Supporting Information

Combining Total Synthesis and Genetic Engineering to Probe Dihydropyran Formation in Ambruticin Biosynthesis

James I. Bowen, ${ }^{[a]}$ Xiaotong Zhong, ${ }^{[b]}$ Kaining Gao, ${ }^{[b, c]}$ Benjamin Reed, ${ }^{[a]}$ Matthew P. Crump, ${ }^{[a]}$ Luoyi Wang ${ }^{[b] *}$ and Christine L. Willis ${ }^{[a] *}$
aSchool of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
${ }^{\text {b }}$ CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
'School of Life Sciences, Yunnan University, Kunming 650500, China

Contents

1. General Experimental 3
2. Genetic Engineering of Sorangium Strains and Biotransformation 4
2.1 Gene disruption in Sorangium cellulosum So ce10 4
2.2 General fermentation procedure for mutant strains of Sorangium cellulosum So ce10 4
2.3 Isolation and purification of 20,21-dihydroambruticin F and ambruticin F4
2.4 Isolation and purification of jerangolid H and jerangolid A 4
2.5 Biotransformation of jerangolid H and 20,21-dihydroambruticin F 5
3. Synthetic Procedures 5
3.1 Synthesis of Aldehyde 12 5
3.2 Synthesis of Sulfone 13 13
3.3 Synthesis of Aldehyde 10 15
3.4 Synthesis of Ketone 32 17
3.4.1 Synthesis of Ketone 32 via Asymmetric Hydrogenation 17
3.4.2 Synthesis of Ketone 32 via Prins Cyclisation 19
3.5 Synthesis of Sulfone 11 24
3.6 Synthesis of 20,21-Dihydroambruticin F 27
3.7 Synthesis of Ambruticin F and S 31
4. Comparison of NMR data for 20,21-Dihydroambruticin F 38
5. Comparison of NMR data for Ambruticin F 41
6. Comparison of NMR data for Ambruticin S 44
7. References 46
8. NMR Appendix 47

1. General Experimental

All reactions were carried out using standard Schlenk syringe-septa techniques in flame dried glassware under a positive pressure of nitrogen in anhydrous solvents unless otherwise stated. Reagents were purchased from commercial suppliers and used without further purification unless reported. Anhydrous THF, $\mathrm{Et}_{2} \mathrm{O}$, hexane, DCM , toluene and MeCN were dried by passing through a modified Grubbs system of alumina columns and stored under nitrogen. MeOH was dried by distillation from calcium hydride and stored under nitrogen and over 3Å molecular sieves. Degassed solvents were prepared by sparging with nitrogen. Analytical thin layer chromatography (TLC) was carried out on Merck silica gel $60 \mathrm{~F}_{254}$ analytical plates and were developed using UV fluorescence (254 nm) or $\mathrm{KMnO}_{4} / \Delta$. Flash column chromatography was carried out on Sigma Aldrich silica gel $60 \AA$ (43$63 \mu \mathrm{~m}$) and an organic solvent system as stated.

Infrared spectra were recorded on a Perkin-Elmer FT-IR spectrometer spectrum 2 with selected peaks of interested reported as absorption maxima (cm^{-1}). Mass spectrometry (MS) and high-resolution mass spectrometry (HRMS) were performed using electrospray ionisation (ESI) on a Bruker microOTOF II (TOF) or atmospheric pressure chemical ionisation (APCI) on a Thermo Scientific Orbitrap Elite (LCOrbitrap). Optical rotation was measured on a Bellingham and Stanley Ltd. ADP220 polarimeter and is quoted in (${ }^{\circ} \mathrm{ml}$) $(\mathrm{g} \mathrm{dm})^{-1}$. NMR spectra were recorded on Varian $400-\mathrm{MR}(400 \mathrm{MHz})$, Jeol ECS400 (400 MHz), Jeol ECZ400 (400 MHz), JeoIVAR ECZ400 (400 MHz), BrukerNano400 (400 MHz), Bruker Avance III HD 500 Cryo (500 MHz), Bruker Neo 600 Cryo (600 MHz), and Bruker Avance III HD Cryo700 (700 MHz) spectrometers at ambient temperature. Spectra were recorded in deuterochloroform referenced to residual $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}, 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}, 77.2 \mathrm{ppm}\right)$, deuterated methanol referenced to residual $\mathrm{MeOH}\left({ }^{1} \mathrm{H}, 3.30 \mathrm{ppm} ;{ }^{13} \mathrm{C}, 49.0 \mathrm{ppm}\right)$ or deuterated acetone referenced to residual acetone $\left({ }^{1} \mathrm{H}, 2.09 \mathrm{ppm} ;{ }^{13} \mathrm{C}, 30.6 \mathrm{ppm}\right.$). Chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (J) are reported in Hertz (Hz). The following abbreviations are used to describe multiplicity: s (singlet), d (doublet), t (triplet), q (quartet), br. (broad), ap. (apparent). For clarity, the numbering of atoms does not correspond to the compound names.

Size exclusion column chromatographic separations were carried out by using Sephadex LH-20 (Cytiva) as packing materials. LC-MS data were obtained on a SHIMADZU LCMS system comprising SHIMADZU SIL-20A autosampler, SHIMADZU LC-20AD HPLC pump, SHIMADZU SPD-M40 Diode Array detector and SHIMADZU LCMS-2010 mass spectrometer. HPLC grade $\mathrm{H}_{2} \mathrm{O}$ and MeCN were added with 0.1% formic acid as solvent system. Analytical LC-MS data were obtained using a Phenomenex Kinetex column (C18, $150 \times 4.60 \mathrm{~mm}, 5 \mu \mathrm{~m}$) at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. Preparative HPLC purification were carried out using a SilGreen column ($\mathrm{C} 18,250 \times 10 \mathrm{~mm}, 5 \mu \mathrm{~m}$) at a flow rate of $4 \mathrm{~mL} / \mathrm{min}$.

2. Genetic Engineering of Sorangium Strains and Biotransformation

2.1 Gene disruption in Sorangium cellulosum So ce10

A plasmid containing the antibiotic selection marker flanked by the upstream and downstream fragments of the target gene or region was constructed and introduced into Sorangium cells via electroporation. Double crossover clones with the target gene or region replaced by the hygromycin or tetracycline antibiotic selection marker were screened by PCR on HS agar (0.15\% Casitone, 0.1\% $\mathrm{KNO}_{3}, 0.1 \% \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 0.008 \%$ Fe-EDTA, 0.4% glucose, $0.0075 \% \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 0.00625 \% \mathrm{~K}_{2} \mathrm{HPO}_{4}, 1.5 \%$ agar) containing $100 \mu \mathrm{~g} / \mathrm{mL}$ of hygromycin or $1.25 \mu \mathrm{~g} / \mathrm{mL}$ of tetracycline.

2.2 General fermentation procedure for mutant strains of Sorangium cellulosum So ce10

Mutant strains of Sorangium cellulosum So ce10 were inoculated on HS agar plates and incubated for 3 days at $30^{\circ} \mathrm{C}$. Seed medium was inoculated in a 500 mL flask with 100 mL of liquid HS medium by scraping colonies from the HS agar plate and incubated for 2-3 days at 220 rpm at $30^{\circ} \mathrm{C}$. Production fermentation was inoculated with 20% of seed culture in SF1-P medium (0.3% soy peptone, 0.6% fructose, $0.1 \% \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 0.008 \%$ ferric citrate and 0.05 M HEPES, pH 7.6 , ferric citrate and HEPES were filter sterilized and added after autoclaving). The culture was incubated at $30^{\circ} \mathrm{C}$ at 220 rpm for 7 days and supplemented with $0.5 \mathrm{~g} / \mathrm{L}$ of fructose every 48 hours, and then extracted with EtOAc three times. The combined EtOAc extracts were evaporated in vacuo to give a crude extract, which was subjected to LC-MS analysis or further purification.

2.3 Isolation and purification of 20,21-dihydroambruticin F and ambruticin F

A 2.0 L scale fermentation of $\triangle a m b P-S$ mutant of Sorangium cellulosum So ce10 was carried out as per the general procedure described above. The crude extract was purified by Sephadex LH-20 column chromatography eluting with MeOH to give a crude 20,21-dihydroambruticin F fraction, which was further purified by HPLC eluting with a gradient of 70 to $95 \% \mathrm{MeCN}$ in water over 20 min to yield 20,21-dihydroambruticin $\mathrm{F}(7 \mathrm{mg})$. Ambruticin F was isolated from the fermentation of $\triangle a m b N-S$ mutant of Sorangium cellulosum So ce10 using a similar purification protocol at a yield of $2 \mathrm{mg} / \mathrm{L}$.

2.4 Isolation and purification of jerangolid H and jerangolid A

Genetic manipulation in Sorangium cellulosum So ce307 and its fermentation procedure followed similar protocols for those of S. cellulosum So ce10. A 1.0 L scale fermentation of the $\Delta j e r P$ or $\Delta j e r O$ mutant of Sorangium cellulosum So ce307 was carried out as per the general procedure. The crude extract was purified by Sephadex LH-20 column chromatography eluting with MeOH to give a crude jerangolid H fraction, which was further purified by HPLC eluting with a gradient of 50 to $95 \% \mathrm{MeCN}$ in water over 20 min to yield jerangolid $\mathrm{H}(2 \mathrm{mg})$. Jerangolid A was isolated from the fermentation of
wild-type Sorangium cellulosum So ce307 using a similar purification protocol at a yield of $1.1 \mathrm{mg} / \mathrm{L}$. ${ }^{1} \mathrm{H}$ NMR spectra on page 86.

2.5 Biotransformation of jerangolid H and 20,21-dihydroambruticin F

100 mL of the So ce10-AmbPO strain in SF1-P medium was cultured at $30^{\circ} \mathrm{C}$ for 24 h .2 mg of the substrate jerangolid H or 20,21-dihydroambruticin F dissolved in $200 \mu \mathrm{l}$ of MeOH was then added, and the culture was further incubated at $30^{\circ} \mathrm{C}$ for 24 h . Equal volumes of EtOAc were used for extraction and then removed in vacuo. The samples were redissolved in MeOH and injected for LC-MS analysis.

3. Synthetic Procedures

3.1 Synthesis of Aldehyde 12

(S)-4-Isopropylthiazolidine-2-thioneacid (S1)

L-Valine ($8.03 \mathrm{~g}, 68.3 \mathrm{mmol}$) was dissolved in THF (180 mL) under nitrogen and cooled to $0{ }^{\circ} \mathrm{C}$ then $\mathrm{NaBH}_{4}(6.20 \mathrm{~g}, 163.9 \mathrm{mmol})$ was added in one portion. After stirring for 5 minutes, iodine (17.30 g , 68.3 mmol) in THF (20 mL) was added dropwise over 20 minutes. The reaction mixture was warmed slowly to room temperature and then refluxed for 24 hours. The reaction mixture was cooled to room temperature and methanol was added until the solution became clear and the solvent was removed in vacuo. The crude material was dissolved in 1 M KOH solution (200 mL) and stirred for 4 hours when the solution was extracted with EtOAc $(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL), dried over MgSO_{4} and the solvent removed in vacuo to afford L-valinol ($5.31 \mathrm{~g}, 75 \%$) as a colourless oil. The crude product was dissolved in ethanol (17 mL) and $\mathrm{CS}_{2}(7.85 \mathrm{~mL})$ was added. KOH
$(7.64 \mathrm{~g}, 136.1 \mathrm{mmol})$ in water $/ \mathrm{MeOH}, 1: 1(50 \mathrm{~mL})$ was added by an addition funnel over 20 minutes. The reaction mixture was refluxed for 3 days before being cooled to room temperature and the solvent removed in vacuo. The solution was dissolved in $2 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ and extracted with DCM $(3 \times 100$ mL). The combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo to afford $\mathbf{S 1}(6.50 \mathrm{~g}, 80 \%)$ as a yellow solid; $[\alpha]_{D}^{23}=-41.0\left(c 1, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{[}[\alpha]_{D}^{20}=-35.9$ (c 1, CHCl_{3}); $v_{\max }$ (UATR) 3176, 2960, 2869, 1661, 1482, 1268, 1029, 977; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.99\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,6-\mathrm{H}_{3}\right), 1.03(3 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J} 6.8,6^{\prime}-\mathrm{H}_{3}\right), 1.92-2.02(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.31(1 \mathrm{H}, \mathrm{dd}, J 11.1,8.4,3-\mathrm{HH}), 3.50(1 \mathrm{H}, \mathrm{dd}, J 11.1,8.2,3-\mathrm{HH})$, 4.01 - $4.08(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 8.22(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.4(\mathrm{C}-6), 19.0\left(\mathrm{C}-6^{\prime}\right), 32.2(\mathrm{C}-5), 36.2$ (C-3), $70.2(\mathrm{C}-4), 201.3(\mathrm{C}-1) ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}):[\mathrm{M}+\mathrm{H}]^{+}=175.1$. Data consistent with the literature. ${ }^{1}$

(S)-1-(4-Isopropyl-2-thioxothiazolidin-3-yl)ethan-1-one (15)

Auxiliary S1 ($1.40 \mathrm{~g}, 8.70 \mathrm{mmol}$) was dissolved in DCM (35 mL) under an atmosphere of nitrogen then $\mathrm{AcCl}(0.92 \mathrm{~mL}, 13.0 \mathrm{mmol})$ was added. Pyridine ($1.05 \mathrm{~mL}, 13.0 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred for 2 hours. The reaction mixture was filtered, and the solvent removed in vacuo. The crude material was purified by flash column chromatography (10\% EtOAc in petroleum ether 60:40) to afford acylated auxiliary 15 (1.77 g , quant.) as a yellow oil; $[\alpha]_{D}^{23}=+412.0$ (c $\left.1, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{1}[\alpha]_{D}^{20}=+442.1\left(c 1, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.97\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,9-\mathrm{H}_{3}\right), 1.05\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,9^{\prime}-\mathrm{H}_{3}\right)$, $2.29-2.43(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.76\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5,1.1,5-\mathrm{HH}), 3.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5,8.0,5-$ HH), 5.11 - $5.17(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.9$ (C-9), 19.2 (C-9'), 27.1 (C-1), 30.6 (C-8), 30.9 (C-5), 71.4 (C-4), 170.9 (C-2), 203.4 (C-7); $m / z(E S I):[M+H]^{+}=204.05$. Data consistent with the literature. ${ }^{1}$
($R, 4 E, 6 E$)-3-Hydroxy-1-((S)-4-isopropyl-2-thioxothiazolidin-3-yl)octa-4,6-dien-1-one (16)

Acylated auxiliary 15 ($2.0 \mathrm{~g}, 9.84 \mathrm{mmol}$) was dissolved in DCM $(100 \mathrm{~mL})$ under nitrogen and cooled to $-78{ }^{\circ} \mathrm{C}$ when $\mathrm{TiCl}_{4}(1 \mathrm{M}$ in $\mathrm{DCM}, 10 \mathrm{~mL}, 9.84 \mathrm{mmol})$ was added dropwise over 15 minutes. The reaction mixture was stirred for 20 minutes then DIPEA ($2.1 \mathrm{~mL}, 11.8 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for 1 hour then trans,trans-hexadienal ($1.1 \mathrm{~mL}, 9.84 \mathrm{mmol}$) was added dropwise.

After stirring at $-78^{\circ} \mathrm{C}$ for 1 hour, aqueous saturated ammonium chloride (25 mL) was added and the reaction mixture was stirred for a further hour at room temperature. The solution was washed with DCM $(3 \times 50 \mathrm{~mL})$ dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography (18\% EtOAc in petroleum ether 60:40) to afford aldol product 16 ($2.48 \mathrm{~g}, 84 \%$) as a yellow oil; $[\alpha]_{D}^{25}=+182.0$ (c 1, Acetone); $v_{\max }$ (film) $3430,2962,1689,1468,1162$, $725 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.97\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,15-\mathrm{H}_{3}\right), 1.05\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,15^{\prime}-\mathrm{H}_{3}\right), 1.75\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,8-\mathrm{H}_{3}\right)$, $2.30-2.41(1 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}), 3.02(1 \mathrm{H}, \mathrm{d}, J 11.5,12-\mathrm{HH}), 3.33(1 \mathrm{H}, \mathrm{dd}, J 17.5,8.8,2-\mathrm{HH}), 3.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 11.5, $7.5,12-\mathrm{HH}$), $3.61(1 \mathrm{H}, \mathrm{dd}, J 17.5,3.0,2-\mathrm{HH}), 4.64-4.78(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 5.14(1 \mathrm{H}, \mathrm{ap} . \mathrm{t}, \mathrm{J} 7.5,13-\mathrm{H})$, $5.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.3,6.2,4-\mathrm{H}), 5.67-5.78(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.98-6.09(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 6.24(1 \mathrm{H}, \mathrm{dd}, J 15.3$, $10.5,5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.0(\mathrm{C}-15), 18.3(\mathrm{C}-8), 19.3\left(\mathrm{C}-15^{\prime}\right), 30.8(\mathrm{C}-12), 31.0(\mathrm{C}-14), 45.5(\mathrm{C}-2)$, 68.7 (C-3), 71.6 (C-13), 130.7 (C-4), 130.8 (C-6 and C-7), 131.3 (C-5), 172.6 (C-1), 203.2 (C-10); HRMS (ESI) calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}_{2} \mathrm{Na}\right]$ 322.0906 Found 322.0898.

Ethyl (R,6E,8E)-5-hydroxy-3-oxodeca-6,8-dienoate (17)

Potassium-3-ethoxy-2-methyl-3-oxopropanoate ($5.19 \mathrm{~g}, 30.49 \mathrm{mmol}$) and $\mathrm{MgCl}_{2}(1.45 \mathrm{~g}, 15.24 \mathrm{mmol})$ were added to a solution of aldol product $16(4.15 \mathrm{~g}, 13.86 \mathrm{mmol})$ in THF (50 mL) under nitrogen and stirred for 45 minutes. Imidazole ($1.04 \mathrm{~g}, 15.24 \mathrm{mmol}$) was added and the reaction mixture was stirred for 72 hours. The mixture was diluted with EtOAc (100 mL) and washed with $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with aqueous saturated sodium hydrogen carbonate $(100 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude product was purified by flash column chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O}$ in DCM) to afford 17 ($2.58 \mathrm{~g}, 82 \%$) as a yellow oil; $[\alpha]_{D}^{22}=+6.0$ (c 1, Acetone); $v_{\max }($ film $) 3443,2981,2914,1737,1709,988 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.27\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.73-$ $1.76\left(3 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{3}\right), 2.68-2.74(1 \mathrm{H}$, br. s, OH$), 2.74-2.80\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 3.47\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}_{2}\right), 4.19(2 \mathrm{H}$, q, J 7.2, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.61(1 \mathrm{H}, \mathrm{ap}$. q, J 6.5, $5-\mathrm{H}), 5.53(1 \mathrm{H}, \mathrm{ddq}, J 15.2,6.4,0.7,9-\mathrm{H}), 5.71(1 \mathrm{H}, \mathrm{dd}, J 15.0$, $6.5,6-H), 5.97-6.04(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 6.17-6.26(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.3$ (C-10), 49.8 (C-4), 50.2 (C-2), $61.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 68.4$ (C-5), 130.6 (C-9), 130.7 (C-6), 130.9 (C-8), 131.4 (C7), 167.1 (C-1), 203.0 (C-3); HRMS (ESI) calc. for [$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}$] 249.1097 Found 249.1093.

Ethyl (3S,5R,6E,8E)-3,5-dihydroxydeca-6,8-dienoate (18)

Ketone 17 (1.01 g, 4.42 mmol$)$ was dissolved in THF (25 mL) and $\mathrm{MeOH}(7 \mathrm{~mL})$ under nitrogen and cooled to $-78{ }^{\circ} \mathrm{C}$ when $\mathrm{Et}_{2} \mathrm{BOMe}(0.70 \mathrm{~mL}, 5.30 \mathrm{mmol})$ was added dropwise and the reaction mixture was stirred for 15 minutes. $\mathrm{NaBH}_{4}(0.19 \mathrm{~g}, 5.08 \mathrm{mmol})$ was added in one portion and the reaction mixture was stirred for 3 hours then $\mathrm{AcOH}(3 \mathrm{~mL})$ was added and the mixture was warmed to room temperature. The reaction mixture was diluted with EtOAc (30 mL) and the resulting solution was washed with aqueous saturated sodium hydrogen carbonate (20 mL). The organic layer was dried over MgSO_{4} and the solvent removed in vacuo to afford diol 18 (1.02 g, quant.) as a yellow oil; $[\alpha]_{D}^{22}=-8.0$ (c 1, Acetone); $v_{\max }($ film $) 3396,2981,2914,1716,1164,987 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.27(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.57-1.72\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.73-1.77\left(3 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{3}\right), 2.42-2.52\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 3.07(1 \mathrm{H}, \mathrm{br}$. s, OH), $3.74(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 4.16\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.22-4.31(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.42(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $5.54(1 \mathrm{H}, \mathrm{dd}, J 15.2,6.6,6-\mathrm{H}), 5.71(1 \mathrm{H}, \mathrm{dd}, J 15.0,6.8,9-\mathrm{H}), 5.97-6.08(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 6.20(1 \mathrm{H}, \mathrm{dd}, J$ $15.2,10.4,7-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.3(\mathrm{C}-10), 41.8(\mathrm{C}-2), 42.9(\mathrm{C}-4), 61.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 68.5 (C-3), 72.6 (C-5), 130.5 (C-9), 130.85 (C-8), 130.93 (C-7), 132.4 (C-6), 172.7 (C-1); HRMS (ESI) calc. for $\left[\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}\right.$] 251.1254 Found 251.1252.

The relative stereochemistry in diol 18 was confirmed by NMR analysis of the corresponding acetonide (S2), where the ${ }^{13} \mathrm{C}$ chemical shifts of 19.9 and 30.3 ppm for the acetonide methyl groups and 99.0 ppm for the acetal carbon are consistent with a syn-diol. ${ }^{2,3}$

Ethyl 2-((4S,6R)-2,2-dimethyl-6-((E)-prop-1-en-1-yl)-1,3-dioxan-4-yl)acetate (S2)

Diol 18 ($100 \mathrm{mg}, 0.49 \mathrm{mmol}$) was dissolved in DCM (5 mL) under nitrogen then 2,2-dimethoxypropane $(1.5 \mathrm{~mL}, 12 \mathrm{mmol})$ and CSA ($57 \mathrm{mg}, 0.25 \mathrm{mmol}$) were added and the reaction mixture was stirred at room temperature for 1 hour. The solution was diluted with aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, the organic layer separated and the aqueous extracted with DCM $(2 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried over MgSO_{4} and the solvent removed in vacuo to afford acetonide $\mathbf{S 2}$ (116 mg, 99\%) as a yellow oil; $[\alpha]_{D}^{23}=+15.0$ (c 1, CHCl_{3}); $v_{\max }$ (film) 2997, 1735, 1198, $1164,965,949 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.29-1.36(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}), 1.40(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCCH}_{3}\right), 1.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCCH}_{3}\right), 1.60(1 \mathrm{H}, \mathrm{ap} . \mathrm{dt}, \mathrm{J} 12.8,2.5,4-\mathrm{HH}), 1.69\left(3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.5,1.6,8-\mathrm{H}_{3}\right), 2.38$
(1H, dd, J 15.5, 6.1, 2-HH), $2.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5,7.0,2-\mathrm{HH}), 4.08-4.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.28-4.38$
$(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $5-\mathrm{H}), 5.40-5.50(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 5.72(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.5,6.5,7-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.0(\mathrm{C}-8), 19.9\left(\mathrm{CH}_{3}\right), 30.3\left(\mathrm{CH}_{3}\right), 36.9(\mathrm{C}-4), 41.6(\mathrm{C}-2), 60.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 65.9(\mathrm{C}-3), 70.2(\mathrm{C}-$ 5), 99.0 (OCO), 128.2 (C-7), 131.7 (C-6), 171.1 (C-1); HRMS (ESI) calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}\right.$] 265.1410 Found 265.1401.

Ethyl 2-((2S,4R,5R,6S)-4,5-dihydroxy-6-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (19)

Optimised procedure on < 1 mmol scale of allylic alcohol 18:

In a flame dried flask at $-20^{\circ} \mathrm{C}$ under nitrogen was added $4 \AA$ A molecular sieves (30 mg), allylic alcohol 18 ($100 \mathrm{mg}, 0.44 \mathrm{mmol}$) and DCM (2.5 mL) followed by titanium isopropoxide ($0.03 \mathrm{~mL}, 0.09 \mathrm{mmol}$) and (-)-DIPT ($0.03 \mathrm{~mL}, 0.13 \mathrm{mmol}$). The reaction mixture was stirred for 30 minutes then $5.5 \mathrm{M}^{t} \mathrm{BuOOH}$ in decane $(0.16 \mathrm{~mL}, 0.88 \mathrm{mmol})$ was added dropwise and the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was quenched with a precooled $\left(0^{\circ} \mathrm{C}\right)$ aqueous solution of $\mathrm{FeSO}_{4} /$ citric acid (660 mg of FeSO_{4} and 220 mg of citric acid in 3 mL of $\mathrm{H}_{2} \mathrm{O}$). The solution was stirred vigorously for 30 minutes at room temperature then extracted with DCM $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo. The crude product was purified by flash column chromatography (70% EtOAc in petroleum ether 60:40) to afford tetrahydropyran 19 (87 mg, $81 \%)$ as a colourless oil. Data consistent with previously reported.

Optimised scale-up procedure:

In a flame dried flask at $-20^{\circ} \mathrm{C}$ under nitrogen was added $4 \AA$ A powdered molecular sieves (1.60 g), DCM $(100 \mathrm{~mL})$ and (-)-DIPT ($2.92 \mathrm{~mL}, 13.93 \mathrm{mmol})$. The mixture was stirred for 30 minutes then titanium isopropoxide ($3.44 \mathrm{~mL}, 11.61 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for 30 minutes then allylic alcohol $18(5.30 \mathrm{~g}, 23.22 \mathrm{mmol})$ in DCM $(15 \mathrm{~mL})$ was added dropwise. The reaction mixture was stirred for a further 30 minutes then $5.5 \mathrm{M}^{t} \mathrm{BuOOH}$ in decane ($8.44 \mathrm{~mL}, 46.44 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was poured into a precooled $\left(0^{\circ} \mathrm{C}\right)$ aqueous solution of $\mathrm{FeSO}_{4} /$ citric acid (20 g of FeSO_{4} and 6.4 g of citric acid in 60 mL of $\mathrm{H}_{2} \mathrm{O}$) and the resulting solution was stirred for 10 minutes at room temperature. The mixture was filtered over Celite, washing with EtOAc (500 mL) and water (200 mL). The organic layer was separated and the aqueous extracted with further EtOAc $(2 \times 500 \mathrm{~mL})$. The combined organic
layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$ in DCM) to afford tetrahydropyran 19 ($4.31 \mathrm{~g}, 76 \%, 89 \%$ BORSM) as a colourless oil and unreacted allylic alcohol 18 ($0.75 \mathrm{~g}, 14 \%$). Data consistent with previously reported.

Procedure for alternative quench with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$:

In a flame dried flask at $-20^{\circ} \mathrm{C}$ under nitrogen was added $4 \AA$ Å powdered molecular sieves (600 mg), DCM (26 mL) and (-)-DIPT ($1.04 \mathrm{~mL}, 4.97 \mathrm{mmol})$. The mixture was stirred for 15 minutes then titanium isopropoxide ($1.23 \mathrm{~mL}, 4.14 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for 30 minutes then allylic alcohol 18 ($1890 \mathrm{mg}, 8.28 \mathrm{mmol}$) in DCM (15 mL) was added dropwise. The reaction mixture was stirred for a further 30 minutes then $5.5 \mathrm{M}^{\mathrm{t}} \mathrm{BuOOH}$ in decane ($3.01 \mathrm{~mL}, 16.56$ mmol) was added dropwise and the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was quenched with aqueous saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(40 \mathrm{~mL})$ then stirred vigorously for 1 hour at $0^{\circ} \mathrm{C}$. The reaction mixture was diluted with water (100 mL) and EtOAc (200 mL) and the layers separated. The aqueous layer was extracted with $\operatorname{EtOAc}(3 \times 150 \mathrm{~mL})$ then the combined organic layers washed with Brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($60 \% \mathrm{Et}_{2} \mathrm{O}$ in DCM) to afford tetrahydropyran 19 (1167 $\mathrm{mg}, 58 \%)$ as a yellow oil. Data consistent with previously reported.
(2S,3R,4R,6S)-6-(2-Ethoxy-2-oxoethyl)-2-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran-3,4-diyl diacetate (S3)

Diol 19 ($30 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in pyridine ($0.25 \mathrm{~mL}, 3.01 \mathrm{mmol}$) and $\mathrm{Ac}_{2} \mathrm{O}(0.11 \mathrm{~mL}, 1.2$ mmol) and stirred under nitrogen for 16 hours. The reaction mixture was diluted with water (10 mL) and extracted with DCM $(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed sequentially with 2 M $\mathrm{HCl}(2 \times 5 \mathrm{~mL})$, sodium hydrogen carbonate $(2 \times 10 \mathrm{~mL})$ and brine $(25 \mathrm{~mL})$. The combined organics were dried over MgSO_{4} and the solvent removed in vacuo. The crude product was purified by flash column chromatography (40% EtOAc in petroleum ether 60:40) to afford diacetate $\mathbf{S 3}$ ($32 \mathrm{mg}, 82 \%$) as a colourless oil; $[\alpha]_{D}^{18}=-20.0\left(c 1, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 2981,2938,1736,1370,1243,1055 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.24\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.67\left(3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.6,1.7,9-\mathrm{H}_{3}\right), 1.70-1.77(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}), 1.91$ $-1.95(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}), 1.96(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.38(1 \mathrm{H}, \mathrm{dd}, J 15.5,5.8,10-\mathrm{HH}), 2.58(1 \mathrm{H}$, dd, J 15.5, 7.3, 10-HH), $4.11-4.17\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right.$ and $\left.6-\mathrm{H}\right), 4.18-4.25(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $10.1,3.1,5-H), 5.34(1 \mathrm{H}, \mathrm{ddq}, J 15.3,7.2,1.7,7-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{ap} . \mathrm{q}, J 3.1,4-\mathrm{H}), 5.72-5.82(1 \mathrm{H}, \mathrm{m}, 8-$
$\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 18.1(\mathrm{C}-9), 21.0(\mathrm{OAc}), 21.3(\mathrm{OAc}), 35.6(\mathrm{C}-3), 40.6(\mathrm{C}-10), 60.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 67.4(\mathrm{C}-4), 68.8(\mathrm{C}-2), 70.9(\mathrm{C}-5), 75.0(\mathrm{C}-6), 127.8(\mathrm{C}-7), 131.1(\mathrm{C}-8), 170.1(\mathrm{OAc}), 170.4$ (OAc), 170.9 (C-11); HRMS (ESI) calc. for $\left[\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{Na}\right] 315.1414$ Found 315.1402.

Upon acetylation of diol 19, protons $4-\mathrm{H}$ and $5-\mathrm{H}$ exhibited significant downfield shifts, whilst $6-\mathrm{H}$ showed little change in chemical shift (Figure S1). This is consistent with the assigned structure of THP 19.

Figure S1. Comparison of key ${ }^{1} \mathrm{H}$-NMR shifts of diol 19 (Red) and acetylated diol S3 (Blue) used to confirm product.

Ethyl 2-((2S,4R,5S,6S)-4,5-bis(tert-butyldimethylsiloxy)-6-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (S4)

Diol 19 ($3.60 \mathrm{~g}, 14.74 \mathrm{mmol}$) was dissolved in DCM (150 mL) under nitrogen and cooled to $0^{\circ} \mathrm{C}$ when 2,6-lutidine ($10.30 \mathrm{~mL}, 88.44 \mathrm{mmol}$) was added and the reaction mixture was stirred for 5 minutes. TBSOTf ($13.54 \mathrm{~mL}, 58.96 \mathrm{mmol}$) was added dropwise over 15 minutes. The reaction mixture was stirred for 45 minutes at $0{ }^{\circ} \mathrm{C}$ then quenched with aqueous saturated sodium hydrogen carbonate solution (50 mL). The resulting solution was diluted with water (100 mL) and DCM (200 mL). The organic layer was separated and the aqueous extracted with DCM $(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed sequentially with $2 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ then brine $(100 \mathrm{~mL})$, dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography (8\% $\mathrm{Et}_{2} \mathrm{O}$ in petroleum ether $60: 40$) to afford silyl ether $\mathbf{S 4}\left(6.28 \mathrm{~g}, 90 \%\right.$) as a colourless oil; ${ }^{[\alpha]_{D}^{21}}=-46.0$ (c $\left.1, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 3020,2954,2929,2887,2857,1739,1473,1214 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00(3 \mathrm{H}$,
$\left.\mathrm{s}, \mathrm{SiCH}_{3}\right), 0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.24\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.53\left(1 \mathrm{H}, \mathrm{ddd}, J 13.4,11.4,2.1,4-\mathrm{H}_{\mathrm{ax}}\right), 1.68(3 \mathrm{H}, \mathrm{dd}, J 6.5,1.6$, $\left.10-\mathrm{H}_{3}\right), 1.82\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 13.4,4.1,2.1,4-\mathrm{H}_{\mathrm{eq}}\right), 2.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.8,7.6,2-\mathrm{HH}), 2.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.8,6.2$, $2-\mathrm{HH}), 3.28(1 \mathrm{H}, \mathrm{dd}, J 9.2,2.1,6-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{ap} . \mathrm{dt}, \mathrm{J} 4.1,2.1,5-\mathrm{H}), 4.07-4.18\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $7-H), 4.27$ (1H, dddd, J 11.4, 7.6, 6.2, 2.1, 3-H), 5.38 (1H, ddq, J 15.4, 7.3, 1.6, 8-H), $5.69(1 \mathrm{H}, \mathrm{dqd}, J$ 15.4, 6.5, 1.0, 9-H $) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.4\left(2 \times \mathrm{SiCH}_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right),-3.4\left(\mathrm{SiCH}_{3}\right), 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.2$ $(\mathrm{C}-10), 18.3\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.3\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 39.7(\mathrm{C}-4), 41.2(\mathrm{C}-2), 60.6$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 67.9$ (C-3), 69.6 (C-5), 73.9 (C-6), 76.7 (C-7), 129.2 (C-9), 130.4 (C-8), 171.2 (C-1); HRMS (ESI) calc. for $\left[\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}_{2}\right] 473.3113$ Found 473.3114 .

Ethyl 2-((2S,4R,5S,6R)-4,5-bis(tert-butyldimethylsiloxy)-6-formyltetrahydro-2H-pyran-2-yl)acetate

 (12)

S4
i) $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, NMO
acetone $/ \mathrm{H}_{2} \mathrm{O}$ ii) $\mathrm{NaIO}_{4}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$

12

Alkene S4 ($5.99 \mathrm{~g}, 12.67 \mathrm{mmol}$) was dissolved in acetone (50 mL) and water (6.5 mL) then potassium osmate dihydrate ($47 \mathrm{mg}, 0.13 \mathrm{mmol}$) and NMO ($2.23 \mathrm{~g}, 19.04 \mathrm{mmol}$) were added sequentially, and the reaction mixture was stirred at room temperature. After 18 hours the reaction mixture was diluted with EtOAc (200 mL), water (100 mL) and brine (50 mL). The organic layer was separated and the aqueous was extracted with further EtOAc $(2 \times 150 \mathrm{~mL})$. The combined organics were dried over MgSO_{4} and the solvent removed in vacuo. The crude diol was dissolved in THF (42 mL) and water (32 mL) and $\mathrm{NaIO}_{4}(3.80 \mathrm{~g}, 17.77 \mathrm{mmol})$ was added portion wise. The reaction mixture was stirred at room temperature for 3 hours then further $\mathrm{NaIO}_{4}(3.80 \mathrm{~g}, 17.77 \mathrm{mmol})$ was added and the reaction mixture was stirred for 3 hours. The solution was filtered through a pad of Celite and washed with DCM (300 $\mathrm{mL})$. The organic phase was washed with aqueous saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(200 \mathrm{~mL})$ and the aqueous extracted with $\mathrm{DCM}(2 \times 200 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether 60:40) to afford aldehyde $12\left(5.23 \mathrm{~g}, 89 \%\right.$) as a colourless oil; ${ }^{[\alpha]_{D}^{22}}=-76.0\left(c 1, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ film $) 3019,2953,2929,2887,2858,1739,1214 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.05(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiCH}_{3}\right), 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.93\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.25(3 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.57\left(1 \mathrm{H}, \mathrm{ddd}, J 13.6,11.5,2.0,4-\mathrm{H}_{\mathrm{ax}}\right), 1.86\left(1 \mathrm{H}, \mathrm{ddd}, J 13.6,4.2,2.1,4-\mathrm{H}_{\text {eq }}\right), 2.40$ (1H, dd, J 15.2, 6.8, 2-HH), 2.67 (1H, dd, J 15.2, 6.8, 2-HH), 3.67 (1H, dd, J 9.6, 2.0, 6-H), 4.06 (1H, ap. $\mathrm{dt}, J 4.2,2.0,5-\mathrm{H}), 4.13\left(2 \mathrm{H}, \mathrm{ap} . \mathrm{qd}, J 7.1,2.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.29(1 \mathrm{H}, \mathrm{ap} . \mathrm{dtd}, J 11.5,6.8,2.1,3-\mathrm{H}), 4.39$ (1H, dd, J 9.6, 1.4, 7-H), $9.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4,8-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.9\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right),-4.1$
$\left(\mathrm{SiCH}_{3}\right),-3.5\left(\mathrm{SiCH}_{3}\right), 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.3\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 39.0 (C-4), $40.6(\mathrm{C}-2), 60.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 68.2(\mathrm{C}-3), 69.4(\mathrm{C}-5), 71.4(\mathrm{C}-6), 79.5(\mathrm{C}-7), 170.8(\mathrm{C}-1), 200.5$ (C-8); HRMS (ESI) calc. for $\left[\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si}_{2}\right] 461.2749$ Found 461.2761.

3.2 Synthesis of Sulfone 13

((1S,2S,3S)-2-((tert-Butyldiphenylsiloxy)methyl)-3-methylcyclopropyl)methanol (21)

Aldehyde $\mathbf{2 0 4}$ ($5.90 \mathrm{~g}, 16.74 \mathrm{mmol}$) was dissolved in DCM (170 mL) under nitrogen and cooled to $-78^{\circ} \mathrm{C}$ then 1 M DIBAL-H in hexanes ($18.41 \mathrm{~mL}, 18.41 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at room temperature for 1 hour, cooled to $0{ }^{\circ} \mathrm{C}$, then quenched with dropwise addition of aqueous saturated sodium potassium tartrate solution $(75 \mathrm{~mL})$. The reaction mixture was warmed to room temperature, diluted with water (75 mL) and DCM $(50 \mathrm{~mL})$ and stirred vigorously for 1 hour. The organic layer was separated and the aqueous extracted with DCM ($2 \times 200 \mathrm{~mL}$). The combined organic layers were washed with brine (100 mL), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($45 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether $60: 40$) to afford alcohol 21 ($5.83 \mathrm{~g}, 98 \%$) as a colourless oil; $[\alpha]_{D}^{24}=+4.0\left(c 1, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ film $) 3347,3018,2957$, 2931, 2858, 1428, 1214; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.66(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 0.79-0.89(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 0.97(1 \mathrm{H}$, dddd, J 9.1, 7.6, 6.8, 4.7, 2-H), $1.03-1.08\left(12 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.23(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.37(1 \mathrm{H}$, ddd, J 11.7, 7.1, 4.5, 5-HH), 3.50 (1H, ap. dt, J 11.7, 6.2, 5-HH), 3.66 (1H, dd, J 11.0, 7.6, 1-HH), 3.72 (1H, dd, J 11.0, 6.8, 1-HH), $7.34-7.45$ ($6 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{ArH}$), $7.65-7.71(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{ArH}) ; \delta_{\mathrm{C}}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 12.9\left(\mathrm{CH}_{3}-3\right), 15.8(\mathrm{C}-3), 19.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.8(\mathrm{C}-2), 27.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.5(\mathrm{C}-4), 63.3(\mathrm{C}-1), 66.8$ (C-5), 127.8 ($2 \times \mathrm{ArCH}$), 129.8 ($2 \times \mathrm{ArCH}$), 134.1 (ArC), 134.2 (ArC), 135.8 ($2 \times \mathrm{ArCH}$); HRMS (ESI) calc. for $\left[\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}\right]$ 366.1907 Found 377.1911. Data consistent with the literature. ${ }^{5}$

5-((((1S,2R,3R)-2-((tert-Butyldiphenylsiloxy)methyl)-3-methylcyclopropyl)methyl)sulfonyl)-1-phenyl-1H-tetrazole (13)

Method 1:

Alcohol 21 ($5.31 \mathrm{~g}, 15.00 \mathrm{mmol}$), PT-SH ($3.48 \mathrm{~g}, 19.50 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(5.11 \mathrm{~g}, 19.50 \mathrm{mmol})$ were dissolved in THF (150 mL) under nitrogen and cooled the $0^{\circ} \mathrm{C}$ then DIAD ($3.84 \mathrm{~mL}, 19.50 \mathrm{mmol}$) was added dropwise over 10 minutes. The reaction mixture was stirred for 3 hours at room temperature then quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$. The resulting solution was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$), and the combined organic layers were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude material was filtered through a small plug of silica eluting with $50 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether 60:40 and the solvent removed in vacuo. The crude material was dissolved in DCM (75 mL) and cooled to $0^{\circ} \mathrm{C}$ then m CPBA ($70 \mathrm{wt} \%, 12.94 \mathrm{~g}, 52.50 \mathrm{mmol}$) was added over 15 minutes. The reaction mixture was stirred at room temperature for 18 hours then quenched with aqueous saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ and aqueous saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ then stirred vigorously for 1 hour. The resulting solution was diluted with water (100 mL) and extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic layers were washed with brine (100 mL), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($30 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether 60:40) to afford sulfone 13 ($7.34 \mathrm{~g}, 89 \%$) as a yellow oil; $[\alpha]_{D}^{22}=+4.0\left(c 1, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 3019,2932,2858,1214 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.76-0.84(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}$ or $4-\mathrm{H}), 0.99-1.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and $\left.3-\mathrm{CH}_{3}\right), 1.05-1.08(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.17-1.24(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}$ or $4-\mathrm{H}), 3.52-3.61(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{HH}$ and $5-\mathrm{HH}), 3.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.3,3.4,1-\mathrm{HH}$ or $5-\mathrm{HH}$), $3.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $6.31-\mathrm{HH}$ or $5-\mathrm{HH}$), $7.34-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.53-7.69(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.4\left(\mathrm{CH}_{3}-\right.$ 3), $15.9(\mathrm{C}-2 / 4), 17.9(\mathrm{C}-3), 19.3\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.3(\mathrm{C}-2 / 4), 27.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 60.8(\mathrm{C}-1 / 5), 62.4(\mathrm{C}-1 / 5)$, 125.3 (2 x ArCH), 127.9 ($2 \times \mathrm{ArCH}$), 129.9 ($2 \times \mathrm{ArCH}$), 131.6 (ArCH), 133.2 (ArC), 133.8 (ArC), 133.8 (ArC), 135.7 (2 x ArCH), 153.9 (NCN); HRMS (ESI) calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{SSiNa}\right.$ 569.2019 Found 569.2018. Data consistent with the literature. ${ }^{5}$

Method 2:

Alcohol 21 ($250 \mathrm{mg}, 0.71 \mathrm{mmol}$), PT-SH ($164 \mathrm{mg}, 0.92 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(241 \mathrm{mg}, 0.92 \mathrm{mmol})$ were dissolved in THF (7 mL) under nitrogen and cooled the $0^{\circ} \mathrm{C}$ then DIAD ($0.18 \mathrm{~mL}, 0.92 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for 3 hours at room temperature then quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The resulting solution was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, and the combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent
removed in vacuo. The crude material was filtered over a small plug of silica eluting with $50 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether 60:40 and the solvent removed in vacuo. The crude material was dissolved in EtOH $(24 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$ then a premixed solution of molybdate ($175 \mathrm{mg}, 0.14 \mathrm{mmol}$) in a 30% aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}(0.73 \mathrm{~mL}, 7.1 \mathrm{mmoL})$ was added dropwise. The reaction mixture was stirred at room temperature for 18 hours then quenched with water $(100 \mathrm{~mL})$. The resulting solution was extracted with DCM ($3 \times 150 \mathrm{~mL}$) and the combined organic layers dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude material was purified by flash column chromatography $\left(30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether 60:40) to afford sulfone 13 ($351 \mathrm{mg}, 90 \%$) as a colourless oil. Data consistent with previously reported.

3.3 Synthesis of Aldehyde 10

Ethyl 2-((2S,4R,5S,6S)-4,5-bis(tert-butyldimethylsiloxy)-6-((E)-2-((1S,2S,3S)-2-

((tert-butyldiphenylsiloxy)methyl)-3-methylcyclopropyl)vinyl)tetrahydro-2H-pyran-2-yl)acetate

(22)

Sulfone $13(5.28 \mathrm{~g}, 9.65 \mathrm{mmol})$ was dissolved in DMF (48 mL) and HMPA (12 mL) and cooled to $-60^{\circ} \mathrm{C}$ then 1 M LiHMDS in THF ($9.65 \mathrm{~mL}, 9.65 \mathrm{mmol}$) was added dropwise over 15 minutes. The reaction mixture was stirred for 5 minutes then aldehyde 12 ($3.60 \mathrm{~g}, 7.82 \mathrm{mmol}$) in DMF (16 mL) and HMPA (4 mL) was added dropwise. The orange solution was stirred at $-60^{\circ} \mathrm{C}$ for 3 hours then allowed to warm to room temperature and stirred for a further 2 hours. The reaction mixture was quenched with dropwise addition of water (25 mL) then was diluted with water $(75 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(250$ $\mathrm{mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 250 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 250 \mathrm{~mL}$), dried over MgSO_{4} and the solvent
removed in vacuo. The crude material was purified by flash column chromatography $\left(8 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in petroleum ether 60:40) to afford alkene $22(4.28 \mathrm{~g}, 70 \%, E / Z>95: 5)$ as a colourless oil; ${ }^{[\alpha]_{D}^{21}}=-20.0$ (c $\left.1, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 2954,2929,2857,1738,1472,1253,1214 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88-0.90(1 \mathrm{H}, \mathrm{m}$, $10-\mathrm{H}), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.92-0.93(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.08(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.2,11-$ $\left.\mathrm{CH}_{3}\right), 1.17(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 1.23\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.53\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 13.5,11.6,2.1,4-\mathrm{H}_{\mathrm{ax}}\right), 1.82(1 \mathrm{H}$, ddd, J 13.5, 4.2, 2.1, 4- $\mathrm{H}_{\text {eq }}$), $2.34(1 \mathrm{H}, \mathrm{dd}, J 14.8,7.5,2-H \mathrm{H}), 2.61(1 \mathrm{H}, \mathrm{dd}, J 14.8,6.1,2-\mathrm{HH}), 3.26(1 \mathrm{H}$, dd, J 9.1, 2.4, 6-H), 3.47 (1H, dd, J 11.0, 8.9, 13-HH), 3.88 (1H, dd, J 11.0, 5.4, 13-HH), $3.99(1 \mathrm{H}, \mathrm{m}, 5-$ H), $4.04-4.16\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.7-\mathrm{H}\right), 4.24(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.3,8.6,9-\mathrm{H}), 5.33(1 \mathrm{H}$, dd, J 15.3, 7.3, 8-H), $7.34-7.45(6 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{ArH}), 7.66-7.70(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.4$ $\left(\mathrm{SiCH}_{3}\right),-4.3\left(\mathrm{SiCH}_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right),-3.5\left(\mathrm{SiCH}_{3}\right), 12.7\left(\mathrm{CH}_{3}-11\right), 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.3$ $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.6(\mathrm{C}-11), 26.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.3\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.4(\mathrm{C}-12)$, 27.6 (C-10), 39.7 (C-4), $41.2(\mathrm{C}-2), 60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.2(\mathrm{C}-13), 67.8(\mathrm{C}-3), 69.6(\mathrm{C}-5), 73.9(\mathrm{C}-6), 76.7$ (C-7), 126.6 (C-8), 127.8 ($2 \times \mathrm{ArCH}$), 129.7 ($2 \times \mathrm{ArCH}$), $134.17(2 \times \mathrm{ArC}), 135.8$ ($2 \times \mathrm{ArCH}$), 137.1 (C-9), 171.2 (C-1); HRMS (ESI) calc. for $\left[\mathrm{C}_{44} \mathrm{H}_{72} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}\right]$ 803.4529 Found 803.4524.

Ethyl 2-((2S,4R,5S,6S)-4,5-bis(tert-butyldimethylsiloxy)-6-((E)-2-((1S,2S,3S)-2-(hydroxymethyl)-3-methylcyclopropyl)vinyl)tetrahydro-2H-pyran-2-yl)acetate (23)

Silyl ether $22(4.68 \mathrm{~g}, 6.00 \mathrm{mmol})$ was dissolved in THF $(60 \mathrm{~mL})$ under nitrogen and cooled to $0^{\circ} \mathrm{C}$ then AcOH ($0.343 \mathrm{~mL}, 6.00 \mathrm{mmol}$) and $1 \mathrm{M} \mathrm{TBAF} \mathrm{in} \mathrm{THF} \mathrm{(} 6.00 \mathrm{~mL}, 6.00 \mathrm{mmol}$) were added sequentially. The reaction mixture was stirred for 18 hours at room temperature then quenched with aqueous saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The resulting solution was diluted with water (30 mL) and extracted with EtOAc (3 x 70 mL). The combined organic layers were washed with brine (100 mL), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether $60: 40$) to afford alcohol $23(2.63 \mathrm{mg}, 81 \%)$ as a colourless oil; $[\alpha]_{D}^{21}=-38.0$ (c 1, CHCl_{3}); $\mathrm{v}_{\text {max }}($ film $) 3441,2953,2929,2885,2857,1738,1472,1252,1115 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.03$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.95-1.02(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$ and $11-\mathrm{H}), 1.12\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.7,11-\mathrm{CH}_{3}\right), 1.15-1.20(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 1.23(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.1, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.43 (1H, s, OH), 1.53 (1H, ddd, J 13.4, 11.4, 1.9, 4- H_{ax}), 1.82 (1H, ddd, J 13.5, 4.2, 2.1, $4-\mathrm{H}_{\text {eq }}$), $2.34(1 \mathrm{H}, \mathrm{dd}, J 14.8,7.5,2-\mathrm{HH}), 2.60(1 \mathrm{H}, \mathrm{dd}, J 14.8,6.0,2-\mathrm{HH}), 3.27(1 \mathrm{H}, \mathrm{dd}, J 9.1,2.4,6-\mathrm{H})$,
$3.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.4,8.6,13-\mathrm{HH}), 3.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.4,6.3,13-\mathrm{HH}), 3.97-4.02(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.05-4.16$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.7-\mathrm{H}\right), 4.20-4.30(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.3,8.3,9-\mathrm{H}), 5.39(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.3$, 7.4, 8-H); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.4\left(\mathrm{SiCH}_{3}\right),-4.3\left(\mathrm{SiCH}_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right),-3.4\left(\mathrm{SiCH}_{3}\right), 12.6\left(\mathrm{CH}_{3}-11\right), 14.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.26\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.32\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.4(\mathrm{C}-11), 26.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.3\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.6(\mathrm{C}-$ 12), 28.0 ($\mathrm{C}-10$), 39.6 ($\mathrm{C}-4$), $41.1(\mathrm{C}-2), 60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 62.3(\mathrm{C}-13), 67.8$ (C-3), 69.5 (C-5), $74.0(\mathrm{C}-6)$, 76.6 (C-7), 127.1 (C-8), 136.6 (C-9), 171.1 (C-1); HRMS (ESI) calc. for [$\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$] 565.3351 Found 565.3350.

Ethyl 2-((2S,4R,5S,6S)-4,5-bis(tert-butyldimethylsiloxy)-6-((E)-2-((1S,2S,3S)-2-formyl-3-methylcyclopropyl)vinyl)tetrahydro-2H-pyran-2-yl)acetate (10)

Alcohol $23(2.60 \mathrm{~g}, 4.79 \mathrm{mmol})$ was dissolved in DCM (50 mL) under nitrogen and cooled to $0^{\circ} \mathrm{C}$, then DMP ($2.64 \mathrm{~g}, 6.23 \mathrm{mmol}$) was added. The reaction mixture was stirred for 1 hour at room temperature then quenched with aqueous saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$ and aqueous saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and stirred vigorously for 30 minutes. The aqueous phase was extracted with DCM ($3 \times 75 \mathrm{~mL}$) and the combined organic layers were washed with brine (50 mL), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether 60:40) to afford aldehyde $10(2.33 \mathrm{~g}, 90 \%)$ as a white solid; $[\alpha]_{D}^{23}=-6.0\left(c 1, \mathrm{CHCl}_{3}\right)$; $\mathrm{v}_{\max }$ (film) 2954, 2020, 2887, 2857, 1738, 1700, 1472; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.23(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4,11-\mathrm{CH}_{3}\right), 1.51-1.61\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right.$ and 11-H), $1.82(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 13.5,4.1$, $\left.2.0,4-\mathrm{H}_{\mathrm{eq}}\right), 1.96(1 \mathrm{H}, \mathrm{ap} . \mathrm{dt}, J 9.1,4.6,12-\mathrm{H}), 2.12(1 \mathrm{H}, \mathrm{ddd}, J 8.8,6.4,4.6,10-\mathrm{H}), 2.34(1 \mathrm{H}, \mathrm{dd}, J 14.9$, 7.2, 2-HH), $2.58(1 \mathrm{H}, \mathrm{dd}, J 14.9,6.4,2-\mathrm{HH}$), $3.27(1 \mathrm{H}, \mathrm{dd}, J 9.1,2.0,6-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{ap} . \mathrm{dt}, J 4.1,2.0,5-$ H), $4.07-4.17\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.7-\mathrm{H}\right), 4.25(1 \mathrm{H}, \mathrm{ap} . \mathrm{dtd}, J 11.4,6.8,2.0,3-\mathrm{H}), 5.25(1 \mathrm{H}$, ddd, J 15.3, $8.8,1.1,9-H), 5.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.3,7.0,8-\mathrm{H}), 9.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.6,13-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.4\left(\mathrm{SiCH}_{3}\right)$, -4.3 $\left(\mathrm{SiCH}_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right),-3.4\left(\mathrm{SiCH}_{3}\right), 12.7\left(\mathrm{CH}_{3}-11\right), 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.27\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.32$ $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.7(\mathrm{C}-11), 33.2(\mathrm{C}-10), 36.9(\mathrm{C}-12), 39.6(\mathrm{C}-4), 41.1(\mathrm{C}-$ 2), $60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 68.0(\mathrm{C}-3), 69.5(\mathrm{C}-5), 74.0(\mathrm{C}-6), 76.0(\mathrm{C}-7), 129.9(\mathrm{C}-8), 132.6$ (C-9), 171.1 (C-1), 200.0 (C-13); HRMS (ESI) calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}_{2}\right] 541.3375$ Found 541.3369.

3.4 Synthesis of Ketone 32

3.4.1 Synthesis of Ketone 32 via Asymmetric Hydrogenation

1-((2R,6R)-6-Ethyl-5-methyl-3,6-dihydro-2H-pyran-2-yl)ethan-1-one (35)

Alcohol $34^{4}(1.20 \mathrm{~g}, 7.05 \mathrm{mmol})$ was dissolved in DCM (70 mL) under nitrogen and cooled to $0^{\circ} \mathrm{C}$, then $\mathrm{NaHCO}_{3}(2.37 \mathrm{~g}, 28.20 \mathrm{mmol})$ and DMP ($3.59 \mathrm{~g}, 8.46 \mathrm{mmol}$) were added sequentially. The reaction mixture was stirred for 2 hours at room temperature, filtered over Celite eluting with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($7 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) to afford the volatile ketone 35 ($1.15 \mathrm{~g}, 97 \%$) as a colourless oil; ${ }^{[\alpha]_{D}^{20}}=+166$ (c $0.25, \mathrm{CHCl}_{3}$) lit. ${ }^{6}[\alpha]_{D}^{20}=+181\left(c 0.257, \mathrm{CHCl}_{3}\right) ; \mathrm{v}_{\text {max }}($ film $) 2966,2936,1720,1353,1115,1057 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.94\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,9-\mathrm{H}_{3}\right), 1.44-1.58(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{HH}), 1.56-1.62\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{3}\right), 1.81(1 \mathrm{H}$, dqd, J 14.8, 7.3, 3.5, 8-HH), $1.98-2.20\left(2 H, m, 4-\mathrm{H}_{2}\right), 2.24\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.91(1 \mathrm{H}, \mathrm{dd}, J 10.5,4.2,3-\mathrm{H})$, $4.06-4.12(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.46-5.64(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.8(\mathrm{C}-9), 19.1\left(\mathrm{CH}_{3}-6\right), 25.8(\mathrm{C}-$ 8), 25.9 (C-1), 27.5 (C-4), 78.5 (C-7), 78.9 (C-3), 119.7 (C-5), 135.8 (C-6), 210.2 (C-2); HRMS (ESI) calc. for $\left[\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\right.$] 191.1043 Found 191.1045. Data consistent with the literature. ${ }^{6}$

1-((2R,5S,6R)-6-Ethyl-5-methyltetrahydro-2H-pyran-2-yl)ethan-1-one (32)

Ketone 35 ($73 \mathrm{mg}, 0.45 \mathrm{mmol}$) was dissolved in degassed DCM (2 mL) under nitrogen at room temperature then Crabtree's catalyst ($17 \mathrm{mg}, 0.022 \mathrm{mmol}$) was added. Using a balloon, H_{2} was bubbled through the reaction mixture for 5 minutes then the reaction mixture was stirred under H_{2} at atmospheric pressure for 3 hours. The solvent was removed in vacuo and the resulting material dissolved in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, filtered over celite and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($8 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) to afford ketone 32 ($65 \mathrm{mg}, 89 \%$) as a
 $1215,1103,746 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.82\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,6-\mathrm{CH}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5,9-\mathrm{H}_{3}\right), 1.17-1.27(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{HH}$), $1.30-1.49(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}, 6-\mathrm{H}$ and $8-\mathrm{HH}), 1.73(1 \mathrm{H}, \mathrm{dqd}, \mathrm{J} 14.0,7.5,2.8,8-\mathrm{HH}), 1.79-1.89$ $(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}$ and $5-\mathrm{HH}), 2.20\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 2.89(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 9.5,8.4,2.8,7-\mathrm{H}), 3.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.6,2.5$,
$3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.9(\mathrm{C}-9), 17.8\left(\mathrm{CH}_{3}-6\right), 26.02(\mathrm{C}-8), 26.04(\mathrm{C}-1), 28.5(\mathrm{C}-4), 32.7(\mathrm{C}-5), 34.5$ (C-6), 83.2 (C-3), 84.8 (C-7), 210.6 (C-2); HRMS (ESI) calc. for $\left[\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}\right.$] 193.1199 Found 193.1199. Data consistent with the literature. ${ }^{7}$

Scale-up procedure:

Ketone 35 ($1100 \mathrm{mg}, 6.45 \mathrm{mmol}$) was dissolved in degassed DCM (26 mL) under nitrogen at room temperature. Using a balloon, H_{2} was bubbled through the solution was 1 minute then Crabtree's catalyst ($264 \mathrm{mg}, 0.33 \mathrm{mmol}$) was added. Using a balloon, H_{2} was bubbled through the reaction mixture for 20 minutes then the reaction mixture was stirred under H_{2} at atmospheric pressure for 3 hours. The solvent was removed in vacuo and the resulting material dissolved in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$, filtered over Celite and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($8 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) to afford ketone 32 ($889 \mathrm{mg}, 81 \%$) as a single diastereoisomer and a colourless oil. Data consistent with previously reported.

3.4.2 Synthesis of Ketone 32 via Prins Cyclisation

(3R,4S)-4-Methylhex-5-en-3-ol (25)

24
25
tBuOK ($561 \mathrm{mg}, 5.0 \mathrm{mmol}$) was dissolved in THF (15 mL) under nitrogen and cooled to $-78{ }^{\circ} \mathrm{C}$ then condensed trans-but-2-ene ($0.90 \mathrm{~mL}, 10.0 \mathrm{mmol}$) was added via cannula. A solution of 2.5 M nBuLi in hexane ($2.00 \mathrm{~mL}, 5.0 \mathrm{mmol}$) was added dropwise over 15 minutes and the reaction mixture was stirred for 10 minutes at $-45^{\circ} \mathrm{C}$ then cooled to $-78^{\circ} \mathrm{C}$. A 0.92 M solution of (-)- $\mathrm{lpc}_{2} \mathrm{BOMe}$ in $\mathrm{THF}(6.52 \mathrm{~mL}, 6.0$
mmol) was added dropwise over 20 minutes. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes then $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(0.83 \mathrm{~mL}, 6.7 \mathrm{mmol})$ was added dropwise over 5 minutes followed by propionaldehyde 24 ($0.51 \mathrm{~mL}, 7.0 \mathrm{mmol}$) over 5 minutes. The reaction mixture was stirred for 4 hours, quenched with $3 \mathrm{M} \mathrm{NaOH}(4 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(2 \mathrm{~mL})$, then stirred at room temperature for 16 hours. The resulting solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$. The organic layer was separated and the aqueous extracted with further $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) to afford alcohol 25 ($252 \mathrm{mg}, 44 \%, 95: 5 \mathrm{dr}$) as
 $[\alpha]_{D}^{25}=-8.7\left(c 0.3, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 3385,3077,2964,2935,2877,1639,1457,1215 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.96\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4,1-\mathrm{H}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,4-\mathrm{CH}_{3}\right), 1.35-1.44(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH}), 1.52-1.64(2 \mathrm{H}, \mathrm{m}$, OH and $2-\mathrm{HH}), 2.14-2.29(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.22-3.40(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.09(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{HH}), 5.12(1 \mathrm{H}, \mathrm{m}, 6-$ $\mathrm{HH}), 5.69-5.84(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.1(\mathrm{C}-1), 16.5\left(\mathrm{CH}_{3}-4\right), 27.1(\mathrm{C}-2), 43.9(\mathrm{C}-4), 76.2$ (C-3), 116.4 (C-6), 140.6 (C-5); HRMS (APCI) calc. for [$\left.\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}\right] 97.1012$ Found 97.1008. Data consistent with the literature. ${ }^{8}$

Ethyl (S)-2-(tert-butyldiphenylsiloxy)propanoate (S6)

To a solution of alcohol S5 ($2.36 \mathrm{~g}, 20.00 \mathrm{mmol}$) in DCM (70 mL) under nitrogen was added imidazole $(1.63 \mathrm{~g}, 24 \mathrm{mmol})$, TBDPSCl ($5.72 \mathrm{~mL}, 24 \mathrm{mmol}$) and a spatula tip of DMAP and the reaction mixture was stirred for 24 hours. The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and water (50 mL). The organic layer was separated and the aqueous extracted with DCM $(2 \times 60 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over MgSO_{4} and the solvent removed in vacuo to afford silyl alcohol S6 (7.42 g, quant.) as a colourless oil; $[\alpha]_{D}^{23}=-69.0\left(c 1, \mathrm{CHCl}_{3}\right)$; $v_{\max }$ (film) 3072, 2933, 2894, 2858, 1752, 1733, 1428, 1133, 1106; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.10\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.15(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.37\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,3-\mathrm{H}_{3}\right), 4.02\left(2 \mathrm{H}, \mathrm{q}, ~ J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.27(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.8,2-\mathrm{H}), 7.31-7.48(6 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.62-7.73(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 19.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.4(\mathrm{C}-3), 27.0$ $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 66.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 69.1(\mathrm{C}-2), 127.7(\mathrm{ArCH}), 127.8(\mathrm{ArCH}), 129.9(\mathrm{ArCH}), 133.4(\mathrm{ArC}), 133.8$ (ArC), 135.9 (ArCH), 136.1 (ArCH), 173.9 (C-1); HRMS (ESI) calc. for $\left[\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NaSiO}_{3}\right] 379.1700$ Found 379.1689. Data consistent with the literature. ${ }^{4}$
(S)-2-(tert-Butyldiphenylsiloxy)propanal (27)

Ester S6 (2.00 g, 5.60 mmol$)$ was dissolved in DCM (20 mL) under nitrogen and cooled to $-78{ }^{\circ} \mathrm{C}$ then 1 M DIBAL-H in hexanes ($6.20 \mathrm{~mL}, 6.20 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour, then quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$ dropwise followed by aqueous saturated sodium potassium tartrate solution $(50 \mathrm{~mL})$. The reaction mixture was warmed to room temperature and stirred vigorously for 1 hour. The organic layer was separated and the aqueous extracted with DCM ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine (100 mL), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography (3\% $\mathrm{Et}_{2} \mathrm{O}$ in petroleum ether $60: 40$) to afford aldehyde $27\left(1.45 \mathrm{~g}, 83 \%\right.$) as a colourless oil; $[\alpha]_{D}^{23}=-26.0$ (c 1, CHCl_{3}); $\mathrm{v}_{\text {max }}($ film $) 3072,2959,2932,2858,1738,1428,1110,699 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.11(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,3-\mathrm{H}_{3}\right), 4.09(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 6.8,1.2,2-\mathrm{H}), 7.34-7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.62-7.68$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 9.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.2, \mathrm{C}-1) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.6(\mathrm{C}-3), 19.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 74.6 ($\mathrm{C}-2$), $127.95(\mathrm{ArCH}), 128.03(\mathrm{ArCH}), 130.16(\mathrm{ArCH}), 130.23(\mathrm{ArCH}), 133.1(\mathrm{ArC}), 133.5(\mathrm{ArC})$, 135.89 (ArCH), 135.92 (ArCH), 204.0 (C-1); HRMS (ESI) calc. for $\left[\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NaO}_{2} \mathrm{Si}\right] 335.1438$ Found 335.1436. Data consistent with the literature. ${ }^{4}$

Ethyl (S)-2-((tert-butyldimethylsilyl)oxy)propanoate (S5)

To a solution of alcohol $\mathbf{S 5}(5.91 \mathrm{~g}, 50.00 \mathrm{mmol})$ in DCM (150 mL) was added imidazole ($4.08 \mathrm{~g}, 68.08$ $\mathrm{mmol}), \mathrm{TBSCl}(8.29 \mathrm{~g}, 55 \mathrm{mmol})$ and a spatula tip of DMAP and the reaction mixture was stirred for 24 hours. The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The organic layer was separated and the aqueous extracted with DCM $(2 \times 60 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over MgSO_{4} and the solvent removed in vacuo to afford silyl alcohol S7 (11.64 g, quant.) as a colourless oil; $[\alpha]_{D}^{24}=-40.0\left(c 1, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}$ (film) 2983, 2955, 2931, 2888, 2858, 1754, 1736, 1252, 1142, 829; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right), 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right), 0.89$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.38\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7,3-\mathrm{H}_{3}\right), 4.12-4.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.30(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.7,2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.1\left(\mathrm{SiCH}_{3}\right),-4.8\left(\mathrm{SiCH}_{3}\right), 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.5\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $21.5(\mathrm{C}-3), 25.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 60.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 68.6(\mathrm{C}-2), 174.3(\mathrm{C}-1)$; HRMS (ESI) calc. for $\left[\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NaSiO}_{3}\right]$ 255.1387 Found 255.1396. Data consistent with the literature. ${ }^{9}$

(S)-2-(tert-Butyldimethylsilyloxy)propanal (26)

Ester $\mathbf{S 7}(1.00 \mathrm{~g}, 4.30 \mathrm{mmol})$ was dissolved in DCM $(15 \mathrm{~mL})$ under nitrogen and cooled to $-78{ }^{\circ} \mathrm{C}$ then 1 M DIBAL-H in hexanes ($4.73 \mathrm{~mL}, 4.73 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 hour, then quenched with dropwise addition of $\mathrm{MeOH}(1 \mathrm{~mL})$ followed by aqueous saturated sodium potassium tartrate solution $(50 \mathrm{~mL})$. The reaction mixture was warmed to room temperature and stirred vigorously for 1 hour. The organic layer was separated and the aqueous extracted with DCM $(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether $60: 40$) to afford aldehyde 26 ($673 \mathrm{mg}, 83 \%$) as a colourless oil; $[\alpha]_{D}^{25}=-19.0$ (c 1, CHCl_{3}); $v_{\max }\left(\right.$ film) 2955, 2930, 2857, 2886, 1739, 1253, 832, 776; $\delta_{\text {H }}$ (400 MHz, CDCl $)_{3} 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.28\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,3-\mathrm{H}_{3}\right)$, $4.09(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 6.8,1.3,2-\mathrm{H}), 9.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.3,1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.63\left(\mathrm{SiCH}_{3}\right),-4.57\left(\mathrm{SiCH}_{3}\right)$, $18.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.7(\mathrm{C}-3), 25.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 74.0(\mathrm{C}-2), 204.4(\mathrm{C}-1)$; HRMS (ESI) calc. for $\left[\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Si}\right]$ 189.1305 Found 189.1304. Data consistent with the literature. ${ }^{9}$

tert-Butyl((S)-1-((2R,4R,5R,6R)-4-chloro-6-ethyl-5-methyltetrahydro-2H-pyran-2yl)ethoxy)diphenylsilane (29)

Homoallylic alcohol 25 ($387 \mathrm{mg}, 3.39 \mathrm{mmol}$) and aldehyde 27 ($1060 \mathrm{mg}, 3.39 \mathrm{mmol}$) were dissolved in DCM (40 ml) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen and $\mathrm{SnCl}_{4}(1 \mathrm{M}$ in $\mathrm{DCM}, 6.78 \mathrm{~mL}, 6.78 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for 3 hours then quenched with aqueous saturated sodium hydrogen carbonate (20 mL) and warmed to room temperature. The resultant solution was diluted with DCM (50 mL) and water (30 mL), and the organic layer separated. The aqueous layer was extracted with further DCM $(2 \times 40 \mathrm{~mL})$ and the combined organic layers were washed with brine (50 mL), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography (12\% DCM in petroleum ether 60:40) to afford tetrahydropyran 29 (614 mg , 41%) as a white crystalline solid; $[\alpha]_{D}^{23}=-12.0$ (c 1, CHCl_{3}); $v_{\text {max }}$ (film) 2965, 2931, 2857, 1473, 1428, 1376,$1111 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.94\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,9-\mathrm{H}_{3}\right), 1.00-1.05\left(6 \mathrm{H}, \mathrm{m} 1-\mathrm{H}_{3}\right.$ and, $\left.6-\mathrm{CH}_{3}\right), 1.06(9 \mathrm{H}$,
$\left.\mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.33-1.46(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{HH}), 1.47-1.60(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.70-1.76(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{HH}), 1.82(1 \mathrm{H}$, ap. q, J 12.0, 4- H_{ax}), $2.33\left(1 \mathrm{H}\right.$, ddd, J 12.8, 4.6, 2.0, 4- $\left.\mathrm{H}_{\mathrm{eq}}\right), 2.88(1 \mathrm{H}$, ap. td, J 9.1, 2.5, 7-H), $3.15(1 \mathrm{H}$, ddd, J 11.4, 4.5, 2.0, 3-H), 3.69 (1H, ap. td, J 11.3, 4.6, 5-H), 3.86 (1H, qd, J 6.3, 4.5, 2-H), $7.32-7.47$ $(6 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{ArH}), 7.68-7.75(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.1$ (C-9), 14.7 ($\mathrm{CH}_{3}-6$), 19.6 $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.2(\mathrm{C}-1), 26.4(\mathrm{C}-8), 27.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 38.3(\mathrm{C}-4), 44.7(\mathrm{C}-6), 65.3(\mathrm{C}-5), 71.8(\mathrm{C}-2), 81.0(\mathrm{C}-$ 3), 83.4 (C-7), 127.66 (ArCH), 127.70 (ArCH), 129.7 (ArCH), 129.80 (ArCH), $134.0(\mathrm{ArC}), 135.0(\mathrm{ArC})$, 136.2 (ArCH), 136.45 (ArCH); HRMS (EI) calc. for $\left[\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{Si}^{35} \mathrm{Cl}\right] 387.1542$ Found 387.1546.
tert-Butyl((S)-1-((2R,5S,6R)-6-ethyl-5-methyltetrahydro-2H-pyran-2-yl)ethoxy)diphenylsilane (30)

29
30
Chloride 29 ($430 \mathrm{mg}, 0.97 \mathrm{mmol}$) was dissolved in degassed toluene (10 mL) under nitrogen and heated to $50^{\circ} \mathrm{C}$ then tributyltin hydride ($0.78 \mathrm{~mL}, 2.90 \mathrm{mmol}$) was added followed by AIBN (32 mg). The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 1 hour, cooled to room temperature and diluted with aqueous saturated potassium fluoride $(25 \mathrm{~mL})$ and EtOAc $(50 \mathrm{~mL})$. The organic layer was separated and washed with aqueous saturated potassium fluoride (25 mL), then brine (25 mL), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography (13% DCM in petroleum ether $60: 40$) to afford tetrahydropyran $30(372 \mathrm{mg}, 93 \%)$ as a colourless oil; $[\alpha]_{D}^{22}=+12.0\left(c 1, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 2960,2930,2856,1463,1427,1105 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.81(3 \mathrm{H}$, d, J 6.5, 6- CH_{3}), $0.94\left(3 \mathrm{H}, \mathrm{ap} . \mathrm{t}, J 7.4,9-\mathrm{H}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J 6.2,1-\mathrm{H}_{3}\right), 1.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.10-1.22$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{HH}), 1.24-1.45(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}, 6-\mathrm{H}$ and $8-H \mathrm{H}), 1.63-1.75(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{HH}), 1.76-1.86(2 \mathrm{H}, \mathrm{m}$, $4-\mathrm{HH}$ and $5-\mathrm{HH}$), $2.79(1 \mathrm{H}$, ap. td, J 9.2, 2.6, 7-H), $3.09(1 \mathrm{H}$, ddd, J 11.1, 5.4, 2.0, 3-H), $3.75-3.88(1 \mathrm{H}$, m, 2-H), $7.31-7.47(6 H, m, A r H), 7.62-7.81(4 H, m, A r H) ; \delta_{C}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.2(\mathrm{C}-9), 18.0\left(\mathrm{CH}_{3}-\right.$ $6), 19.6\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.4(\mathrm{C}-1), 26.3(\mathrm{C}-8), 27.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.6(\mathrm{C}-4), 33.1(\mathrm{C}-5), 35.4(\mathrm{C}-6), 72.6(\mathrm{C}-2)$, 82.4 (C-3), 85.0 (C-7), 127.5 (ArCH), 127.6 (ArCH), 129.5 (ArCH), 129.6 (ArCH), 134.4 (ArC), 135.3 (ArC), $136.2(\mathrm{ArCH}), 136.3(\mathrm{ArCH}) ; \mathrm{HRMS}(\mathrm{EI})$ calc. for $\left[\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}\right] 353.1931$ Found 353.1929.
(S)-1-((2R,5S,6R)-6-Ethyl-5-methyltetrahydro-2H-pyran-2-yl)ethan-1-ol (31)

Silyl ether $30(350 \mathrm{mg}, 0.79 \mathrm{mmol})$ was cooled to $0^{\circ} \mathrm{C}$ under nitrogen then $1 \mathrm{M} \mathrm{TBAF} \mathrm{in} \mathrm{THF} \mathrm{(} 1.57 \mathrm{~mL}$, 1.57 mmol) was added dropwise. The reaction mixture was stirred under nitrogen at room temperature for 24 hours and then quenched with water $(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layer was separated and the aqueous extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($30 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether $60: 40$) to afford alcohol 31 (122 mg, 90\%) as a colourless oil; $[\alpha]_{D}^{22}=+36.0\left(c 1, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ film) 3398, 2929, 2875, 1457, 1379, 1214,$747 ; \delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,6-\mathrm{CH}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{ap} . \mathrm{t}, \mathrm{J} 7.5,9-\mathrm{H}_{3}\right), 1.13(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5$, 1- H_{3}), $1.14-1.19(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{HH}), 1.26-1.33(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.33-1.43(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}$ and $8-H \mathrm{H}), 1.55$ (1H, ap. ddt, J 13.1, 5.1, 2.5, 4-HH), 1.68 (1H, dqd, J 14.9, 7.5, 2.7, 8-HH), $1.79(1 \mathrm{H}, \mathrm{ap} . \mathrm{dq}, J 13.2,3.6$, $5-\mathrm{HH}), 2.20-2.28(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.87(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 9.4,8.2,2.7,7-\mathrm{H}), 3.19(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 11.4,4.0,2.5,3-\mathrm{H})$, $3.73-3.83(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.9(\mathrm{C}-9), 17.9\left(\mathrm{CH}_{3}-6\right), 18.0(\mathrm{C}-1), 25.6(\mathrm{C}-4), 26.1(\mathrm{C}-8), 32.7$ (C-5), 35.0 (C-6), 69.8 (C-2), 80.7 (C-3), 84.7 (C-7); HRMS (ESI) calc. for [$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}$] 195.1356 Found 195.1363.

1-((2R,5S,6R)-6-Ethyl-5-methyltetrahydro-2H-pyran-2-yl)ethan-1-one (32)

Alcohol 31 ($88 \mathrm{mg}, 0.51 \mathrm{mmol}$) was dissolved in DCM (5 mL) under nitrogen and cooled to $0^{\circ} \mathrm{C}$, then $\mathrm{NaHCO}_{3}(171 \mathrm{mg}, 2.04 \mathrm{mmol})$ and DMP ($260 \mathrm{mg}, 0.61 \mathrm{mmol}$) were added sequentially. The reaction mixture was stirred for 2 hours at room temperature, filtered over celite eluting with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($8 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) to afford ketone 32 ($83 \mathrm{mg}, 96 \%$) as a colourless oil. Data consistent with previously reported.

3.5 Synthesis of Sulfone 11

tert-Butyl(((S,E)-4-((2R,5S,6R)-6-ethyl-5-methyltetrahydro-2H-pyran-2-yl)-2-methylpent-3-en-1yl)oxy)dimethylsilane (37)

Phosphonamide 36^{10} (3.15 g , 9.82 mmol) was dissolved in THF (30 mL) under nitrogen and cooled to $-78^{\circ} \mathrm{C}$ then 2.5 M n -BuLi in hexane ($3.39 \mathrm{~mL}, 8.47 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred for 2 hours. Neat ketone 32 ($0.76 \mathrm{~g}, 4.46 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was warmed to room temperature and quenched with $\mathrm{AcOH}(2.55 \mathrm{~mL}, 44.6 \mathrm{mmol}$) and stirred for an additional 20 minutes at room temperature. Aqueous saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ was added and the resulting solution was extracted with DCM ($3 \times 100 \mathrm{~mL}$) . The combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($3 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether $60: 40$) to afford alkene $37(0.75 \mathrm{~g}, 49 \%, E / Z=15: 1)$ as a colourless oil and ketone 32 (212 mg , 28\%); $[\alpha]_{D}^{24}=+22\left(c\right.$ 1, CHCl_{3}); $v_{\max }($ film $) 2956,2929,2856,1215,753 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.81(3 \mathrm{H}, \mathrm{d}$, J 6.6, 8- CH_{3}), $0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.1,2-\mathrm{CH}_{3}\right), 0.95-0.98\left(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{3}\right), 1.17-1.25$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{HH}), 1.30-1.38(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 1.38-1.48(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{HH}$ and $10-\mathrm{HH}), 1.56-1.72(5 \mathrm{H}, \mathrm{m}, 4-$ $\mathrm{CH}_{3}, 6-\mathrm{HH}$ and $\left.10-\mathrm{HH}\right), 1.74-1.82(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{HH}), 2.51-2.60(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.90(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 9.5,7.5$, $3.0,9-H), 3.26-3.36(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{HH}), 3.42-3.52(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{HH}), 3.54-3.62(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.14-5.18$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-6.16\left(\mathrm{SiCH}_{3}\right),-6.09\left(\mathrm{SiCH}_{3}\right), 8.6(\mathrm{C}-11), 12.6\left(\mathrm{CH}_{3}-4\right), 16.5\left(\mathrm{CH}_{3}-2\right)$, $17.0\left(\mathrm{CH}_{3}-8\right), 17.5\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.08(\mathrm{C}-10), 25.14\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.0(\mathrm{C}-6), 32.4(\mathrm{C}-7), 33.4(\mathrm{C}-8), 34.2(\mathrm{C}-$ 2), 67.1 (C-1), 81.2 (C-5), 83.5 (C-9), 126.3 (C-3), 136.1 (C-4); HRMS (ESI) calc. for $\left[\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SiNa}\right.$] 363.2701 Found 363.2690.

Silyl ether 37 ($737 \mathrm{mg}, 2.16 \mathrm{mmol}, E / Z=15: 1$) was dissolved in THF (20 mL) under nitrogen and cooled to $0^{\circ} \mathrm{C}$ then 1 M TBAF in THF ($3.25 \mathrm{~mL}, 3.25 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred under nitrogen at room temperature for 3 hours and then quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and the organic solvent removed in vacuo. The aqueous layer was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($35 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether $60: 40$) to afford alcohol 38 ($391 \mathrm{mg}, 80 \%$) as a colourless oil; $[\alpha]_{D}^{23}=+20.0$ (c 1, CHCl_{3}); $\mathrm{v}_{\text {max }}$ (film) 3403, 2956, 2928, 2873, 2850, 1457, 1380, 1084, 1031; $\delta_{\text {H }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.81\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,8-\mathrm{CH}_{3}\right), 0.92-0.98$ $\left(6 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}_{3}\right.$ and $\left.11-\mathrm{H}_{3}\right), 1.15-1.26(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{HH}), 1.30-1.46(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{HH}, 8-\mathrm{H}$ and $10-\mathrm{HH}), 1.52$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), $1.62-1.74\left(5 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{3}, 6-\mathrm{HH}\right.$ and $10-\mathrm{HH}$), 1.80 ($1 \mathrm{H}, \mathrm{ap} . \mathrm{dq}, \mathrm{J} 13.0,3.6,7-\mathrm{HH}$), $2.60-2.70$ (1H, m, 2-H), $2.90(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 9.5,7.6,3.0,9-\mathrm{H}), 3.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5,7.8,1-\mathrm{HH}), 3.43-3.49(1 \mathrm{H}, \mathrm{m}, 1-$ $\mathrm{HH}), 3.61(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.13-5.20(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.7(\mathrm{C}-11), 13.9\left(\mathrm{CH}_{3}-4\right), 17.1\left(\mathrm{CH}_{3}-\right.$ 2), 17.9 ($\mathrm{CH}_{3}-8$), 26.1 (C-10), 31.1 (C-6), 33.4 (C-7), 34.5 (C-8), 35.2 (C-2), 68.0 (C-1), 81.9 (C-5), 84.6 (C9), 126.6 (C-3), 139.3 (C-4); HRMS (ESI) calc. for [$\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}$] 249.1825 Found 249.1820.

5-(((S,E)-4-((2R,5S,6R)-6-Ethyl-5-methyltetrahydro-2H-pyran-2-yl)-2-methylpent-3-en-1-yl)sulfonyl)-1-phenyl-1H-tetrazole (11)

Alcohol 38 ($340 \mathrm{mg}, 1.50 \mathrm{mmol}$), PT-SH ($348 \mathrm{mg}, 1.96 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(514 \mathrm{mg}, 1.96 \mathrm{mmol})$ were dissolved in THF (15 mL) under nitrogen and cooled the $0{ }^{\circ} \mathrm{C}$ then DIAD ($0.39 \mathrm{~mL}, 1.96 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for 3 hours at room temperature then quenched with aqueous saturated $\mathrm{NHCl}_{4}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The resulting solution was extracted with EtOAc ($3 \times 75 \mathrm{~mL}$) and the combined organic layers were washed with brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude material was filtered over a small plug of silica eluting with $20 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether $60: 40$ and the solvent removed in vacuo to afford sulfide (552 mg , 95\%) as a yellow oil.

The sulfide was dissolved in $\mathrm{EtOH}(47 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ then a premixed solution of molybdenate $(347 \mathrm{mg}, 0.28 \mathrm{mmol})$ in a 30% aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}(1.43 \mathrm{~mL}, 14.1 \mathrm{mmol})$ was added dropwise.

The reaction mixture was stirred at room temperature for 18 hours then quenched with water (50 $\mathrm{mL})$. The resulting solution was extracted with DCM $(3 \times 100 \mathrm{~mL})$ and the combined organic layers dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography (10\% EtOAc in petroleum ether 60:40) to afford sulfone 11 (542 mg, 90\% over two steps) as a yellow oil; $[\alpha]_{D}^{24}=-16.0\left(c 1, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 3019,2927,1498,1459,1347,1214 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,8-\mathrm{CH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4,11-\mathrm{H}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,2-\mathrm{CH}_{3}\right), 1.18-1.20$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{HH}), 1.20-1.23(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{HH}), 1.28-1.35(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 1.42(\mathrm{ap} . \mathrm{dp}, \mathrm{J} 14.5,7.4,10-\mathrm{HH}$), $1.52-1.57(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{HH}), 1.61\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4,4-\mathrm{CH}_{3}\right), 1.70(1 \mathrm{H}, \mathrm{dqd}, \mathrm{J} 14.5,7.4,2.9,10-\mathrm{HH}), 1.74-1.80$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{HH}), 2.87(1 \mathrm{H}, \mathrm{ddd}, J 9.9,7.4,2.9,9-\mathrm{H}), 3.27(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{d}, J 9.7,5-\mathrm{H}), 3.57(1 \mathrm{H}$, dd, J 14.7, 6.3, 1-HH), 3.83 (1H, dd, J 14.7, 7.5, 1-HH), 5.13 (1H, dt, J 9.7, 1.4, 3-H), $7.54-7.68$ ($5 \mathrm{H}, \mathrm{m}$, ArH); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.7(\mathrm{C}-11), 13.7\left(\mathrm{CH}_{3}-4\right), 17.9\left(\mathrm{CH}_{3}-8\right), 21.0\left(\mathrm{CH}_{3}-2\right), 26.0(\mathrm{C}-10), 27.9(\mathrm{C}-2)$, 30.6 (C-6), 33.2 (C-7), 34.3 (C-8), 61.9 (C-1), 81.1 (C-5), 84.7 (C-9), 125.1 (C-3), 125.7 ($2 \times \mathrm{ArCH}$), 129.7 ($2 \times \mathrm{ArCH}$), 131.6 (ArCH), 133.3 (ArC), 138.9 (C-4), 154.2 (NCN); HRMS (ESI) calc. for [$\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$] 419.2111 Found 419.2113.

3.6 Synthesis of 20,21-Dihydroambruticin F

Ethyl 2-((2S,4R,5S,6S)-4,5-bis(tert-butyldimethylsiloxy)-6-((E)-2-((1S,2S,3R)-2-((R,1E,4E)-5-

((2R,5S,6R)-6-ethyl-5-methyltetrahydro-2H-pyran-2-yl)-3-methylhexa-1,4-dien-1-yl)-3-methylcyclopropyl)vinyl)tetrahydro-2H-pyran-2-yl)acetate (39)

11

Sulfone 11 ($20 \mathrm{mg}, 0.048 \mathrm{mmol}$) was dissolved in THF (0.67 mL) and HMPA (0.13 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$ then 1 M NaHMDS in THF ($0.06 \mathrm{~mL}, 0.06 \mathrm{mmol}$) was added dropwise over 1 minutes. The reaction mixture was stirred for 15 minutes then aldehyde $10(32 \mathrm{mg}, 0.06 \mathrm{mmol})$ in THF (0.28 mL) and HMPA (0.07 mL) was added dropwise. The orange solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 hours then allowed to warm to room temperature and stirred for a further 2 hours. The reaction mixture was quenched with dropwise addition of water $(1 \mathrm{~mL})$ then was diluted with water $(25 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2 $x 40 \mathrm{~mL})$. The combined organic layers were washed with brine $(2 \times 50 \mathrm{~mL})$, dried over MgSO_{4} and the
solvent removed in vacuo. The crude material was purified by flash column chromatography ($8 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether 60:40) to afford alkene $39(27 \mathrm{mg}, 78 \%, E / Z=3: 1)$ as a colourless oil; $[\alpha]_{D}^{24}=-10.0$ (c 1, CHCl_{3}); $\mathrm{v}_{\max }($ film $) 2955,2928,2856,1739,1463,1214 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,21-\mathrm{CH}_{3}\right), 0.88(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4,24-\mathrm{H}_{3}\right), 1.00-1.04\left(7 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 11-\mathrm{CH}_{3}\right.$ and $15-$ $\left.\mathrm{CH}_{3}\right), 1.05-1.07(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 1.16-1.21(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{HH}), 1.24\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.31-1.36$ $(1 \mathrm{H}, \mathrm{m}, 21-\mathrm{H}), 1.39-1.48(3 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}, 19-\mathrm{HH}$ and $23-\mathrm{HH}), 1.52-1.54\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right), 1.59-1.61(1 \mathrm{H}$, $\mathrm{m}, 19-\mathrm{HH}), 1.62\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.3,17-\mathrm{CH}_{3}\right), 1.68-1.72(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{HH}), 1.75-1.84\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{eq}}\right.$ and $20-$ HH), $2.33(1 \mathrm{H}, \mathrm{dd}, J 15.0,7.7,2-H H), 2.61(1 \mathrm{H}, \mathrm{dd}, J 15.0,5.9,2-\mathrm{HH}$), 2.90 (1H, ddd, J 9.9, 7.2, 2.9, 22H), $2.98-3.08(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.27(1 \mathrm{H}, \mathrm{dd}, J 9.1,2.4,6-\mathrm{H}), 3.61(1 \mathrm{H}, \mathrm{d}, J 10.8,18-\mathrm{H}), 3.98-4.01(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 4.07-4.15\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.7-\mathrm{H}\right), 4.20-4.29(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.07$ (1H, ddd, J 15.3, 8.8, 1.4, $13-\mathrm{H}), 5.21(1 \mathrm{H}, \mathrm{dt}, J 8.8,1.3,16-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{dd}, J 15.4,8.6,9-\mathrm{H}), 5.36(\mathrm{dd}, J 15.4,7.5,8-\mathrm{H}), 5.42(1 \mathrm{H}$, dd, J 15.3, 6.5, 14-H); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.4\left(\mathrm{SiCH}_{3}\right),-4.24\left(\mathrm{SiCH}_{3}\right),-4.20\left(\mathrm{SiCH}_{3}\right),-3.4\left(\mathrm{SiCH}_{3}\right), 9.5(\mathrm{C}-$ 24), $13.0\left(\mathrm{CH}_{3}-17\right), 13.3\left(\mathrm{CH}_{3}-11\right), 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}-21\right), 18.28\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.34\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $21.40\left(\mathrm{CH}_{3}-15\right), 21.44(\mathrm{C}-11) 26.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and $\left.\mathrm{C}-23\right), 26.3\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.8(\mathrm{C}-12), 31.0(\mathrm{C}-10), 31.1$ (C-19), 33.4 (C-20), 34.2 (C-21), 35.1 (C-15), 39.7 (C-4), $41.2(\mathrm{C}-2), 60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 67.8(\mathrm{C}-3), 69.6$ (C5), 74.0 (C-6), 77.4 (C-7), 82.5 (C-18), 84.3 (C-22), 125.6 (C-13), 126.5 (C-8), 129.2 (C-16), 135.5 (C-9), 135.8 (C-17), 137.2 (C-9), 171.1 (C-1); HRMS (MALDI) calc. for $\left[\mathrm{C}_{42} \mathrm{H}_{76} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}\right.$] 755.5073 Found 755.5081 .

Ethyl 2-((2S,4R,5S,6S)-4,5-bis(tert-butyldimethylsiloxy)-6-((E)-2-((1S,2S,3R)-2-((R,1E,4E)-5-((2R,5S,6R)-6-ethyl-5-methyltetrahydro-2H-pyran-2-yl)-3-methylhexa-1,4-dien-1-yl)-3-methylcyclopropyl)vinyl)tetrahydro-2H-pyran-2-yl)acetate (39)

Sulfone 11 ($350 \mathrm{mg}, 0.84 \mathrm{mmol}$) was dissolved in DME (7 mL) and cooled to $-60^{\circ} \mathrm{C}$ then 1 M KHMDS in THF ($1.00 \mathrm{~mL}, 1.00 \mathrm{mmol}$) was added dropwise over 5 minutes. The reaction mixture was stirred for 10 minutes then aldehyde $10(543 \mathrm{mg}, 1.00 \mathrm{mmol})$ in DME (4 mL) was added dropwise over 10 minutes. The deep red solution was stirred at $-60{ }^{\circ} \mathrm{C}$ for 3 hours then allowed to warm to room temperature and stirred for a further 2 hours. The reaction mixture was quenched with dropwise addition of water $(5 \mathrm{~mL})$ then was diluted with water $(30 \mathrm{~mL})$, brine $(40 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The
organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($8 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether 60:40) to afford alkene $39(244 \mathrm{mg}, 40 \%, E / Z=10: 1)$ as a colourless oil; $[\alpha]_{D}^{24}=-10.0\left(c 1, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ film $) 2955,2928,2856,1739,1463,1214 ; \delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.03(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,21-\mathrm{CH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4,24-\mathrm{H}_{3}\right), 1.00-1.04\left(7 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 11-\mathrm{CH}_{3}\right.$ and $\left.15-\mathrm{CH}_{3}\right), 1.05-1.08$ $(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 1.17-1.21(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{HH}), 1.24\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.30-1.37(1 \mathrm{H}, \mathrm{m}, 21-\mathrm{H}), 1.43$ $-1.48(3 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}, 19-\mathrm{HH}$ and $23-\mathrm{HH}), 1.50-1.54\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right), 1.57-1.61(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}), 1.62$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4,17-\mathrm{CH}_{3}\right), 1.67-1.72(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{HH}), 1.75-1.84\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{eq}}\right.$ and $\left.20-\mathrm{HH}\right), 2.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 14.8, 7.7, 2-HH), $2.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.8,5.9,2-H H), 2.90(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 9.9,7.3,3.0,22-\mathrm{H}), 3.04(1 \mathrm{H}, \mathrm{m}, 15-$ H), 3.27 (1H, dd, J 9.1, 2.2, 6-H), 3.61 (1H, dt, J 10.7, 1.7, 18-H), 4.00 (1H, dt, J 4.2, 2.2, 5-H), $4.06-4.16$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.7-\mathrm{H}\right), 4.21-4.27(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 15.4,8.8,1.4,13-\mathrm{H}), 5.21(1 \mathrm{H}, \mathrm{m}$, $16-H), 5.25$ ($1 \mathrm{H}, \mathrm{dd}, J 15.3,8.7,9-\mathrm{H}$), 5.36 ($1 \mathrm{H}, \mathrm{dd}, J 15.3,7.5,8-\mathrm{H}$), 5.42 (1H, ddd, J 15.4, 6.4, 0.7, 14$\mathrm{H}) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.4\left(\mathrm{SiCH}_{3}\right),-4.23\left(\mathrm{SiCH}_{3}\right),-4.20\left(\mathrm{SiCH}_{3}\right),-3.4\left(\mathrm{SiCH}_{3}\right), 9.5(\mathrm{C}-24), 13.0\left(\mathrm{CH}_{3}-17\right)$, $13.3\left(\mathrm{CH}_{3}-11\right), 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}-21\right), 18.29\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.34\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.40\left(\mathrm{CH}_{3}-15\right), 21.44$ (C-11) $26.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and $\left.\mathrm{C}-23\right), 26.3\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.8(\mathrm{C}-12), 31.0(\mathrm{C}-10), 31.1(\mathrm{C}-19), 33.4(\mathrm{C}-20), 34.2$ (C-21), 35.1 (C-15), 39.7 (C-4), $41.2(\mathrm{C}-2), 60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 67.8(\mathrm{C}-3), 69.6(\mathrm{C}-5), 74.0(\mathrm{C}-6), 76.8(\mathrm{C}-7)$, 82.5 (C-18), 84.3 (C-22), 125.6 (C-13), 126.5 (C-8), 129.2 (C-16), 135.5 (C-14), 135.8 (C-17), 137.2 (C-9), 171.1 (C-1); HRMS (MALDI) calc. for $\left[\mathrm{C}_{42} \mathrm{H}_{76} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}\right] 755.5073$ Found 755.5081.

20,21-Dihydroambruticin F ethyl ester (40)

Silyl ether 39 ($175 \mathrm{mg}, 0.24 \mathrm{mmol}, E / Z=10: 1$) was dissolved in THF (2.50 mL) under nitrogen and cooled to $0^{\circ} \mathrm{C}$ then 1 M TBAF in THF ($1.20 \mathrm{~mL}, 1.20 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at room temperature for 18 hours and then quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ $(3 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 25 \mathrm{~mL})$ and the combined organic layers were washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude material was purified by flash column chromatography (50\% EtOAc in petroleum ether $60: 40)$ to afford alcohol $40(110 \mathrm{mg}, 91 \%, E / Z=10: 1)$ as a colourless oil; $[\alpha]_{D}^{22}=+28.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ film $) 3439,2961,2926,2874,1736 ; \delta_{H}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.81\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,21-\mathrm{CH}_{3}\right), 0.94(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$
$\left.7.4,24-\mathrm{H}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,15-\mathrm{CH}_{3}\right), 1.04-1.06\left(4 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}\right.$ and $\left.11-\mathrm{CH}_{3}\right), 1.09-1.14(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H})$, $1.18-1.21(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{HH}), 1.22-1.27\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.31-1.37(1 \mathrm{H}, \mathrm{m}, 21-\mathrm{H}), 1.39-1.47(2 \mathrm{H}$, $\mathrm{m}, 19-\mathrm{HH}$ and $23-\mathrm{HH}), 1.47-1.52(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 1.57-1.65\left(5 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{3}, 19-\mathrm{HH}\right.$ and $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 1.67-$ $1.71(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{H} H), 1.78(1 \mathrm{H}, \mathrm{ap} . \mathrm{dq}, J 13.0,3.6,20-\mathrm{H} H), 1.94(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.99(1 \mathrm{H}, \mathrm{ddd}, J 14.1,3.6$, 2.1, 4- $\mathrm{H}_{\text {eq }}$), $2.37(1 \mathrm{H}, \mathrm{dd}, J 15.1,5.9,2-\mathrm{HH}), 2.40(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.55(1 \mathrm{H}, \mathrm{dd}, J 15.1,7.2,2-\mathrm{HH}), 2.90(1 \mathrm{H}$, ddd, J 9.9, $7.4,2.9,22-\mathrm{H}), 3.05(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.32(1 \mathrm{H}, \mathrm{dd}, J 9.5,3.1,6-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{d}, J 11.3,18-\mathrm{H})$, $3.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.5,6.8,7-\mathrm{H}), 4.10-4.19\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.5-\mathrm{H}\right), 4.20-4.27(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.07(1 \mathrm{H}$, ddd, J 15.3, 8.8, 1.4, 13-H), $5.21(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 8.8,1.4,16-\mathrm{H}), 5.41-5.49(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}, 9-\mathrm{H}$ and $14-\mathrm{H}) ; \delta_{\mathrm{C}}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $9.6(\mathrm{C}-24), 13.1\left(\mathrm{CH}_{3}-17\right), 13.2\left(\mathrm{CH}_{3}-11\right), 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}-21\right), 21.4\left(\mathrm{CH}_{3}-\right.$ 15), 21.8 (C-11), 26.1 (C-23), 29.3 (C-12), 30.7 (C-10), 31.1 (C-19), 33.4 (C-20), 34.3 (C-21), 35.2 (C-15), $37.1(\mathrm{C}-4), 40.9(\mathrm{C}-2), 60.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 66.6(\mathrm{C}-5), 68.2(\mathrm{C}-3), 71.2(\mathrm{C}-6), 77.0(\mathrm{C}-7), 82.3(\mathrm{C}-18), 84.4(\mathrm{C}-$ 22), 124.5 (C-8), 125.2 (C-13), 129.0 (C-16), 135.9 (C-17), 136.0 (C-14), 139.9 (C-9), 171.0 (C-1); HRMS (ESI) calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{6}\right] 505.3524$ Found 505.3527.

20,21-Dihydroambruticin F (9)

Ester $40(30 \mathrm{mg}, 0.06 \mathrm{mmol}, E / Z=10: 1)$ was dissolved in THF (1 mL) and $\mathrm{MeOH}(0.1 \mathrm{~mL})$ then a solution of $\mathrm{LiOH}(71 \mathrm{mg}, 2.97 \mathrm{mmol})$ in water $(0.4 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 3 hours then quenched with $1 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$. The resulting solution was diluted with water $(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($10 \% \mathrm{MeOH}$ in DCM) to afford 20,21-dihydroambruticin F 9 (24 mg , $85 \%, E / Z=10: 1$) as a colourless oil; $[\alpha]_{D}^{21}=+20.0\left(c 0.5, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 3420,2961,2925,2858$, 1715,$1214 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,21-\mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4,24-\mathrm{H}_{3}\right), 1.03(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8$, $\left.15-\mathrm{CH}_{3}\right), 1.04-1.07\left(4 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}\right.$ and $\left.11-\mathrm{CH}_{3}\right), 1.09-1.16(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 1.17-1.23(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{HH})$, $1.31-1.37(1 \mathrm{H}, \mathrm{m}, 21-\mathrm{H}), 1.38-1.47(2 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}$ and $23-\mathrm{HH}), 1.48-1.54(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 1.56-1.61$ $\left(2 H, m, 19-H H\right.$ and $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 1.63\left(3 \mathrm{H}, \mathrm{d}, J 1.3,17-\mathrm{CH}_{3}\right), 1.67-1.73(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{HH}), 1.78(1 \mathrm{H}, \mathrm{ap} . \mathrm{dq}, J$
12.8, 3.5, $20-\mathrm{HH}$), $2.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0,4-\mathrm{H}_{\text {eq }}\right), 2.44(1 \mathrm{H}, \mathrm{dd}, J 15.7,5.8,2-\mathrm{HH}), 2.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.7,7.0$, $2-\mathrm{HH}), 2.91(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 10.0,7.3,3.1,22-\mathrm{H}), 2.98-3.11(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.0,3.0,6-\mathrm{H})$, $3.60(1 \mathrm{H}, \mathrm{d}, J 10.9,18-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{dd}, J 9.0,7.1,7-\mathrm{H}), 4.18(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.22(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.07(1 \mathrm{H}$, ddd, J 15.3, 8.8, 1.4, 13-H), $5.21(1 \mathrm{H}, \mathrm{dq}, J 8.9,1.3,16-\mathrm{H}), 5.40-5.52(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}, 9-\mathrm{H}$ and $14-\mathrm{H}) ; \delta_{\mathrm{C}}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $9.6(\mathrm{C}-24), 13.18\left(\mathrm{CH}_{3}-17\right), 13.21\left(\mathrm{CH}_{3}-11\right), 17.9\left(\mathrm{CH}_{3}-21\right), 21.3\left(\mathrm{CH}_{3}-15\right), 21.8(\mathrm{C}-11)$, 26.0 (C-23), 29.3 (C-12), 30.6 (C-10), 31.0 (C-19), 33.4 (C-20), 34.3 (C-21), 35.2 (C-15), 37.0 (C-4), 40.4 (C-2), 66.6 (C-5), 68.0 (C-3), 71.2 (C-6), 77.1 (C-7), 82.3 (C-18), 84.4 (C-22), 124.1 (C-8), 125.1 (C-13), 129.0 (C-16), 135.8 (C-17), 136.1 (C-14), 140.1 (C-9), 174.7 (C-1); HRMS (MALDI) calc. for [$\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Na}$] 499.3030 Found 499.3036.

3.7 Synthesis of Ambruticin F and S

Ethyl 2-((2S,4R,5S,6S)-4,5-bis(tert-butyldimethylsiloxy)-6-((E)-2-((1S,2S,3R)-2-((R,1E,4E)-5-((2R,6R)-6-ethyl-5-methyl-3,6-dihydro-2H-pyran-2-yl)-3-methylhexa-1,4-dien-1-yl)-3-methylcyclopropyl)vinyl)tetrahydro-2H-pyran-2-yl)acetate (41)

14

KHMDS, DME $\xrightarrow{-60^{\circ} \mathrm{C} \text { to } \mathrm{rt}}$

Sulfone 14^{4} ($551 \mathrm{mg}, 1.32 \mathrm{mmol}$) was dissolved in DME (13 mL) and cooled to $-60^{\circ} \mathrm{C}$ then 1 M KHMDS in THF ($1.98 \mathrm{~mL}, 1.98 \mathrm{mmol}$) was added dropwise over 8 minutes. The reaction mixture was stirred for 10 minutes then aldehyde $10(1070 \mathrm{mg}, 1.98 \mathrm{mmol})$ in DME (5 mL) was added dropwise over 10 minutes. The deep red solution was stirred at $-60{ }^{\circ} \mathrm{C}$ for 3 hours then allowed to warm to room temperature and stirred for a further 2 hours. The reaction mixture was quenched with dropwise addition of water $(10 \mathrm{~mL})$ then was diluted with water $(30 \mathrm{~mL})$, brine $(40 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($8 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum
ether 60:40) to afford alkene 41 ($367 \mathrm{mg}, 38 \%, E / Z=10: 1$) as a colourless oil; $[\alpha]_{D}^{27}=+14.0\left(c 1, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ film $) 2958,2929,2857,1738,1215 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.86-0.89\left(12 \mathrm{H}, \mathrm{m}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and $\left.24-\mathrm{H}_{3}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.96-1.01(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 1.02-1.03\left(3 \mathrm{H}, \mathrm{m}, 15-\mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{s}, 11-\mathrm{CH}_{3}\right), 1.05-1.08(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H})$, $1.23\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.46(1 \mathrm{H}, \mathrm{ap} . \mathrm{dt}, J 8.5,4.3,12-\mathrm{H}), 1.49-1.56\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.23-\mathrm{HH}\right)$, $1.57-1.60\left(3 \mathrm{H}, \mathrm{m}, 21-\mathrm{CH}_{3}\right), 1.63\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4,17-\mathrm{CH}_{3}\right), 1.73-1.88\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\text {eq }}, 19-\mathrm{HH}\right.$ and $\left.23-\mathrm{HH}\right)$, $2.06-2.18(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}), 2.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0,7.7,2-\mathrm{HH}), 2.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0,5.9,2-\mathrm{HH}), 3.05(1 \mathrm{H}$, ap. h, J 7.0, 15-H), 3.27 (1H, dd, J 9.1, 2.5, 6-H), 3.84 (1H, dd, J 10.7, 3.0, 18-H), $3.97-4.01(1 \mathrm{H}, \mathrm{m}, 5-$ H), $4.06-4.16\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, 7-\mathrm{H}\right.$ and $\left.22-\mathrm{H}\right), 4.20-4.29(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 15.2,8.8$, $1.3,13-H), 5.20-5.28(2 H, m, 9-H$ and $16-H), 5.32-5.45(2 H, m, 8-H$ and $14-H), 5.54-5.59(1 H, m$, $20-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.4\left(\mathrm{SiCH}_{3}\right),-4.3\left(\mathrm{SiCH}_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right),-3.4\left(\mathrm{SiCH}_{3}\right), 8.3(\mathrm{C}-24), 12.2\left(\mathrm{CH}_{3}-17\right)$, $13.3\left(\mathrm{CH}_{3}-11\right), 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.27\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.32\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.2\left(\mathrm{CH}_{3}-21\right), 21.38\left(\mathrm{CH}_{3}-15\right), 21.43$ $(\mathrm{C}-11), 25.8(\mathrm{C}-23), 26.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.3\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.8(\mathrm{C}-12), 30.3(\mathrm{C}-19), 31.1(\mathrm{C}-10), 35.2(\mathrm{C}-15)$, 39.6 (C-4), $41.2(\mathrm{C}-2), 60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 67.8(\mathrm{C}-3), 69.6(\mathrm{C}-5), 74.0(\mathrm{C}-6), 76.8(\mathrm{C}-7), 77.9(\mathrm{C}-22), 78.4$ (C18), 121.2 (C-20), 125.7 (C-13), 126.5 (C-8), 130.0 (C-16), 135.2 (C-17 and C-21), 135.4 (C-14), 137.2 (C9), 171.1 (C-1); HRMS (ESI) calc. for $\left[\mathrm{C}_{42} \mathrm{H}_{74} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}\right] 753.4916$ Found 753.1919.

Ethyl 2-((2S,4R,5S,6S)-4,5-bis(tert-butyldimethylsiloxy)-6-((E)-2-((1S,2S,3R)-2-((R,1E,4E)-5-((2R,6R)-6-ethyl-5-methyl-3,6-dihydro-2H-pyran-2-yl)-3-methylhexa-1,4-dien-1-yl)-3-methylcyclopropyl)vinyl)tetrahydro-2H-pyran-2-yl)acetate (41)

Sulfone $14^{4}(25 \mathrm{mg}, 0.06 \mathrm{mmol})$ was dissolved in THF $(0.70 \mathrm{~mL})$ and HMPA $(0.18 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$ then 1 M NaHMDS in THF ($0.08 \mathrm{~mL}, 0.08 \mathrm{mmol}$) was added dropwise over 1 minute. The reaction mixture was stirred for 15 minutes then aldehyde 10 ($42 \mathrm{mg}, 0.08 \mathrm{mmol}$) in THF (0.30 mL) and HMPA $(0.08 \mathrm{~mL})$ was added dropwise. The orange solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 hours then allowed to warm to room temperature and stirred for a further 2 hours. The reaction mixture was quenched with dropwise addition of water (1 mL) then was diluted with water (25 mL), brine (10 mL) and $\mathrm{Et}_{2} \mathrm{O}(40$ $\mathrm{mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography $\left(8 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in
petroleum ether 60:40) to afford alkene $41(35 \mathrm{mg}, 80 \%, E / Z=3: 1)$ as a colourless oil. Data consistent with previously reported.

Ambruticin F ethyl ester (42)

Silyl ether 41 ($367 \mathrm{mg}, 0.50 \mathrm{mmol}, E / Z=10: 1$) was dissolved in THF (5 mL) under nitrogen and cooled to $0{ }^{\circ} \mathrm{C}$ then $1 \mathrm{M} \mathrm{TBAF} \mathrm{in} \mathrm{THF} \mathrm{(} 4.0 \mathrm{~mL}, 4.0 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at room temperature for 18 hours and then quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and water (40 mL). The aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and the combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude material was purified by flash column chromatography (50% EtOAc in petroleum ether 60:40) to afford diol 42 (206 mg, $82 \%, E / Z=10: 1$) as a yellow oil; $[\alpha]_{D}^{22}=+54.0\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{v}_{\max }($ film $) 3438$, 2963, 2923, 1735, 1214; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,24-\mathrm{H}_{3}\right), 1.02-1.07\left(7 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 11-\mathrm{CH}_{3}\right.$ and $\left.15-\mathrm{CH}_{3}\right), 1.10-1.14(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 1.24\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.46-1.51(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 1.52-$ $1.57(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{HH}), 1.59\left(3 \mathrm{H}, \mathrm{ap} . \mathrm{dq}, J 2.4,1.2,21-\mathrm{CH}_{3}\right), 1.60-1.62\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right), 1.64(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.3$, $\left.17-\mathrm{CH}_{3}\right), 1.77(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{HH}), 1.83-1.90(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}), 1.94-2.01\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\text {eq }}\right.$ and OH$), 2.08-$ $2.16(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}), 2.32-2.42(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH}$ and OH$), 2.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2,7.5,2-\mathrm{HH}), 3.06(1 \mathrm{H}, \mathrm{dpd}$, J 8.2, 6.7, 1.4, 15-H), $3.31(1 \mathrm{H}, \mathrm{dd}, J 9.5,3.1,6-\mathrm{H}), 3.84(1 \mathrm{H}, \mathrm{dd}, J 10.4,2.7,18-\mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{dd}, J 9.5$, $6.6,7-\mathrm{H}), 4.07-4.11(1 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}), 4.13\left(2 \mathrm{H}, \mathrm{ap} . \mathrm{qd}, \mathrm{J} 7.1,1.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.16-4.18(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $4.23(1 \mathrm{H}$, dddd, J $11.7,7.5,6.1,2.0,3-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{ddd}, J 15.3,8.7,1.4,13-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{dq}, J 8.9,1.3$, $16-\mathrm{H}), 5.40-5.44(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and $9-\mathrm{H}), 5.44-5.48(1 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}), 5.53-5.59(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}) ; \delta_{\mathrm{C}}(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.4(\mathrm{C}-24), 12.4\left(\mathrm{CH}_{3}-17\right), 13.2\left(\mathrm{CH}_{3}-11\right), 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 19.2\left(\mathrm{CH}_{3}-21\right), 21.3\left(\mathrm{CH}_{3}-15\right), 21.8$ (C-11), 25.8 (C-23), 29.3 (C-12), 30.3 (C-19), 30.7 (C-10), 35.2 (C-15), 37.1 (C-4), 40.9 (C-2), 60.7 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 66.6(\mathrm{C}-5), 68.2(\mathrm{C}-3), 71.2(\mathrm{C}-6), 77.0(\mathrm{C}-7), 78.0(\mathrm{C}-22), 78.2(\mathrm{C}-18), 121.1$ (C-20), 124.6 (C8), 125.3 (C-13), 129.7 (C-16), 135.26 (C-21), 135.31 (C-17), 135.9 (C-14), 139.9 (C-9), 171.0 (C-1); HRMS (ESI) calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{6}\right] 503.3367$ Found 503.3383.

Ambruticin F (2)

Ester 42 ($15.0 \mathrm{mg}, 0.03 \mathrm{mmol}, E / Z=10: 1$) was dissolved in THF (0.8 mL) and $\mathrm{MeOH}(0.2 \mathrm{~mL})$ then a solution of $\mathrm{LiOH}(36 \mathrm{mg}, 1.50 \mathrm{mmol})$ in water $(0.4 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 1 hour then quenched with $1 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$. The resulting solution was diluted with water $(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($10 \% \mathrm{MeOH}$ in DCM) to afford ambruticin $\mathrm{F} 2(12.7 \mathrm{mg}, 87 \%$, $E / Z=10: 1$) as a colourless oil; $[\alpha]_{D}^{23}=+50.0\left(c 1, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 3411,2962,2925,1714,1214 ; \delta_{H}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,24-\mathrm{H}_{3}\right), 1.02-1.07\left(7 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 11-\mathrm{CH}_{3}\right.$ and $\left.15-\mathrm{CH}_{3}\right), 1.10-1.16$ $(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 1.48-1.57(2 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}$ and $23-\mathrm{HH}), 1.59\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5,21-\mathrm{CH}_{3}\right), 1.60-1.62(1 \mathrm{H}, \mathrm{m}, 4-$ $\left.\mathrm{H}_{\mathrm{ax}}\right), 1.64\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4,17-\mathrm{CH}_{3}\right), 1.77(1 \mathrm{H}, \mathrm{dqd}, \mathrm{J} 14.2,7.3,3.7,23-\mathrm{HH}), 1.81-1.92(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}), 1.97$ $-2.06\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\text {eq }}\right), 2.07-2.17(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}), 2.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.7,5.6,2-\mathrm{HH}), 2.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.7$, $7.2,2-H H), 3.02-3.13(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.33(1 \mathrm{H}, \mathrm{dd}, J 9.5,3.0,6-\mathrm{H}), 3.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7,3.1,18-\mathrm{H}), 3.99$ (1H, dd, J 9.5, 7.0, 7-H), $4.07-4.15(1 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}), 4.18(1 \mathrm{H}, \mathrm{ap} . \mathrm{q}, J 3.0,5-\mathrm{H}), 4.20-4.28(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $5.07(1 \mathrm{H}, \mathrm{ddd}, J 15.3,8.8,1.4,13-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{dq}, J 8.9,1.4,16-\mathrm{H}), 5.41-5.50(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}, 9-\mathrm{H}$ and $14-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 6.4,1.5,20-\mathrm{H}) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.4(\mathrm{C}-24), 12.5\left(\mathrm{CH}_{3}-17\right), 13.2\left(\mathrm{CH}_{3}-11\right), 19.2$ $\left(\mathrm{CH}_{3}-21\right), 21.3\left(\mathrm{CH}_{3}-15\right), 21.9(\mathrm{C}-11), 25.8(\mathrm{C}-23), 29.4(\mathrm{C}-12), 30.3$ (C-19), 30.6 (C-10), 35.2 (C-15), 36.9 (C-4), 40.3 (C-2), 66.5 (C-5), 68.0 (C-3), 71.1 (C-6), 77.2 (C-7), 78.1 (C-22), 78.2 (C-18), 121.1 (C-20), 124.1 (C-8), 125.2 (C-13), 129.7 (C-16), 135.2 (C-21), 135.3 (C-17), 136.0 (C-14), 140.4 (C-9), 174.3 (C1); HRMS (ESI) calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{Na}\right] 497.2874$ Found 497.2970.
$\delta_{\mathrm{H}}(600 \mathrm{MHz}, \mathrm{MeOD}) \delta 0.91\left(3 \mathrm{H}, \mathrm{ap} . \mathrm{t}, J 7.3,24-\mathrm{H}_{3}\right), 1.06\left(3 \mathrm{H}, \mathrm{d}, J 6.9,15-\mathrm{CH}_{3}\right), 1.07(4 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$ and $\left.11-\mathrm{CH}_{3}\right), 1.13(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 1.48(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 1.52-1.57(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{HH}), 1.57-1.60\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right)$, $1.60-1.63\left(3 \mathrm{H}, \mathrm{m}, 21-\mathrm{CH}_{3}\right), 1.66\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4,17-\mathrm{CH}_{3}\right), 1.78(1 \mathrm{H}, \mathrm{dqd}, \mathrm{J} 14.8,7.3,3.6,23-\mathrm{HH}), 1.85-$ $1.90(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}), 1.92\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 13.9,3.5,2.1,4-\mathrm{H}_{\text {eq }}\right), 2.09-2.16(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}), 2.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $15.2,5.4,2-H H), 2.44(1 \mathrm{H}, \mathrm{dd}, J 15.2,7.9,2-\mathrm{HH}), 3.07-3.14(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.22(1 \mathrm{H}, \mathrm{dd}, J 9.7,3.5,6-$ H), $3.85(1 \mathrm{H}, \mathrm{dd}, J 10.8,3.0,18-\mathrm{H}), 3.99(1 \mathrm{H}, \mathrm{dd}, J 9.7,6.5,7-\mathrm{H}), 4.04(1 \mathrm{H}, \mathrm{ap} . \mathrm{q}, J 3.5,5-\mathrm{H}), 4.10(1 \mathrm{H}$, m, 22-H), $4.19-4.26(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.17$ (1H, ddd, J 15.3, 8.7, 1.3, 13-H), 5.27 (1H, dq, J 9.0, 1.4, 16-H), 5.40 (1H, dd, J 15.4, 8.6, 9-H), 5.47 (1H, dd, J 15.3, 6.6, 14-H), 5.50 (1H, dd, J 15.4, 6.5, 8-H), $5.59-5.62$ $(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}) ; \delta_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.7(\mathrm{C}-24), 12.6\left(\mathrm{CH}_{3}-17\right), 13.4\left(\mathrm{CH}_{3}-11\right), 19.1\left(\mathrm{CH}_{3}-21\right), 21.7\left(\mathrm{CH}_{3}-\right.$ 15), 22.3 (C-11), 26.6 (C-23), 29.8 (C-12), 31.1 (C-19), 31.8 (C-10), 36.3 (C-15), 39.2 (C-4), 41.8 (C-2), 68.5 (C-5), 69.4 (C-3), 73.0 (C-6), 77.4 (C-7), 79.5 (C-18), 79.6 (C-22), 122.1 (C-20), 126.9 (C-8), 127.0 (C-13), 131.0 (C-16), 136.1 (C-21), 136.21 (C-14), 136.22 (C-17), 137.9 (C-9), 175.2 (C-1).

Diol 42 ($99 \mathrm{mg}, 0.20 \mathrm{mmol}$) was dissolved in toluene (40 mL) under nitrogen and Fetizon's reagents ($\sim 50 \mathrm{wt}$. \% $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ on celite, 1000 mg) was added. The reaction mixture was heated at $110{ }^{\circ} \mathrm{C}$ with vigorous stirring for 2 hours by which time the reaction mixture had turned black. Further Fetizon's reagent (1000 mg) was added and the reaction mixture was stirred for a further 2 hours. Further Fetizon's reagent (1000 mg) was added and the reaction mixture was heated at $110{ }^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was filtered over celite and the solvent removed in vacuo. The crude material was purified by flash column chromatography (25% EtOAc in petroleum ether 60:40) to afford ketone 43 (53 mg, 54\%, $E / Z=10: 1$) as a colourless oil; $[\alpha]_{D}^{25}=+48.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$; $\mathrm{v}_{\max }($ film $) 3486,2963,2929$, 2876, 1725, 1214; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,24-\mathrm{H}_{3}\right), 1.01-1.09\left(7 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 11-\mathrm{CH}_{3}\right.$ and $\left.15-\mathrm{CH}_{3}\right), 1.16(1 \mathrm{H}, \mathrm{ap} . \mathrm{dt}, J 9.0,4.4,10-\mathrm{H}), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.46-1.55(2 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}$ and $23-$ $H H$), $1.59\left(3 \mathrm{H}, \mathrm{ap} . \mathrm{dq}, J 2.6,1.3,21-\mathrm{CH}_{3}\right), 1.64\left(3 \mathrm{H}, \mathrm{d}, J 1.3,17-\mathrm{CH}_{3}\right), 1.77(1 \mathrm{H}, \mathrm{dqd}, J 14.2,7.3,3.6,23-$ $H H), 1.83-1.89(1 \mathrm{H}, \mathrm{m}, 19-H \mathrm{H}), 2.08-2.17(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}), 2.52-2.61\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH}\right.$ and $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 2.71$ $\left(1 \mathrm{H}, \mathrm{dd}, J 13.7,2.4,4-\mathrm{H}_{\text {eq }}\right), 2.76(1 \mathrm{H}, \mathrm{dd}, J 15.6,6.6,2-\mathrm{HH}), 3.03-3.12(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.54(1 \mathrm{H}, \mathrm{d}, J 3.7$, $6-\mathrm{OH}), 3.70$ (1H, ddd, J 9.6, 6.4, 1.0, 7-H), 3.85 (1H, dd, J 10.5, 3.0, 18-H), 3.93 (1H, ddd, J 9.6, 3.7, 1.5, $6-\mathrm{H}), 4.05-4.12(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $22-\mathrm{H}), 4.16\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.08$ (1H, ddd, J 15.3, 8.8, 1.4, 13H), $5.25(1 \mathrm{H}, \mathrm{dq}, J 8.8,1.3,16-\mathrm{H}), 5.39-5.50(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$ and $14-\mathrm{H}), 5.55-5.59(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 5.61$ (1H, dd, J 15.3, 6.4, 8-H); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.4(\mathrm{C}-24), 12.4\left(\mathrm{CH}_{3}-17\right), 13.2\left(\mathrm{CH}_{3}-11\right), 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $19.2\left(\mathrm{CH}_{3}-21\right), 21.4\left(\mathrm{CH}_{3}-15\right), 21.7(\mathrm{C}-11), 25.8(\mathrm{C}-23), 29.2(\mathrm{C}-12), 30.4(\mathrm{C}-19), 30.8(\mathrm{C}-10), 35.2(\mathrm{C}-15)$, $41.1(\mathrm{C}-2), 45.8(\mathrm{C}-4), 61.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 73.9(\mathrm{C}-3), 77.0(\mathrm{C}-6), 78.0(\mathrm{C}-22), 78.2$ (C-18), $83.1(\mathrm{C}-7), 121.1$ (C-20), 123.7 (C-8), 125.4 (C-13), 129.8 (C-16), 135.28 (C-21), 135.30 (C-17), 135.8 (C-14), 138.7 (C-9), 170.0 (C-1), 206.4 (C-5); HRMS (ESI) calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Na}\right] 523.3030$ Found 523.3026.

Ambruticin S ethyl ester (S8)

Ketone 43 ($25 \mathrm{mg}, 0.05 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ under nitrogen and cooled to $0^{\circ} \mathrm{C}$ then NaBH_{4} (19 mg, 0.5 mmol) was added. The reaction mixture was stirred at room temperature for 2 hours then quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The resulting solution was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and the combined organic layers were washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{OS}_{4}$
and the solvent removed in vacuo. The crude material was purified by flash column chromatography (60\% EtOAc in petroleum ether 60:40) to afford 1,2-anti-diol S8 (11.8 mg, 47\%, $E / Z=10: 1$) and 1,2-syndiol 42 ($8.8 \mathrm{mg}, 35 \%, E / Z=10: 1$) as colourless oils. Data for 1,2-syn-diol 42 consistent with previously reported.

1,2-anti-diol S8:
$[\alpha]_{D}^{24}=+66.0\left(c 1, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 3395,2962,2925,2872,1736,1214 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J} 7.3,24-\mathrm{H}_{3}\right), 1.01-1.08\left(7 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 11-\mathrm{CH}_{3}\right.$ and $\left.15-\mathrm{CH}_{3}\right), 1.10-1.16(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 1.25(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.1, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.42-1.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.12-\mathrm{H}\right), 1.52-1.57(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{HH}), 1.58-1.60(3 \mathrm{H}, \mathrm{m}, 21-$ CH_{3}), $1.64\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.3,17-\mathrm{CH}_{3}\right), 1.77(1 \mathrm{H}, \mathrm{dqd}, J 14.3,7.3,3.7,23-\mathrm{HH}$), 1.86 ($1 \mathrm{H}, \mathrm{dddq}, J 16.6,6.5,3.0$, $1.4,19-\mathrm{HH}), 2.02(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.06-2.13\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\text {eq }}\right.$ and $\left.19-\mathrm{HH}\right), 2.39-2.48(2 \mathrm{H}, \mathrm{m}, \mathrm{OH}$ and $2-\mathrm{HH})$, $2.63(1 \mathrm{H}, \mathrm{dd}, J 15.5,6.5,2-\mathrm{HH}), 3.03-3.10(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.13(1 \mathrm{H}$, ap. $\mathrm{t}, \mathrm{J} 9.0,6-\mathrm{H}), 3.53(1 \mathrm{H}, \mathrm{ddd}, J$ $9.0,4.6,2.2,7-H), 3.66-3.73(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.84(1 \mathrm{H}, \mathrm{dd}, J 10.6,3.0,18-\mathrm{H}), 3.91(1 \mathrm{H}, \mathrm{ap} . \mathrm{dtd}, J 11.5$, $6.5,1.9,3-\mathrm{H}), 4.07-4.11(1 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}), 4.14\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.07(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 15.3,8.8,1.4,13-$ H), $5.25(1 \mathrm{H}, \mathrm{dq}, J 8.9,1.3,16-\mathrm{H}), 5.39-5.49(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}, 9-\mathrm{H}$ and $14-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{dq}, J 6.5,1.7,20-$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.4(\mathrm{C}-24), 12.4\left(\mathrm{CH}_{3}-17\right), 13.2\left(\mathrm{CH}_{3}-11\right), 14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 19.2\left(\mathrm{CH}_{3}-21\right), 21.3$ ($\mathrm{CH}_{3}-15$), 21.8 (C-11), 25.8 ($\mathrm{C}-23$), 29.3 ($\mathrm{C}-12$), 30.4 (C-19), 30.7 (C-10), 35.2 (C-15), 38.3 (C-4), 40.9 (C2), $60.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 72.0(\mathrm{C}-3), 72.4(\mathrm{C}-5), 75.9(\mathrm{C}-6), 78.0(\mathrm{C}-22), 78.2(\mathrm{C}-18), 80.9(\mathrm{C}-7), 121.1(\mathrm{C}-20)$, 123.8 (C-8), 125.2 (C-13), 129.7 (C-16), 135.27 (C-21), 135.32 (C-17), 135.9 (C-14), 139.9 (C-9), 170.9 (C-1); HRMS (ESI) calc. for [$\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{Na}$] 525.3187 Found 525.3182.

Ambruticin S (4)

Ester S8 (10.0 mg, $0.02 \mathrm{mmol}, E / Z=10: 1$) was dissolved in THF (0.8 mL) and $\mathrm{MeOH}(0.2 \mathrm{~mL})$ then a solution of $\mathrm{LiOH}(24 \mathrm{mg}, 1.00 \mathrm{mmol})$ in water $(0.4 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 1 hour then quenched with $1 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$. The resulting solution was diluted with water $(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($10 \% \mathrm{MeOH}$ in DCM) to afford ambruticin S 4 ($7.7 \mathrm{mg}, 81 \%$, $E / Z=10: 1$) as a colourless oil; $[\alpha]_{D}^{21}=+64.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{11}[\alpha]_{D}^{23}=+58.0\left(c 0.1, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}$ (film) $3398,2960,2926,1715,1064 ; \delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,24-\mathrm{H}_{3}\right), 1.02-1.08(7 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$, $11-\mathrm{CH}_{3}$ and $\left.15-\mathrm{CH}_{3}\right), 1.10-1.16(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 1.44-1.49\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right), 1.49-1.53(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H})$,
$1.53-1.57(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{HH}), 1.59\left(3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.5,1.3,21-\mathrm{CH}_{3}\right), 1.64\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4,17-\mathrm{CH}_{3}\right), 1.77(1 \mathrm{H}, \mathrm{dqd}$, J 14.2, 7.3, 3.7, 23-HH), $1.86(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}), 2.07-2.16\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\text {eq }}\right.$ and $\left.19-\mathrm{HH}\right), 2.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.1$, 5.9, 2-HH), $2.67(1 \mathrm{H}, \mathrm{dd}, J 16.1,7.1,2-\mathrm{HH}), 3.03-3.12(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 3.15(1 \mathrm{H}, \mathrm{ap} . \mathrm{t}, J 8.9,6-\mathrm{H}), 3.52-$ $3.61(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.67-3.75(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7,3.0,18-\mathrm{H}), 3.87-3.93(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $4.07-4.12(1 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{ddd}, J 15.3,8.8,1.4,13-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{dq}, J 8.9,1.4,16-\mathrm{H}), 5.40-$ $5.52(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}, 9-\mathrm{H}$ and $14-\mathrm{H}), 5.56-5.58(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.4(\mathrm{C}-24), 12.5\left(\mathrm{CH}_{3}-\right.$ 17), $13.2\left(\mathrm{CH}_{3}-11\right), 19.2\left(\mathrm{CH}_{3}-21\right), 21.3\left(\mathrm{CH}_{3}-15\right), 21.8(\mathrm{C}-11), 25.8(\mathrm{C}-23), 29.3(\mathrm{C}-12), 30.3(\mathrm{C}-19), 30.7$ (C-10), 35.2 (C-15), 38.2 (C-4), 40.3 (C-2), 71.7 (C-3), 72.1 (C-5), 75.8 (C-6), 78.1 (C-22), 78.2 (C-18), 81.1 (C-7), 121.1 (C-20), 123.5 (C-8), 125.2 (C-13), 129.7 (C-16), 135.26 (C-21), 135.32 (C-17), 136.0 (C-14), 140.2 (C-9), 174.0 (C-1); HRMS (MALDI) calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{Na}\right] 497.2874$ Found 497.2869.
$\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,24-\mathrm{H}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J 6.8,15-\mathrm{CH}_{3}\right), 1.05-1.08(4 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$ and $\left.11-\mathrm{CH}_{3}\right), 1.10-1.14(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 1.35-1.39(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}), 1.45-1.50(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 1.52-1.57$ $(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{HH}), 1.60\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.1,21-\mathrm{CH}_{3}\right), 1.64\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.3,17-\mathrm{CH}_{3}\right), 1.74-1.80(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{HH}), 1.84$ - $1.90(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}), 2.05(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12.6,5.0,1.6,4-\mathrm{HH}), 2.08-2.15(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{HH}), 2.44(1 \mathrm{H}, \mathrm{dd}$, $J 15.6,5.4,2-H H), 2.50(1 \mathrm{H}, \mathrm{dd}, J 15.6,7.6,2-\mathrm{HH}), 2.97(1 \mathrm{H}$, ap. t, J $9.1,6-\mathrm{H}), 3.07-3.13(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H})$, $3.51(1 \mathrm{H}, \mathrm{dd}, J 9.1,6.6,7-\mathrm{H}), 3.53-3.57(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.1,3.3,18-\mathrm{H}), 3.85-3.89(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 4.08-4.11(1 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}), 5.16(1 \mathrm{H}, \mathrm{ddd}, J 15.2,8.7,1.3,13-\mathrm{H}), 5.26(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 9.0,1.3,16-\mathrm{H})$, $5.38(1 \mathrm{H}, \mathrm{dd}, J 15.4,8.6,9-\mathrm{H}), 5.46(1 \mathrm{H}, \mathrm{dd}, J 15.2,6.5,14-\mathrm{H}), 5.50(1 \mathrm{H}, \mathrm{dd}, J 15.4,6.6,8-\mathrm{H}), 5.57-5.61$ (1H, m, 20-H); $\delta_{C}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 8.7(\mathrm{C}-24), 12.6\left(\mathrm{CH}_{3}-17\right), 13.4\left(\mathrm{CH}_{3}-11\right), 19.1\left(\mathrm{CH}_{3}-21\right), 21.7\left(\mathrm{CH}_{3}-\right.$ 15), 22.3 ($\mathrm{C}-11$), 26.6 ($\mathrm{C}-23$), 29.8 ($\mathrm{C}-12$), 31.1 (C-19), 31.7 (C-10), 36.3 (C-15), 40.2 (C-4), 41.6 (C-2), 73.3 (C-5), 73.4 (C-5), 77.1 (C-6), 79.5 (C-18), 79.6 (C-22), 81.8 (C-7), 122.1 (C-20), 126.2 (C-8), 126.9 (C-13), 130.9, (C-16) 136.1 (C-21), 136.2 (C-17), 136.3 (C-14), 138.2 (C-9), 174.7 (C-1). Data consistent with the literature. ${ }^{10-12}$

4. Comparison of NMR data for 20,21-Dihydroambruticin F

Table S1. Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data between synthetic and natural 20,21-dihydroambruticin F .

Position	Synthetic 20,21- dihydroambruticin F $400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}$ (multiplet, J (Hz))	Natural 20,21dihydroambruticin F $500 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}$ (multiplet, J(Hz))
28-H	0.80 (d, 6.5)	0.81 (d, 6.5)
24-H	0.94 (t, 7.4)	0.94 (t, 7.4)
26-H	1.03 (d, 6.8)	1.04 (d, 6.8)
11-H	1.04-1.07 (m)	1.05-1.07 (m)
$25-\mathrm{H}$	1.04-1.07 (m)	1.05-1.07 (m)
10-H	1.09-1.16 (m)	1.10-1.15 (m)
20-HH	1.17-1.23 (m)	1.16-1.24 (m)
21-H	1.31-1.37 (m)	1.31-1.38 (m)
19-HH	1.38-1.47 (m)	1.40-1.46 (m)
23-HH	1.38-1.47 (m)	1.40-1.46 (m)
12-H	1.48-1.54 (m)	1.48-1.54 (m)
19-HH	1.56-1.61 (m)	1.56-1.61 (m)
4-HH	1.56-1.61 (m)	1.56-1.61 (m)

$27-\mathrm{H}$	$1.63(\mathrm{~d}, 1.3)$	$1.63(\mathrm{~d}, 1.4)$
$23-\mathrm{HH}$	$1.67-1.73(\mathrm{~m})$	$1.70(\mathrm{dqd}, 14.9,7.4,3.0)$
$20-\mathrm{HH}$	$1.78(\mathrm{ap} . \mathrm{dq}, 12.8,3.5)$	$1.79(\mathrm{dq}, 13.0,3.5)$
$4-\mathrm{HH}$	$2.02(\mathrm{~d}, 14.0)$	$2.02(\mathrm{~d}, 13.9)$
$2-\mathrm{HH}$	$2.44(\mathrm{dd}, 15.7,5.8)$	$2.45(\mathrm{~d}, 15.1)$
$2-\mathrm{HH}$	$2.60(\mathrm{dd}, 15.7,7.0)$	$2.55-2.63(\mathrm{~m})$
$22-\mathrm{H}$	$2.91(\mathrm{ddd}, 10.0,7.3,3.1)$	$2.90(\mathrm{ddd}, 10.0,7.4,3.0)$
$15-\mathrm{H}$	$2.98-3.11(\mathrm{~m})$	$3.00-3.10(\mathrm{~m})$
$6-\mathrm{H}$	$3.33(\mathrm{dd}, 9.5,3.0)$	$3.33(\mathrm{~d}, 9.3)$
$18-\mathrm{H}$	$3.60(\mathrm{~d}, 10.9)$	$3.61(\mathrm{dd}, 11.1,2.0)$
$7-\mathrm{H}$	$3.98(\mathrm{dd}, 9.0,7.1)$	$3.99(\mathrm{ap} . \mathrm{t}, 8.1)$
$5-\mathrm{H}$	$4.18(\mathrm{~m})$	$4.17(\mathrm{~m})$
$3-\mathrm{H}$	$4.22(\mathrm{~m})$	$4.21(\mathrm{~m})$
$13-\mathrm{H}$	$5.07(\mathrm{ddd}, 15.3,8.8,1.4)$	$5.07(\mathrm{dd}, 15.1,8.6)$
$16-\mathrm{H}$	$5.21(\mathrm{dq}, 8.9,1.3)$	$5.21(\mathrm{~d}, 8.9)$
$8-\mathrm{H}$	$5.40-5.52(\mathrm{~m})$	$5.39-5.51(\mathrm{~m})$
$9-\mathrm{H}$	$5.40-5.52(\mathrm{~m})$	$5.39-5.51(\mathrm{~m})$
$14-\mathrm{H}$	$5.40-5.52(\mathrm{~m})$	$5.39-5.51(\mathrm{~m})$

Table S2. Comparison of ${ }^{13} \mathrm{C}$-NMR data between synthetic and natural 20,21-dihydroambruticin F .

Position	Synthetic 20,21- dihydroambruticin \mathbf{F} $\mathbf{1 2 6 ~ M H z ~}\left(\mathrm{CDCl}_{\mathbf{3}}\right): \boldsymbol{\delta}_{\mathbf{C}}$	Natural 20,21- dihydroambruticin F $\mathbf{1 2 6 ~ M H z ~}\left(\mathrm{CDCl}_{3}\right): \boldsymbol{\delta}_{\mathbf{c}}$
$\mathrm{C}-24$	9.6	9.6
$\mathrm{C}-27$	13.18	13.19
$\mathrm{C}-25$	13.21	13.23
$\mathrm{C}-28$	17.9	18.0
$\mathrm{C}-26$	21.3	21.3
$\mathrm{C}-11$	21.8	21.8
$\mathrm{C}-23$	26.0	26.0
$\mathrm{C}-12$	29.3	29.3
$\mathrm{C}-10$	30.6	30.6
$\mathrm{C}-19$	31.0	31.0
$\mathrm{C}-20$	33.4	33.4
$\mathrm{C}-21$	34.3	34.3
$\mathrm{C}-15$	35.2	35.2
$\mathrm{C}-4$	37.0	37.0
$\mathrm{C}-2$	40.4	40.5

C-5	66.6	66.6
C-3	68.0	68.0
C-6	71.2	71.2
C-7	77.1	77.1
C-18	82.3	82.3
C-22	84.4	84.4
C-8	124.1	124.2
C-13	125.1	125.1
C-16	129.0	129.0
C-17	135.8	135.8
C-14	136.1	136.0
C-9	140.1	140.1
C-1	174.7	174.7

Figure S2. ${ }^{1} \mathrm{H}$-NMR spectra of synthetic (blue) and natural (red) 20,21-dihydroambruticin F.

5. Comparison of NMR data for Ambruticin F

Table S3. Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data between synthetic and natural ambruticin F .

Position	$\begin{aligned} & \text { Synthetic Ambruticin F } \\ & 600 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{H}} \\ & \text { (multiplet, } J(\mathrm{~Hz})) \end{aligned}$	Natural Ambruticin F $500 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{H}}$ (multiplet, $J(\mathrm{~Hz})$)
24-H	0.91 (ap.t, 7.3)	0.90 (ap. t, 7.3)
26-H	1.06 (d. 6.9)	1.05 (d, 6.9)
11-H	1.07 (m)	1.07 (m)
25-H	1.07 (m)	1.07 (m)
10-H	1.13 (m)	1.12 (ddd, 8.6, 6.4, 3.2)
12-H	1.48 (m)	1.47 (m)
23-HH	1.52-1.57 (m)	1.51-1.55 (m)
$4-\mathrm{HH}$	1.57-1.60 (m)	1.55-1.59 (m)
28-H	1.60-1.63 (m)	1.60 (ap. dq, 2.4, 1.2)
27-H	1.66 (d, 1.4)	1.65 (d, 1.4)
23-HH	1.78 (dqd, 14.8, 7.3, 3.6)	1.77 (dqd, 14.8, 7.3, 3.6)

$19-\mathrm{HH}$	$1.85-1.90(\mathrm{~m})$	$1.84-1.89(\mathrm{~m})$
$4-\mathrm{HH}$	$1.92(\mathrm{ddd}, 13.8,3.5,2.1)$	$1.91(\mathrm{ddd}, 14.0,3.5,1.9)$
$19-\mathrm{HH}$	$2.09-2.16(\mathrm{~m})$	$2.07-2.17(\mathrm{~m})$
$2-\mathrm{HH}$	$2.37(\mathrm{dd}, 15.2,5.4)$	$2.35(\mathrm{dd}, 15.2,5.4)$
$2-\mathrm{HH}$	$2.44(\mathrm{dd}, 15.2,7.9)$	$2.43(\mathrm{dd}, 15.2,7.8)$
$15-\mathrm{H}$	$3.07-3.14(\mathrm{~m})$	$3.05-3.15(\mathrm{~m})$
$6-\mathrm{H}$	$3.22(\mathrm{dd}, 9.7,3.5)$	$3.21(\mathrm{dd}, 9.7,3.5)$
$18-\mathrm{H}$	$3.85(\mathrm{dd}, 10.8,3.0)$	$3.84(\mathrm{dd}, 10.7,3.0)$
$7-\mathrm{H}$	$3.99(\mathrm{dd}, 9.7,6.5)$	$3.98(\mathrm{dd}, 9.7,6.6)$
$5-\mathrm{H}$	$4.04(\mathrm{ap} . \mathrm{q}, 3.5)$	$4.04(\mathrm{ap} . \mathrm{q}, 3.5)$
$22-\mathrm{H}$	$4.10(\mathrm{~m})$	$4.10(\mathrm{~m})$
$3-\mathrm{H}$	$4.19-4.26(\mathrm{~m})$	$4.16-4.25(\mathrm{~m})$
$13-\mathrm{H}$	$5.17(\mathrm{ddd}, 15.3,8.7,1.3)$	$5.17(\mathrm{ddd}, 15.3,8.8,1.3)$
$16-\mathrm{H}$	$5.27(\mathrm{dq}, 9.0,1.4)$	$5.26(\mathrm{dq}, 9.1,1.4)$
$9-\mathrm{H}$	$5.40(\mathrm{dd}, 15.4,8.6)$	$5.39(\mathrm{dd}, 15.4,8.6)$
$14-\mathrm{H}$	$5.47(\mathrm{dd}, 15.3,6.6)$	$5.46(\mathrm{dd}, 15.3,6.9)$
$8-\mathrm{H}$	$5.50(\mathrm{dd}, 15.4,6.5)$	$5.49(\mathrm{dd}, 15.4,6.6)$
$20-\mathrm{H}$	$5.59-5.62(\mathrm{~m})$	$5.56-5.61(\mathrm{~m})$

Table S4. Comparison of ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data between synthetic and natural ambruticin F .

Position	Synthetic Ambruticin F $151 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{C}}$	Natural Ambruticin F $126 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{C}}$
C-24	8.7	8.7
C-27	12.6	12.6
C-25	13.4	13.4
C-28	19.1	19.1
C-26	21.7	21.7
C-11	22.3	22.3
C-23	26.6	26.6
C-12	29.8	29.8
C-19	31.1	31.1
C-10	31.8	31.8
C-15	36.3	36.3
C-4	39.2	39.2
C-2	41.8	42.1
C-5	68.5	68.5
C-3	69.4	69.5

$\mathrm{C}-6$	73.0	73.0
$\mathrm{C}-7$	77.4	77.4
$\mathrm{C}-18$	79.5	79.5
$\mathrm{C}-22$	79.6	79.6
$\mathrm{C}-20$	122.1	122.1
$\mathrm{C}-8$	126.9	126.9
$\mathrm{C}-13$	127.0	127.0
$\mathrm{C}-16$	131.0	131.0
$\mathrm{C}-21$	136.1	136.0
$\mathrm{C}-17$	136.21	136.20
$\mathrm{C}-14$	136.22	136.22
$\mathrm{C}-9$	137.9	138.0
$\mathrm{C}-1$	175.2	175.3

Figure S4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of synthetic ambruticin F (blue) and natural ambruticin F (red).

Figure S5. ${ }^{13} \mathrm{C}$-NMR spectra of synthetic ambruticin F (blue) and natural ambruticin F (red).

6. Comparison of NMR data for Ambruticin S

Table S5. Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data between synthetic and natural ambruticin $\mathrm{S} .{ }^{10-12}$

Position	$\begin{aligned} & \text { Synthetic Ambruticin S } \\ & 500 \mathrm{MHz}\left(\mathrm{CD}_{3} O D\right): \delta_{\mathrm{H}} \\ & \text { (multiplet, J(Hz)) } \end{aligned}$	Natural Ambruticin S $400 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{H}}$ (multiplet, J(Hz))	Hanessian's Synthetic Ambruticin S $\begin{aligned} & 500 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{H}} \\ & (\text { multiplet, } J(\mathrm{~Hz})) \end{aligned}$
24-H	0.89 (t, 7.3)	0.93 (t, 7.3)	0.91 (t, 7.3)
26-H	1.04 (d, 6.8)	1.08 (d, 7.0)	1.06 (d, 6.8)
11-H	1.05-1.08 (m)	1.13 (m)	1.04-1.06 (m)
$25-\mathrm{H}$	1.05-1.08 (m)	1.09 (s)	1.06-1.07 (m)
10-H	1.10-1.14 (m)	1.16 (m)	1.13-1.15 (m)
$4-\mathrm{HH}$	1.35-1.39 (m)	1.38 (m)	1.36 (q, 12.0)
12-H	1.45-1.50 (m)	1.54 (m)	1.48-1.51 (m)
23-HH	1.52-1.57 (m)	1.58 (m)	1.52-1.59 (m)
28-H	1.60 (d, 1.1)	1.64 (m)	1.62 (d, 1.1)
27-H	1.64 (d, 1.3)	1.68 (d, 1.3)	1.66 (d, 1.3)
$23-\mathrm{HH}$	$1.74-1.80$ (m)	1.80 (m)	1.75-1.81 (m)

$19-\mathrm{HH}$	$1.84-1.90(\mathrm{~m})$	$1.90(\mathrm{~m})$	$1.86-1.91(\mathrm{~m})$
$4-\mathrm{HH}$	$2.05(\mathrm{ddd}, 12.6,5.0,1.6)$	$2.08(\mathrm{ddd}, 12.6,5.1,1.9)$	$2.06(\mathrm{ddd}, 12.6,5.0,1.6)$
$19-\mathrm{HH}$	$2.08-2.15(\mathrm{~m})$	$2.13(\mathrm{~m})$	$2.11-2.16(\mathrm{~m})$
$2-\mathrm{HH}$	$2.44(\mathrm{dd}, 15.6,5.4)$	$2.47(\mathrm{dd}, 15.6,5.5)$	$2.46(\mathrm{dd}, 15.5,5.3)$
$2-\mathrm{HH}$	$2.50(\mathrm{dd}, 15.6,7.6)$	$2.55(\mathrm{dd}, 15.6,7.4)$	$2.52(\mathrm{dd}, 15.3,7.6)$
$6-\mathrm{H}$	$2.97(\mathrm{ap.t}, 9.1)$	$3.01(\mathrm{dd}, 9.1,9.0)$	$2.99(\mathrm{dd}, 9.0,9.0)$
$15-\mathrm{H}$	$3.07-3.13(\mathrm{~m})$	$3.14(\mathrm{~m})$	$3.09-3.13(\mathrm{~m})$
$7-\mathrm{H}$	$3.51(\mathrm{dd}, 9.1,6.6)$	$3.55(\mathrm{dd}, 9.1,6.5)$	$3.53(\mathrm{dd}, 9.2,7.0)$
$5-\mathrm{H}$	$3.53-3.57(\mathrm{~m})$	$3.57(\mathrm{~m})$	$3.56(\mathrm{ddd}, 11.5,8.8,5.0)$
$18-\mathrm{H}$	$3.83(\mathrm{dd}, 11.1,3.3)$	$3.87(\mathrm{dd}, 10.6,3.0)$	$3.85(\mathrm{dd}, 10.8,2.9)$
$3-\mathrm{H}$	$3.85-3.89(\mathrm{~m})$	$3.91(\mathrm{~m})$	$3.87-3.90(\mathrm{~m})$
$22-\mathrm{H}$	$4.08-4.11(\mathrm{~m})$	$4.13(\mathrm{~m})$	$4.11(\mathrm{br} \mathrm{s})$
$13-\mathrm{H}$	$5.16(\mathrm{ddd}, 15.2,8.7,1.3)$	$5.20(\mathrm{ddd}, 15.38 .8,1.2)$	$5.18(\mathrm{ddd}, 15.3,8.8,1.1)$
$16-\mathrm{H}$	$5.26(\mathrm{dq}, 9.0,1.3)$	$5.29(\mathrm{dq}, 9.0,1.3)$	$5.27(\mathrm{dq}, 9.0,1.1)$
$9-\mathrm{H}$	$5.38(\mathrm{dd}, 15.4,8.6)$	$5.42(\mathrm{dd}, 15.4,8.4)$	$5.39(\mathrm{dd} .15 .4,8.7)$
$14-\mathrm{H}$	$5.46(\mathrm{dd}, 15.2,6.5)$	$5.50(\mathrm{dd}, 15.3,6.4)$	$5.48(\mathrm{dd}, 15.2,6.5)$
$8-\mathrm{H}$	$5.50(\mathrm{dd}, 15.4,6.6)$	$5.54(\mathrm{dd}, 15.4,6.5)$	$5.52(\mathrm{dd}, 15.4,6.6)$
$20-\mathrm{H}$	$5.57-5.61(\mathrm{~m})$	$5.63(\mathrm{~m})$	$5.60,5.61(\mathrm{~m})$

Table S6. Comparison of ${ }^{13} \mathrm{C}$-NMR data between synthetic and natural ambruticin $\mathrm{S} .{ }^{10-12}$

Position	Synthetic Ambruticin S $126 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{c}}$	Natural Ambruticin S $75.5 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{C}}$	Hanessian's Synthetic Ambruticin S $125 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{C}}$
C-24	8.7	8.6	8.7
C-27	12.6	12.6	12.6
C-25	13.4	13.3	13.4
C-28	19.1	19.0	19.1
C-26	21.7	21.6	21.7
C-11	22.3	22.2	22.3
C-23	26.6	26.5	26.6
C-12	29.8	29.7	29.8
C-19	31.1	31.0	31.1
C-10	31.7	31.6	31.7
C-15	36.3	36.2	36.3
C-4	40.2	40.1	40.2
C-2	41.6	41.5	41.6
C-3	73.3	73.2	73.3

C-5	73.4	73.3	73.3
$\mathrm{C}-6$	77.1	77.0	77.0
$\mathrm{C}-18$	79.5	79.4	79.4
$\mathrm{C}-22$	79.6	79.4	79.5
$\mathrm{C}-7$	81.8	122.0	81.8
$\mathrm{C}-20$	122.1	126.1	122.1
$\mathrm{C}-8$	126.2	126.8	126.1
$\mathrm{C}-13$	126.9	130.8	126.9
$\mathrm{C}-16$	130.9	136.0	130.9
$\mathrm{C}-21$	136.1	136.1	136.0
$\mathrm{C}-17$	136.2	136.2	136.2
$\mathrm{C}-14$	136.3	138.0	136.2
$\mathrm{C}-9$	138.2	174.6	138.2
$\mathrm{C}-1$	174.7		174.8

Figure S6. HPLC traces of the $\triangle a m b P-S, \Delta a m b O-S$ and $\Delta a m b N-S / \Delta a m b P$ mutants of S. cellulosum So ce10.

7. References

1. Tautz, T.; Hoffmann, J.; Hoffmann, T.; Steinmetz, H.; Washausen, P.; Kunze, B.; Huch, V.; Kitsche, A.; Reichenbach, H.; Höfle, G.; Müller, R.; Kalesse, M. Org. Lett. 2016, 18, 2560-2563.
2. Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511-3515.
3. Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, 31, 7099-7100.
4. Bowen, J. I.; Wang, L.; Crump, M. P.; Willis, C. L. Org. Biomol. Chem. 2021, 19, 6210-6215.
5. Lee, E.; Choi, S. J.; Kim, H.; Han, H. O.; Kim, Y. K.; Min, S. J.; Son, S. H.; Lim, S. M.; Jang, W. S. Angew. Chemie 2002, 41, 176-178.
6. Pospíšil, J.; Markó, I. E. J. Am. Chem. Soc. 2007, 129, 3516-3517
7. Lindner, F.; Friedrich, S.; Hahn, F. J. Org. Chem. 2018, 83, 14091-14101.
8. Bates, R. B.; Gangwar, S. Tetrahedron: Asymmetry 1993, 4, 69-72.
9. Fields, A. M.; Jones, S. Tetrahedron 2019, 75, 3413-3420.
10. Hanessian, S.; Focken, T.; Mi, X.; Oza, R.; Chen, B.; Ritson, D.; Beaudegnies, R. J. Org. Chem. 2010, 75, 5601-5618.
11. Liu, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 10772-10773.
12. Connor, D. T.; Greenough, R. C.; Von Strandtmann, M. J. Org. Chem. 1977, 42, 3664-3669.

8. NMR Appendix

S1

15

[^0]

13

[^1]

,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

1

35

32

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$\prod_{0}^{\text {OTBS }}$

29

| 1 | | | | | | | | | | | | | | | | | |
| :--- |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

													$\begin{aligned} & \text { T' } \\ & \text { 玉 } \\ & \hline \mathbf{o} \end{aligned}$			 －TーNーommin				
）	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	${ }_{4}{ }^{1}$	4.0	3.5		． 0	2.5	1.0	1.5	1.0	0.5	0.0	－0．5

37

\|	

~

[^2]

| 1 | | | | | | | | | | | | | | | | | | | |
| :--- |
| 0 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

180	170	160	150	140	130	120	10	100	90	80	70	60	50	40	30	20	10	0	1

ambruticin S (4)
NMR spectra in methanol- D_{4}

Iman \qquad cudal Aumany

㞱

[^0]: $\begin{array}{lllllllllllllllllllllllllllllllllllllll}1 \\ 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^1]: $\begin{array}{lllllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

[^2]:

