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Figure S1. pH-dependent cyclic voltammograms pf BBL-P thin films collected in 0.1 M KCl(aq) 

supporting electrolyte: (a) pH = 8.12, (b) pH = 6.99, (c) pH = 6.50, and (d) pH = 4.51. 

Figure S2. Method to extract the formal potential (E1/2) of each pair of redox waves.  
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Figure S3. pH-dependent cyclic voltammograms of BBL thin films collected in 0.1M KCl(aq) 

supporting electrolyte with a scan rate of 25 mV/s using a 3-electrode configuration with 

ITO/BBL as the working electrode, Pt mesh as the counter electrode, and Ag/AgCl as the 

reference electrode. 

Figure S4. Representative Pourbaix diagram of BBL thin films in 0.1M(aq) KCl electrolyte at a 

scan rate of 25 mV/s. 

Figure S5. DFT calculations of the optimized ground-state molecular geometry of different 

redox states of BBL-P dimers: (a) neutral BBL-P corresponding to structure 1 to Scheme 2, (b) 

reduced unprotonated BBL-P, (c) reduced protonated BBL-P at the naphthalene imine sites, and 

(d) reduced protonated BBL-P at the phenazine imine sites. Gas-phase molecule DFT 

calculations were performed using the Gaussian 16 suit of programs.1 Calculations were 

performed at the ωB97XD/6-31G(d,p) level of theory. 
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Figure S6. Gibbs free energy change (ΔG) for each acid-base coupled redox reaction of BBL-P. 

 

Figure S7. Relationship between log(i) and log (ν) for different redox event at various 

electrolyte pH. 
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Figure S8. (a) Thin film optical absorption spectra of BBL-P in 0.1M KCl aqueous electrolyte 

solution of varying pH 2.46, 1.04, and 0.16; (b) Optical absorption spectra of BBL-P thin films at 

different varying composition of polaron pairs (PP) and polarons (P). 

Figure S9. (a) Cyclic voltammogram of BBL-P thin films in aqueous KCl electrolyte of pH 2.51 

collected at a scan rate of 25 mV/s; (b – c) UV-Vis-NIR optical absorption spectra under 

different potentials of BBL-P thin films in electrolyte of pH ~ 2.5; (d – e) Differential UV-Vis-

NIR optical absorption spectra under different potentials of BBL-P thin films. The baseline 

spectrum was taken at +0.50V to de-dope the films prior to each doping step. 
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Figure S10. (a) Cyclic voltammogram of BBL-P thin films in aqueous KCl electrolyte of pH 

1.07 collected at a scan rate of 25 mV/s; (b – c) UV-Vis-NIR optical absorption spectra under 

different potentials of BBL-P thin films in electrolyte of pH = 1.04; (d – e) Differential UV-Vis-

NIR optical absorption spectra under different potentials of BBL-P thin films. The baseline 

spectrum was taken at +0.50V to de-dope the films prior to each doping step. 

Figure S11. Dependence of differential absorbance of BBL-P in electrolyte of pH < 1 on doping 

potential at selected wavelength: (a) 1115 nm and (b) 461 nm and 640 nm. 
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Figure S12. (a) Optical signatures of neutral BBL-P and polarons in doped BBL-P; (b) Possible 

electronic band structure of polarons in doped BBL-P. 
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Figure S13. (a) Optical signatures of multiply charged species in doped BBL-P; (b) Possible 

electronic band structure of multiply charged species, bipolaron (BP) or polaron pairs (PP), in 

doped BBL-P. 
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Figure S14. (a) Optical signatures of a mixture of singly charged and multiply charged species in 

doped BBL-P; (b) Hybridization between the bonding state of polarons and polaron pairs to yield 

bipolarons in doped BBL-P films. 
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Figure S15. In-operando Raman spectra of BBL-P films collected in 0.1M KCl(aq) electrolyte of 

varying pH value: (a) pH = 1.99, and (b) pH = 2.80. Raman measurements were collected using 

532 nm excitation with BBL-P films coated on gold covered glass substrates as the working 

electrode, Pt mesh as the counter electrode, Ag/AgCl pellet as reference electrode positioned 

away from the illuminated area. 
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Figure S16. (a) Evolution of Raman frequency and Raman intensity associated with the C=C/C-

C breathing of the naphthalene ring as a function of doping potential; (b) Evolution of Raman 

frequency and Raman intensity associated with the C=N vibrational mode as a function of 

doping potential; (c) Raman signatures of singly charged species (polaron) and multiply charged 

species (coupled polaron pairs).  
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Table S1. Quantification of Proton-Coupled Electron Transfer Processes of BBL Thin Films. 

Wave Slope
(a)

 

(mV/pH) 
n

H+
/n

e-

(b)

 

I -89.2 ± 5.2 1.5 ± 0.1 

II -99.8 ± 3.9 1.7 ± 0.1 
(a)slope, average slope calculated from Pourbaix diagram (+/- one standard deviation);(b)n

H+
/n

e-
, 

number of protons per electrons transferred in each reduction event of BBL-P (+/- one 

standard deviation). Average values and standard deviations were calculated from 5 different 

samples. 

 

Table S2. Summary of reduction potential of some redox active molecules. 

Molecular 

Structure 

E1 (V) 

(𝑀 → 𝑀∙−) 
E2 (V) 

(𝑀∙− → 𝑀2−) 
∆E 

(V) 
References 

 -1.4 -2.12 0.72 
2, 3 

 
0.01(a) -0.59(a) 0.60 

4 

 
0.11(a) -0.39(a) 0.50 

4 

 
0.21(a) -0.29(a) 0.50 

4 

 

-0.58(b) -1.23(b) 0.65 
5 

 
-0.66(b) -1.37(b) 0.71 

5 

 
-0.24(b) -0.97(b) 0.73 

5 

 
-0.35(b) -1.1(b) 0.75 

5 

 
-0.69(b) -1.34(b) 0.65 

5 

 
-0.54(b) -1.27(b) 0.73 

5 

 

-0.77(b) -1.39(b) 0.62 

5 

 
-0.96(c) -1.43(c) 0.47 

6 

 

-0.85(a) -1.29(a) 0.44 
7 

(a) Referenced vs. Ag/Ag+. 
(b) Referenced vs. SCE. 
(c) Referenced vs. Ag/AgClO4 
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Table S3. Density Functional Theory (DFT) Computed Atomic Charge Distribution of BBL-P 

Dimers in its Neutral State (Structure 1), Reduced at Carbonyl Oxygen State (Structure 1a), and 

Protonated Reduced State (Structure 2). 

Atomic Position 

Structure 1 

 

Structure 1a 

 

Structure 2b 

 
N46 

(C=N, naphthalene) 
-0.529 -0.549 -0.536 

O48 

(C=O, carbonyl) 
-0.475 -0.558 -0.541 

N45 

(C=N, naphthalene) 
-0.561 -0.588 -0.574 

O47 

(C=O, carbonyl) 
-0.480 -0.557 -0.574 

N81 

(C=N, phenazine) 
-0.562 -0.566 -0.520 

N82 

(C=N, phenazine) 
-0.561 -0.574 -0.718 

N24 

(C=N, naphthalene) 
-0.557 -0.598 -0.591 

O23 

(C=O, carbonyl) 
-0.480 -0.544 -0.538 

O18 

(C=O, carbonyl) 
-0.480 -0.547 -0.539 

N17 

(C=N, naphthalene) 
-0.557 -0.600 -0.590 

N69 

(C=N, phenazine) 
-0.561 -0.563 -0.715 

N70 

(C=N, phenazine) 
-0.558 -0.564 -0.513 
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Table S4. Density Functional Theory (DFT) Computed Atomic Charge Distribution of BBL-P 

Dimers in its Neutral State (Structure 1), Protonated at Naphthalene Imine (Structure 3), 

Reduced Protonated at Naphthalene Imine (Structure 4a), and Reduced Double Protonated at 

Naphthalene Imine and Phenazine Imine (Structure 4b). 

Atomic Position 

Structure 1 

 

Structure 3 

 

Structure 4a 

 

Structure 4b 

 
N46 

(C=N, naphthalene) 
-0.529 -0.503 -0.670 -0.644 

O48 

(C=O, carbonyl) 
-0.475 -0.435 -0.455 -0.385 

N45 

(C=N, naphthalene) 
-0.561 -0.738 -0.744 -0.721 

O47 

(C=O, carbonyl) 
-0.480 -0.443 -0.464 -0.410 

N81 

(C=N, phenazine) 
-0.562 -0.557 -0.569 -0.567 

N82 

(C=N, phenazine) 
-0.561 -0.546 -0.567 -0.745 

N24 

(C=N, naphthalene) 
-0.557 -0.537 -0.737 -0.726 

O23 

(C=O, carbonyl) 
-0.480 -0.457 -0.466 -0.464 

O18 

(C=O, carbonyl) 
-0.480 -0.429 -0.454 -0.478 

N17 

(C=N, naphthalene) 
-0.557 -0.722 -0.735 -0.751 

N69 

(C=N, phenazine) 
-0.561 -0.557 -0.560 -0.709 

N70 

(C=N, phenazine) 
-0.558 -0.548 -0.549 -0.501 
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