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Figure S1 Photographs of the polyiodide adsorption processes by PVA.

Figure S2 Visualization experiments of I3
- shuttle effect demonstrated by H-type cell without and 
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with PVA.

Figure S3 The full profile of the XPS spectrum. 

Figure S4 The SEM image and corresponding EDS of the cathode after cycling in PVA electrolyte.
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Figure S5 The SEM image and corresponding EDS of the cathode after cycling in PVA-free 

electrolyte.

Figure S6 Optical photographs and SEM images of different Zn foils: commercial Zn foil, Zn foil 

immersed in Zn(Ac)2 after 13 days, and Zn foil immersed in Zn(Ac)2 + PVA after 13 days.
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Figure S7 Raman spectra of Zn(Ac)2, Zn(Ac)2 + PVA, and PVA electrolyte, respectively. 

On the basis of the hydrogen-bonding behavior of specific water molecules, the local hydrogen-

bonded networks can be differentiated by whether the molecule forms hydrogen bonds as a proton 

donor (D), proton acceptor (A), or their combinations in the first shell [1]. Accordingly, the main 

local hydrogen-bonded networks are expected to be single donor-double acceptor (DAA), double 

donor-double acceptor (DDAA), single donor-single acceptor (DA), and double donor-single 

acceptor (DDA). At room temperature, the Raman OH stretching band of zinc acetate aqueous 

solution at 2800~3800 cm-1 can be deconvoluted into five Gaussian sub-bands, located at ~2978 

cm-1, ~3236 cm-1, ~3405 cm-1, ~3517 cm-1, and ~3627 cm-1, as shown in Figure S7. They are 

assigned to the DAA, DDAA, DA, DDA, and free OH symmetric stretching vibrations, respectively. 

Free OH refers to the contribution of the cation-solvated water. Figure 3h illustrates the changes in 

the strength of the five Gaussian sub-bands when the PVA additive is added to the solution. The 

decreased proportion of DAA and free OH means less active water molecules [2].
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Figure S8 In situ optical photographs of Zn deposition onto Zn foil with and without PVA.

Figure S9 Voltage-time profiles of nucleation on Zn||Cu batteries overpotential at 0.5 mA cm-2.

Figure S10 The contact angle values of Zn metal electrode with respect to the electrolytes with 

and without PVA.
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Figure S11 The CA curve of Zn||Zn battery (the inset show corresponding Nyquist plots at the 

initial and steady states).

Figure S12 The cycling performances of Zn||Zn batteries with different content of PVA under 1 

mA cm-2 and 1 mAh cm-2.
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Figure S13 SEM of the Zn anode surface using Zn||Zn batteries with and without PVA after Zn 
plating and stripping for 20 cycles at a current density of 2.0 mA cm-2.

Figure S14 The CE of Zn||Cu batteries with and without PVA.
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Figure S15 CV curves of the Zn-I2 battery with PVA at different scan rates from 0.1 mV s-1 to 2.0 

mV s-1.

Figure S16 The plots of log (i) vs log (ν), data was collected from CV curves.

Figure S17 The capacitance contribution of the porous carbon electrode.
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Figure S18 (a) The capacitive contributions of the battery at a sweep rate of 0.1 mV s-1. (b) the 

capacitive contributions of the battery at sweep rates of 0.1, 0.2, 0.5, 1.0, and 2.0 mV s-1.

Figure S19 Galvanostatic charge-discharge profile of the Zn-I2 battery without PVA at different 

current densities. 

 
Figure S20 The rate performance of the Zn-I2 battery without PVA at different current densities. 



10

Figure 21 SEM images of Zn foils after charging and discharging 20 cycles of the Zn-I2 full 

battery with/without PVA additive.

Figure S22 Self-discharge characteristics for Zn-I2 batteries without PVA.
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Figure S23 Galvanostatic charge/discharge profiles of different cycles at 0.2 A g-1 in the Zn-I2 

battery without PVA. 

Figure S24 Long-term cycling performance of the Zn-I2 battery with PVA at 1.0 A g-1.

Figure S25 Long-term cycling performance of the Zn-I2 battery without PVA at 2.0 A g-1.
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