, 129.5, 129.0,

128.5, 128.13, 128.09, 127.7, 127.6, 126.1, 125.9 (q, *J* = 2.0 Hz), 125.7, 125.6, 125.3, 125.1 (q, *J* = 268.5 Hz), 121.1, 119.2 (q, *J* = 32.2 Hz), 113.0, 107.9, 55.7, 54.8, 54.3, 39.4, 25.2, 22.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.79.

HRMS (ESI+) Calcd. For C₃₆H₃₀F₃NO₂Na⁺ ([M+ Na]⁺): 588.2121, found: 588.2119.

(8-methoxy-2-neopentyl-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2yl)(phenyl)methanone (**3dd**):

yield (51.5 mg, 52%); dr > 20:1; white solid; m.p. = 191.4–193.1 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.53 (m, 2H), 7.40 – 7.34 (m, 1H), 7.30 – 7.23 (m, 2H), 7.20 – 7.10 (m, 3H), 6.77 (d, *J* = 7.7 Hz, 1H), 6.60 (d, *J* = 8.0 Hz, 1H), 6.38 (d, *J* = 8.4 Hz, 2H), 5.21 (d, *J* = 9.6 Hz, 1H), 3.54 (d, *J* = 9.6 Hz, 1H), 3.37 (s, 3H), 3.04 – 2.94 (m, 2H), 2.78 – 2.67 (m, 1H), 2.27 (d, *J* = 15.2 Hz, 1H), 2.22 – 2.10 (m, 1H), 1.61 – 1.57 (m, 1H), 1.01 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 208.6, 158.0, 149.7, 140.7, 135.5, 130.6, 128.3, 127.9, 127.7, 125.8, 125.4 (q, *J* = 3.8 Hz), 125.0 (q, *J* = 268.8 Hz), 121.0, 118.6 (q, *J* = 31.9 Hz), 112.8, 107.7, 55.0, 54.7, 54.1, 45.1, 32.0, 31.8, 25.3, 24.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.90.

HRMS (ESI+) Calcd. For C₃₀H₃₂F₃NO₂Na⁺ ([M+ Na]⁺): 518.2277, found: 518.2278.

(8-methoxy-2-(3-phenylpropyl)-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)(phenyl)methanone (**3ee**): yield (76.1 mg, 70%); dr = 17:1; white solid; m.p. = 185.1−187.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 − 7.29 (m, 1H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.26 − 7.21 (m, 3H), 7.20 − 7.06 (m, 7H), 6.72 (d, *J* = 7.7 Hz, 1H), 6.60 (d, *J* = 8.1 Hz, 1H), 6.42 (d, *J* = 8.4 Hz, 2H), 5.20 (d, *J* = 9.4 Hz, 1H), 3.68 (d, *J* = 9.4 Hz, 1H), 3.35 (s, 3H), 2.93 − 2.83 (m, 1H), 2.76 − 2.62 (m, 1H), 2.60 − 2.53 (m, 2H), 2.36 − 2.22 (m, 1H), 2.19 − 1.98 (m, 2H), 1.82 − 1.66 (m, 1H), 1.66 − 1.47 (m,

3H).

¹³C NMR (100 MHz, CDCl₃) δ 209.0, 158.2, 149.9, 141.6, 140.7, 135.8, 130.2, 129.0, 128.4, 128.3, 128.0, 127.9, 126.7, 126.4, 125.9, 125.5 (q, *J* = 3.9 Hz), 125.4, 125.0 (q, *J* = 268.7 Hz), 123.7, 121.1, 121.0, 118.7 (q, *J* = 32.4 Hz), 112.9, 107.8, 54.6, 54.4, 53.4, 36.1, 32.3, 26.8, 24.8, 22.6.
¹⁹F NMR (376 MHz, CDCl₃) δ -60.88.

HRMS (ESI+) Calcd. For C₃₄H₃₂F₃NO₂Na⁺ ([M+ Na]⁺): 566.2277, found: 566.2279.

(2-chloro-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-(trifluoromethyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-(trifluoromethyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-(trifluoromethyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-(trifluoromethyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-(trifluoromethyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-(trifluoromethyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-(trifluoromethyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-(trifluoromethyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-(trifluoromethyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-(trifluoromethyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-(trifluoromethyl)amino)-1,2,3,4-tetrahydronaphthalen-2-nethoxy-1-(trifluoromethyl-1-(trifluoromethy

yl)(phenyl)methanone (3ff):

yield (32.2 mg, 35%); dr > 20:1; white solid; m.p. = 193.1–195.0 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 2H), 7.54 – 7.46 (m, 1H), 7.36 – 7.29 (m, 2H), 7.24 – 7.16 (m, 1H), 7.00 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 7.7 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 6.12 (d, J = 8.4 Hz, 2H), 5.69 (d, J = 10.4 Hz, 1H), 3.59 (d, J = 10.4 Hz, 1H), 3.39 (s, 3H), 3.31 – 3.19 (m, 1H), 3.08 – 2.97 (m, 1H), 2.69 – 2.58 (m, 1H), 2.43 – 2.30 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 196.0, 158.2, 148.6, 136.2, 135.7, 132.3, 129.8, 128.5, 128.4, 125.3

(q, J = 4.1 Hz), 124.8 (q, J = 268.5 Hz), 123.2, 121.1, 119.3 (q, J = 32.1 Hz), 113.0, 107.9, 70.4, 54.7, 52.9, 26.6, 24.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -61.19.

HRMS (ESI+) Calcd. For C₂₅H₂₁ClF₃NO₂Na⁺ ([M+ Na]⁺): 482.1105, found: 482.1104.

(8-methoxy-2-phenyl-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-

yl)(phenyl)methanone (3gg):

yield (61.1 mg, 61%); dr = 3.1; white solid; m.p. = 198.5–200.1 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 4H), 7.20 – 7.16 (m, 4H), 7.13 (t, J = 7.9 Hz, 1H), 7.08 - 7.03 (m, 2H), 6.95 (d, J = 8.4 Hz, 2H), 6.71 - 6.62 (m, 2H), 6.00 (d, J = 8.4 Hz, 2H), 5.85 (d, J = 10.6 Hz, 1H), 3.81 (d, J = 10.6 Hz, 1H), 3.36 (s, 3H), 2.83 – 2.73 (m, 1H), 2.64 – 2.56 (m, 1H), 2.43 – 2.31 (m, 1H), 2.21 – 2.08 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 202.5, 158.3, 150.2, 140.4, 138.7, 138.0, 132.0, 129.9, 129.8, 128.8, 128.6, 128.1, 127.5, 126.5, 125.7 (q, J = 3.7 Hz), 125.6 (q, J = 269.0 Hz), 122.0, 118.9 (q, J = 32.1 Hz), 113.3, 108.6, 59.5, 55.3, 50.2, 29.1, 25.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.90.

HRMS (ESI+) Calcd. For C₃₁H₂₆F₃NO₂Na⁺ ([M+Na]⁺): 524.1818, found: 524.1811.

3hh

8'-methoxy-1'-((4-(trifluoromethyl)phenyl)amino)-3',4',8,9-tetrahydro-1'H-spiro[benzo[7]annulene-6,2'-naphthalen]-5(7H)-one (**3hh**):

yield (42.8 mg, 46%); dr = 3:1; white solid; m.p. = $188.0-190.1 \text{ }^{\circ}\text{C}$;

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 1H), 7.23 – 7.17 (m, 1H), 7.15 – 7.06 (m, 3H), 6.95 –

6.87 (m, 2H), 6.75 (d, *J* = 7.7 Hz, 1H), 6.59 (d, *J* = 8.1 Hz, 1H), 6.08 (d, *J* = 8.4 Hz, 2H), 5.24 (d, *J* = 9.4 Hz, 1H), 3.71 (d, *J* = 9.4 Hz, 1H), 3.34 (s, 3H), 3.05 – 2.95 (m, 3H), 2.95 – 2.87 (m, 1H), 2.27 – 2.13 (m, 2H), 2.08 – 1.93 (m, 1H), 1.91 – 1.80 (m, 2H), 1.78 – 1.69 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 210.5, 158.1, 149.8, 140.7, 137.7, 136.1, 130.1, 129.8, 128.8, 127.9, 127.0, 125.2 (q, *J* = 3.7 Hz), 125.0 (q, *J* = 268.3 Hz), 121.3, 118.5 (q, *J* = 32.3 Hz), 113.4, 107.9, 54.6, 53.3, 49.5, 35.8, 33.2, 24.7, 24.3, 23.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.92.

HRMS (ESI+) Calcd. For $C_{28}H_{26}F_3NO_2Na^+$ ([M+ Na]⁺): 488.1808, found: 488.1810.

V. Synthetic Transformations

To a 4-mL vial charged with a stir bar were added **3a** (103 mg, 0.2 mmol) and THF (2 mL). To this vial, LiAlH₄ (15.2 mg, 0.4 mmol) was added and the mixture was stirred at 0 °C for 1 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was diluted with water (10 mL), and extracted with ethyl acetate (3 x 15 mL). The combined organic layers were washed with brine (15 mL), dried over Na₂SO₄ and concentrated carefully under vacuum. The residue was purified by chromatography on silica gel (eluent: PE/EA) to give the desired product **4**.

(2-benzyl-8-methoxy-1-((4-(trifluoromethyl)phenyl)amino)-1,2,3,4-tetrahydronaphthalen-2-yl)(phenyl)methanol (4):

yield (74.3 mg, 71%); dr > 20:1; yellow solid; m.p. = 175.1–177.5 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.4 Hz, 2H), 7.25 – 7.13 (m, 8H), 7.12 – 7.02 (m, 3H), 6.72 (d, J = 7.7 Hz, 1H), 6.69 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 8.1 Hz, 1H), 5.27 – 5.16 (m, 1H), 4.97 (s, 1H), 3.50 – 3.36 (m, 2H), 3.34 (s, 3H), 3.04 – 2.93 (m, 2H), 2.80 (d, J = 14.1 Hz, 1H), 2.59 (d, J = 14.1 Hz, 1H), 1.94 – 1.86 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 157.5, 150.3, 141.8, 138.1, 135.7, 130.4, 128.4, 128.1, 127.6, 127.1, 127.1, 127.0, 126.3, 125.8 (q, *J* = 3.6 Hz), 125.1 (q, *J* = 268.5 Hz) 121.1, 119.0 (q, *J* = 32.4 Hz), 114.1, 107.7, 78.4, 54.6, 52.3, 44.5, 39.5, 25.2, 22.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -60.81.

HRMS (ESI+) Calcd. For C₃₂H₃₁F₃NO₂⁺ ([M+ H]⁺): 518.2301, found: 518.2295.

To a flame-dried 10-mL Schlenk flask charged with a stir bar were added Ph₃PMeBr (256.8 mg, 0.4 mmol) and anhydrous THF (2 mL) under N₂ atmosphere. After cooling to 0 °C, *n*-BuLi (2.5 M in THF, 0.32 mL, 0.4 mmol) was added dropwise and stirred at this temperature for additional 30 min. Then, **3a** (103 mg, 0.2 mmol) in 2 mL anhydrous THF was added dropwise at 0 °C. The reaction mixture was warmed to 35 °C and stirred for additional 12 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was cooled to room temperature, diluted with water (5 mL), and extracted with ethyl acetate (3 x 15 mL). The combined organic layers were washed with brine (15 mL), dried over Na₂SO₄ and concentrated carefully under vacuum. The residue was purified by chromatography on silica gel (eluent: PE/EA) to give the desired product **5**.

yield (64.9 mg, 92%); dr > 20:1; yellow solid; m.p. = 196.5–198.2 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (m, 2H), 7.22 – 7.17 (m, 2H), 7.14 – 7.10 (m, 1H), 7.07 – 6.98 (m, 5H), 6.97 – 6.90 (m, 1H), 6.60 (d, *J* = 7.8 Hz, 2H), 6.03 (s, 1H), 3.96 (s, 1H), 3.67 (s, 3H), 3.21 (d, *J* = 13.7 Hz, 1H), 2.96 (d, *J* = 13.7 Hz, 1H), 2.64 – 2.42 (m, 2H), 2.28 – 2.17 (m, 1H), 1.62 – 1.46 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 157.3, 148.3, 140.5, 138.7, 134.0, 130.3, 128.4, 127.7, 127.6, 127.4, 126.1, 126.0, 125.9, 125.5, 120.6, 108.1, 55.5, 52.1, 44.2, 41.0, 31.1, 27.4.

HRMS (ESI+) Calcd. For C₂₆H₂₄ONa⁺ ([M+ Na]⁺): 375.1719, found: 375.1726.

VI. X-ray Structures of rac-3a, (1S,2S)-3a and rac-5

Figure S1. X-ray structure of rac-3a.

Crystal data for *rac*-**3a**: C₃₂H₂₈F₃NO₂, $M_r = 515.55$, T = 298 K, monoclinic, space group -P 2ybc 2, a = 9.59110(1), b = 23.4883(4), c = 11.4860(2) Å, $\beta = 97.7030(10)$, V = 2564.20(7) Å³, Z = 4, 3826 unique reflections, final $R_1 = 0.0380$ and $wR_2 = 0.1006$ for 4608 observed [$I > 2\sigma(I)$] reflections. CCDC 2326949 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or <u>deposit@ccdc.cam.ac.uk</u>).

Figure S2. X-ray structure of (1S, 2S)-3a.

Crystal data for (1*S*,2*S*)-**3a**: C₃₂H₂₈F₃NO₂, M_r = 515.55, T = 298 K, tetragonal, space group P 43 21 2, a = 16.5216(1), b = 16.5216(1), c = 20.1532(3) Å, V = 5501.08(11) Å³, Z = 8, 3351 unique reflections, final $R_1 = 0.0614$ and $wR_2 = 0.2011$ for 4940 observed [$I > 2\sigma(I)$] reflections, Flack $\chi = 0.08(7)$. CCDC 2321837 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Figure S3. X-ray structure of rac-5.

Crystal data for *rac*-**5**: C₂₆H₂₄O, M_r = 352.45, T = 293 K, orthorhombic, space group P b c a, a= 22.7125(3) b= 7.2170(1) c= 22.9642(3) Å, V= 3764.20(9) Å³, Z = 8, 3537 unique reflections, final R_1 = 0.0420 and wR_2 = 0.1129 for 3805 observed [I>2 σ (I)] reflections. CCDC 2321838 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or <u>deposit@ccdc.cam.ac.uk</u>).

VII. Mechanistic Investigation

Luminescence Quenching Experiments:

Figure S4. Ir-I emission quenching by 1a

Figure S5. Ir-I emission quenching by 1a and 2a

Fluorescence quenching studies were performed on F-4600 Fluorescence Spectrophotometer. Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ solutions were excited at 380 nm and the emission intensity at 485 nm was observed. In a typical experiment, the emission spectrum of a 1×10^{-5} M solution of $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ in THF was collected. As shown in Figure S4 and Figure S5, the results showed strong quenching of $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ by 1a, 2a did not obviously quench the excited catalyst. It might support our hypothesis on the initiation of this radical reaction through reductive quenching of the excited state of the photocatalyst by 1a.

VIII. Reference

[1] Q. Wang, N. Zheng, ACS Catal. 2017, 7, 4197-4201.

[2] a) Y. Luo, Q. Wei, L. Yang, Y. Zhou, W. Cao, Z. Su, X. Liu, X. Feng, ACS Catal. 2022, 12, 12984-12992. b) J. A. R. Rodrigues, E. P. Siqueira-Filho, M. de Mancilha, P. J. S. Moran, Synth. Commun. 2003, 33, 331-340.

IX. NMR and HPLC Spectra

¹³C NMR (100 MHz, CDCl₃) of **3b**

¹⁹F NMR (376 MHz, CDCl₃) of **3b**

¹H NMR (400 MHz, CDCl₃) of 3c

¹³C NMR (100 MHz, CDCl₃) of 3d

¹³C NMR (100 MHz, CDCl₃) of 3e

¹³C NMR (100 MHz, CDCl₃) of **3f**

f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of 3g

 ^{13}C NMR (100 MHz, CDCl₃) of 3h

¹³C NMR (100 MHz, CDCl₃) of **3i**

¹³C NMR (100 MHz, CDCl₃) of **3**j

¹³C NMR (100 MHz, CDCl₃) of 3k

f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of **3**l

¹⁹F NMR (376 MHz, CDCl₃) of **3**l

¹H NMR (400 MHz, CDCl₃) of **3m**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of **3m**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 ^{13}C NMR (100 MHz, CDCl₃) of 3n

¹⁹F NMR (376 MHz, CDCl₃) of **3n**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of **30**

¹H NMR (400 MHz, CDCl₃) of **3**p

¹³C NMR (100 MHz, CDCl₃) of 3p

¹⁹F NMR (376 MHz, CDCl₃) of **3**p

2'10 2'00 1'90 1'80 1'70 1'60 1'50 1'40 1'30 1'20 1'10 1'00 9'0 8'0 7'0 6'0 5'0 4'0 3'0 2'0 1'0 0 -'10 f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of **3**q

$\begin{array}{c} 7,745\\ 7,745\\ 7,465\\ 7,465\\ 7,166\\ 7,166\\ 7,166\\ 7,178\\ 7,178\\ 7,178\\ 7,178\\ 7,178\\ 7,178\\ 7,178\\ 7,178\\ 7,178\\ 7,178\\ 7,168\\ 7,$

¹³C NMR (100 MHz, CDCl₃) of 3s

¹³C NMR (100 MHz, CDCl₃) of **3**t

f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of 3u

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of **3**v

f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of **3**w

¹⁹F NMR (376 MHz, CDCl₃) of **3**w

¹³C NMR (100 MHz, CDCl₃) of **3**x

¹H NMR (400 MHz, CDCl₃) of **3**y

¹³C NMR (100 MHz, CDCl₃) of **3**y

¹H NMR (400 MHz, CDCl₃) of **3z**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of **3z**

13C NMR (100 MHz, CDCl₃) of 3aa

¹³C NMR (100 MHz, CDCl₃) of **3bb**

210.7 158.25 158.25 158.25 135.16 132.25 132.24 132.25 1229.55 1229.55 1229.55 1225.56 125

¹³C NMR (100 MHz, CDCl₃) of 3cc

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -24 f1 (ppm)

f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of 3dd

¹³C NMR (100 MHz, CDCl₃) of 3ee

¹⁹F NMR (376 MHz, CDCl₃) of 3ee

f1 (ppm)

 ^{13}C NMR (100 MHz, CDCl_3) of 3ff

¹³C NMR (100 MHz, CDCl₃) of 3gg

¹³C NMR (100 MHz, CDCl₃) of 3hh

7.388 7.367 7.226 7.226 7.219 7.2194 7.2194 7.2194 7.159 7.159 7.159 7.159 7.159 7.155 7.159 7.155 7.155 7.155 7.155 7.155 7.155 7.155 7.162 7.1

f1 (ppm)

7.282 7.261 7.209 7.2198 7.117 7.215 7.215 7.215 7.215 7.209 7.7.05 7.018 7.035 7.03

HPLC spectra

Following the general procedure B, (1*S*, 2*S*)-**3a** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (61.9 mg, 60% yield, 85:15 er, 99.5:0.5 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3a**. (1*S*, 2*S*)-**3a**: $[\alpha]_{p}^{20} = +61.5$ (*c* 0.5, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 99.5:0.5 er (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 254$ nm); tr = 9.80 and 11.00 min.

HPLC chromatogram of compound 3a

HPLC chromatogram of compound (1S, 2S)-3a

Following the general procedure B, (1*S*, 2*S*)-**3f** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (48.9 mg, 47% yield, 77.5:22.5 er, 96:4 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3f**. (1*S*, 2*S*)-**3f**: $[\alpha]_{D}^{20} = +36.6$ (*c* 0.25, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 96:4 er (Chiralpak AD-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm); t_r = 21.56 and 25.94 min.

HPLC chromatogram of compound (1S, 2S)-3f

HPLC chromatogram of compound (15, 25)-3f (After recrystallization)

Following the general procedure B, (1*S*, 2*S*)-**3g** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (48.2 mg, 50% yield, 75:25 er, 98:2 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3g**. (1*S*, 2*S*)-**3g**: $[\alpha]_{D}^{20} = +56.4$ (*c* 0.5, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 98:2 er (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 0.5 mL/min, $\lambda = 254$ nm); t_r = 25.23 and 28.43 min.

HPLC chromatogram of compound (1S, 2S)-3g

Following the general procedure B, (1*S*, 2*S*)-**3m** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (50.8 mg, 48% yield, 80:20 er, 98.5:1.5 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3m**. (1*S*, 2*S*)-**3m**: $[\alpha]_{D}^{20} = +54.7$ (*c* 0.7, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 98.5:1.5 er (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 0.5 mL/min, $\lambda = 254$ nm); t_r = 16.89 and 19.02 min.

HPLC chromatogram of compound 3m

HPLC chromatogram of compound (1S, 2S)-3m

HPLC chromatogram of compound (1S, 2S)-3m (After recrystallization)

Following the general procedure B, (1*S*, 2*S*)-**3n** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (57.2 mg, 54% yield, 95:5 er, 97:3 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3n**. (1*S*, 2*S*)-**3n**: $[\alpha]_{D}^{20} = +62.7$ (*c* 1.3, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 97:3 er (Chiralpak IA, *i*-propanol/hexane = 3/97, flow rate 0.5 mL/min, $\lambda = 254$ nm); t_r = 13.46 and 14.54 min.

HPLC chromatogram of compound 3n

HPLC chromatogram of compound (1S, 2S)-3n

Following the general procedure B, (1*S*, 2*S*)-**30** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (61.6 mg, 56% yield, 84:16 er, 99:1 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **30**. (1*S*, 2*S*)-**30**: $[\alpha]_{D}^{20} = +63.6$ (*c* 0.65, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 99:1 er (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 254$ nm); t_r = 10.01 and 14.37 min.

HPLC chromatogram of compound 3o

HPLC chromatogram of compound (1S, 2S)-30

HPLC chromatogram of compound (1S, 2S)-30 (After recrystallization)

Following the general procedure B, (1*S*, 2*S*)-**3p** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (58.3 mg, 53% yield, 80:20 er, 98:2 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3p**. (1*S*, 2*S*)-**3p**: $[\alpha]_{D}^{20} = +35.1$ (*c* 0.85, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 98:2 er (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 0.5 mL/min, $\lambda = 254$ nm); t_r = 15.73 and 20.08 min.

HPLC chromatogram of compound 3p

HPLC chromatogram of compound (1S, 2S)-3p

Following the general procedure B, (1*S*, 2*S*)-**3q** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (39.6 mg, 36% yield, 94:6 er, 96:4 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3q**. (1*S*, 2*S*)-**3q**: $[\alpha]_{D}^{20} = +64.9$ (*c* 0.8, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 96:4 er (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 254$ nm); t_r = 8.23 and 9.49 min.

HPLC chromatogram of compound 3q

HPLC chromatogram of compound (1S, 2S)-3q

HPLC chromatogram of compound (1S, 2S)-3q (After recrystallization)

Following the general procedure B, (1*S*, 2*S*)-**3u** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (58.9 mg, 54% yield, 82.5:17.5 er, 99:1 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3u**. (1*S*, 2*S*)-**3u**: $[\alpha]_{D}^{20} = +64.9$ (*c* 0.65, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 99:1 er (Chiralpak IA, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 254$ nm); t_r = 11.85 and 17.80 min.

HPLC chromatogram of compound 3u

HPLC chromatogram of compound (1S, 2S)-3u

Following the general procedure B, (1S, 2S)-**3v** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (46.9 mg, 43% yield, 83:17 er, 98.5:1.5 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3v**. (1*S*, 2*S*)-**3v**: $[\alpha]_{p}^{20} = +62.7$ (*c* 0.6, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 98.5:1.5 er (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 254$ nm); tr = 11.53 and 13.63 min.

HPLC chromatogram of compound 3v

HPLC chromatogram of compound (1S, 2S)-3v

Following the general procedure B, (1*S*, 2*S*)-**3w** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (46.9 mg, 43% yield, 78:22 er, 98.5:1.5 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3w**. (1*S*, 2*S*)-**3w**: $[\alpha]_{D}^{20} = +54.9$ (*c* 0.68, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 98.5:1.5 er (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 254$ nm); t_r = 13.93 and 39.63 min.

HPLC chromatogram of compound (1S, 2S)-3w

Following the general procedure B, (1*S*, 2*S*)-**3x** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (67.1 mg, 61% yield, 84:16 er, 99:1 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3x**. (1*S*, 2*S*)-**3x**: $[\alpha]_{D}^{20} = +88.6$ (*c* 1.26, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 99:1 er (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 254$ nm); t_r = 10.20 and 15.69 min.

HPLC chromatogram of compound 3x

HPLC chromatogram of compound (1S, 2S)-3x

Following the general procedure B, (1*S*, 2*S*)-**3**y was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (63.8 mg, 58% yield, 83:17 er, 99:1 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3**y. (1*S*, 2*S*)-**3**y: $[\alpha]_{D}^{20} = +65.0$ (*c* 1.02, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 99:1 er (Chiralcel OD-H, *i*-propanol/hexane = 5/95, flow rate 0.5 mL/min, $\lambda = 254$ nm); t_r = 15.45 and 17.55 min.

HPLC chromatogram of compound 3y

HPLC chromatogram of compound (1S, 2S)-3y

Following the general procedure B, (1*S*, 2*S*)-**3aa** was purified as white powder by flash column chromatography (ethyl acetate/petroleum ether = 1/20-1/10) (62.6 mg, 60% yield, 84:16 er, 99.5:0.5 er (after recrystallization)), the NMR and HRMS (ESI) was absolutely in consistent with **3aa**. (1*S*, 2*S*)-**3aa**: $[\alpha]_{D}^{20} = +83.0$ (*c* 0.95, acetone). The product was analyzed by HPLC to determine the enantiomeric ratio: 99.5:0.5 er (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 0.3 mL/min, $\lambda = 254$ nm); t_r = 38.50 and 41.96 min.

HPLC chromatogram of compound (1S, 2S)-3aa

