Supporting Information

Therapeutic Coordination Polymers: Tailoring Drug Release through Metal-Ligand Interactions

Table of Contents

General Comments	2
1. Crystallographic Data	3
1.1 Crystal Structures	3
1.2 Table of Parameters	10
1.3 Packing Diagrams	12
2. Infrared Spectroscopy	16
3. Powder X-Ray Diffraction	22
4. Thermogravimetric Analysis	31
5. Dissolution Data	37
5.1 Calibration Curves	37
5.2 Tablet Dissolution	39
5.3 Intrinsic Dissolution Rates	42
6. Scanning Electron Microscopy (SEM)	48

General Comments

Single-crystal X-ray diffraction data were collected on a Bruker D8 Venture diffractometer, with either a Cu microfocus X-ray source with 2D Montel multilayer optics or a Mo-sealed X-ray tube with a curved graphite monochromator. All crystals were collected at 170 K, except for **ZnDiclo6**, which was collected at 298 K due to extreme smearing of reflections at colder temperatures.

Powder X-ray diffractograms were collected with one of two XRD systems from PROTO Manufacturing; a PROTO AXRD Benchtop Powder Diffraction System using Cu K α_{avg} radiation with a DECTRIS Mythen silicon strip detector with an angular 2 Θ range of 4-50°, a step size of 0.015°, and a dwell time of 2 seconds or a PROTO High-throughput Laboratory Powder Diffractometer (LPD-HT) equipped with a Cu K α_{avg} microfocus X-ray source, 2D Montel focusing optics, and a DECTRIS 1M Eiger2 area detector with angular coverage of 45° 2 Θ .

Thermogravimetric analysis of materials was performed on a TA Instrument (TGA 5500). All samples were held isothermally for 10 minutes under N_2 before being heated at a rate of 10 °C per minute until a maximum temperature of 600 °C was reached.

IR spectra were collected using a Bruker Alpha FT-IR spectrometer equipped with a platinum single-reflection diamond ATR module. A PerkinElmer 2400 Series II Elemental Analyzer was used for elemental analysis. All UV-Vis samples were measured on an Agilent 8453 spectrophotometer.

Drug dissolution and intrinsic dissolution rates were obtained using a Varian VK 7000 pharmaceutical dissolution instrument connected to a VK8000 autosampler and peristaltic pump. Dissolution studies were performed using United States Pharmacopeia (USP) apparatus one (paddles) at 100 rpm. Approximately 30 mg of each TCP was compacted into a disc (5 mm diameter) under a pressure of 2 Tonnes for 2 min. A Varian VK 7000 pharmaceutical dissolution instrument was used to monitor the release of APIs. The TCP monolith was placed in a stainless-steel basket, attached to the spindle, and immersed in 900 mL of buffer solution at 37 °C. Aliquots (1.5 mL) were taken at different time intervals. The media was not replaced. The aliquots were analyzed by UV-Vis spectroscopy; λ_{max} 276 nm for Diclofenac. The concentration of the API in each aliquot was determined using a calibration curve. The dissolution of the TCP was studied using 0.05 M phosphate buffer (pH 6.8), 0.01 M citrate buffer (pH 5.5), and 0.01 M citrate buffer with 0.05% of sodium dodecyl sulfate (pH 5.5).

Intrinsic dissolution rates were determined using a Woods apparatus (4.0 mm diameter) at 50 rpm using a Varian VK 7000 pharmaceutical dissolution instrument. Materials were pressed to 1.5 Tonnes for 1 min. 900 mL of buffer solution at 37 °C was used, and aliquots of 1.5 mL were taken at varying time intervals which were dependent on the material being analyzed. Concentrations were determined via UV-vis spectroscopy. Rates were determined from the slope of a linear concentration vs. time plot. Intrinsic dissolution of TCPs was studied using 0.05 M phosphate buffer (pH 6.8), and 0.05 M phosphate buffer with 0.05% EDTA (pH 6.8).

Cytotoxicity studies were performed with human non-fetal skin fibroblasts (NHF) (Coriell Institute for Medical Research, Cat. No. AG09309) which were grown at 5% CO₂ and 37 °C and cultured in Eagle's Minimum Essential Medium with Earle's salts and non-essential amino acids supplemented with 15% (v/v) fetal bovine serum (Thermo Scientific, Waltham, MA, USA) and 10 mg/mL gentamicin (Gibco BRL, VWR, Mississauga, ON, Canada). WST-1 assays were performed according to the manufacturer's protocol (Roche Applied Sciences, Indianapolis, IN, USA) to examine cell viability following TCP treatment. Briefly, NHF cells seeded on 96-well cell culture plates were treated for 48 h and incubated with WST-1 reagent for 3 h in the absence of light. The proportion of metabolically active cells was observed by detecting formazan through absorbance readings at 450 nm on a Wallac Victor3 1420 Multilabel Counter (PerkinElmer, Waltham, MA, USA). Microscopic imaging was conducted with a Leica DMI6000 B inverted microscope (Leica Microsystems, Concord, ON, Canada), following the addition of 10 μ M Hoechst nuclear stain. Statistical analysis was conducted with GraphPad Prism 6 statistical software, where values of P < 0.05 were taken as significant. A 2-way analysis of variance with Dunnett's test was utilized and sample means were compared to DMSO controls.

Scanning electron microscopy (SEM) images were collected using a Quanta 200 FEG instrument from FEI Company under low-vacuum conditions. Note: pores/holes observed in the images are from the background tape used to mount the samples and are not reflective of the sample.

1. Crystallographic Data

1.1 Crystal Structures

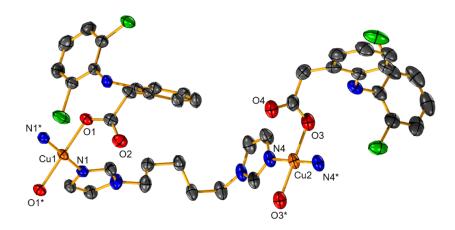


Figure S1: Coordination environments of the Cu(II) ions in Cu(Diclo)₂(biim-5). Ellipsoids shown at 50% probability and H atoms omitted for clarity..

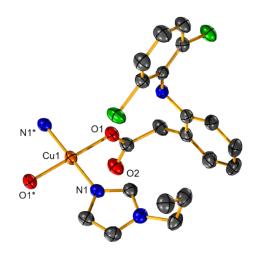


Figure S2: Coordination environment of the Cu(II) ion in Cu(Diclo)₂(biim-6)·(MeOH)₂. Ellipsoids shown at 50% probability and H atoms and solvent omitted for clarity.

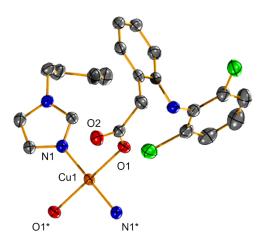


Figure S3: Coordination environment of the Cu(II) ion in Cu(Diclo)₂(biim-8)·(MeOH)₂. Ellipsoids shown at 50% probability. H atoms and solvent omitted for clarity.

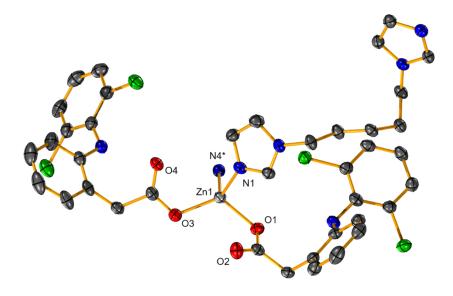


Figure S4: Coordination environment of the Zn(II) ion in Zn(Diclo)₂(biim-5). Ellipsoids shown at 50% probability and H atoms omitted for clarity.

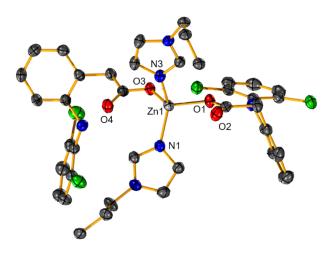


Figure S5: Coordination environment of the Zn(II) ion in Zn(Diclo)₂(biim-6)·(MeOH). Ellipsoids shown at 50% probability. H atoms and solvent omitted for clarity.

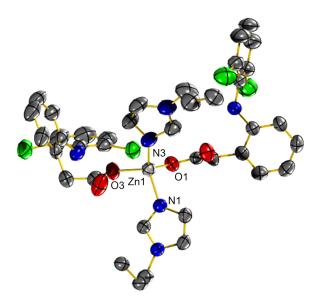


Figure S6: Coordination environment of the Zn(II) ion in Zn(Diclo)₂(biim-6)·(EtOH). Ellipsoids shown at 50% probability. H atoms and solvent omitted for clarity.

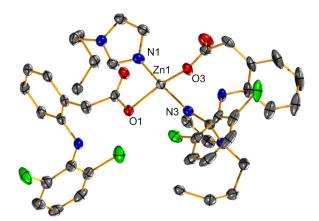


Figure S7: Coordination environment of the Zn(II) ion in Zn(Diclo)₂(biim-8). Ellipsoids shown at 50% probability and H atoms omitted for clarity.

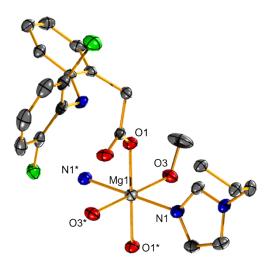


Figure S8: Coordination environment of the Mg(II) ion in Mg(Diclo)₂(biim-6)₂(MeOH)₂. Ellipsoids shown at 50% probability and H atoms omitted for clarity.

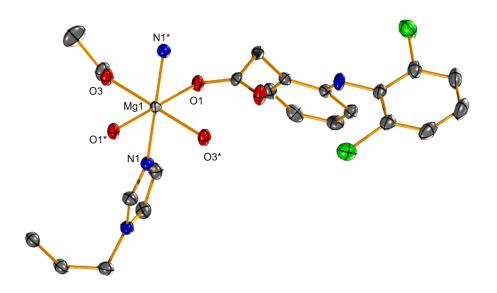


Figure S9: Coordination environment of the Mg(II) ion in Mg(Diclo)₂(biim-6)₂(EtOH)₂. Ellipsoids shown at 50% probability and H atoms omitted for clarity.

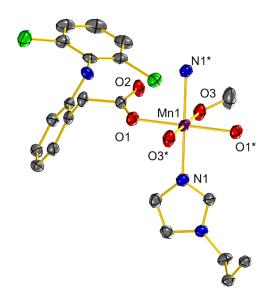


Figure S10: Coordination environment of the Mn(II) ion in Mn(Diclo)₂(biim-6)₂(MeOH)₂. Ellipsoids shown at 50% probability and H atoms omitted for clarity.

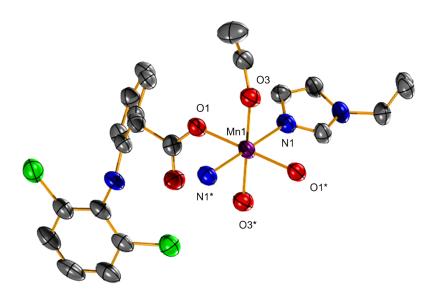


Figure S11: Coordination environment of the Mn(II) ion in Mn(Diclo)₂(biim-6)₂(EtOH)₂. Ellipsoids shown at 50% probability and H atoms omitted for clarity.

1.2 Table of Parameters

	CuDiclo5	CuDiclo6·MeOH	CuDiclo8·MeOH	ZnDiclo5	ZnDiclo6·MeOH
CCDC deposition number	2237930	2237929	2237924	2237931	2237932
Empirical formula	C ₃₉ H ₃₆ Cl ₄ CuN ₆ O ₄	C ₄₂ H ₄₆ Cl ₄ CuN ₆ O ₆	C ₄₄ H ₅₀ Cl ₄ CuN ₆ O ₆	C ₃₉ H ₃₆ Cl ₄ N ₆ O ₄ Zn	$C_{41}H_{42}CI_4N_6O_5Zn$
Formula weight	858.08	936.19	964.24	859.91	905.97
Crystal system	monoclinic	monoclinic	triclinic	monoclinic	monoclinic
Space group	P2 ₁ /c	P2 ₁ /n	P-1	P2 ₁ /n	P2 ₁ /n
a/Å	21.7971(5)	8.1316(3)	8.1744(3)	15.7556(3)	14.7461(3)
b/Å	8.3133(2)	10.8394(3)	11.9929(5)	15.5699(3)	14.5959(3)
c/Å	21.5270(6)	24.3849(7)	13.8763(6)	16.1773(3)	19.2358(3)
a/°	90	90	68.678(2)	90	90
β/°	90.584(2)	97.503(3)	77.480(2)	109.828(2)	97.599(2)
γ/°	90	90	81.887(2)	90	90
Volume/Å ³	3900.62(17)	2130.92(12)	1234.20(9)	3733.23(13)	4103.81(14)
Z	4	2	1	4	4
ρ _{calc} g/cm ³	1.461	1.459	1.297	1.530	1.466
µ/mm ⁻¹	3.714	3.482	3.021	3.968	3.657
F(000)	1764.0	970.0	501.0	1768.0	1872.0
Crystal size/mm ³	0.3 × 0.2 × 0.1	0.3 × 0.2 × 0.05	0.5 × 0.2 × 0.03	0.2 × 0.2 × 0.1	0.4 × 0.4 × 0.2
2O range for data collection/°	8.112 to 133.192	7.314 to 133.19	6.95 to 149.562	6.768 to 136.498	7.118 to 148.996
Index ranges	-25 ≤ h ≤ 25, -9 ≤ k ≤ 9, -24 ≤ l ≤ 25	-9 ≤ h ≤ 8, -12 ≤ k ≤ 12, -29 ≤ l ≤ 29	-10 ≤ h ≤ 10, -14 ≤ k ≤ 14, -17 ≤ l ≤ 17	-18 ≤ h ≤ 18, -18 ≤ k ≤ 18, -19 ≤ l ≤ 19	-17 ≤ h ≤ 18, -18 ≤ k ≤ 18, -24 ≤ l ≤ 24
Reflections collected	183242	79116	22244	222774	226781
Independent reflections	6885 [R _{int} = 0.1367, R _{sigma} = 0.0338]	3763 [R _{int} = 0.1038, R _{sigma} = 0.0290]	4990 [R _{int} = 0.0650, R _{sigma} = 0.0475]	6828 [R _{int} = 0.1289, R _{sigma} = 0.0268]	8387 [R _{int} = 0.1159, R _{sigma} = 0.0259]
Data/restraints/parameters	6885/1/489	3763/1/277	4990/0/279	6828/0/496	8387/0/524
Goodness-of-fit on F ²	1.079	1.072	1.064	1.059	1.027
Final R indexes [I>=2σ (I)]	R ₁ = 0.0608, wR ₂ = 0.1627	R ₁ = 0.0526, wR ₂ = 0.1443	R ₁ = 0.0585, wR ₂ = 0.1520	R ₁ = 0.0542, wR ₂ = 0.1465	R ₁ = 0.0524, wR ₂ = 0.1407
Final R indexes [all data]	R ₁ = 0.0717, wR ₂ = 0.1752	R ₁ = 0.0595, wR ₂ = 0.1532	R ₁ = 0.0692, wR ₂ = 0.1613	R ₁ = 0.0580, wR ₂ = 0.1519	R ₁ = 0.0561, wR ₂ = 0.1450
Largest diff. peak/hole / e Å ⁻³	0.96/-0.66	0.39/-0.57	0.67/-0.53	0.80/-0.58	0.45/-0.83

	ZnDiclo6·EtOH	ZnDiclo8	MnDiclo6·MeOH	MnDiclo6·EtOH	MgDiclo6·MeOH	MgDiclo6·EtOH
CCDC deposition number	2237933	2237926	2237934	2237927	2237925	2237928
Empirical formula	C ₄₂ H ₄₄ Cl ₄ N ₆ O ₅ Zn	$C_{42}H_{42}CI_4N_6O_4Zn$	C ₄₂ H ₄₆ Cl ₄ MnN ₆ O ₆	C ₄₄ H ₅₀ Cl ₄ MnN ₆ O ₆	C ₄₂ H ₄₆ Cl ₄ MgN ₆ O ₆	C ₄₄ H ₅₀ Cl ₄ MgN ₆ O ₆
Formula weight	920.00	901.98	927.59	955.64	896.96	925.01
Crystal system	monoclinic	triclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	P2 ₁ /n	P-1	P2₁/n	P2 ₁ /n	P2₁/n	P2 ₁ /n
a/Å	14.82310(10)	11.3205(4)	8.5133(2)	8.5583(9)	8.48440(10)	8.50360(10)
b/Å	14.77870(10)	13.1000(5)	20.8959(7)	21.737(3)	20.9466(2)	21.7792(3)
c/Å	19.9676(2)	15.6723(6)	12.8879(4)	12.8769(19)	12.84190(10)	12.8123(2)
a/°	90	113.7270(10)	90	90	90	90
β/°	96.8790(10)	98.6240(10)	107.4090(10)	108.475(14)	107.4270(10)	108.489(2)
v/°	90	97.2980(10)	90	90	90	90
Volume/Å ³	4342.74(6)	2058.10(13)	2187.65(11)	2272.1(5)	2177.50(4)	2250.38(6)
Z	4	2	2	2	2	2
ρ _{calc} g/cm ³	1.407	1.455	1.408	1.397	1.368	1.365
µ/mm ⁻¹	3.464	3.625	0.599	4.965	3.053	2.970
F(000)	1904.0	932.0	962.0	994.0	936.0	968.0
Crystal size/mm ³	0.3 × 0.15 × 0.15	0.2 × 0.2 × 0.1	0.3 × 0.3 × 0.1	0.2 × 0.05 × 0.05	0.4 × 0.3 × 0.2	0.2 × 0.2 × 0.1
2O range for data collection/°	7.038 to 148.994	6.316 to 144.194	6.354 to 56.712	8.134 to 133.176	8.36 to 158.52	8.12 to 136.464
Index ranges	-17 ≤ h ≤ 18, -18 ≤ k ≤ 18, -24 ≤ I ≤ 24	-13 ≤ h ≤ 13, -16 ≤ k ≤ 16, -19 ≤ I ≤ 19	-11 ≤ h ≤ 11, -27 ≤ k ≤ 27, -17 ≤ l ≤ 17	-9 ≤ h ≤ 10, -25 ≤ k ≤ 25, -15 ≤ l ≤ 14	-10 ≤ h ≤ 9, -26 ≤ k ≤ 26, -16 ≤ l ≤ 16	-9 ≤ h ≤ 10, -26 ≤ k ≤ 26, -15 ≤ l ≤ 15
Reflections collected	93894	46068	137306	24612	40598	45917
Independent reflections	8888 [R _{int} = 0.0652, R _{sigma} = 0.0252]	8063 [R _{int} = 0.0361, R _{sigma} = 0.0222]	5427 [R _{int} = 0.0417, R _{sigma} = 0.0120]	4000 [R _{int} = 0.1870, R _{sigma} = 0.1128]	4696 [R _{int} = 0.0473, R _{sigma} = 0.0241]	4132 [R _{int} = 0.0675, R _{sigma} = 0.0293]
Data/restraints/parameters	8888/113/573	8063/48/522	5427/3/276	4000/3/285	4696/3/272	4132/9/285
Goodness-of-fit on F ²	1.043	1.051	1.075	0.967	1.072	1.048
Final R indexes [I>=2σ (I)]	R ₁ = 0.0486, wR ₂ = 0.1357	$R_1 = 0.0361,$ w $R_2 = 0.0943$	$R_1 = 0.0311,$ w $R_2 = 0.0802$	$R_1 = 0.0754,$ w $R_2 = 0.1829$	$R_1 = 0.0431,$ w $R_2 = 0.1135$	$R_1 = 0.0346,$ w $R_2 = 0.0893$
Final R indexes [all data]	$R_1 = 0.0566,$ w $R_2 = 0.1454$	$R_1 = 0.0391,$ w $R_2 = 0.0968$	$R_1 = 0.0369,$ w $R_2 = 0.0852$	$R_1 = 0.1362,$ w $R_2 = 0.2346$	$R_1 = 0.0463,$ w $R_2 = 0.1169$	$R_1 = 0.0421,$ w $R_2 = 0.0942$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.45	0.75/-0.74	0.39/-0.33	0.81/-0.69	0.35/-0.59	0.22/-0.29

1.3 Packing Diagrams

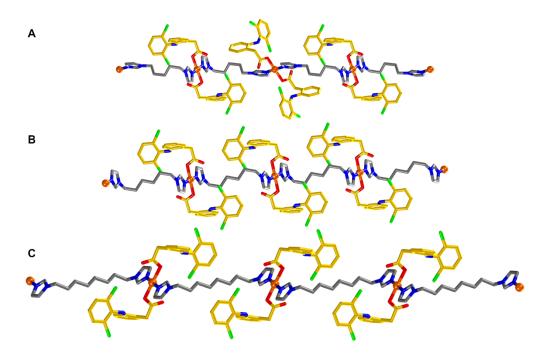


Figure S12. Single crystal structures of TCPs, a) Cu(Diclo)₂(biim-5), b) Cu(Diclo)₂(biim-6)·(MeOH)₂, Cu(Diclo)₂(biim-8)·(MeOH)₂. Cu = orange, N = blue, O = red, Cl = green, bisimidazole and Diclofenac C-atoms are shown in silver and gold, respectively. H atoms and solvent omitted for clarity.

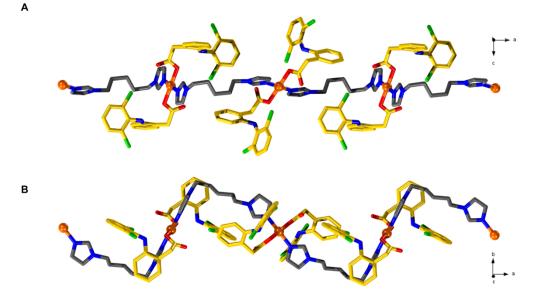


Figure S13. One-dimensional chain of Cu(Diclo)₂(biim-5) as viewed a) along the b-axis, and b) along the c-axis. Cu = orange, N = blue, O = red, Cl = green, bis-imidazole and Diclofenac C-atoms are shown in silver and gold, respectively. H atoms omitted for clarity.

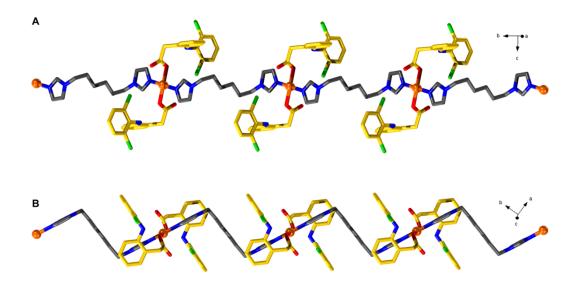


Figure S14. One-dimensional chain of Cu(Diclo)₂(biim-6)·(MeOH)₂ as viewed a) along the aaxis, and b) along the c-axis. Cu = orange, N = blue, O = red, Cl = green, bis-imidazole and Diclofenac C-atoms are shown in silver and gold, respectively. H atoms and solvent omitted for clarity.

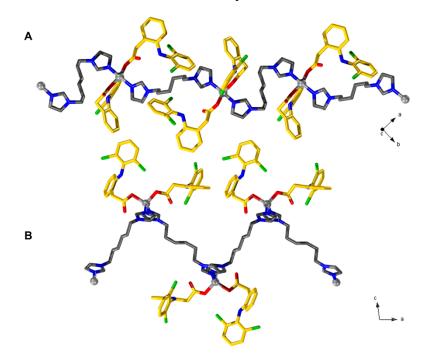


Figure S15. One-dimensional chain of Zn(Diclo)₂(biim-6)·(MeOH) as viewed a) along the caxis, and b) along the b-axis. Zn = grey, N = blue, O = red, Cl = green, bis-imidazole and Diclofenac C-atoms are shown in silver and gold, respectively. H atoms and solvent omitted for clarity.

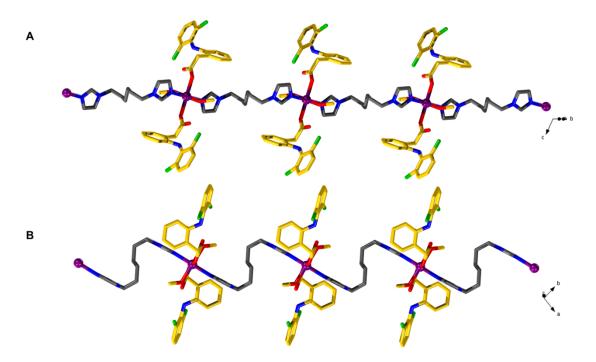


Figure S16. One-dimensional chain of Mn(Diclo)₂(biim-6)(MeOH)₂ as viewed a) along the aaxis, and b) along the c-axis. Mn = purple, N = blue, O = red, Cl = green, bis-imidazole and Diclofenac C-atoms are shown in silver and gold, respectively. H atoms omitted for clarity.

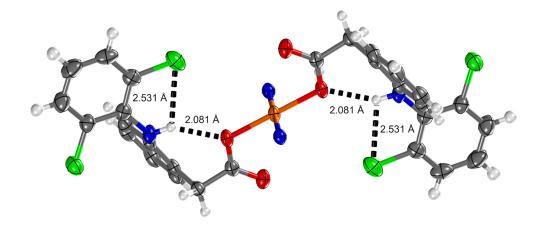


Figure S17. Coordination environment in Cu(Diclo)₂(biim-8)·(MeOH)₂ showing intramolecular H-bonding interactions of Diclofenac.

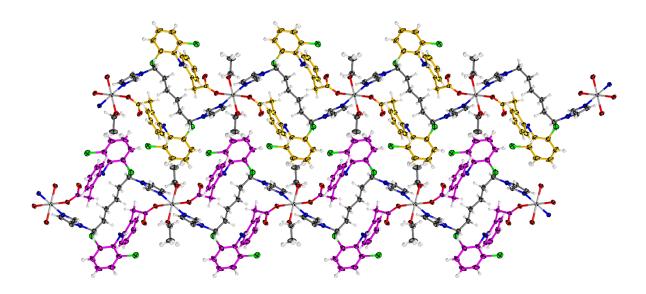


Figure S18. Packing of parallel polymeric chains in $Mg(Diclo)_2(biim-6)(EtOH)_2$ as seen along the a-axis. Diclofenac C atoms colored pink in one strand and yellow in the other to depict close packing of the chains. Mg = light grey, N = blue, O = red, Cl = green, C (bis-imidazole linker) = grey.

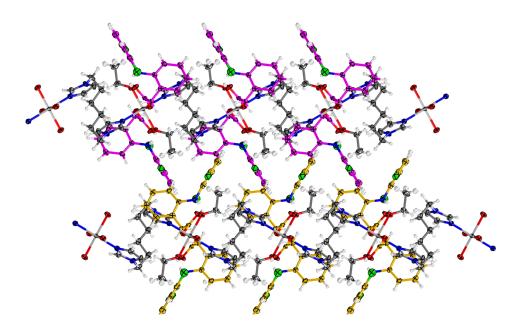


Figure S19. Packing of parallel polymeric chains in $Mg(Diclo)_2(biim-6)(EtOH)_2$ as seen along the c-axis. Diclofenac C atoms colored pink in one strand and yellow in the other to depict close packing of the chains. Mg = light grey, N = blue, O = red, Cl = green, C (bis-imidazole linker) = grey.

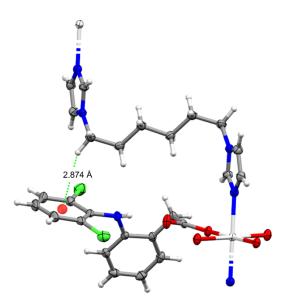


Figure S20. C-H $\cdots \pi$ interaction between Diclofenac centroid (C9-C14) and H atom of bisimidazole linker in Mg(Diclo)₂(biim-6)(EtOH)₂. Mg = light grey, N = blue, O = red, Cl = green, C = grey.

2. Infrared Spectroscopy

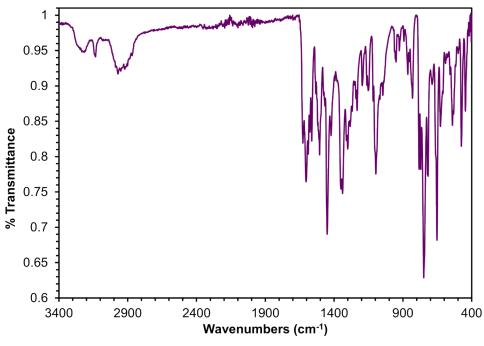
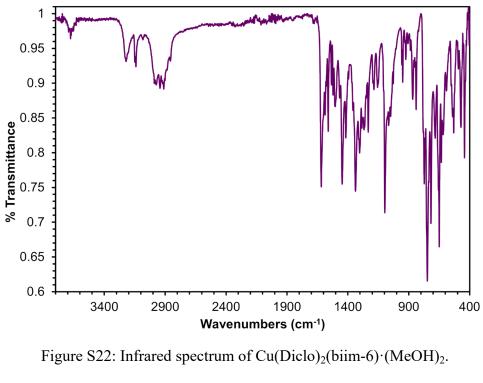



Figure S21: Infrared spectrum of Cu(Diclo)₂(biim-5).

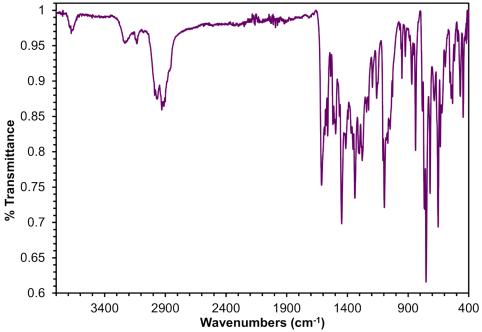


Figure S23: Infrared spectrum of Cu(Diclo)₂(biim-8)·(MeOH)₂.

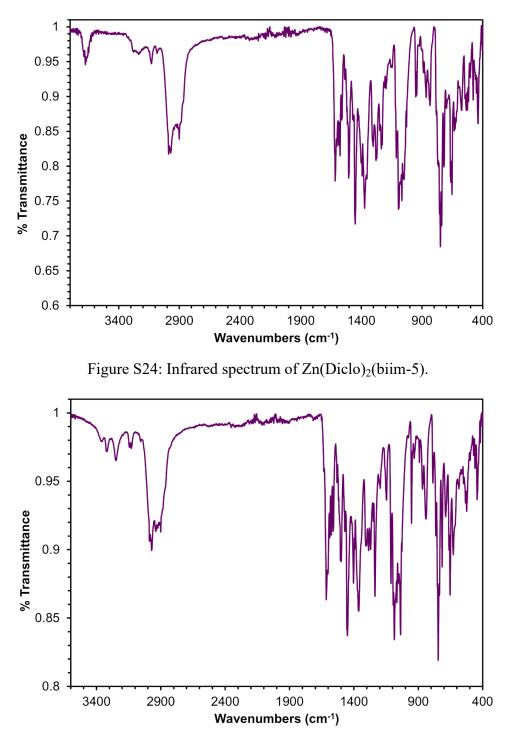


Figure S25: Infrared spectrum of Zn(Diclo)₂(biim-6)·(MeOH).

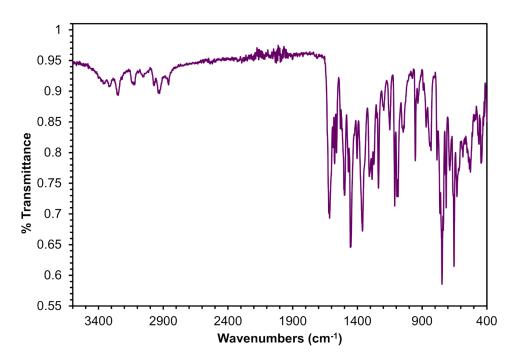


Figure S26: Infrared spectrum of Zn(Diclo)₂(biim-6)·(EtOH).

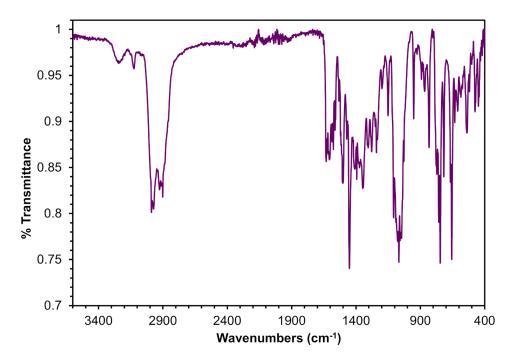
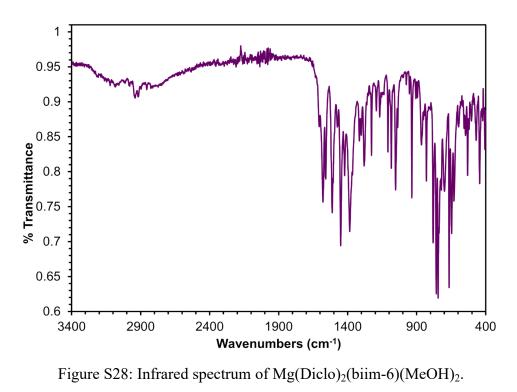



Figure S27: Infrared spectrum of Zn(Diclo)₂(biim-8).

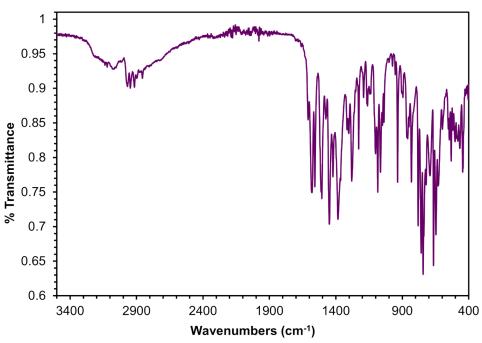


Figure S29: Infrared spectrum of Mg(Diclo)₂(biim-6)(EtOH)₂.

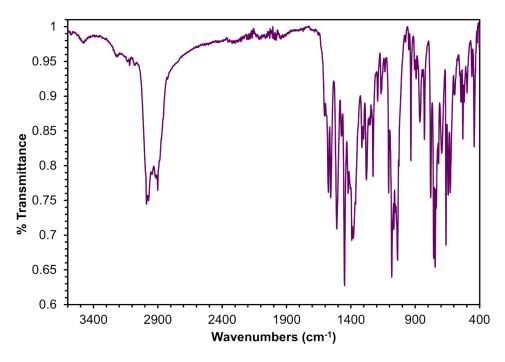


Figure S30: Infrared spectrum of Mn(Diclo)₂(biim-6)(MeOH)₂.

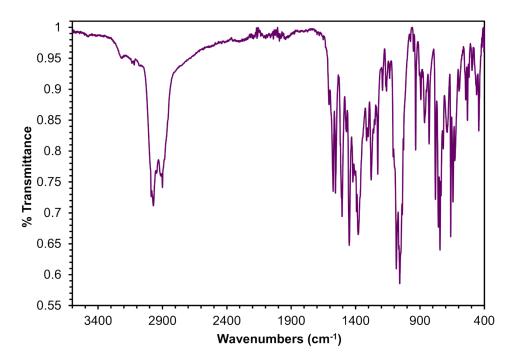


Figure S31: Infrared spectrum of Mn(Diclo)₂(biim-6)(EtOH)₂.

3. Powder X-Ray Diffraction

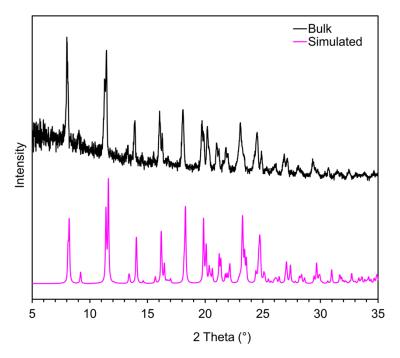


Figure S32: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Cu(Diclo)₂(biim-5).

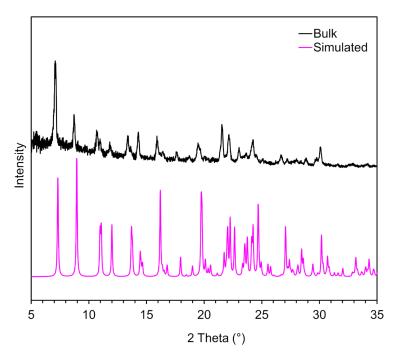


Figure S33: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Cu(Diclo)₂(biim-6)·(MeOH)₂.

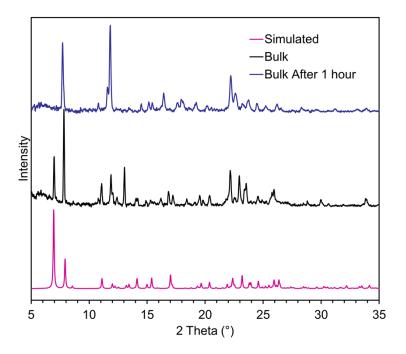


Figure S34. Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Cu(Diclo)₂(biim-8)·(MeOH)₂. After 1 hour, the bulk powder phase desolvated and a new phase formed.

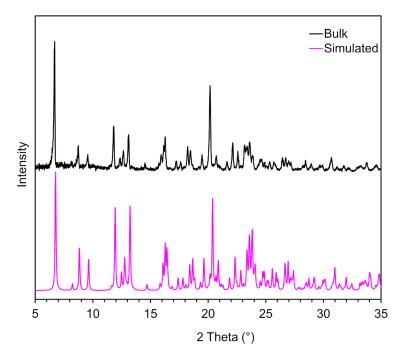


Figure S35: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Zn(Diclo)₂(biim-5).

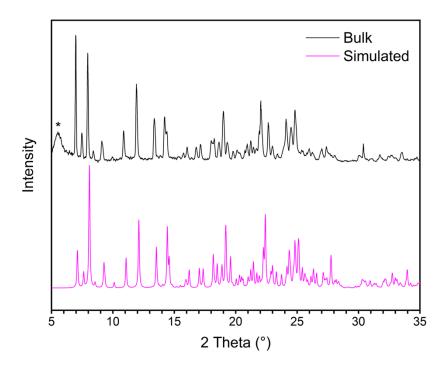


Figure S36: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Zn(Diclo)₂(biim-6)·(MeOH) (*Kapton film).

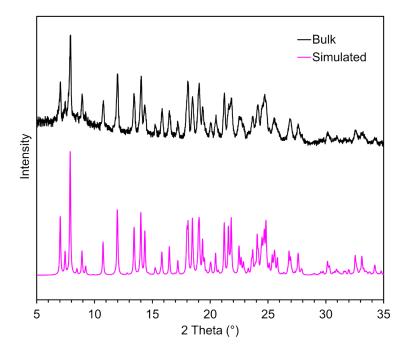


Figure S37: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Zn(Diclo)₂(biim-6)·(EtOH).

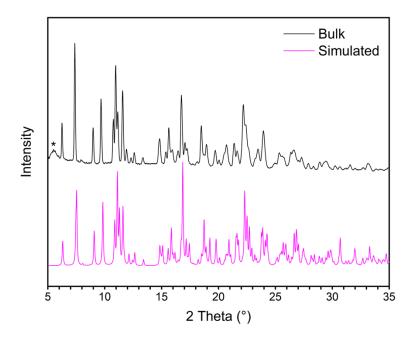


Figure S38: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Zn(Diclo)₂(biim-8) (*Kapton film).

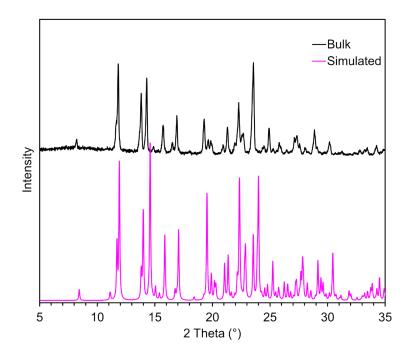


Figure S39: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Mg(Diclo)₂(biim-6)(MeOH)₂.

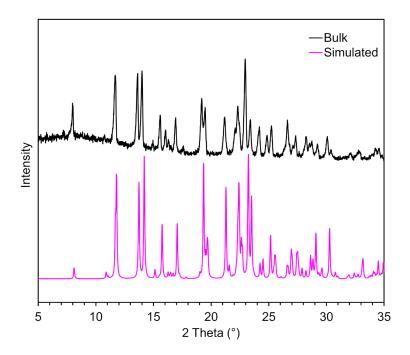


Figure S40: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Mg(Diclo)₂(biim-6)(EtOH)₂.

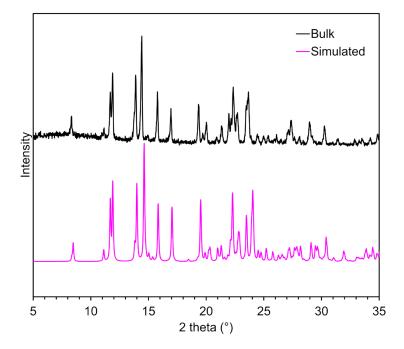


Figure S41: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Mn(Diclo)₂(biim-6)(MeOH)₂.

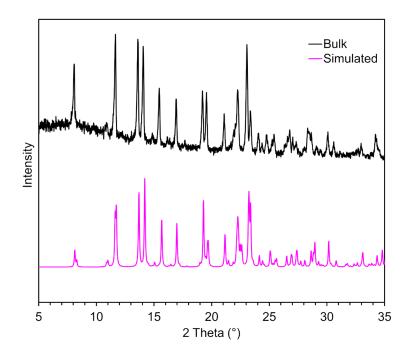


Figure S42: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Mn(Diclo)₂(biim-6)(EtOH)₂.

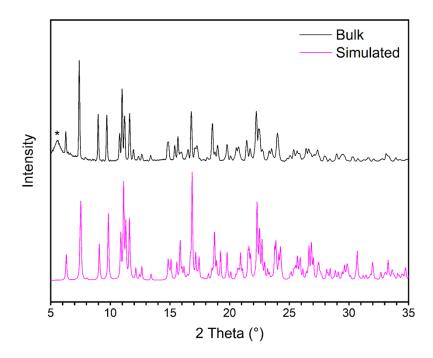


Figure S43: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Zn(Diclo)₂(biim-8) taken after 1 year.

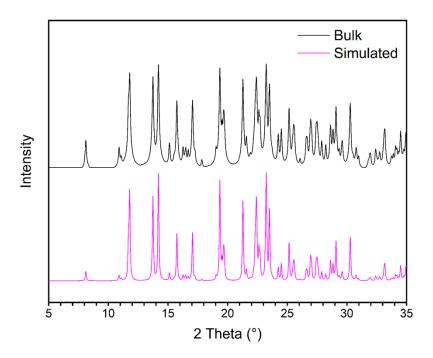


Figure S44: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Mg(Diclo)₂(biim-6)(EtOH)₂ taken after 1 year.

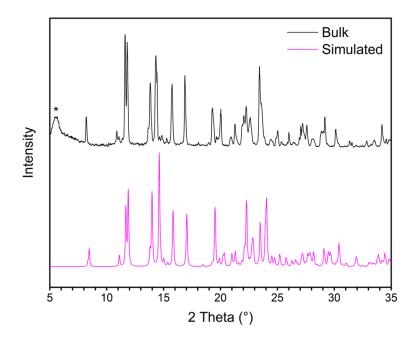


Figure S45: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the bulk powder sample of Mn(Diclo)₂(biim-6)(MeOH)₂ taken after 1 year (*Kapton film).

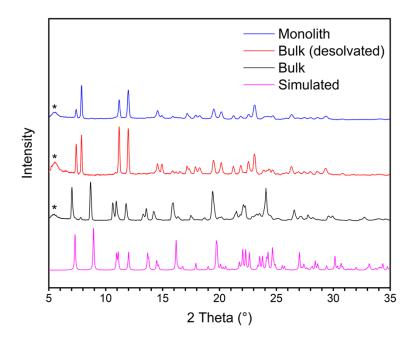


Figure S46: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated), the bulk powder sample of Cu(Diclo)₂(biim-6)·(MeOH)₂, the bulk powder sample desolvated (Cu(Diclo)₂(biim-6)'), and the monolith (*Kapton film).

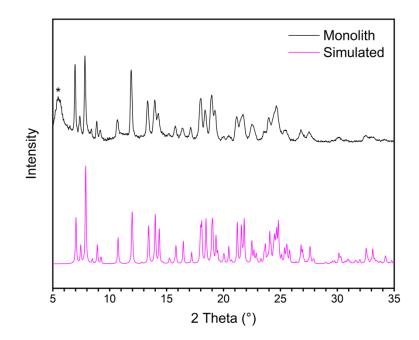


Figure S47: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the monolith of Zn(Diclo)₂(biim-6)·(EtOH) (*Kapton film).

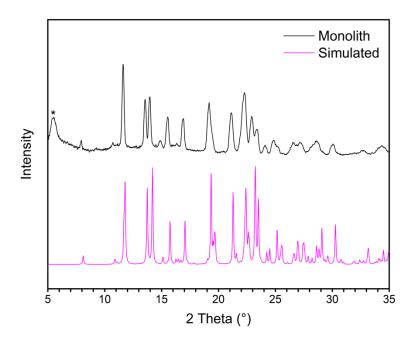


Figure S48: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the monolith of Mg(Diclo)₂(biim-6)(EtOH)₂ (*Kapton film).

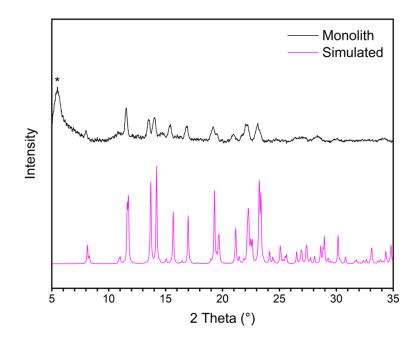


Figure S49: Comparison of Powder XRD pattern (CuK α radiation, $\lambda = 1.5418$ Å) from single crystal (simulated) and the monolith of Mn(Diclo)₂(biim-6)(EtOH)₂ (*Kapton film).

4. Thermogravimetric Analysis

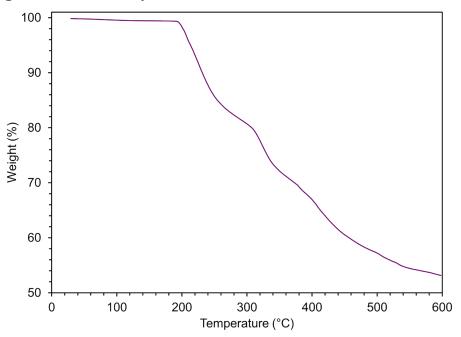


Figure S50: Thermogravimetric analysis Cu(Diclo)₂(biim-5).

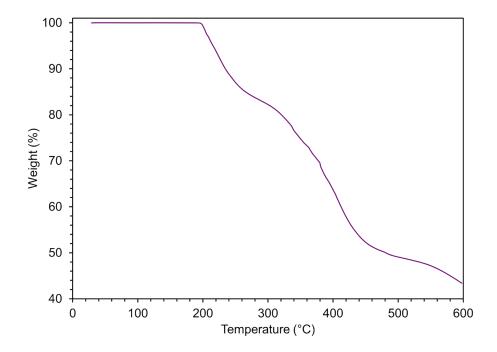


Figure S51: Thermogravimetric analysis of desolvated Cu(Diclo)₂(biim-6)'.



Figure S52: Thermogravimetric analysis of Cu(Diclo)₂(biim-8)·(MeOH)₂.

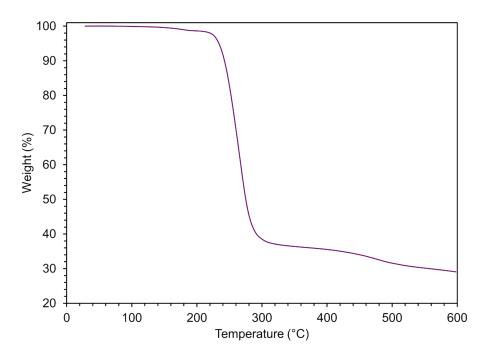


Figure S53: Thermogravimetric analysis Zn(Diclo)₂(biim-5).

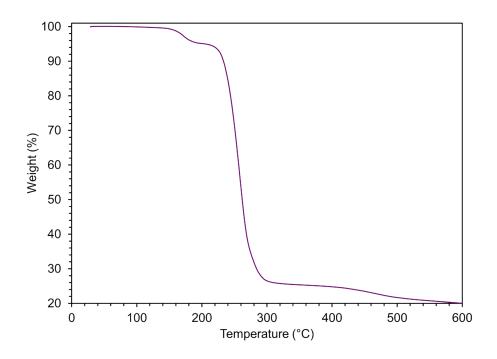


Figure S54: Thermogravimetric analysis Zn(Diclo)₂(biim-6)·(MeOH).

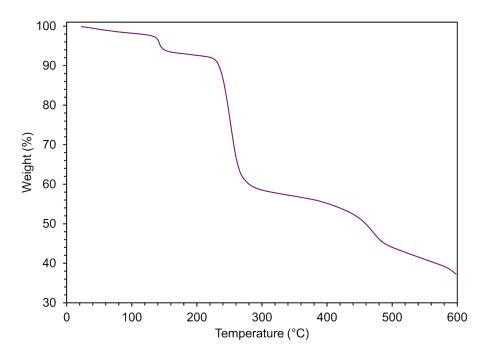


Figure S55: Thermogravimetric analysis of Zn(Diclo)₂(biim-6)·(EtOH).

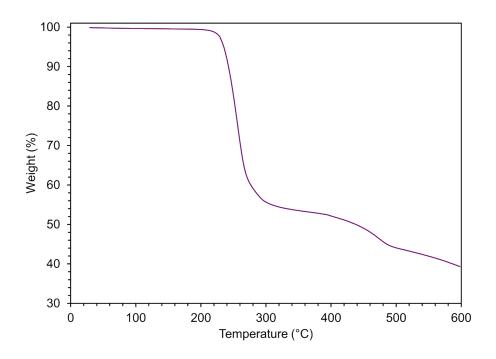


Figure S56: Thermogravimetric analysis of Zn(Diclo)₂(biim-8).

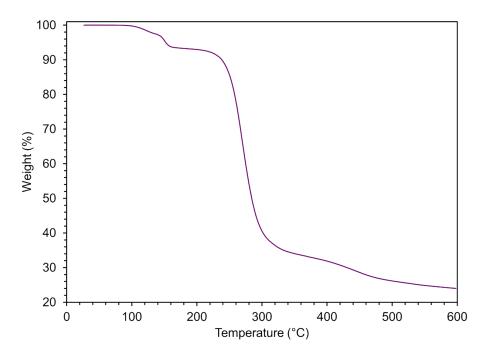


Figure S57: Thermogravimetric analysis of Mg(Diclo)₂(biim-6)(MeOH)₂.

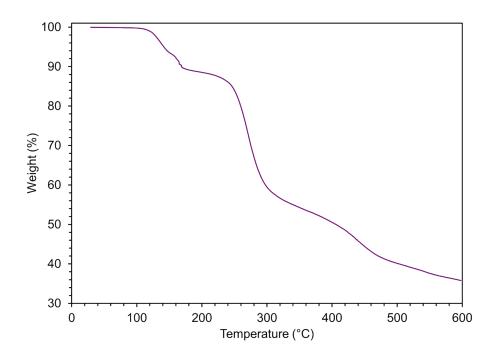


Figure S58: Thermogravimetric analysis of Mg(Diclo)₂(biim-6)(EtOH)₂.

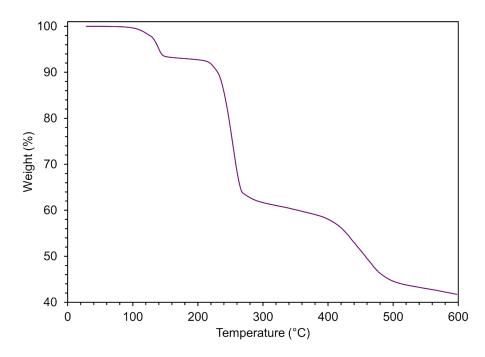


Figure S59: Thermogravimetric analysis of Mn(Diclo)₂(biim-6)(MeOH)₂.

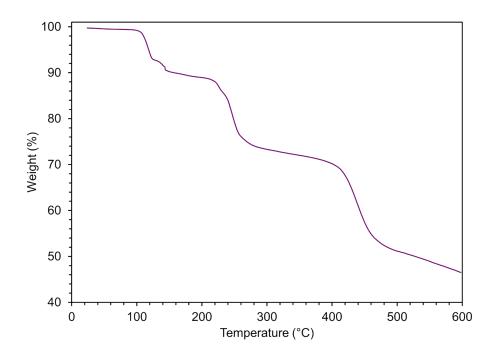


Figure S60: Thermogravimetric analysis of Mn(Diclo)₂(biim-6)(EtOH)₂.

5. Dissolution Data 5.1 Calibration Curves

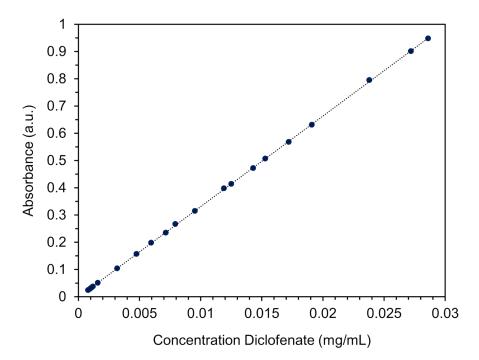


Figure S61: Calibration curve for sodium Diclofenac in 0.05 M phosphate buffer, pH 6.8 y=33.248x-0.0015, $R^2 = 0.9999$

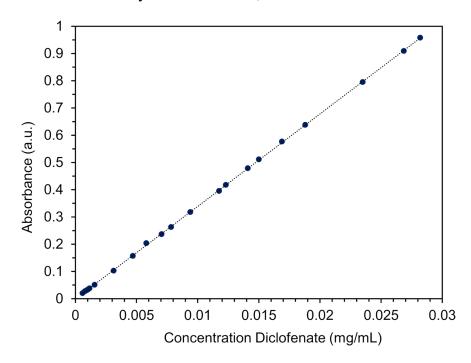


Figure S62: Calibration curve for sodium Diclofenac in 0.05 M phosphate buffer, pH 6.8 with 0.05% EDTA. y=33.955x-0.0007, $R^2 = 0.9999$.

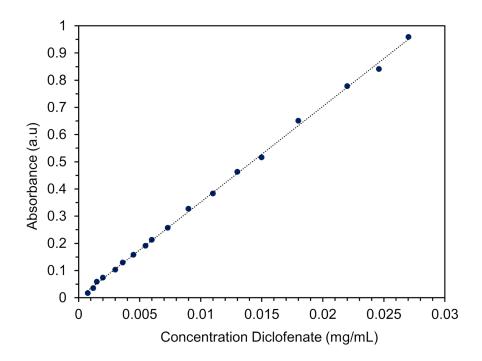


Figure S63: Calibration curve for sodium Diclofenac in 0.01 M citrate buffer, pH 5.5. y=35.19x-0.0002, R² = 0.9990.

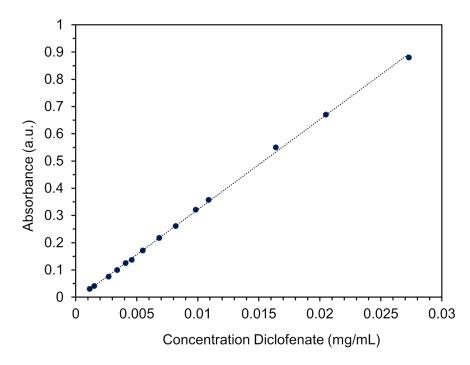


Figure S64: Calibration curve for sodium Diclofenac in 0.01 M citrate buffer, pH 5.5 with 0.05% SDS. y=33.059x-0.0093, $R^2 = 0.9993$.

5.2 Tablet Dissolution

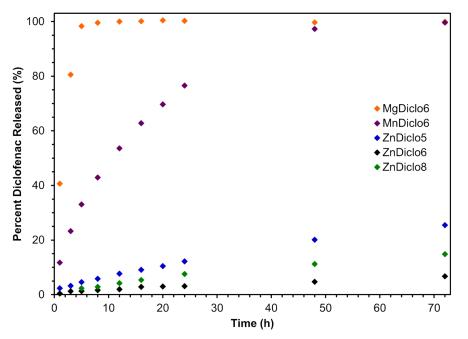


Figure S65: The release of Diclofenac from imidazole-based therapeutic coordination polymers over 72 h in 0.05 M phosphate buffer, pH 6.8.

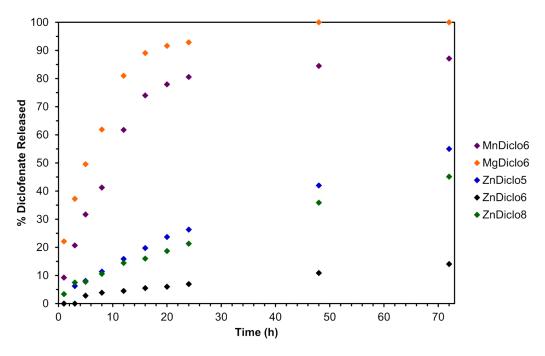


Figure S66: The release of Diclofenac from imidazole-based therapeutic coordination polymers over 72 h in 0.01 M citrate buffer, pH 5.5.

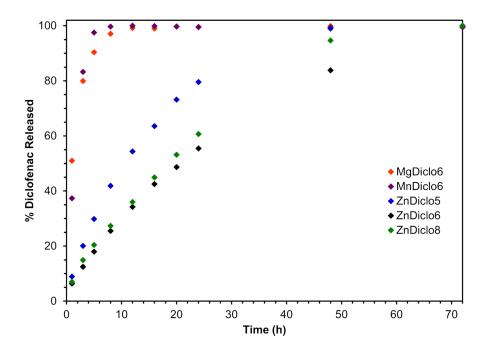


Figure S67: The release of Diclofenac from imidazole-based therapeutic coordination polymers over 72 h in 0.01 M citrate buffer, pH 5.5 with 0.05% SDS.

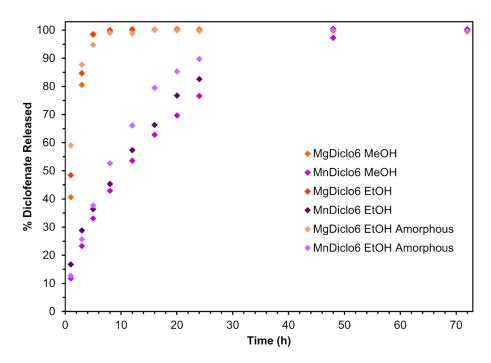


Figure S68: The release of Diclofenac from Mn and Mg therapeutic coordination polymers prepared in methanol, ethanol, and amorphized over 72 h in 0.05 M phosphate buffer, pH 6.8.

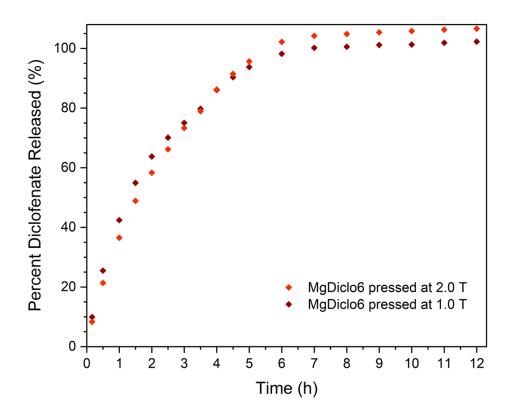


Figure S69: The release of Diclofenac from Mg(Diclo)₂(biim-6)(EtOH)₂ pressed into monoliths of 2 different pressures over 12 h in 0.05M phosphate buffer, pH 6.8.

5.3 Intrinsic Dissolution Rates

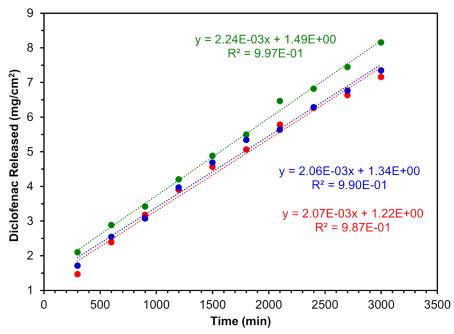


Figure S70: Intrinsic dissolution replicates of Zn(Diclo)₂(biim-5) in 0.05 M phosphate buffer, pH
 6.8. Linear fitting of data corresponds to the intrinsic dissolution rate. Linear equation and corresponding R² values are shown in colors to match data sets.

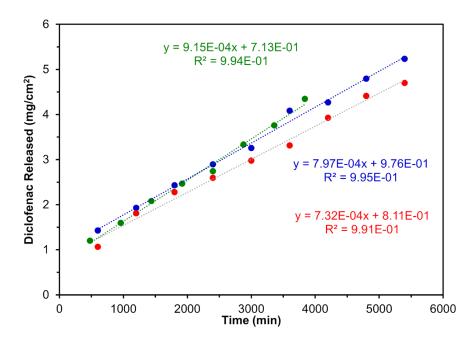


Figure S71: Intrinsic dissolution replicates of Zn(Diclo)₂(biim-6)·(EtOH) in 0.05 M phosphate buffer, pH 6.8. Linear fitting of data corresponds to the intrinsic dissolution rate. Linear equation and corresponding R² values are shown in colors to match data sets.

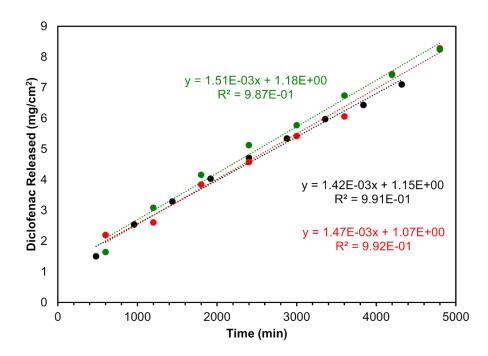


Figure S72: Intrinsic dissolution replicates of Zn(Diclo)₂(biim-8) in 0.05 M phosphate buffer, pH
6.8. Linear fitting of data corresponds to the intrinsic dissolution rate. Linear equation and corresponding R² values are shown in colors to match data sets.

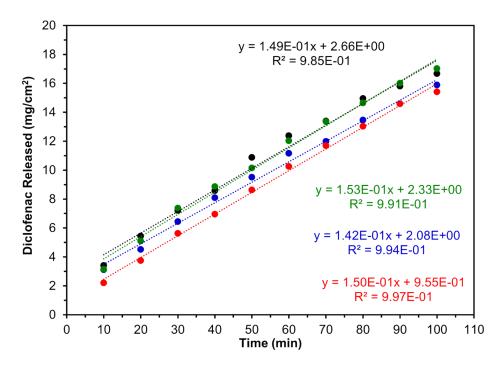


Figure S73: Intrinsic dissolution replicates of Mg(Diclo)₂(biim-6)(EtOH)₂ in 0.05 M phosphate buffer, pH 6.8. Linear fitting of data corresponds to the intrinsic dissolution rate. Linear equation and corresponding R² values are shown in colors to match data sets.

Figure S74: Intrinsic dissolution replicates of Mn(Diclo)₂(biim-6)(EtOH)₂ in 0.05 M phosphate buffer, pH 6.8. Linear fitting of data corresponds to the intrinsic dissolution rate. Linear equation and corresponding R² values are shown in colors to match data sets.

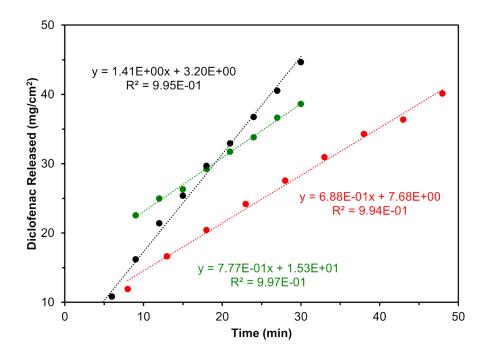


Figure S75: Intrinsic dissolution replicates of sodium Diclofenac in 0.05 M phosphate buffer, pH
 6.8. Linear fitting of data corresponds to the intrinsic dissolution rate. Linear equation and corresponding R² values are shown in colors to match data sets.

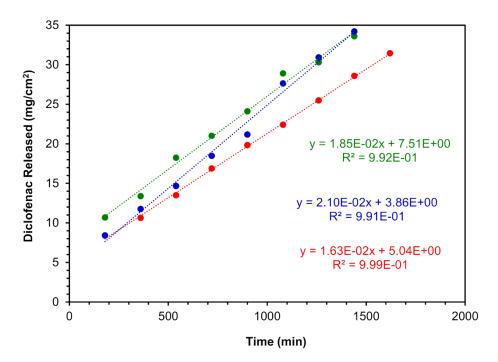


Figure S76: Intrinsic dissolution replicates of Zn(Diclo)₂(biim-5) in 0.05 M phosphate buffer, pH
 6.8 with 0.05% EDTA. Linear fitting of data corresponds to the intrinsic dissolution rate. Linear equation and corresponding R² values are shown in colors to match data sets.

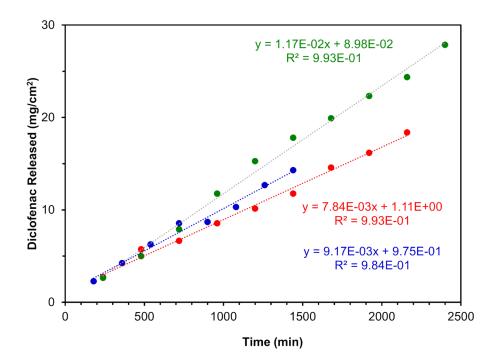


Figure S77: Intrinsic dissolution replicates of Zn(Diclo)₂(biim-6)·(EtOH) in 0.05 M phosphate buffer, pH 6.8 with 0.05% EDTA. Linear fitting of data corresponds to the intrinsic dissolution rate. Linear equation and corresponding R² values are shown in colors to match data sets.

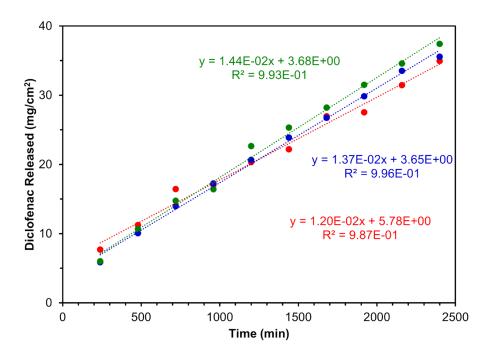


Figure S78: Intrinsic dissolution replicates of Zn(Diclo)₂(biim-8) in 0.05 M phosphate buffer, pH
6.8 with 0.05% EDTA. Linear fitting of data corresponds to the intrinsic dissolution rate. Linear equation and corresponding R² values are shown in colors to match data sets.

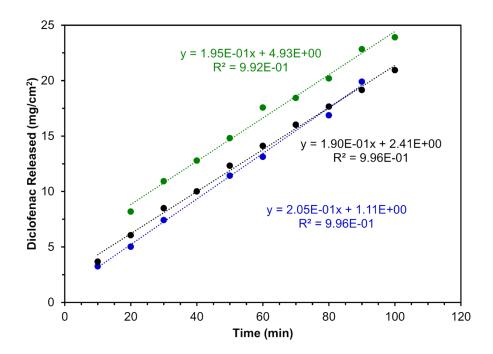


Figure S79: Intrinsic dissolution replicates of Mg(Diclo)₂(biim-6)(EtOH)₂ in 0.05 M phosphate buffer, pH 6.8 with 0.05% EDTA. Linear fitting of data corresponds to the intrinsic dissolution rate. Linear equation and corresponding R² values are shown in colors to match data sets.

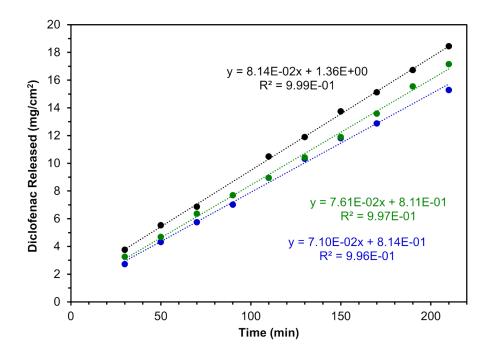
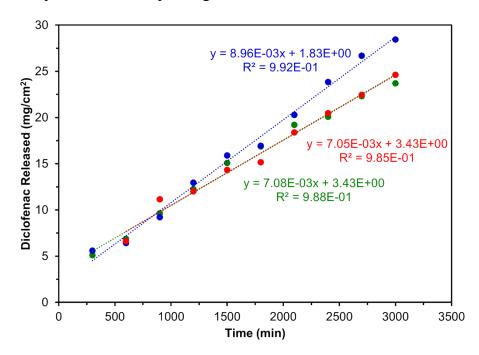



Figure S80: Intrinsic dissolution replicates of Mn(Diclo)₂(biim-6)(EtOH)₂ in 0.05 M phosphate buffer, pH 6.8 with 0.05% EDTA. Linear fitting of data corresponds to the intrinsic dissolution rate. Linear equation and corresponding R² values are shown in colors to match data sets.

6. Scanning Electron Microscopy (SEM)

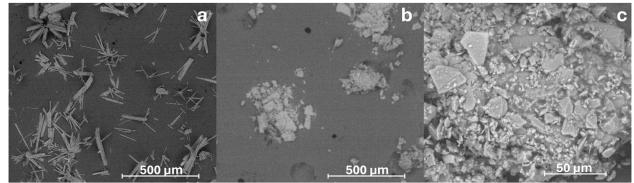


Figure S82. SEM images of $Cu(Diclo)_2(biim-6)'$ a) as-synthesized and b,c) post-grinding. The particle size distribution in images b and c range from 0.99 µm to 96.25 µm.

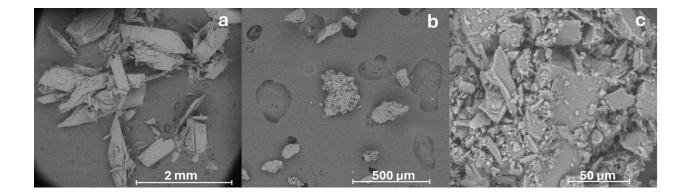


Figure S83. SEM images of $Mg(Diclo)_2(biim-6)_2(EtOH)_2$ a) as-synthesized and b,c) postgrinding. The particle size distribution of images b and c range from 1.49 µm to 389.63 µm.

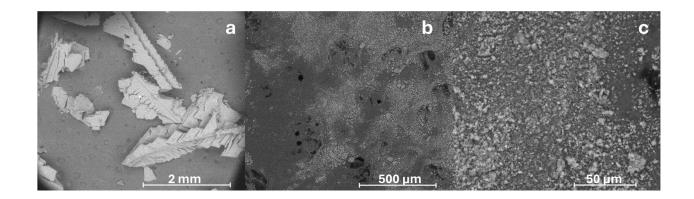


Figure S84. SEM images of $Mn(Diclo)_2(biim-6)_2(EtOH)_2 a)$ as-synthesized and b,c) postgrinding. The particle size distribution in images b and c range from 0.78 µm to 14.97 µm.

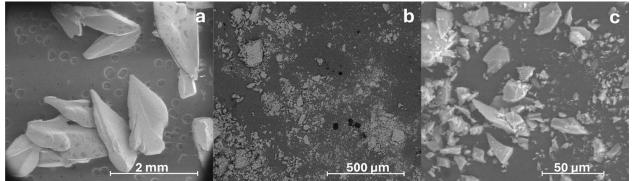


Figure S85. SEM images of $Zn(Diclo)_2(biim-6) \cdot (EtOH)$ a) as-synthesized and b,c) post-grinding. The particle size distribution in images b and c range from 0.55 μ m to 193.85 μ m.