Carbonyl Mediated Fluorescence in Aceno[n]helicenones and Fluoreno[n]helicenes

Supplementary Information

Michal Šámal,^{1*} Ludmilla Sturm,² Marzena Banasiewicz,³ Irena Deperasinska,³ Bolesław Kozankiewicz,³ Olaf Morawski,³ Yuuya Nagata⁴, Pierre Dechambenoit,² Harald Bock,² Amandine Rossel,² Miloš Buděšínský,¹ Anthony Boudier⁵ and Andrej Jančařík^{2*}

¹ Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic

² Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France

³ Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland

⁴ Japan Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan

⁵ Institut Européen de Chimie et Biologie (IECB), Université de Bordeaux-CNRS, UMR 5248, 2 rue Robert Escarpit, F-33607 Pessac Cedex, France

*correspondence to: samal@uochb.cas.cz, andrej.jancarik@crpp.cnrs.fr

Table of Contents

List of abbreviations	S3
Experimental Section: General Information	S4
Synthesis of Aceno- and Fluoreno[n]Helicenones <i>rac</i> -1A(F)–8A(F) Aceno[6]Helicenone <i>rac</i> -1A and Fluoreno[6]Helicenone <i>rac</i> -1F Aceno[6]Helicenone <i>rac</i> -2A and Fluoreno[6]Helicenone <i>rac</i> -2F Aceno[6]Helicenone <i>rac</i> -3A and Fluoreno[6]Helicenone <i>rac</i> -3F Aceno[7]Helicenone <i>rac</i> -4A and Fluoreno[7]Helicenone <i>rac</i> -4F. Aceno[7]Helicenone <i>rac</i> -5A and Fluoreno[7]Helicenone <i>rac</i> -6F Aceno[7]Helicenone <i>rac</i> -6A and Fluoreno[8]Helicenone <i>rac</i> -6F Aceno[8]Helicenone <i>rac</i> -7A and Fluoreno[8]Helicenone <i>rac</i> -8F	S10 S11 S23 S30 S38 S44 S49 S53 S58
HPLC Resolution of Helicenones <i>rac</i> -1A-8A and 6F into Enantiomers	S64
¹ H and ¹³ C NMR spectra of 1 - 54 Photophysical and chiroptical properties of 1A(F)–8A(F) Experimental and calculated ECD Spectra of Helicenones 1A-8A and 6F	S82 S131 S159
Crystalllographic data of 5F, 6F and 8F	S165
XYZ coordinates and energies of ground and excited states of 1A(F)-8A(F)	S170
Computional Investigation of the Electrophilic Cyclization	S189

List of Abbreviations:

S _n (n = 0, 1, 2)	Singlet States
T _n (n = 0, 1, 2)	Triplet States
ISC	InterSystem Crossing
fc	vertical transition by Franck-Condon principle
Fc	Ferrocene
Fc⁺	Ferrocenium
kr	radiative rate constant
k _{nr}	nonradiative decay rate constant
Φ_{PL}	photoluminescent quantum yield
t _{fl}	fluorescence lifetime
f	oscillator strength
SOC	spin orbit coupling
gabs	absorption dissymmetry factor
glum	emission dissymmetry factor
DCM	dichloromethane
СНХ	cyclohexane
ACN	acetonitrile
НОМО	highest occupied molecular orbital
LUMO	lowest unoccupied molecular orbital
TDDFT	Time-dependent density-functional theory
CV	cyclic voltammetry

Experimental Section

General: Melting point were determined on Mikro-Heiztisch Polytherm A (Hund, Wetzlar) apparatus and are uncorrected. The NMR spectra were measured on JEOL-400 instrument or Bruker Advance III HD, 400 and 600 instruments, respectively. The ¹H NMR spectra were measured at 400.13 MHz and 600.13 MHz, the ¹³C NMR spectra at 100.61 MHz and 150.90 MHz in CDCl₃, CD₂Cl₂ or tetrachloroethane- d_2 as indicated in 5 mm PFG probe with indirect detection. For standardisation of ¹H NMR spectra the residual signals of solvent (δ 7.26 for CHCl₃, δ 5.32 for CH₂Cl₂, δ 6.00 for tetrachloroethane) was used. In the case of ¹³C spectra the signal of solvent (δ 77.16 for CDCl₃, δ 54.00 for CD₂Cl₂, δ 73.78 for tetrachloroethane- d_2) was used. The chemical shifts are given in δ -scale, the coupling constants J are given in Hz. For the correct assignment of both the ¹H and ¹³C NMR spectra of key compounds, homonuclear 2D-H,H-COSY, 2D-H,H-ROESY, and heteronuclear 2D-H,C-HSQC, and 2D-H,C-HMBC experiments were performed. The IR spectra were measured in CHCl₃ or KBr. The EI mass spectra were determined at an ionising voltage of 70 eV, the m/z values are given along with their relative intensities (%). The standard 70 eV spectra were recorded in the positive ion mode. The sample was dissolved in chloroform, loaded into a quartz cup of the direct probe and inserted into the ion source. The source temperature was 220 °C. For exact mass measurement, the spectrum was internally calibrated using perfluorotri-nbutylamine (Heptacosa). The ESI mass spectra were recorded using a quadrupole orthogonal acceleration time-of-flight tandem mass spectrometer (Q-Tof micro, Waters) and high resolution ESI mass spectra using a hybrid FT mass spectrometer combining a linear ion trap MS and the Orbitrap mass analyzer (LTQ Orbitrap XL, Thermo Fisher Scientific). The conditions were optimised for suitable ionisation in the ESI Orbitrap source (sheat gas flow rate 35 a.u., aux gas flow rate 10 a.u. of nitrogen, source voltage 4.3 kV, capillary voltage 40 V, capillary temperature 275 °C, tube lens voltage 155 V). The samples were dissolved in methanol and applied by direct injection. As a mobile phase was used 80% methanol (flow rate 100 μ /min). The APCI mass spectra were recorded using an LTQ Orbitrap XL (Thermo Fisher Scientific) hybrid mass spectrometer equipped with an APCI ion source. The APCI vaporizer and heated capillary temperatures were set to 400 °C and 200 °C, respectively; the corona discharge current was 3.5 μ A. Nitrogen served both as the sheath and auxiliary gas at flow rate 55 and 5 arbitary units, respectively. The ionization conditions were the same for low-resolution as well as high-resolution experiment. The HR spectra were aquired at a resolution of 100 000. Optical rotations were measured in CH₂Cl₂ using an Autopol IV instrument (Rudolph Research Analytical). For analytical separations (CSP screening, optimization, and determination of enantiomeric excess), isocratic HPLC systems (Waters Acquity or Knauer Smartline) were used (5 µL injection volume). Waters Acquity PDA (or Knauer Smartline 2500) and IBZ Messtechnik Chiralyser were used as detectors. For semi-preparative resolutions, Puriflash PF5.250 (Interchim) chromatograph equipped with a diode array detector was used.

TLC was performed on Silica gel 60 F_{254} -coated aluminium sheets (Merck) and spots were detected by the solution of Ce(SO₄)₂ . 4 H₂O (1%) and H₃P(Mo₃O₁₀)₄ (2%) in sulfuric acid (10%). The flash chromatography was performed on Silica gel 60 (0.040-0.063 mm, Merck). Biotage

Initiator EXP EU (300 W power) was used for reactions carried out in microwave oven. Triethylamine, N,N-diisopropylamine and dichloromethane were distilled from calcium hydride under nitrogen; tetrahydrofuran was freshly distilled from sodium/benzophenone under nitrogen; toluene was freshly distilled from sodium under nitrogen. Otherwise, all commercially available solvents, catalysts and reagent grade materials were used as received. 3-bromo-4-(bromomethyl)benzonitrile, The starting materials (2-Naphthylmethyl)-(triphenyl)phosphonium bromide, benzaldehyde, 1-bromo-2-naphthaldehyde, 2-2-bromo-1,4-dimethylbenzene, 2bromobenzaldehyde, 2-naphthaldehyde, methoxycarbonylphenylboronic acid and 3-bromophenanthrene were purchased, CpCo(CO)(fum) (fum = dimethyl fumarate)¹, aldehyde 16^2 , methyl 2-iodobenzoate³, aldehyde 27², 4-Bromophenanthrene-3-carbaldehyde⁴, methyl 3-iodonaphthalene-2-carboxylate⁵ were synthesized according to literature procedure.

Spectroscopic Measurements:

Room temperature measurements were performed with dilute solutions of the compounds poured into a standard (10×10 mm) quartz cuvette. Absorption spectra at room temperature were recorded by using a PerkinElmer Lambda 35 spectrophotometer whereas emission spectra were obtained by using an Edinburgh Instruments FLS 1000 spectrofluorometer. Fluorescence quantum yields (FQY) of the compounds 1A, 2A, 3A, 4A and 5A were measured using as a reference standard Coumarin 153 in EtOH (FQY=0.38). A reference standard for 6A, 7A and 8A was Rh6G in EtOH (FQY=0.94). The absorption and emission spectra of aceno[n]helicenones and fluoreno[n]helicenes recorded in acetonitrile are identical with spectra recorded in dichloromethane and thus they are not presented here.

Fluorescence decay traces were recorded using as an excitation source pulsed DeltaDiode lasers (λ exc = 303, 336 or 391 nm) which were installed in a Horiba Fluorolog-3 modular spectrofluorometer. Repetition rate of the diodes was either 8 or 16 MHz. Fluorescence decay curves observed at the maxima of the spectra were recorded with the aid of "time correlated" single photon counting technique (TCSPC). Decay times were determined by using a HORIBA Scientific decay analysis software – DAS6 program, which iteratively fits a theoretical curve to an experimental decay. Estimated accuracy of the obtained decay times was 50 ps.

Emission experiments at 5 K were done using a homemade liquid helium cryostat. Liquid solutions of the investigated compounds (concentrations $\sim 10^{-5}$ M) were poured into a homemade, cylinder-shaped fused silica glass cuvette (inner diameter 4 mm) and quickly

¹ A. Geny, N. Agenet, L. Iannazzo, M. Malacria, C. Aubert, V. Gandon, *Angew. Chem. Int. Ed.* **2009**, *48*, 1810.

 ² M. Šámal, S. Chercheja, J. Rybáček, J. Vacek Chocholoušová, J. Vacek, L. Bednárová, D. Šaman, I. G. Stará, I. Starý, *J. Am. Chem. Soc.* 2015, *137*, 8469.

³ C. M. G. Azevedo, C. M. M. Afonso, J. X. Soares, S. Reis, D. Sousa, R. T. Lime, M. H. Vasconcelos, M. Pedro, J. Barbosa, L. Gales, M. M. M. Pinto, *Eur. J. Med. Chem.* **2013**, *69*, 798.

⁴ E. Kaneko, Y. Matsumoto, K. Kamikawa, *Chem. Eur. J.* **2013**, *19*, 11837.

⁵ C. Bosset, R. Coffinier, P. A. Peixoto, M. El Assal, L. Pouysegu, S. Quideau, K. Miqueu, J.-M. Sotiropoulos, *Angew. Chem. Int. Ed.* **2014**, *53*, 9860.

immersed into liquid nitrogen bath (77 K) in order to prevent aggregation. Cuvette with a frozen sample was quickly transferred into the cold cryostat which was in the center of a homemade synchronous-choppers spectrophoshorometer (frequency of the light choppering 800 Hz)⁶. Excitation source during the low-temperature experiments was either Lambdawave 395 nm (300mW) or 375 nm (200mW) diode lasers. Emission light was dispersed with the aid of a McPherson 207 monochromator and detected with a Hamamatsu H10721-20 photomultiplier (operating in photons counting mode). Phosphorescence decay curves were measured by using a "third chopper" method and accumulated with the aid of a Stanford Research SR-430 Multichannel Scaler.

Crystallographic data were collected with a Bruker APEX II Quasar diffractometer, equipped with a graphite monochromator centred on the path of MoK_{α} radiation. Single crystals, made by slow evaporation of cyclohexane:DCM (1:1)., were coated with CargilleTM NHV immersion oil and mounted on a fiber loop, followed by data collection at 120 K. The program SAINT was used to integrate the data, which was thereafter corrected using SADABS.⁷ The structure was solved using SHELXT⁸ and refined by a full-matrix least-squares method on F² using SHELXL-2018.⁹ All non-hydrogen atoms were refined with anisotropic displacement parameters, whereas hydrogen atoms were assigned to ideal positions and refined isotropically using a suitable riding model. 8F crystallizes in the chiral P2₁2₁2₁ space group. However, due to the source and the absence of heavy atom, the absolute structure cannot be determined reliably (meaningless calculated Flack parameter).

The crystallographic data are listed in Table S3 (page S164) and the ORTEP-type views depicted page S164. The CIF files have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 2295945-2295947.

Electrochemistry: Cyclic voltammetry (CV) measurements were performed with a Metrohm Autolab PGSTAT101 equipped with a platinum working electrode. Ferrocene was used as aninternal reference. Measurements were done in CH_3CN or DMF with 0.1 M (n-Bu₄N)PF₆ as supporting electrolyte and at scan rates ranging from of 0.01 to 0.2 V/s.

Circular dichroism spectra were collected with JASCO_J-815. Samples were measeured in dichloromethane in specific cases in cyclohexane. Concentration of the samples were cca $1x10^{-5}$.

Circularly polarized luminescence was collected with JASCO_CPL-300. Emissions of all the anantiomers were measured in dichloromethane ($M \approx 1x10^{-5}$) and in specific cases in cyclohexane. Each presented CPL spectra is avarage of twenty emission spectra.

Theoretical calculations: Quantum chemistry calculations at the density functional theory (DFT and TDDFT) level were performed using the Gaussian 16 package [Gaussian]. The PCM procedure was used for description of solvent effects. The structure of each molecule was optimized in the ground electronic state (SO) and the

⁶ B. Kozankiewicz, J. Prochorow, *Mol. Cryst. Liq. Cryst.* 1987, 148, 93.

⁷ G. M. Sheldrick, SADABS Version 2.03, Bruker Analytical X-Ray Systems, Madison, WI, USA, 2000

⁸ G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8

⁹ G. M. Sheldrick, Acta Cryst. **2015**, C71, 3-8.

lowest electronic excited state (S1). The coordinates can be found in the attached table S4 (page S170). After exploratory calculations using various functionals, the M06/6-31G(d,p) method was selected as the one that relatively best reproduces the electronic spectra determined experimentally.

Figure S1. An example - experimental absorption and fluorescence spectra of 3A in DCM and corresponding simulated spectra.)

In the rest of this supplement, the calculation results are presented in the form of energy diagrams, containing information about the energies and the oscillator strengths for S0->S1fc absorption and S1->S0fc fluorescence. These are the so-called vertical electronic transitions in which the molecule does not change geometry, where in absorption it is the geometry of the energy minimum in the ground state, and in fluorescence it is the geometry of the energy minimum in the excited state. The energy diagrams also show systems of triplet states calculated for the S0 geometry.

The Gaussian 16 program was used: Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,

J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

1) Calculations performed without D3 correction

Not applying the D3 correction in the calculations is an oversight, which we will remember in the future. However, we checked that in the case of the molecules we tested, it had practically no effect on the values of the determined energies.

			0			
molecule	Electronic state	E[eV]		E[eV]		δΕ [eV]
		without D3		wit	:h D3	
1A	S1	2.771	f=0.2906	2.763	f=0.2847	-0.008
	T ₁	1.913		1.909		-0.005
	T ₂	2.345		2.311		-0.034
	Тз	2.578		2.558		-0.020
	T ₄	2.755		2.747		-0.008
	T ₅	3.017		3.010		-0.007
	S ₁ (opt.S ₁)	2.394	f=0.4150	2.388	f=0.4096	-0.006
	E(0,0)	2.587		2.581		-0.006
7A	S1	2.513	f=0.1077	2.508	f=0.1061	-0.005
	T ₁	1.693		1.689		-0.004
	T ₂	2.130		2.126		-0.004
	Тз	2.288		2.287		-0.002
	T ₄	2.394		2.390		-0.004
	T ₅	2.588		2.587		-0.001
	S1 (opt.S1)	2.104	f=0.1796	2.095	f=0.1763	-0.009
	E(0,0)	2.326		2.320		-0.006
1F	S1	2.368	f=0.0824	2.366	f=0.0812	-0.002
	T ₁	1.630		1.628		-0.003
	T ₂	2.271		2.270		-0.002
	T ₃	2.541		2.539		-0.002
	T ₄	2.633		2.631		-0.002
	T ₅	2.837		2.836		-0.001
	S ₁ (opt.S ₁)	1.723	f=0.0760	1.722	f=0.0753	-0.002
	E(0,0)	2.054		2.052		-0.002
8F	S1	2.196	f=0.0484	2.192	f=0.0480	-0.004
	T ₁	1.472		1.468		-0.004
	T ₂	2.099		2.095		-0.004
	T ₃	2.252		2.249		-0.003
	T4	2.312		2.311		-0.002
	T₅	2.464		2.462		-0.002
	S1 (opt.S1)	1.590	f=0.0439	1.582	f=0.0432	-0.008
	E(0,0)	1.897		1.891		-0.006

Table S0. Comparison of the energies of the electronic states of four molecules optimized in Sthe ground and excited states without and with the D3 correction.

¹H NMR spectra of compounds with condensed aromatic rings contain fine line splittings due to long range *J*(H,H) couplings over four and five bonds. In addition to ⁴*J*(H,H-*meta*) and ⁵*J*(H,H-*para*) between protons on the aromatic ring (blue arrows in Fig.2) two types of characteristic small coupling between protons from neighboring rings can be observed (red arrows in Fig.2). While the ⁴*J*(H,H-*meta*) are typically 1 - 2 Hz, all other shown couplings are smaller and about the same size (< 1Hz). This can lead to different types of multiplets with fine splittings about 0.5 Hz. Long range couplings providing a quartet of proton at 8.22 ppm in compound 2F are shown in Figure 3B. The observation of fine splitting of multiplets requires a good magnetic field homogenity and usually also use of wighting function for a line narrowing of signals (see Figure 3).

Figure S2 Characteristic types of the long range couplings *J*(H,H) in condensed aromatic ring systems (A); structural fragment of comppund **2F** and long range couplings responsible for the observation of proton at 8.22 ppm as quartet (B).

Figure S3 Part of ¹H NMR spectrum of compound **2F** after simple Fourier transformation of FID (A) and the same part of spectrum after using Gaussian apodization of FID (lb -1.5; gb 0.3) resulting in line narrowing and observation of fine splitting iof signals (B).

Series of synthesized helicenes: aceno[n]helicenes 1A-8A and fluoreno[n]helicenones 1F-8F

Synthesis of compounds 1A and 1F

(a) Compound 9 (1.0 equiv.), DIBAL (2.5 equiv.), PhMe, -10-0°C, 6 h;

(b) Compound 10 (1.0 equiv.), (naphthalen-2-ylmethyl)triphenylphosphonium bromide (1.05 equiv.), NaH (1.1 equiv.), THF, rt, 4 h;

(c) compound 11 (1.0 equiv.), P(OEt)₃ (1.05 equiv.), 120°C, 16h;

(d) compound 12 (1.0 equiv.), benzaldehyde (1.05 equiv.), NaH (1.1equiv.), PhMe, 120°C, 10 min; (e) stilbene 13 (1.0 equiv.), I₂ (250mg/1L of the solvent.) cyclohexane, hv, rt, 40 h.;

(f) helicene 14 (1.0 equiv.), 2-methoxycarbonylphenylboronic acid (1.5 equiv.), Pd_2dba_3 (2 mol%), Xphos (4mol%) and K_3PO_4 . H_2O (6 equiv.), PhMe, 90 °C, 12h;

(aa) Compound 16 (1.0 equiv.), Zn (2.0 equiv.), propargyl bromide (2.0 equiv.), THF, rt, 25 min, then DMAP (cat.), *N*,*N*-diisopropylethylamine (3.0 equiv.), chloromethyl ethyl ether (2.0 equiv.), DCM, rt, 16h.;

(bb) methyl 2-iodobenzoate (1.0 equiv.), diyne 17 (1.1 equiv.), Pd(PPh₃)Cl₂ (2 mol%), Cul (4 mol%), *i*-Pr₂NH:PhMe (3:1), 45 °C, 2 h;

(cc) K₂CO₃ (1.5 equiv.), MeOH, rt, 10 min;

(dd) 1-bromo-2-naphthaldehyde (1.0 equiv.), diyne 19 (1.1 equiv.) $Pd(PPh_3)Cl_2$ (2 mol%), Cul (4 mol%), THF:Et₂N (2:1), 50 °C, 3 h;

(ee) Zn (2.0 equiv.), propargyl bromide (2.0 equiv.), compound 20 (1.0 equiv.), THF, rt, 15 min, then Et_3N (3.0 equiv.), Ac₂O (3.0 equiv.), THF, rt, 2 h;

(ff) triyne 21 (1.0 equiv.), CpCo(CO)(fum) (0.5 equiv.), PhCl, 170 °C, 20 min, then *p*-TsOH.H₂O (5.0 equiv.), 95 °C, 1h;

(gg) ester 15 (1.0 equiv.), KOH (10.0 equiv.), THF:MeOH (1:1), 65 °C, 4 h, then MeSO₃H, 80°C, 1h.

<u>3-Bromo-4-(bromomethyl)benzaldehyde</u> 10

In a dry flask under inert atmosphere, 3-Bromo-4-(bromomethyl)benzonitrile 9 (12g, 43.8mmol, 1 eq.) was dissolved in dry Toluene (160 mL) and cooled down to 0°C. DIBAL-H (60 mL, 25%wt. in Toluene, 2.5 equiv.) was added dropwise and the temperature was kept at 0°C for 6h while stirring. The reaction mixture was quenched with carful addition of water (100mL). The product was extracted with DCM (3x100mL) and the combined organic phases were dried and concentrated under vacuum. The product was then purified by silica gel chromatography (petroleum ether-dichloromethane 98:2). The product 10 was isolated as a white solid (7.9g, 65%). ¹H NMR spectrum is in agreement with the published data.¹⁰

(E)-2-(3-Bromo-4-(bromomethyl)styryl)naphthalene 11

3-Bromo-4(bromomethyl)benzaldehyde **10** (4.5 g; 16.2 mmol) and (naphthalen-2-ylmethyl)triphenylphosphonium bromide (8.2 g; 17.0 mmol, 1.05 equiv.) were charged in dry round bottomed flask under inert atmosphere and dissolved in dry THF (150 mL). The reaction mixture was cooled down to 0°C and then sodium hydride (4.5 g; 17.8 mmol 60% in oil) was added portionwise. The reaction is complete when the color of the reaction turned orange (cca 4h). The mixture was kept at 0°C and

quenched with water (150mL). After extraction with DCM (3x100mL), the organic portions were combined and dried over MgSO₄. Solvents were removed *in vacuo*, and the residue was chromatographed on silica gel (cyclohexane) to afford the desired product **11** as a mixture of two isomers that can be converted to E-isomer by exposure to the light, white solid (5.2g, 80 %).

¹**H NMR** (400 MHz CD₂Cl₂): 4.66 (s, 2H), 7.18 (d, *J*= 16.3, 1H), 7.34 (d, *J*= 16.3, 1H), 7.46-7.53 (m, 4H), 7.75 (dd, *J*= 8.6, 1.5, 1H), 7.81-7.90 (m, 5H).

¹³C NMR (101 MHz, CD₂Cl₂): 33.7, 123.3, 124.9, 126.0, 126.3, 126.5, 126.6, 127.3, 127.7, 128.1, 128.5, 130.96, 130.99, 131.5, 133.3, 133.7, 134.2, 136.0, 139.8.

MALDI MS: 400 ([M]⁺).

HR MS-MALDI: calc for C₁₉H₁₄⁷⁹Br₂ 399.9457; found 399.9460.

¹⁰ G. Hao, H. Li, F. Yang, D. Dong, Z. Li, Y. Ding, W. Pan, E. Wang, R. Liu, H. Zhou *Bioorganic & Medicinal Chemistry* 29 (2021) 115871.

Diethyl (E)-(2-bromo-4-(2-(naphthalen-2-yl)vinyl)benzyl)phosphonate 12

Previous compound **11** (5.2g, 13 mmol) and triethylphosphite (2.24 mL, 13.1 mmol, 1.1 equiv.) were added in well dry round bottom flask and stirred overnight at 120°C under inert atmosphere. The traces of triethylphosphite left were removed *in vacuo* by heating the reaction mixture at 70°C for 4 hours under vacuum. The product **12** as a mixture of two isomers was obtained as a yellowish solid (5.9 g, 99 %).

 $\begin{array}{c} \textbf{P(OEt)}_{2} \quad \ \ ^{1}\textbf{H NMR} (400 \text{ MHz } \text{CD}_{2}\text{Cl}_{2}): 1.27 (t, J = 6\text{H}), 3.36 (s, 1\text{H}), 3.41 (s, 1\text{H}), 4.01 - \\ & \textbf{U} \\ & \textbf{U}$

¹³C NMR (101 MHz, CD₂Cl₂): 16.8 (d, J = 6.0, 2C), 33.8 (d, J = 138.3), 62.8 (d, J = 6.7, 2C), 123.9, 125.7 (d, J = 9.3), 126.0 (d, J = 3.6), 126.7, 127.0, 127.4 (d, J = 2.0), 127.5, 128.2, 128.6, 128.9, 130.6 (d, J = 1.5), 131.2 (d, J = 3.1), 131.8 (d, J = 9.3), 132.3 (d, J = 5.2), 133.8, 134.2, 134.9, 138.6 (d, J = 4.0).

ESI MS: 459 ([M+H]⁺).

HR ESI MS: calc for C₂₃H₂₅⁷⁹BrO₃P 459.0719; found 459.0714.

2-((E)-3-Bromo-4-((E)-styryl)styryl)naphthalene 13

In a well dry round bottom flask were solved previous phosphonate **12** (5.9 g, 13mmol) and benzaldehyde (1.6 g, 1.05 equiv.) in dry toluene (100 mL). To this mixture was added NaH (60%, dispersion in mineral oil 3.9 g, 1.1 equiv.) and the mixture was heated at 120°C for 20 min. under inert atmosphere. The reaction mixture was cooled down to room temperature and then slowly poured into a mixture of ice-water- 37 % HCl (100 g -100 ml-100 ml). The organic phase was separated and the water phase was extracted with DCM (3 x 100 mL). The organic portions were combined and all the volatiles were removed *in vacuo* and the residue was

chromatographed on silica gel (cyclohexane) to give the pure product **13** as a yellow solid (5.2g 99%).

¹**H NMR** (400 MHz, CD₂Cl₂): 7.13 (d, *J* = 16.3, 1H), 7.19 (d, *J* = 16.3, 1H), 7.29 – 7.35 (m, 2H), 7.38-7.42 (m, 2H) 7.45 - 7.60 (m, 6H), 7.73 (d, *J* = 8.2, 1H), 7.76 (dd, *J* = 8.6, 1.8, 1H), 7.82-7.89 (m, 5H).

¹³C NMR (101 MHz, CD₂Cl₂): 123.9, 125.0, 126.2, 126.7, 127.0, 127.1, 127.4 (3C), 127.5, 127.6, 128.2, 128.6, 128.7, 128.9, 129.30 (2C), 130.5, 131.4, 131.7, 133.8, 134.2, 134.9, 136.5, 137.6, 138.9.

MALDI MS: 410 ([M]⁺).

HR MS MALDI: calc for $C_{26}H_{19}^{79}Br$ 410.0665; found 410.0670.

7-Bromo[6]helicene 14

The previous stilbene **13** (2.2 g, 4.8 mmol) was dissolved in cyclohexane (1900 mL). Iodine (0.55 g, 2.16 mmol) was added to the mixture and the reaction mixture was irradiated with medium-pressure mercury (150 W) lamp for 40 h open to air. The whole reaction mixture was evaporated,

and the residue was chromatographed on silica gel (cyclohexane-dichloromethane 40:1) to afford the desired product **14** (220 mg, 10%) as a yellowish solid.

¹H NMR (400 MHz, CD₂Cl₂): 6.64 - 6.70 (m, 2H), 7.20 - 7.28 (m, 2H), 7.43 (d, J = 8.4, 1H), 7.55 (d, J = 8.5, 1H), 7.83 - 7.89 (m, 2H), 7.93 - 7.99 (m, 3H), 8.03 - 8.05 (m, 2H), 8.36 (s, 1H), 8.42 (d, J = 8.9, 1 H).

¹³C NMR (101 MHz, CD₂Cl₂): 121.4, 123.5, 124.6, 124.8, 125.1, 125.7, 125.8, 126.1, 126.2, 127.4, 127.6, 127.7, 127.9, 128.0, 128.2, 128.3, 128.9, 129.3, 129.56, 129.62, 129.8, 130.2, 131.4, 131.8, 132.1, 133.2.

MALDI MS: 406 ([M]⁺).

HR MS MALDI: calc for $C_{26}H_{15}^{79}Br$ 406.0352; found 406.0354.

Methyl 2-hexahelicen-7-ylbenzoate 15

In a dry Schlenk flask was dissolved 7-bromo[6]helicene **14** (20 mg, 0.05 mmol), 2-methoxycarbonylphenylboronic acid (13 mg, 0.074 mmol, 1.5 equiv.), Pd₂dba₃ (1 mg, 1.1 μ mol, 2 mol%), Xphos (1.1 mg, 2.3 μ mol, 4 mol%) and K₃PO₄.H₂O (70 mg, 0.3 mmol, 6 equiv.) in dry toluene (6 mL). The reaction mixture was

thoroughly degassed and then heated at 90 °C overnight. The solvent was evaporated in vacuo

and the residue was purified by column chromatography on silca gel (cyclohexanedichloromethane 10:1). The product **15** was obtained as a yellow solid (20 mg, 86%). The ¹H NMR spectrum shows a mixture of two atropodiastereomers (1:2).

¹H NMR (400 MHz, CD₂Cl₂, major atropodiastereomer): 3.36 (s, 3H), 6.65 – 6.74 (m, 2H), 7.20
– 7.27 (m, 2H), 7.55 – 7.65 (m, 6H), 7.78 – 7.88 (m, 3H), 7.86 (s, 1H), 7.94 – 7.98 (m, 2H), 8.00
– 8.04 (m, 2H), 8.17 (m, 1H).

¹H NMR (400 MHz, CD₂Cl₂, minor atropodiastereomer): 3.34 (s, 3H), 6.65 – 6.74 (m, 2H), 7.20
– 7.27 (m, 2H), 7.55 – 7.65 (m, 6H), 7.78 – 7.88 (m, 3H), 7.86 (s, 1H), 7.94 – 7.98 (m, 2H), 8.00
– 8.04 (m, 2H), 8.12 (m, 1H).

Other characterization data are attached for identical compound prepared by Route 2, shown below.

({2-[1-(Ethoxymethoxy)but-3-yn-1-yl]phenyl}ethynyl)(trimethyl)silane 17

A Schlenk flask was charged with zinc powder (1.29 g, 19.8 mmol, 2.0 equiv.) and flushed with nitrogen. The freshly distilled tetrahydrofuran (8 mL) was added, the suspension was put to a water bath at room temperature and vigorously stirred. Then propargyl bromide (80 wt. % in

toluene, 2.20 mL, 19.8 mmol, 2.0 equiv.) was slowly added within 10 min and the mixture was then stirred at room temperature for 10 min before it was transferred by a syringe to the second Schlenk flask with a suspension of aldehyde **16** (2.00 g, 9.88 mmol) in tetrahydrofuran (20 mL). The reaction mixture was stirred at room temperature for 5 min, then quenched with a saturated solution of ammonium chloride (20 mL) and extracted with ethyl acetate (2 x 20 mL). The combined organic layers were dried over anhydrous MgSO₄ and evaporated *in vacuo*. The residue was dissolved in dichloromethane (20 mL), DMAP (5 mg, cat.), *N*,*N*-diisopropylethylamine (5.16 mL, 29.6 mmol, 3.0 equiv.), and chloromethyl ethyl ether (1.84 mL, 19.8 mmol, 2.0 equiv.) were added successively. The solution was stirred at room temperature overnight and then quenched with brine (20 mL). The layers were dried over anhydrous MgSO₄, solvents were removed *in vacuo*, and the residue was chromatographed on silica gel (hexane-ethyl acetate 40:1) to afford the desired product **17** (2.43 g, 82%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): 0.27 (s, 9H), 1.18 (t, *J* = 7.1, 3H), 1.98 (t, *J* = 2.6, 1H), 2.61 (ddd, *J* = 16.9, 7.7, 2.6, 1H), 2.75 (ddd, *J* = 16.9, 4.2, 2.7, 1H), 3.53 (dq, *J* = 9.4, 7.1, 1H), 3.85 (dq, *J* = 9.4, 7.1, 1H), 4.62 (d, *J* = 6.9, 1H), 4.76 (d, *J* = 6.9, 1H), 5.34 (dd, *J* = 7.7, 4.1, 1H), 7.22 (td, *J* = 7.5, 1.4, 1H), 7.34 (tdd, *J* = 7.9, 1.4, 0.5, 1H), 7.43 (ddd, *J* = 7.7, 1.4, 0.6, 1H), 7.50 (ddt, *J* = 7.9, 1.2, 0.6, 1H).

¹³C NMR (101 MHz, CDCl₃): 0.0 (3C), 15.2, 26.8, 63.6, 69.7, 73.9, 81.3, 93.5, 100.5, 102.4, 121.6, 125.8, 127.5, 128.8, 132.3, 143.3.

IR (CHCl₃): 3309 m, 3070 w, 2977 w, 2961 w, 2898 w, 2887 w, sh, 2156 w, 2122 vw, 1599 vw, 1570 vw, 1478 w, 1448 w, 1410 w, 1262 w, 1251 m, 1231 w, 1160 w, sh, 1148 w, 1112 m, 1100 m, 1044 w, sh, 1018 s, 867 vs, 846 vs, 700 w, 648 m, 632 w, sh cm⁻¹.

EI MS: 300 (M^{+•}, 4), 261(31), 232 (35), 217 (40), 209 (17), 187 (23), 143 (97), 115 (83), 73 (100). **HR EI MS**: calcd for C₁₈H₂₄O₂Si 300.1540, found 300.1543.

<u>Methyl</u> 2-[4-(ethoxymethoxy)-4-{2-[(trimethylsilyl)ethynyl]phenyl}but-1-yn-1-yl]benzoate 18

A Schlenk flask was charged with methyl 2-iodobenzoate (1.35 g, 5.15 mmol), $Pd(PPh_3)_2Cl_2$ (72.3 mg, 0.10 mmol, 2 mol%), Cul (39.2 mg, 0.21 mmol, 4 mol%), flushed with nitrogen, and the degassed *N*,*N*-diisopropylamine (45 mL) was added. The

mixture was heated to 45 °C before a solution of alkyne **17** (1.70 g, 5.66 mmol, 1.1 equiv.) in degassed toluene (15 mL) was slowly added. The reaction mixture was stirred at the same temperature for 2 h. The solvents were evaporated under the reduced pressure. The residue was chromatographed on silica gel (hexane-ethyl acetate 20:1) to afford the desired product **18** (1.90 g, 85%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): 0.25 (s, 9H), 1.13 (t, *J* = 7.1, 3H), 2.95 (dd, *J* = 17.0, 7.2, 1H), 3.05 (dd, *J* = 17.0, 4.8, 1H), 3.53 (dq, *J* = 9.4, 7.0, 1H), 3.81 (dq, *J* = 9.4, 7.1, 1H), 3.87 (s, 3H), 4.67 (d, *J* = 6.8, 1H), 4.81 (d, *J* = 6.9, 1H), 5.43 (dd, *J* = 7.1, 4.8, 1H), 7.23 (td, *J* = 7.5, 1.3, 1H), 7.30 (ddd, *J* = 7.8, 7.3, 1.5, 1H), 7.35 (tdd, *J* = 7.9, 1.5, 0.5, 1H), 7.40 (td, *J* = 7.5, 1.5, 1H), 7.45 (ddd, *J* = 7.6, 1.4, 0.5, 1H), 7.46 (ddd, *J* = 7.8, 1.5, 0.6, 1H), 7.58 (ddt, *J* = 7.8, 1.2, 0.6, 1H), 7.87 (ddd, *J* = 7.9, 1.4, 0.6, 1H).

¹³C NMR (101 MHz, CDCl₃): 0.0 (3C), 15.2, 28.1, 52.2, 63.6, 74.2, 80.6, 92.5, 93.7, 100.2, 102.7, 121.8, 124.4, 126.1, 127.4, 127.4, 128.9, 130.2, 131.5, 132.1, 132.3, 134.5, 143.5, 166.9.

IR (CHCl₃): 3071 w, 2977 m, 2955 m, 2898 w, 2887 w, sh, 2845 w, 2235 w, 2156 w, 1729 s, 1719 s, sh, 1597 w, 1568 w, 1486 m, 1448 m, 1435 m, 1415 w, 1298 s, 1279 s, 1252 vs, 1233 m, 1163 w, 1149 w, sh, 1131 m, 1112 m, 1099 m, sh, 1043 s, 1018 s, 965 w, 867 vs, 845 vs, 701 w, 646 w cm⁻¹.

EI MS: 434 (M^{+•}, 2), 358(33), 343 (27), 261 (100), 233 (99), 217 (100), 188 (58), 173 (90), 143 (100), 115 (99), 73 (97).

HR EI MS: calcd for C₂₆H₃₀O₄Si 434.1908, found 434.1896.

Methyl 2-[4-(ethoxymethoxy)-4-(2-ethynylphenyl)but-1-yn-1-yl]benzoate 19

Diyne **18** (1.85 g, 4.26 mmol) was dissolved in methanol (40 mL) and potassium carbonate (883 mg, 6.39 mmol, 1.5 equiv.) was added. The mixture was stirred at room temperature for 10 min. The reaction was quenched with a saturated ammonium

chloride solution (100 mL), extracted with dichloromethane (2 x 80 mL), and the combined organic layers were dried over anhydrous magnesium sulfate. The solvents were evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 10:1) to afford **19** (1.47 g, 95%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): 1.11 (t, *J* = 7.1, 3H), 2.97 (dd, *J* = 17.0, 7.0, 1H), 3.04 (dd, *J* = 17.0, 5.1, 1H), 3.35 (s, 1H), 3.51 (dq, *J* = 9.5, 7.1, 1H), 3.77 (dq, *J* = 9.4, 7.1, 1H), 3.87 (s, 3H), 4.67 (d, *J* = 6.9, 1H), 4.81 (d, *J* = 6.9, 1H), 5.41 (dd, *J* = 7.1, 5.1, 1H), 7.25 (td, *J* = 7.6, 1.4, 1H), 7.30 (td, *J* = 7.6, 1.5, 1H), 7.36 – 7.42 (m, 2H), 7.45 (dd, *J* = 7.7, 1.2, 1H), 7.49 (dd, *J* = 7.7, 1.3, 1H), 7.58 – 7.61 (m, 1H), 7.86 (ddd, *J* = 7.8, 1.4, 0.6, 1H).

¹³C NMR (101 MHz, CDCl₃): 15.1, 28.3, 52.2, 63.6, 74.3, 80.7, 81.3, 82.6, 92.2, 93.8, 120.7, 124.3, 126.4, 127.4, 127.6, 129.1, 130.2, 131.5, 132.1, 132.9, 134.4, 143.6, 167.0.

IR (CHCl₃): 3304 m, 3071 w, 2979 m, 2953 w, 2886 m, 2845 w, 2234 w, 2106 w, 1727 vs, 1598 w, 1568 w, 1468 w, 1448 m, 1435 m, 1297 s, 1279 s, 1256 s, 1232 m, 1164 m, 1149 w, 1131 s, 1111 s, 1099 s, 1044 vs, 1018 vs, 965 w, 701 w, 658 m, 620 m cm⁻¹.

EI MS: 362 (M^{+•}, 2), 333 (15), 271 (63), 226 (43), 188 (59), 173 (91), 161 (80), 117 (100), 83 (39), 59 (61).

HR EI MS: calcd for C₂₃H₂₂O₄ 362.1513, found 362.1496.

Methyl 2-[4-(ethoxymethoxy)-4-{2-[(2-formylnaphthalen-1-yl)ethynyl]phenyl}but-1-yn-1-

yl]benzoate 20

А Schlenk flask was charged with 1-bromo-2-(294 naphthaldehyde 1.25 mmol), mg, bis(triphenylphosphine)palladium chloride (17.5 mg, 0.03 mmol, 2 mol%), copper(I) iodide (9.52 mg, 0.05 mmol, 4 mol%) and flushed with argon. The degassed tetrahydrofuran (10 mL) and degassed triethylamine (10

mL) were added and the mixture was heated to 50 °C. Then diyne **19** (500 mg, 1.38 mmol, 1.1 equiv.) in degassed tetrahydrofuran (10 mL) was slowly added and the reaction was stirred at 50 °C for 3 hours. The solvents were evaporated under the reduced pressure. The residue was chromatographed on silica gel (hexane-ethyl acetate 20:1 to 10:1) to afford the desired product **20** (577 mg, 81%).

¹**H NMR** (400 MHz, CDCl₃): 1.11 (t, *J* = 7.1, 3H), 3.13 (d, *J* = 6.5, 2H), 3.55 (dq, *J* = 9.5, 7.0, 1H), 3.74 (s, 3H), 3.83 (dq, *J* = 9.5, 7.1, 1H), 4.73 (d, *J* = 7.0, 1H), 4.86 (d, *J* = 7.0, 1H), 5.63 (t, *J* = 6.4, 1H), 7.24 - 7.29 (m, 1H), 7.32 (td, *J* = 7.5, 1.6, 1H), 7.391 (td, *J* = 7.5, 1.4, 1H), 7.392 (ddd, *J* = 7.7, 1.5, 0.5, 1H), 7.49 (tdd, *J* = 7.8, 1.4, 0.5, 1H), 7.58 - 7.66 (m, 2H), 7.69 (ddt, *J* = 7.8, 1.3, 0.5, 1H), 7.73 (ddd, *J* = 7.6, 1.4, 0.5, 1H), 7.83 (ddd, *J* = 7.7, 1.6, 0.6, 1H), 7.86 - 7.90 (m, 2H), 7.99 (d, *J* = 8.6, 1H), 8.65 - 8.68 (m, 1H), 10.92 (d, *J* = 0.9, 1H).

¹³C NMR (101 MHz, CDCl₃): 15.1, 28.8, 52.1, 63.8, 74.7, 81.2, 88.1, 91.8, 93.6, 100.0, 121.3, 122.3, 124.1, 127.0, 127.3, 127.49, 127.50, 128.0, 128.1, 128.6, 129.2, 129.5, 129.8, 130.2, 131.5, 132.0, 132.9, 133.3, 134.47, 134.53, 135.9, 143.2, 166.7, 192.1.

IR (CHCl₃): 3063 w, 2979 w, 2953 w, 2886 w, 2847 w, 2742 w, 2236 w, 2204 w, 1727 s, 1694 vs, 1679 s, 1618 w, 1592 m, 1568 w, 1507 w, 1486 m, 1458 m, 1448 m, 1434 m, 1401 w, sh, 1385 m, 1333 m, 1297 s, 1278 s, 1256 s, 1163 w, 1151 m, sh, 1131 m, 1121 m, 1095 m, 1044 s, 1029 s, sh, 1018 s, 963 w, 871 w, 823 m, 701 w, 657 w, 570 w, 435 w cm⁻¹.

ESI MS: 539 ([M+Na]⁺).

HR ESI MS: calcd for C₃₄H₂₈O₅Na 539.1829, found 539.1827.

<u>Methyl 2-{4-[2-{{2-[1-(acetyloxy)but-3-yn-1-yl]naphthalen-1-yl}ethynyl)phenyl]-4-</u> (ethoxymethoxy)but-1-yn-1-yl}benzoate 21

A Schlenk flask was filled with zinc powder (139 mg, 2.12 mmol, 2 equiv.) and flushed with argon. Freshly distilled tetrahydrofuran (4 mL) was added and vigorously stirred. Then propargyl bromide (80 wt. % in toluene, 236 μ L, 2.12 mmol, 2 equiv.) was added and stirred for 10 min, before it was transferred by a syringe to the second Schlenk flask,

which contained aldehyde **20** (546 mg, 1.06 mmol) and tetrahydrofuran (20 mL). The reaction mixture was stirred for 5 min at room temperature, before triethylamine (443 μ L, 3.18 mmol, 3 equiv.) and acetic anhydride (303 μ L, 3.18 mmol, 3 equiv.) were added and the solution was stirred for 2 h at room temperature. The solvents were evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 10:1) to obtain acetate **21** (488 mg, 77%) as a mixture of diastereomers in a ratio about 1:1.

¹**H NMR** (400 MHz, CDCl₃, mixture of diastereomers): 1.09 (t, *J* = 7.1, 3H), 1.10 (t, *J* = 7.1, 3H), 2.01 (t, *J* = 3.0, 1H), 2.02 (t, *J* = 3.0, 1H), 2.14 (s, 3H), 2.15 (s, 3H), 2.931 (ddd, *J* = 17.0, 6.6, 2.7, 1H), 2.933 (ddd, *J* = 16.9, 6.4, 2.6, 1H), 3.006 (dd, *J* = 17.1, 5.6, 1H), 3.012 (dd, *J* = 17.1, 5.6, 1H), 3.12 (dd, *J* = 17.0, 7.1, 2H), 3.21 (dd, *J* = 17.0, 5.2, 2H), 3.554 (dq, *J* = 9.8, 7.1, 1H), 3.561 (dq, *J* = 9.8, 7.1, 1H), 3.75 (s, 3H), 3.76 (s, 3H), 3.75 – 3.86 (m, 2H), 4.775 (d, *J* = 6.9, 1H), 4.781 (d, *J* = 6.9, 1H), 4.89 (d, *J* = 6.9, 1H), 4.91 (d, *J* = 6.9, 1H), 5.62 – 5.67 (m, 2H), 6.73 (t, *J* = 6.1, 2H), 7.24 – 7.57 (m, 14H), 7.636 (d, *J* = 8.6, 1H), 7.638 (d, *J* = 8.6, 1H), 7.69 (dt, *J* = 7.7, 1.4, 2H), 7.72 – 7.77 (m, 2H), 7.81 – 7.89 (m, 6H), 8.50 – 8.55 (m, 2H).

¹³C NMR (101 MHz, CDCl₃, mixture of diastereomers): 15.1, 15.2, 21.2 (2C), 25.8, 25.9, 28.6, 28.7, 52.09, 52.10, 63.8 (2C), 71.11, 71.12, 72.2, 72.3, 74.89, 74.92, 79.50, 79.53, 81.0 (2C), 89.67, 89.72, 92.2, 92.3, 93.9, 94.0, 98.35, 98.36, 118.8, 118.9, 121.6, 121.7, 123.15, 123.21, 124.3 (2C), 126.7 (2C), 126.8 (3C), 126.9, 127.4 (2C), 127.5 (2C), 127.9 (2C), 128.2 (2C), 129.0, 129.1, 129.1 (2C), 130.2 (2C), 131.49, 131.51, 132.03, 132.04, 132.86, 132.87, 132.90, 133.0, 133.2 (2C), 134.50, 134.52, 139.5, 139.6, 142.8, 142.9, 166.9 (2C), 169.86, 169.88.

IR (CHCl₃): 3309 m, 3063 w, 2978 w, 2953 w, 2931 w, 2887 w, sh, 2844 w, sh, 2233 w, 2205 vw, 2124 vw, 1733 vs, 1597 w, 1568 w, 1509 w, 1486 m, 1448 m, 1435 m, 1372 m, 1297 m, 1278 m, 1254 s, sh, 1238 vs, 1164 w, 1149 w, 1131 m, 1112 m, 1094 m, 1044 s, 1022 s, 965 w, 867 w, 821 m, 701 w, 639 w, 609 w, 436 w cm⁻¹.

ESI MS: 621 ([M+Na]⁺).

HR ESI MS: calculated for C₃₉H₃₄O₆Na 621.2248, found 621.2245.

Methyl 2-hexahelicen-7-ylbenzoate 15

Triyne **21** (440 mg, 0.73 mmol) was loaded to a microwave vial and chlorobenzene (12 mL) was added. The solution was bubbled with nitrogen for 5 minutes before CpCo(CO)(fum) (109 mg, 0.37 mmol, 0.5 equiv, fum = dimethylfumarate) was added. The seal was closed and the reaction mixture was heated to 170 °C in the

microwave reactor for 20 minutes. *p*-Toluenesulfonic acid monohydrate (694 mg, 3.65 mmol, 5 equiv.) was added and the reaction mixture was strirred for 1 h at 95 °C. The solvent was evaporated in vacuum. The residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 20:1) to obtain helicene **15** (239 mg, 71%) as a mixture of two atropodiastereomers in a ratio 2:1.

¹H NMR (400 MHz, CDCl₃, major atropodiastereomer): 3.32 (s, 3H), 6.65 – 6.75 (m, 2H), 7.19
– 7.26 (m, 2H), 7.56 – 7.73 (m, 6H), 7.77 – 7.86 (m, 3H), 7.85 (s, 1H), 7.91 – 7.97 (m, 2H), 7.98
– 8.02 (m, 2H), 8.18 (ddd, *J* = 7.8, 1.5, 0.6, 1H).

¹³C NMR (101 MHz, CDCl₃, major atropodiastereomer): 52.1, 123.6, 123.9, 124.90, 124.92, 125.7, 125.8, 126.3, 126.4, 126.9, 127.5, 127.6, 127.7, 127.7, 127.9, 127.95 (2C), 128.0, 128.11, 128.3, 129.9, 130.1, 130.2, 130.6, 131.3, 131.4, 131.7, 132.0, 132.1, 132.3, 132.4, 139.3, 141.4, 168.1.

¹H NMR (400 MHz, CDCl₃, minor atropodiastereomer): 3.25 (s, 3H), 6.65 – 6.75 (m, 2H), 7.19
– 7.26 (m, 2H), 7.56 – 7.73 (m, 6H), 7.77 – 7.86 (m, 3H), 7.85 (s, 1H), 7.91 – 7.97 (m, 2H), 7.98
– 8.02 (m, 2H), 8.12 (m, 1H).

¹³C NMR (101 MHz, CDCl₃, minor atropodiastereomer): 51.9, 123.7, 123.8, 124.7, 124.7, 125.6, 125.7, 126.4, 126.9, 127.0, 127.4, 127.6, 127.7, 127.8, 127.90, 127.93 (2C), 127.95, 128.2, 128.4, 130.0, 130.1, 130.3, 130.4, 131.3, 131.5, 131.7 (2C), 132.0, 132.2, 132.5, 138.4, 141.2, 168.2.

IR (CHCl₃): 3050 w, 2953 w, 2854 w, 1717 vs, 1617 vw, 1599 w, 1572 vw, 1521 vw, 1503 w, 1460 vw, 1448 w, 1434 w, 1395 vw, 1367 w, 1296 s, 1281 m, sh, 1260 m, 1192 w, 1162 vw, 1129 m, 1117 w, 1084 m, 1049 w, 1042 w, 964 w, sh, 914 vw, 889 w, 883 w, 833 s, 808 w, 662 w, 648 vw, 618 w, 585 w, 529 w cm⁻¹.

ESI MS: 485 ([M+Na]⁺).

12H-Naphtho[3,2,1-gh]hexahelicen-12-one 1A

17H-Indeno[1,2-i]hexahelicen-17-one 1F

Ester **15** (200 mg, 0.43 mmol) was dissolved in tetrahydrofuran (5 mL) and methanol (5 mL), and potassium hydroxide (240 mg, 4.30 mmol, 10 equiv.) was added. The mixture was heated to 65 °C and stirred for 4 h. Then the reaction was cooled to rt and diluted hydrochloric acid was added to reach pH 1. The mixture was extracted with diethyl ether (2x 20 mL), and the combined organic layers were dried over anhydrous magnesium sulfate. The solvents were evaporated under the reduced pressure to obtain crude carboxylic acid, which was directly used further. This acid was dissolved in methanesulfonic acid (10 mL) and the flask was put to the oil bath pre-heated to 80 °C. The stirring was continued for 1 h at 80 °C and then the reaction mixture was poured over crushed ice. The mixture was extracted with dichloromethane (2x 20 mL), the combined organic layers were washed with saturated sodium bicarbonate solution (10 mL), dried over anhydrous magnesium sulfate. The solvent was evaporated *in vacuo* and the residue was purified by flash chromatography on silica gel (hexane-dichloromethane 2:1 to 1:2) to afford **1A** (51.2 mg, 28%) as an orange solid and **1F** (97.3 mg, 53%) as a red solid.

<u>12H-Naphtho[3,2,1-gh]hexahelicen-12-one</u> 1A

M.p.: 273 - 274 °C (CH₃CN).

Optical rotation: $[\alpha]^{20}_{D}$ +2147° (c 0.022, CH₂Cl₂); $[\alpha]^{20}_{D}$ -2165° (c 0.030, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃): 6.67 (ddd, *J* = 8.4, 6.9, 1.4, 1H), 6.82 (ddd, *J* = 8.5, 6.9, 1.4, 1H), 7.23 (ddd, *J* = 8.0, 6.8, 1.1, 1H), 7.32

(ddd, *J* = 8.0, 6.8, 1.1, 1H), 7.51 (d, *J* = 8.5, 1H), 7.60 (td, *J* = 8.1, 1.0, 1H), 7.66 (d, *J* = 8.6, 1H), 7.78 – 7.84 (m, 2H), 7.92 (d, *J* = 8.6, 1H), 7.94 (d, *J* = 8.7, 1H), 8.01 (d, *J* = 8.2, 1H), 8.07 (d, *J* = 8.1, 1H), 8.09 (bd, *J* = 8.8, 1H), 8.49 (d, *J* = 8.1, 1H), 8.58 (dd, *J* = 7.9, 1.5, 1H), 8.80 (s, 1H), 9.23 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): 124.0, 124.2, 125.1, 125.2, 125.4, 125.8, 126.1, 126.3, 126.4, 126.6, 127.4 (2C), 127.8 (2C), 128.06, 128.14, 128.3, 128.4, 128.5, 128.6, 128.8, 129.9, 130.2, 130.85, 130.93, 132.1 (2C), 132.2, 132.6, 132.9, 134.0, 136.8, 184.7.

IR (CHCl₃): 3051 w, 2956 w, 2928 w, 2856 w, 1653 vs, 1611 m, 1602 m, 1587 m, 1557 w, 1522 w, 1480 w, 1450 w, 1442 w, 1407 w, 1389 w, 1367 w, 1342 w, 1325 w, 1279 m, 1273 m, 1247 m, 1173 w, 1162 w, 1148 vw, 1082 vw, 1013 w, 934 w, 885 w, 862 w, 833 m, 692 w, 645 w, 623 w, 610 w, 582 w, 532 w, 451 vw cm⁻¹.

APCI MS: 431 ([M+H]⁺).

HR APCI MS: calcd for C₃₃H₁₉O 431.1430, found 431.1429.

17H-Indeno[1,2-i]hexahelicen-17-one 1F

M.p.: 260 - 261 °C (CH₃CN).

¹H NMR (400 MHz, CDCl₃): 6.62 – 6.71 (m, 2H), 7.18 (t, *J* = 7.4, 1H), 7.24 (t, *J* = 7.3, 1H), 7.32 (t, *J* = 7.4, 1H), 7.38 (d, *J* = 8.6, 1H), 7.49 (d, *J* = 9.0, 1H), 7.53 (t, *J* = 7.7, 1H), 7.71 (d, *J* = 7.2, 1H), 7.77 (d, *J*

= 7.1, 1H), 7.78 (d, *J* = 8.3, 1H), 7.84 – 7.91 (m, 2H), 7.97 (bd, *J* = 8.7, 1H), 8.01 (bd, *J* = 8.3, 1H), 8.06 – 8.13 (m, 1H), 8.51 – 8.59 (m, 1H), 9.30 (bd, *J* = 8.3, 1H).

¹³C NMR (101 MHz, CDCl₃): 121.6, 122.4, 123.7, 124.0, 125.0, 125.5, 125.6, 125.8, 125.9, 126.3, 126.4, 127.2, 127.5, 127.8, 127.9, 128.4, 128.5, 128.98, 129.02, 129.1, 129.3, 129.6, 130.0, 130.2, 131.3, 132.2, 132.6, 134.4, 134.6, 135.9, 143.6, 144.1, 195.7.

IR (CHCl₃): 3052 w, 2956 m, 2927 w, 2855 w, 1700 vs, 1616 w, 1608 m, 1588 vw, 1570 vw, 1516 m, 1484 w, 1465 m, 1446 w, 1390 w, 1332 w, 1290 w, 1250 w, 1239 w, 1200 w, 1174 w, 1159 w, 1087 w, 1018 w, 983 w, 904 w, 844 m, 830 m, 806 w, 631 w, 622 m, 586 vw, 532 w, 463 vw cm⁻¹.

APCI MS: 431 ([M+H]⁺).

HR APCI MS: calcd for C₃₃H₁₉O 431.1430, found 431.1427.

Synthesis of compounds 2A and 2F

(a) Methyl 3-iodonaphthalene-2-carboxylate (1.0 equiv.), diyne 17 (1.1 equiv.), $Pd(PPh_3)Cl_2$ (2 mol%), Cul (4 mol%), *i*-Pr₂NH:PhMe (3:1), 45 °C, 3 h;

(b) compound 22 (1.0 equiv.), K₂CO₃ (1.5 equiv.), MeOH, rt, 15 min;

(c) 1-bromo-2-naphthaldehyde (1.0 equiv.), diyne 23 (1.1equiv.), $Pd(PPh_3)Cl_2$ (2 mol%), CuI (4 mol%), THF:Et₂N (2:1), 50 °C, 3 h;

(d) Zn (2.0 equiv.), propargyl bromide (2.0 equiv.), compound 24 (1.0 equiv.), THF, rt, 15 min, then Et_3N (3.0 equiv.), Ac_2O (3.0 equiv.), THF, rt, 3 h;

(e) triyne 25 (1.0 equiv.), CpCo(CO)(fum) (0.5 equiv.), PhCl, 170 °C,20 min, then *p*-TsOH.H₂O (5.0 equiv.), 95 °C, 1h;

(f) ester 26 (1.0 equiv.), KOH (10.0 equiv.), THF:MeOH (1:1), 65 °C, 3 h, then MeSO₃H, 80°C, 1h.

Methyl 3-[4-(ethoxymethoxy)-4-{2-[(trimethylsilyl)ethynyl]phenyl}but-1-yn-1-

yl]naphthalene-2-carboxylate 22

A Schlenk flask was charged with methyl 3-iodonaphthalene-2carboxylate (568 mg, 1.82 mmol), Pd(PPh₃)₂Cl₂ (25.5 mg, 0.04 mmol, 2 mol%), CuI (13.9 mg, 0.07 mmol, 4 mol%), flushed with nitrogen, and the degassed *N*,*N*-diisopropylamine (15 mL) was added. The mixture was heated to 45 °C before a solution of

alkyne **17** (600 mg, 2.00 mmol, 1.1 equiv.) in degassed toluene (5 mL) was slowly added. The reaction mixture was stirred at the same temperature for 3 h. The solvents were evaporated under the reduced pressure. The residue was chromatographed on silica gel (hexane-ethyl acetate 20:1) to afford the desired product **22** (679 mg, 77%) as an oil.

¹**H NMR** (400 MHz, CDCl₃): 0.27 (s, 9H), 1.15 (t, *J* = 7.1, 3H), 2.98 (dd, *J* = 17.0, 7.3, 1H), 3.09 (dd, *J* = 17.0, 4.6, 1H), 3.55 (dq, *J* = 9.5, 7.1, 1H), 3.86 (dq, *J* = 9.4, 7.0, 1H), 3.93 (s, 3H), 4.70 (d, *J* = 6.8, 1H), 4.84 (d, *J* = 6.9, 1H), 5.47 (dd, *J* = 7.3, 4.6, 1H), 7.24 (td, *J* = 7.6, 1.3, 1H), 7.37 (td, *J* = 7.6, 1.4, 1H), 7.48 (ddd, *J* = 7.6, 1.4, 0.6, 1H), 7.51 (dd, *J* = 8.1, 1.3, 1H), 7.56 (ddd, *J* = 8.2, 6.9,

1.4, 1H), 7.61 (ddd, *J* = 7.8, 1.3, 0.6, 1H), 7.76 (ddq, *J* = 8.0, 1.3, 0.7, 1H), 7.86 (ddq, *J* = 8.0, 1.3, 0.7, 1H), 7.97 (s, 1H), 8.43 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): 0.1 (3C), 15.2, 28.2, 52.3, 63.6, 74.3, 80.8, 91.2, 93.7, 100.2, 102.7, 120.2, 121.8, 126.2, 127.2, 127.3, 127.5, 128.6, 128.9, 128.97, 129.03, 131.5, 131.6, 132.3, 134.4, 134.5, 143.6, 167.0.

IR (CHCl₃): 3061 w, 2976 m, 2955 m, 2898 w, 2886 w, sh, 2844 w, 2231 w, 2156 m, 1729 s, 1628 w, 1599 w, 1591 w, 1571 w, 1495 w, 1478 w, 1464 m, 1447 m, 1433 w, 1415 w, 1329 m, 1283 vs, 1272 s, 1251 s, 1232 m, 1160 w, sh, 1149 m, 1112 m, 1100 m, 1092 m, 1043 s, 1018 s, 957 w, 913 w, 897 m, 867 vs, 845 vs, 700 w, 646 w, 477 m cm⁻¹.

EI MS: 484 (M^{+•}, 2), 408 (16), 305 (18), 261 (39), 223 (53), 179 (24), 165 (18), 143 (100), 115 (71), 73 (82).

HR EI MS: calcd for C₃₀H₃₂O₄Si 484.2064, found 484.2057.

<u>Methyl 3-[4-(ethoxymethoxy)-4-(2-ethynylphenyl)but-1-yn-1-yl]naphthalene-2-carboxylate</u> 23

Diyne **22** (649 mg, 1.34 mmol) was dissolved in methanol (20 mL) and potassium carbonate (278 mg, 2.01 mmol, 1.5 equiv.) was added. The mixture was stirred at room temperature for 15 min. The reaction was quenched with a saturated ammonium chloride solution (50 mL), extracted with dichloromethane (2 x

30 mL), and the combined organic layers were dried over anhydrous magnesium sulfate. The solvents were evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 10:1) to afford **23** (520 mg, 94%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): 1.13 (t, *J* = 7.1, 3H), 3.01 (dd, *J* = 17.0, 7.2, 1H), 3.08 (dd, *J* = 17.0, 5.0, 1H), 3.38 (s, 1H), 3.54 (dq, *J* = 9.4, 7.1, 1H), 3.81 (dq, *J* = 9.5, 7.1, 1H), 3.94 (s, 3H), 4.70 (d, *J* = 6.9, 1H), 4.85 (d, *J* = 6.9, 1H), 5.46 (dd, *J* = 7.2, 5.0, 1H), 7.27 (td, *J* = 7.6, 1.3, 1H), 7.41 (td, *J* = 7.7, 1.4, 1H), 7.51 (ddd, *J* = 8.2, 6.9, 1.4, 1H), 7.52 (dd, *J* = 8.0, 1.4, 1H), 7.56 (ddd, *J* = 8.2, 6.9, 1.4, 1H), 7.87 (dq, *J* = 8.0, 0.7, 1H), 7.97 (s, 1H), 8.43 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): 15.1, 28.4, 52.3, 63.7, 74.4, 81.0, 81.3, 82.6, 90.9, 93.8, 120.0, 120.7, 126.5, 127.27, 127.32, 127.6, 128.7, 129.0, 129.1, 129.2, 131.5, 131.6, 133.0, 134.4, 134.5, 143.8, 167.1.

IR (CHCl₃): 3304 m, 3061 w, 2979 w, 2953 w, 2887 w, 2844 w, sh, 2230 w, 2106 vw, 1727 s, 1628 w, 1602 w, sh, 1591 w, 1572 w, 1495 w, 1481 w, 1464 m, 1447 m, 1433 w, 1329 w, 1284 vs, 1271 s, sh, 1231 m, 1158 w, 1149 w, 1111 m, 1100 m, 1093 m, sh, 1042 s, 1018 s, 957 w, 914 w, 898 w, 657 w, 620 w, 477 w cm⁻¹.

ESI MS: 435 ([M+Na]⁺).

HR APCI MS: calcd for C₂₇H₂₄O₄Na 435.1567, found 435.1566.

<u>Methyl 3-[4-(ethoxymethoxy)-4-{2-[(2-formylnaphthalen-1-yl)ethynyl]phenyl}but-1-yn-1-</u> yl]naphthalene-2-carboxylate 24

А Schlenk flask charged with 1-bromo-2was naphthaldehyde (207 mg, 0.88 mmol), bis(triphenylphosphine)palladium chloride (12.4 mg, 0.02 mmol, 2 mol%), copper(I) iodide (6.70 mg, 0.04 mmol, 4 mol%) and flushed with argon. The degassed tetrahydrofuran (5 mL) and degassed triethylamine (5 mL)

were added and the mixture was heated to 50 °C. Then diyne **23** (400 mg, 0.97 mmol, 1.1 equiv.) in degassed tetrahydrofuran (5 mL) was slowly added and the reaction was stirred at 50 °C for 3 hours. The solvents were evaporated under the reduced pressure. The residue was chromatographed on silica gel (hexane-ethyl acetate 20:1 to 10:1) to afford the desired product **24** (389 mg, 78%).

¹**H NMR** (400 MHz, CDCl₃): 1.12 (t, *J* = 7.1, 3H), 3.14 – 3.17 (m, 2H), 3.57 (dq, *J* = 9.5, 7.0, 1H), 3.80 (s, 3H), 3.88 (dq, *J* = 9.5, 7.1, 1H), 4.76 (d, *J* = 7.0, 1H), 4.89 (d, *J* = 7.0, 1H), 5.68 (t, *J* = 6.4, 1H), 7.41 (td, *J* = 7.5, 1.4, 1H), 7.46 – 7.54 (m, 3H), 7.55 – 7.64 (m, 3H), 7.70 – 7.76 (m, 2H), 7.80 – 7.88 (m, 3H), 7.87 (s, 1H), 7.97 (d, *J* = 8.6, 1H), 8.37 (s, 1H), 8.64 – 8.69 (m, 1H), 10.94 (d, *J* = 0.9, 1H).

¹³C NMR (101 MHz, CDCl₃): 15.2, 28.9, 52.2, 63.8, 74.8, 81.4, 88.1, 90.6, 93.6, 100.1, 119.9, 121.4, 122.2, 127.0, 127.25, 127.3 (2C), 127.5, 127.9, 128.0, 128.5, 128.6, 128.8, 128.9, 129.1, 129.4, 129.8, 131.5, 131.6, 132.9, 133.3, 134.3, 134.5, 134.6, 135.9, 143.4, 166.8, 192.0.

IR (CHCl₃): 3062 w, 2978 w, 2952 m, 2930 m, 2889 w, 2229 w, 2203 w, 1728 s, 1694 vs, 1679 s, 1628 w, 1618 w, 1592 w, 1568 w, 1506 w, 1495 w, 1484 w, 1464 w, 1458 w, 1447 m, 1433 m, 1402 w, sh, 1385 w, 1332 m, 1284 vs, 1272 s, sh, 1257 m, 1159 w, 1149 w, 1111 m, 1095 m, 1043 m, sh, 1028 m, sh, 1018 s, 957 w, 916 w, 898 w, 871 w, 822 m, 657 w, 638 w, 570 w, 477 m, 435 w cm⁻¹.

ESI MS: 589 ([M+Na]⁺).

HR ESI MS: calcd for C₃₈H₃₀O₅Na 589.1986, found 589.1985.

<u>Methyl 3-{4-[2-({2-[1-(acetyloxy)but-3-yn-1-yl]naphthalen-1-yl}ethynyl)phenyl]-4-</u> (ethoxymethoxy)but-1-yn-1-yl}naphthalene-2-carboxylate 25

A Schlenk flask was filled with zinc powder (85.0 mg, 1.30 mmol, 2 equiv.) and flushed with argon. Freshly distilled tetrahydrofuran (3 mL) was added and vigorously stirred. Then propargyl bromide (80 wt. % in toluene, 145 μL, 1.30 mmol, 2 equiv.) was added and stirred for 10 min, before it

was transferred by a syringe to the second Schlenk flask, which contained aldehyde **24** (368 mg, 0.65 mmol) and tetrahydrofuran (15 mL). The reaction mixture was stirred for 5 min at room temperature, before triethylamine (266 μ L, 1.95 mmol, 3 equiv.) and acetic anhydride (183 μ L, 1.95 mmol, 3 equiv.) were added and the solution was stirred for 3 h at room temperature. The solvents were evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 10:1) to obtain acetate **25** (332 mg, 79%) as a mixture of diastereomers in a ratio about 1:1.

¹**H NMR** (400 MHz, CDCl₃, mixture of diastereomers): 1.10 (t, *J* = 7.1, 3H), 1.11 (t, *J* = 7.1, 3H), 2.00 (t, *J* = 2.6, 1H), 2.03 (t, *J* = 2.6, 1H), 2.13 (s, 3H), 2.14 (s, 3H), 2.90 – 3.07 (m, 4H), 3.17 (dd, *J* = 17.0, 7.2, 2H), 3.24 (dd, *J* = 17.0, 5.3, 2H), 3.54 – 3.63 (m, 2H), 3.81 (s, 3H), 3.82 (s, 3H), 3.82 – 3.90 (m, 2H), 4.80 (d, *J* = 6.9, 1H), 4.81 (d, *J* = 6.9, 1H), 4.92 (d, *J* = 6.8, 1H), 4.93 (d, *J* = 6.9, 1H), 5.69 (dd, *J* = 7.2, 5.3, 1H), 5.70 (dd, *J* = 7.2, 5.2, 1H), 6.75 (t, *J* = 6.1, 2H), 7.379 (td, *J* = 7.4, 1.4, 1H), 7.380 (td, *J* = 7.4, 1.4, 1H), 7.43 – 7.56 (m, 10H), 7.58 – 7.63 (m, 2H), 7.64 (d, *J* = 8.6, 2H), 7.72 (dt, *J* = 7.8, 1.5, 2H), 7.75 – 7.78 (m, 2H), 7.81 – 7.85 (m, 4H), 7.86 (d, *J* = 8.5, 2H), 7.89 (s, 2H), 8.39 (s, 2H), 8.52 – 8.58 (m, 2H).

¹³C NMR (101 MHz, CDCl₃, mixture of diastereomers): 15.16, 15.19, 21.2 (2C), 25.8, 25.9, 28.7, 28.9, 52.2 (2C), 63.8 (2C), 71.12, 71.14, 72.2, 72.3, 75.0, 75.1, 79.5 (2C), 81.2 (2C), 89.7, 89.8,

90.99, 91.03, 93.9, 94.0, 98.4 (2C), 118.85, 118.88, 120.1 (2C), 121.71, 121.72, 123.17, 123.23, 126.7 (2C), 126.77, 126.81 (2C), 126.9, 127.2 (2C), 127.3 (2C), 127.5 (2C), 127.9 (2C), 128.2 (2C), 128.5 (2C), 128.9 (2C), 129.0 (2C), 129.05 (2C), 129.1 (2C), 131.5 (2C), 131.6, 131.6, 132.87 (2C), 132.93, 133.0, 133.2 (2C), 134.3 (2C), 134.5 (2C), 139.5 (2C), 142.9, 143.0, 167.0 (2C), 169.86, 169.89.

IR (CHCl₃): 3309 w, 3061 w, 2977 w, 2953 w, 2930 w, 2888 w, sh, 2842 w, sh, 2230 w, 2202 vw, 2124 vw, 1732 vs, 1628 w, 1592 w, 1571 w, 1509 w, 1494 w, 1484 w, 1464 w, 1447 m, 1433 w, 1372 m, 1329 m, 1283 vs, 1273 s, sh, 1234 vs, 1149 w, 1112 m, 1095 m, 1044 s, 1024 s, sh, 1019 s, 957 w, 915 w, 898 w, 867 w, 821 m, 641 w, 598 vw, 477 w, 437 w cm⁻¹.

ESI MS: 671 ([M+Na]⁺).

HR ESI MS: calculated for C₄₃H₃₆O₆Na 671.2404, found 671.2403.

Methyl 3-hexahelicen-7-ylnaphthalene-2-carboxylate 26

Triyne **25** (310 mg, 0.48 mmol) was loaded to a microwave vial and chlorobenzene (12 mL) was added. The solution was bubbled with nitrogen for 5 minutes before CpCo(CO)(fum) (70.8 mg, 0.24 mmol, 0.5 equiv, fum = dimethylfumarate) was added. The seal was closed and the reaction mixture was heated to 170 °C in the

microwave reactor for 20 minutes. *p*-Toluenesulfonic acid monohydrate (694 mg, 3.65 mmol, 5 equiv.) was added and the reaction mixture was strirred for 1 h at 95 °C. The solvent was evaporated in vacuum. The residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 20:1 to 10:1) to obtain helicene **26** (172 mg, 70%) as a mixture of two atropodiastereomers in a ratio 2:1.

¹H NMR (400 MHz, CDCl₃, major atropodiastereomer): 3.37 (s, 3H), 6.66 – 6.76 (m, 2H), 7.19 – 7.27 (m, 2H), 7.60 (d, *J* = 8.5, 1H), 7.62 – 7.72 (m, 4H), 7.78 (d, *J* = 8.5, 1H), 7.79 (m, 1H), 7.85 (dd, *J* = 8.0, 1.5, 1H), 7.91 – 7.99 (m, 4H), 8.00 – 8.04 (m, 2H), 8.07 (bs, 1H), 8.10 (m, 1H), 8.76 (s, 1H).

¹³C NMR (101 MHz, CDCl₃, major atropodiastereomer): 52.2, 123.7, 123.9, 124.92, 124.93, 125.7, 125.8, 126.5, 126.7, 127.0, 127.2, 127.5, 127.66, 127.68, 127.8, 127.91, 127.94 (2C), 128.0, 128.2, 128.3, 128.8, 129.2, 129.6, 129.9, 130.1, 130.7, 131.1, 131.3, 131.4, 132.0 (2C), 132.2, 132.5, 135.1, 137.5, 139.5, 168.1.

¹H NMR (400 MHz, CDCl₃, minor atropodiastereomer): 3.28 (s, 3H), 6.66 – 6.76 (m, 2H), 7.19 – 7.27 (m, 2H), 7.60 (d, *J* = 8.5, 1H), 7.62 – 7.72 (m, 4H), 7.78 (d, *J* = 8.5, 1H), 7.79 (m, 1H), 7.83 (m, 1H), 7.91 – 7.99 (m, 4H), 8.00 – 8.04 (m, 2H), 8.08 (bs, 1H), 8.10 (m, 1H), 8.69 (s, 1H).
¹³C NMR (101 MHz, CDCl₃, minor atropodiastereomer): 52.0, 123.9 (2C), 124.60, 124.7, 125.6, 125.7, 126.4, 127.1, 127.2, 127.3, 127.4, 127.6, 127.7, 127.8, 127.87, 127.91, 127.94, 128.0, 128.2, 128.4, 128.7, 129.1, 130.02, 130.03, 130.2, 130.7, 131.3, 131.4, 131.5, 131.6, 132.0, 132.2, 132.6, 134.7, 137.4, 138.5, 168.1.

IR (CHCl₃): 3061 w, sh, 3052 w, 2952 w, 2928 w, 2855 w, 2844 w, sh, 1724 s, 1713 s, sh, 1631 w, 1594 w, 1502 w, 1489 w, 1460 w, 1447 m, 1433 w, 1326 w, 1282 vs, 1270 s, sh, 1241 w, 1198 m, 1149 w, 1137 w, 1132 w, 1075 m, 1043 w, 958 w, 915 w, 902 w, 884 w, 867 w, 833 s, 809 m, 627 w, 620 m, 525 m, 479 w cm⁻¹.

ESI MS: 535 ([M+Na]⁺).

HR ESI MS: calculated for C₃₈H₂₄O₂Na 535.1669, found 535.1670.

<u>12H-Anthra[3,2,1-gh]hexahelicen-12-one</u> 2A

19H-Benzo[5,6]indeno[1,2-i]hexahelicen-19-one 2F

Ester **26** (151 mg, 0.29 mmol) was dissolved in tetrahydrofuran (5 mL) and methanol (5 mL), and potassium hydroxide (163 mg, 2.90 mmol, 10 equiv.) was added. The mixture was heated to 65 °C and stirred for 3 h. Then the reaction was cooled to rt and diluted hydrochloric acid was added to reach pH 1. The mixture was extracted with diethyl ether (2x 20 mL), and the combined organic layers were dried over anhydrous magnesium sulfate. The solvents were evaporated under the reduced pressure to obtain crude carboxylic acid, which was directly used further. This acid was dissolved in methanesulfonic acid (10 mL) and the flask was put to the oil bath pre-heated to 80 °C. The stirring was continued for 1 h at 80 °C and then the reaction mixture was poured over crushed ice. The mixture was extracted with dichloromethane (2x 20 mL), the combined organic layers were washed with saturated sodium bicarbonate solution (10 mL), dried over anhydrous magnesium sulfate. The solvent was evaporated *in vacuo* and the residue was purified by flash chromatography on silica gel (hexane-toluene 1:1 to pure toluene) to afford **2A** (21.00 mg, 15%) as an orange solid and **2F** (94.6 mg, 68%) as a red solid.

12H-Anthra[3,2,1-gh]hexahelicen-12-one 2A

M.p.: 298 - 299 °C (CH₃CN).

Optical rotation: $[\alpha]^{20}_{D}$ +770° (c 0.027, CH₂Cl₂); $[\alpha]^{20}_{D}$ -748° (c 0.022, CH₂Cl₂).

O ¹**H NMR** (600 MHz, CD₂Cl₂): 6.69 (ddd, *J* = 8.4, 6.8, 1.4, 1H), 6.84 (ddd, *J* = 8.3, 6.7, 1.4, 1H), 7.25 (ddd, *J* = 7.9, 6.8, 1.2, 1H), 7.35 (ddd, *J* = 7.9, 6.7, 1.1, 1H), 7.56 (d, *J* = 8.5, 1H), 7.62 (ddd, *J* = 8.0, 6.6, 1.2, 1H), 7.69 (d, *J* = 8.1, 1H), 7.70 (ddd, *J* = 7.8, 6.6, 1.2, 1H), 7.86 (ddd, *J* = 7.9, 1.4, 0.5, 1H), 7.98 (d, *J* = 8.4, 1H), 7.99 (d, *J* = 8.5, 1H), 8.10 (d, *J* = 8.1, 1H), 8.12 (bd, *J* = 8.2, 1H), 8.14 (m, 2H), 8.21 (dd, *J* = 8.1, 0.4, 1H), 9.02 (s, 1H), 9.07 (s, 1H), 9.11 (s, 1H), 9.23 (s, 1H).

¹³C NMR (151 MHz, CD₂Cl₂): 123.95, 124.0, 125.3, 125.5, 126.35, 126.37, 126.76, 126.79, 127.0, 127.2, 127.7, 127.8 (2C), 128.2, 128.3, 128.4, 128.5, 128.9, 129.0, 129.07, 129.12, 129.3, 129.5, 130.1, 130.3, 130.4, 130.6, 131.3, 132.3, 132.5, 132.71, 132.73, 133.0, 133.2, 133.7, 136.8, 185.0.

IR (CHCl₃): 3057 w, 2957 w, 2928 w, 2855 w, 1660 vs, 1624 s, 1611 w, 1595 m, 1586 w, 1577 w, 1522 w, 1513 w, 1494 w, 1445 w, 1441 w, 1358 w, 1343 m, 1286 w, 1275 m, 1266 w, 1192 vs, 1168 vw, 1036 vw, 1021 w, 959 w, 926 vw, 887 w, 833 m, 805 w, 644 w, 626 w, 608 w, 580 w, 517 w, 509 w, 475 w, sh cm⁻¹.

APCI MS: 481 ([M+H]⁺).

HR APCI MS: calcd for C₃₇H₂₁O 481.1587, found 481.1583.

19H-Benzo[5,6]indeno[1,2-i]hexahelicen-19-one 2F

M.p.: 309 - 310 °C (CH₃CN).

¹H NMR (600 MHz, CD₂Cl₂): 6.71 (ddd, J = 8.5, 6.9, 1.3, 2H), 7.22 (ddd, J = 7.9, 6.8, 1.1, 1H), 7.30 (ddd, J = 7.9, 6.8, 1.1, 1H), 7.46 (ddt, J = 8.6, 1.2, 0.6, 1H), 7.553 (ddt, J = 8.6, 1.1, 0.6, 1H), 7.555

(ddd, *J* = 8.0, 6.9, 1.3, 1H), 7.64 (ddd, *J* = 8.1, 6.9, 1.3, 1H), 7.83 (ddt, *J* = 7.9, 1.3, 0.6, 1H), 7.89 (ddt, *J* = 7.8, 1.3, 0.6, 1H), 7.95 (d, *J* = 8.6, 1H), 7.968 (ddq, *J* = 7.9, 1.3, 0.7, 1H), 7.970 (d, *J* = 8.6, 1H), 8.03 (ddq, *J* = 8.0, 1.3, 0.7, 1H), 8.14 (d, *J* = 8.4, 1H), 8.16 (dt, *J* = 8.8, 0.7, 1H), 8.22 (q, *J* = 0.7, 1H), 8.58 (t, *J* = 0.7, 1H), 8.90 (d, *J* = 8.9, 1H), 9.47 (d, *J* = 8.4, 1H).

¹³C NMR (151 MHz, CD₂Cl₂): 122.3, 122.7, 123.6, 125.0, 125.3, 125.8, 125.9, 126.1, 126.5, 127.0, 127.5, 127.9, 128.0, 128.1, 128.2, 128.8, 128.9, 129.15, 129.17, 129.4, 129.5, 129.6, 129.8, 130.1, 130.2, 130.5, 130.8, 131.8, 132.7, 133.2, 133.8, 134.89, 134.94, 137.4, 138.5, 144.4, 194.4.

IR (CHCl₃): 3066 w, 3045 w, 2953 w, 2921 m, 2851 m, 1692 s, 1629 vs, 1605 w, 1594 w, 1566 vw, 1511 w, sh, 1470 w, 1454 w, 1377 vw, 1333 w, 1298 w, 1243 w, 1183 w, 1171 w, 1149 w, sh, 1119 w, 1097 w, 1051 w, 919 w, 904 w, 883 m, 866 w, 841 vs, 828 w, 811 w, 667 w, 638 w, 626 w, 604 w, 580 w, 533 w, 522 w, 497 w, 473 m cm⁻¹.

APCI MS: 481 ([M+H]⁺).

HR APCI MS: calcd for C₃₇H₂₁O 481.1587, found 481.1581.

Synthesis of compounds 3A and 3F

(a) Compound 27 (1.0 equiv.), Zn (2.0 equiv.), propargyl bromide (2.0 equiv.), THF, rt, 25 min, then DMAP (cat.), *N*,*N*-diisopropylethylamine (3.0 equiv.), chloromethyl ethyl ether (2.0 equiv.), DCM, rt, 16 h;

(b) methyl 2-iodobenzoate (1.0 equiv.), diyne 28 (1.1 equiv.), Pd(PPh₃)Cl₂ (2 mol%), Cul (4 mol%), *i*-Pr₂NH:PhMe (3:1), 45 °C, 2 h;

(c) compound 29 (1.0 equiv.), K₂CO₃ (1.5 equiv.), MeOH, rt, 10 min;

(d) 2-bromobenzaldehyde (1.0 equiv.), diyne 30 (1.1equiv.), Pd(PPh₃)Cl₂ (2 mol%), CuI (4 mol%), THF:Et₃N (2:1), 50 °C, 4 h;

(e) Zn (2.0 equiv.), propargyl bromide (2.0 equiv.), compound 31 (1.0 equiv.), THF, rt, 15 min, then Et_3N (3.0 equiv.), Ac_2O (3.0 equiv.), THF, rt, 2 h;

(f) triyne 32 (1.0 equiv.), CpCo(CO)(fum) (0.5 equiv.), PhCl, 170 °C, 20 min, then *p*-TsOH.H₂O (5.0 equiv.), 95 °C, 1h.

(g) ester 33 (1.0 equiv.), KOH (10.0 equiv.), THF:MeOH (1:1), 65 °C, 4 h, then MeSO₃H, 80°C, 1h.

({2-[1-(Ethoxymethoxy)but-3-yn-1-yl]naphthalen-1-yl}ethynyl)(trimethyl)silane 28

A Schlenk flask was charged with zinc powder (883 mg, 13.5 mmol, 2.0 equiv.) and flushed with nitrogen. The freshly distilled ⁺ tetrahydrofuran (6 mL) was added, the suspension was put to a water bath at room temperature and vigorously stirred. Then

propargyl bromide (80 wt. % in toluene, 1.50 mL, 13.5 mmol, 2.0 equiv.) was slowly added within 10 min and the mixture was then stirred at room temperature for 10 min before it was transferred by a syringe to the second Schlenk flask with a suspension of aldehyde **27** (1.70 g, 6.74 mmol) in tetrahydrofuran (20 mL). The reaction mixture was stirred at room temperature for 5 min, then quenched with a saturated solution of ammonium chloride (20 mL) and extracted with ethyl acetate (2 x 20 mL). The combined organic layers were dried over anhydrous MgSO₄ and evaporated *in vacuo*. The residue was dissolved in dichloromethane (25 mL), DMAP (5 mg, cat.), *N*,*N*-diisopropylethylamine (3.52 mL, 20.2 mmol, 3.0 equiv.), and chloromethyl ethyl ether (1.25 mL, 13.5 mmol, 2.0 equiv.) were added successively. The solution was stirred at room temperature overnight and then quenched with brine (20 mL). The layers were dried over anhydrous MgSO₄, solvents were removed *in vacuo*, and the residue was chromatographed on silica gel (hexane-ethyl acetate 40:1) to afford the desired product **28** (1.82 g, 77%) as a slightly yellow oil.

¹**H NMR** (400 MHz, CDCl₃): 0.36 (s, 9H), 1.19 (t, *J* = 7.1, 3H), 2.00 (t, *J* = 2.6, 1H), 2.73 (ddd, *J* = 16.9, 7.5, 2.6, 1H), 2.80 (ddd, *J* = 16.9, 4.7, 2.7, 1H), 3.55 (dq, *J* = 9.4, 7.1, 1H), 3.87 (dq, *J* = 9.4, 7.1, 1H), 4.64 (d, *J* = 6.8, 1H), 4.79 (d, *J* = 6.8, 1H), 5.63 (dd, *J* = 7.5, 4.6, 1H), 7.51 (ddd, *J* = 8.1, 6.9, 1.3, 1H), 7.58 (ddd, *J* = 8.3, 6.8, 1.4, 1H), 7.66 (d, *J* = 8.6, 1H), 7.80 – 7.86 (m, 2H), 8.36 (ddt, *J* = 8.3, 1.4, 0.8, 1H).

¹³C NMR (101 MHz, CDCl₃): 0.2 (3C), 15.2, 26.8, 63.7, 69.9, 74.3, 81.2, 93.5, 100.2, 106.4, 119.1, 123.3, 126.5, 126.6, 127.2, 128.2, 129.0, 132.7, 133.3, 142.3.

IR (CHCl₃): 3309 m, 3061 w, 2977 w, 2961 w, 2897 w, 2887 w, sh, 2151 w, 2125 w, sh, 1592 w, 1568 w, 1507 w, 1409 w, 1262 w, 1251 m, 1148 w, 1099 w, 1049 m, 1028 m, 874 s, 846 vs, 825 m, 701 w, 646 m, 450 w cm⁻¹.

EI MS: 350 (M^{+•}, 3), 311 (44), 282 (50), 267 (33), 193 (72), 165 (78), 73 (100).

HR EI MS: calcd for C₂₂H₂₆O₂Si 350.1697, found 350.1696.

Methyl 2-[4-(ethoxymethoxy)-4-{1-[(trimethylsilyl)ethynyl]naphthalen-2-yl}but-1-yn-1-

yl]benzoate 29

A Schlenk flask was charged with methyl 2-iodobenzoate (781 mg, 2.98 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol, 2 mol%), Cul (22.9 mg, 0.12 mmol, 4 mol%), flushed with nitrogen, and the degassed *N*,*N*-diisopropylamine (30 mL)

was added. The mixture was heated to 45 °C before a solution of alkyne **28** (1.15 g, 3.28 mmol, 1.1 equiv.) in degassed toluene (10 mL) was slowly added. The reaction mixture was stirred at the same temperature for 2 h. The solvents were evaporated under the reduced pressure. The residue was chromatographed on silica gel (hexane-ethyl acetate 20:1) to afford the desired product **29** (1.14 g, 79%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃): 0.34 (s, 9H), 1.15 (t, *J* = 7.1, 3H), 3.06 (dd, *J* = 16.9, 6.7, 1H), 3.11 (dd, *J* = 16.9, 5.7, 1H), 3.55 (dq, *J* = 9.5, 7.1, 1H), 3.82 (s, 3H), 3.83 (dq, *J* = 9.4, 7.1, 1H), 4.69 (d, *J* = 6.8, 1H), 4.84 (d, *J* = 6.8, 1H), 5.72 (t, *J* = 6.1, 1H), 7.30 (td, *J* = 7.3, 1.5, 1H), 7.38 (td, *J* = 7.7, 1.5, 1H), 7.45 (ddd, *J* = 7.8, 1.4, 0.7, 1H), 7.51 (ddd, *J* = 8.1, 6.8, 1.3, 1H), 7.59 (ddd, *J* = 8.4, 6.9, 1.4, 1H), 7.73 (d, *J* = 8.6, 1H), 7.81 – 7.87 (m, 2H), 7.87 (ddd, *J* = 7.8, 1.4, 0.6, 1H), 8.38 (bd, *J* = 8.4, 1H).

¹³C NMR (101 MHz, CDCl₃): 0.2 (3C), 15.2, 28.1, 52.1, 63.7, 74.6, 80.8, 92.3, 93.7, 100.4, 106.1, 119.1, 123.6, 124.4, 126.5 (2C), 127.1, 127.4, 128.2, 128.9, 130.2, 131.5, 132.0, 132.7, 133.3, 134.6, 142.5, 166.9.

IR (CHCl₃): 3062 w, 2977 w, 2955 m, 2898 w, 2887 w, sh, 2845 w, 2236 w, 2151 w, 1729 s, 1720 m, sh, 1596 w, 1568 w, 1507 w, 1486 m, 1449 w, 1435 w, 1411 w, sh, 1299 m, 1277 m, 1252 s, 1163 w, 1146 w, sh, 1131 m, 1098 m, 1043 m, 1028 s, 965 w, 879 m, 874 m, 846 s, 825 m, 701 w, 644 w, 450 w cm⁻¹.

EI MS: 484 (M^{+•}, 2), 311 (70), 282 (67), 267 (52), 239 (22), 193 (93), 178 (20), 165 (74), 73 (100). **HR EI MS**: calcd for C₃₀H₃₂O₄Si 484.2064, found 484.2062.

Methyl 2-[4-(ethoxymethoxy)-4-(1-ethynylnaphthalen-2-yl)but-1-yn-1-yl]benzoate 30

Diyne **29** (1.11 g, 2.29 mmol) was dissolved in methanol (30 mL) and potassium carbonate (475 mg, 3.44 mmol, 1.5 equiv.) was added. The mixture was stirred at room temperature for 10 min. The reaction was quenched with

a saturated ammonium chloride solution (100 mL), extracted with dichloromethane (2 x 50 mL), and the combined organic layers were dried over anhydrous magnesium sulfate. The solvents were evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 10:1) to afford **30** (878 mg, 93%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): 1.12 (t, *J* = 7.1, 3H), 3.08 (d, *J* = 6.1, 2H), 3.53 (dq, *J* = 9.5, 7.0, 1H), 3.788 (dq, *J* = 9.5, 7.1, 1H), 3.795 (s, 1H), 3.83 (s, 3H), 4.69 (d, *J* = 6.9, 1H), 4.84 (d, *J* = 6.9, 1H), 5.71 (t, *J* = 6.2, 1H), 7.30 (td, *J* = 7.6, 1.5, 1H), 7.38 (td, *J* = 7.5, 1.5, 1H), 7.44 (ddd, *J* = 7.8, 1.5, 0.5, 1H), 7.52 (ddd, *J* = 8.1, 6.9, 1.3, 1H), 7.59 (ddd, *J* = 8.4, 6.9, 1.4, 1H), 7.75 (d, *J* = 8.6, 1H), 7.82 – 7.91 (m, 3H), 8.40 (bd, *J* = 8.4, 1H).

¹³C NMR (101 MHz, CDCl₃): 15.1, 28.3, 52.1, 63.7, 74.7, 79.1, 80.9, 88.1, 92.1, 93.8, 118.0, 123.7, 124.3, 126.4, 126.6, 127.3, 127.4, 128.3, 129.3, 130.2, 131.6, 132.1, 132.7, 133.5, 134.5, 142.8, 167.0.

IR (CHCl₃): 3304 m, 3063 w, 2979 m, 2953 m, 2932 w, sh, 2886 w, 2845 w, 2235 w, 2098 w, 1727 vs, 1596 w, 1568 w, 1507 w, 1486 m, 1469 w, sh, 1449 w, 1435 m, 1298 s, 1279 s, 1256 s, 1164 w, 1145 m, 1131 s, 1098 s, 1044 s, 1027 s, 965 w, 869 m, 824 m, 657 m, 617 w cm⁻¹.
EI MS: 412 (M⁺, 3), 321 (19), 276 (33), 239 (100), 211 (43), 193 (86), 165 (62), 152 (99).
HR EI MS: calcd for C₂₇H₂₄O₄ 412.1669, found 412.1660.

<u>Methyl 2-[4-(ethoxymethoxy)-4-{1-[(2-formylphenyl)ethynyl]naphthalen-2-yl}but-1-yn-1-</u> <u>yl]benzoate</u> 31

A Schlenk flask was charged with 2-bromobenzaldehyde (224 mg, 1.21 mmol), bis(triphenylphosphine)palladium chloride (17.0 mg, 0.02 mmol, 2 mol%), copper(I) iodide (9.22 mg, 0.05 mmol, 4 mol%) and flushed with argon. The degassed tetrahydrofuran (10 mL) and degassed triethylamine (10 mL) were added and the mixture was

heated to 50 °C. Then divne **30** (550 mg, 1.33 mmol, 1.1 equiv.) in degassed tetrahydrofuran (10 mL) was slowly added and the reaction was stirred at 50 °C for 4 hours. The solvents were evaporated under the reduced pressure. The residue was chromatographed on silica gel (hexane-ethyl acetate 20:1 to 10:1) to afford the desired product **31** (518 mg, 83%).

¹**H NMR** (400 MHz, CDCl₃): 1.12 (t, *J* = 7.1, 3H), 3.11 (dd, *J* = 16.9, 6.0, 1H), 3.16 (dd, *J* = 16.9, 6.9, 1H), 3.55 (dq, *J* = 9.5, 7.1, 1H), 3.75 (s, 3H), 3.84 (dq, *J* = 9.5, 7.1, 1H), 4.71 (d, *J* = 6.9, 1H), 4.85 (d, *J* = 6.9, 1H), 5.82 (t, *J* = 6.4, 1H), 7.26 – 7.31 (m, 1H), 7.35 (td, *J* = 7.6, 1.5, 1H), 7.42 (ddd, *J* = 7.8, 1.6, 0.6, 1H), 7.49 (dddd, *J* = 8.1, 7.4, 1.3, 0.8, 1H), 7.56 (ddd, *J* = 8.1, 6.8, 1.2, 1H), 7.58 – 7.62 (m, 1H), 7.65 (ddd, *J* = 8.3, 6.9, 1.3, 1H), 7.78 (d, *J* = 8.6, 1H), 7.84 (ddd, *J* = 7.7, 1.3, 0.6, 1H), 7.85 (ddd, *J* = 7.8, 1.5, 0.6, 1H), 7.89 (ddt, *J* = 8.0, 1.2, 0.6, 1H), 7.94 (bd, *J* = 8.7, 1H), 7.98 (ddd, *J* = 7.8, 1.5, 0.6, 1H), 8.45 (ddt, *J* = 8.4, 1.4, 0.8, 1H), 10.78 (d, *J* = 0.8, 1H).

¹³C NMR (101 MHz, CDCl₃): 15.1, 28.6, 52.1, 63.8, 74.8, 81.1, 91.96, 91.98, 93.6, 95.9, 118.5, 123.8, 124.2, 126.3, 126.7, 126.8, 127.5, 127.6, 127.9, 128.5, 129.0, 129.8, 130.2, 131.6, 132.0, 132.9, 133.3, 133.9, 134.0, 134.5, 135.9, 142.6, 166.7, 191.4.

IR (CHCl₃): 3063 w, 2978 w, 2953 m, 2931 w, 2886 w, 2855 w, 2846 w, sh, 2743 w, 2232 w, 2201 w, 1728 s, 1697 vs, 1654 w, 1594 m, 1568 w, 1508 w, 1486 m, 1449 m, 1435 m, 1298 s, 1277 m, 1255 s, 1163 wm 1147 w, sh, 1131 m, 1097 m, 1045 s, 1027 s, 964 w, 868 w, 825 m, 638 w, 437 w cm⁻¹.

ESI MS: 539 ([M+Na]⁺).

HR ESI MS: calcd for C₃₄H₂₈O₅Na 539.1829, found 539.1830.

<u>Methyl 2-{4-[1-({2-[1-(acetyloxy)but-3-yn-1-yl]phenyl}ethynyl)naphthalen-2-yl]-4-</u> (ethoxymethoxy)but-1-yn-1-yl}benzoate 32

A Schlenk flask was filled with zinc powder (122 mg, 1.86 mmol, 2 equiv.) and flushed with argon. Freshly distilled tetrahydrofuran (4 mL) was added and vigorously stirred. Then propargyl bromide (80 wt. % in toluene, 207 μ L, 1.86 mmol, 2 equiv.) was added and stirred for 10 min, before it was transferred by a syringe to the second Schlenk flask,

which contained aldehyde **31** (480 mg, 0.93 mmol) and tetrahydrofuran (20 mL). The reaction mixture was stirred for 5 min at room temperature, before triethylamine (380 μ L, 2.79 mmol, 3 equiv.) and acetic anhydride (264 μ L, 2.79 mmol, 3 equiv.) were added and the solution was stirred for 2 h at room temperature. The solvents were evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 10:1) to obtain acetate **32** (451 mg, 81%) as a mixture of diastereomers in a ratio about 1:1.

¹H NMR (400 MHz, CDCl₃, mixture of diastereomers): 1.09 (t, *J* = 7.1, 3H), 1.10 (t, *J* = 7.1, 3H), 2.03 (t, J = 2.8, 1H), 2.04 (t, J = 2.7, 1H), 2.14 (s, 6H), 2.91 (dt, J = 17.0, 2.5, 2H), 2.88 - 2.96 (m, 2H), 3.00 (dd, J = 17.0, 5.4, 1H), 3.01 (dd, J = 17.0, 5.5, 1H), 3.10 – 3.23 (m, 4H), 3.546 (dq, J = 9.5, 7.1, 1H), 3.553 (dq, J = 9.5, 7.1, 1H), 3.767 (s, 3H), 3.773 (s, 3H), 3.77 – 3.86 (m, 2H), 4.75 (d, J = 6.8, 1H), 4.76 (d, J = 6.8, 1H), 4.88 (d, J = 6.8, 1H), 4.89 (d, J = 6.8, 1H), 5.80 (t, J = 6.1, 2H), 6.56 (t, J = 6.1, 2H), 7.26 – 7.44 (m, 10H), 7.51 – 7.57 (m, 4H), 7.64 (ddd, J = 8.4, 6.7, 1.2, 2H), 7.72 – 7.76 (m, 2H), 7.80 (d, J = 8.6, 2H), 7.83 – 7.92 (m, 6H), 8.55 (bd, J = 8.5, 2H). ¹³C NMR (101 MHz, CDCl₃, mixture of diastereomers): 15.1 (2C), 21.1, 21.2, 26.0, 26.1, 28.5, 28.6, 52.10, 52.13, 63.8 (2C), 71.00, 71.04, 72.0, 72.1, 75.1 (2C), 79.5, 79.6, 81.00, 81.04, 90.58, 90.60, 92.3 (2C), 94.0 (2C), 97.37, 97.40, 118.76, 118.79, 121.50, 121.54, 123.85, 123.89, 124.30, 124.33, 126.2, 126.3, 126.6 (2C), 126.6 (2C), 127.4 (4C), 128.2 (2C), 128.3 (2C), 128.91, 128.94, 129.2 (2C), 130.2, 130.3, 131.6 (2C), 132.01, 132.04, 132.8, 132.9, 133.08, 133.11, 133.29, 133.33, 134.5 (2C), 140.5, 140.6, 142.11, 142.14, 166.87, 166.92, 169.8, 169.9. IR (CHCl₃): 3309 m, 3062 w, 2978 w, 2953 w, 2930 w, 2887 w, 2235 w, 2204 vw, 2125 vw, 1732 vs, 1597 w, 1568 w, 1508 w, 1486 m, 1468 w, sh, 1449 m, 1435 m, 1374 m, 1297 m, 1277 m, 1253 s, sh, 1238 vs, 1163 w, 1148 w, sh, 1131 m, 1109 m, 1098 m, 1043 s, 1027 s, 1019 s, sh,

965 w, 868 w, 824 w, 701 w, 641 w, 607 w, 436 w cm⁻¹.

ESI MS: 621 ([M+Na]⁺).

HR ESI MS: calculated for C₃₉H₃₄O₆Na 621.2248, found 621.2245.

Methyl 2-hexahelicen-8-ylbenzoate 33

Triyne **32** (420 mg, 0.70 mmol) was loaded to a microwave vial and chlorobenzene (12 mL) was added. The solution was bubbled with nitrogen for 5 minutes before CpCo(CO)(fum) (103 mg, 0.37 mmol, 0.5 equiv, fum = dimethylfumarate) was added. The seal was closed and the reaction mixture was heated to 170 °C in the

microwave reactor for 20 minutes. *p*-Toluenesulfonic acid monohydrate (666 mg, 3.50 mmol, 5 equiv.) was added and the reaction mixture was strirred for 1 h at 95 °C. The solvent was evaporated in vacuum. The residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 20:1) to obtain helicene **33** (224 mg, 69%) as a mixture of two atropodiastereomers (AD) in a ratio 1.3:1.

¹H NMR (400 MHz, CDCl₃, mixture of atropodiastereomers): 3.14 (s, 3H, minor AD), 3.30 (s, 3H, major AD), 6.67 – 6.75 (m, 4H), 7.20 – 7.26 (m, 4H), 7.54 – 7.73 (m, 12H), 7.79 – 7.88 (m, 8H), 7.89 – 7.96 (m, 8H), 8.11 (dd, *J* = 7.8, 1.5, 1H, major AD), 8.14 (dd, *J* = 7.8, 1.5, 1H, minor AD).

¹³C NMR (101 MHz, CDCl₃, mixture of atropodiastereomers): 51.7, 52.0, 124.2, 124.3, 124.4, 124.7, 124.80, 124.82, 124.89, 124.92, 125.5, 125.6 (2C), 125.7, 126.1, 126.2, 126.3, 126.4, 126.9, 127.1 (2C), 127.2, 127.5, 127.6, 127.66 (3C), 127.72, 127.8, 127.90, 127.94, 128.0 (3C), 128.07, 128.12, 128.2, 128.3, 129.9, 130.1, 130.2, 130.36, 130.38, 130.41, 130.43, 130.6, 130.8, 130.9, 131.77, 131.82, 131.87, 131.92, 131.95, 131.98 (3C), 132.2 (2C), 132.3, 132.48, 132.50, 132.51, 138.4, 138.7, 141.1, 141.4, 167.7, 168.2.

IR (CHCl₃): 3051 w, 2953 w, 2843 w, sh, 1726 vs, 1717 vs, 1617 vw, 1604 w, 1598 w, 1580 w, 1572 w, 1502 vw, 1490 vw, 1457 vw, 1449 w, 1434 w, 1419 w, 1391 w, 1364 vw, 1297 vs, 1278 s, 1261 s, 1192 m, 1169 w, 1129 m, 1096 w, 1075 w, 1040 w, 965 w, sh, 891 w, 837 m, 825 w, 817 w, 808 m, 687 w, 615 w, 575 w, 517 m cm⁻¹.

ESI MS: 485 ([M+Na]⁺).

HR ESI MS: calculated for C₃₄H₂₂O₂Na 485.1512, found 485.1511.

12H-Naphtho[1,2,3-jk]hexahelicen-12-one 3A

13H-Indeno[2,1-i]hexahelicen-13-one 3F

Ester **33** (195 mg, 0.42 mmol) was dissolved in tetrahydrofuran (5 mL) and methanol (5 mL), and potassium hydroxide (235 mg, 4.20 mmol, 10 equiv.) was added. The mixture was heated to 65 °C and stirred for 4 h. Then the reaction was cooled to rt and diluted hydrochloric acid was added to reach pH 1. The mixture was extracted with diethyl ether (2x 20 mL), and the combined organic layers were dried over anhydrous magnesium sulfate. The solvents were evaporated under the reduced pressure to obtain crude carboxylic acid, which was directly used further. This acid was dissolved in methanesulfonic acid (10 mL) and the flask was put to the oil bath pre-heated to 80 °C. The stirring was continued for 1 h at 80 °C and then the reaction mixture was poured over crushed ice. The mixture was extracted with dichloromethane (2x 20 mL), the combined organic layers were washed with saturated sodium bicarbonate solution (10 mL), dried over anhydrous magnesium sulfate. The solvent was evaporated *in vacuo* and the residue was purified by flash chromatography on silica gel
(hexane-dichloromethane 2:1 to 1:2) to afford **3A** (59.6 mg, 33%) as an orange solid and **3F** (92.3 mg, 51%) as a red solid.

<u>12H-Naphtho[1,2,3-jk]hexahelicen-12-one</u> 3A

M.p.: 310 − 311 °C (CH₃CN).

Optical rotation: $[\alpha]^{20}_{D}$ +1094° (c 0.030, CH₂Cl₂); $[\alpha]^{20}_{D}$ -1031° (c 0.022, CH₂Cl₂).

¹**H NMR** (600 MHz, CD₂Cl₂): 6.72 (ddd, *J* = 8.5, 7.7, 1.5, 1H), 6.74 (ddd, *J* = 8.4, 6.9, 1.4, 1H), 7.25 (ddd, *J* = 8.0, 6.8, 1.2, 1H), 7.29 (ddd,

J = 7.9, 6.8, 1.2, 1H), 7.45 (dq, J = 8.5, 0.9, 1H), 7.58 (dq, J = 8.5, 0.8, 1H), 7.63 (ddd, J = 8.0, 7.1, 1.1, 1H), 7.84 - 7.89 (m, 3H), 8.00 (bd, J = 8.3, 1H), 8.01 (d, J = 8.1, 1H), 8.07 (d, J = 8.6, 1H), 8.15 (d, J = 8.6, 1H), 8.52 (dd, J = 7.8, 1.2, 1H), 8.60 (dd, J = 7.9, 1.0, 1H), 8.92 (s, 1H), 9.19 (s, 1H).

¹³C NMR (151 MHz, CD₂Cl₂): 124.1, 125.0, 125.2, 125.4, 125.6, 125.7, 126.5, 126.79, 126.82, 127.21, 127.24, 128.0, 128.2 (3C), 128.8, 129.0, 129.2 (2C), 129.3, 129.7, 129.9, 130.0, 130.9, 131.0, 131.2, 131.4, 132.3, 133.1, 133.7, 134.1, 136.9, 184.0.

IR (CHCl₃): 3076 w, 3053 w, 2958 w, 2927 w, 2855 w, 1651 vs, 1602 m, 1594 m, 1576 m, 1557 vw, 1505 w, 1477 w, 1457 vw, 1420 w, 1382 w, 1369 m, 1332 w, sh, 1295 m, 1271 m, 1237 w, 1162 w, 1128 w, 1024 w, 994 w, 922 w, 910 w, 887 w, 814 m, 679 w, 628 w, 610 vw, 517 w, 510 w, 475 w cm⁻¹.

APCI MS: 431 ([M+H]⁺).

HR APCI MS: calcd for C₃₃H₁₉O 431.1430, found 431.1425.

13H-Indeno[2,1-i]hexahelicen-13-one 3F

M.p.: 189 – 190 °C (CH₃CN).

¹**H NMR** (400 MHz, CDCl₃): 6.63 (ddd, *J* = 8.4, 6.9, 1.4, 1H), 6.69 (ddd, *J* = 8.5, 6.9, 1.4, 1H), 7.18 (ddd, *J* = 8.0, 7.0, 1.1, 1H), 7.20 (ddd, *J* = 7.9, 6.9, 1.0, 1H), 7.32 (t, *J* = 7.3, 1H), 7.33 (d, *J* = 7.8, 1H),

7.45 (bd, *J* = 8.6, 1H), 7.50 (td, *J* = 7.5, 1.3, 1H), 7.70 (dd, *J* = 7.1, 1.3, 1H), 7.74 – 7.79 (m, 2H), 7.85 (d, *J* = 8.6, 1H), 7.94 (d, *J* = 8.3, 2H), 7.96 (d, *J* = 8.2, 1H), 8.04 (d, *J* = 7.6, 1H), 8.57 (d, *J* = 8.6, 1H), 9.24 (d, *J* = 8.9, 1H). ¹³C NMR (101 MHz, CDCl₃): 121.8, 122.6, 123.5, 123.9, 125.3, 125.4, 125.8, 126.1, 126.15, 126.16, 127.5, 127.7, 127.74, 127.76, 127.9, 128.3, 128.5, 128.6, 129.0, 129.73, 129.74, 129.8, 130.17, 130.20, 130.4, 131.9, 132.1, 132.3, 134.3, 135.7, 143.2, 144.1, 195.6.

IR (CHCl₃): 3083 w, sh, 3051 w, 2955 w, 2928 w, 2855 w, 1700 vs, 1620 w, 1606 w, 1589 w, 1567 w, 1555 w, 1514 w, 1498 w, 1487 w, 1465 m, 1426 w, 1421 m, 1381 m, 1340 w, 1287 w, 1252 w, 1197 w, 1174 w, 1159 w, 1090 m, 1035 vw, 1015 w, 958 m, 927 w, 868 w, 837 w, 831 m, 816 m, 651 w, 618 w, 520 m, 477 vw cm⁻¹.

APCI MS: 431 ([M+H]⁺).

HR APCI MS: calcd for C₃₃H₁₉O 431.1430, found 431.1425.

Synthesis of compounds 4A and 4F

(a) 4-Bromophenanthrene-3-carbaldehyde (1.0 equiv.), diyne 19 (1.1 equiv.), $Pd(PPh_3)Cl_2$ (2 mol%), Cul (4 mol%), THF:Et₃N (2:1), 50 °C, 3 h;

(b) Zn (2.0 equiv.), propargyl bromide (2.0 equiv.), compound 34 (1.0 equiv.), THF, rt, 15 min, then Et_3N (3.0 equiv.), Ac_2O (3.0 equiv.), THF, rt, 4 h;

(c) triyne 35 (1.0 equiv.), CpCo(CO)(fum) (0.7 equiv.), PhCl, 180 °C, 20 min, then *p*-TsOH.H₂O (5.0 equiv.), 95 °C, 1h.

(d) ester 36 (1.0 equiv.), KOH (10.0 equiv.), THF:MeOH (1:1), 65 °C, 5 h, then MeSO₃H, 80°C, 2h.

<u>Methyl 2-[4-(ethoxymethoxy)-4-{2-[(3-formylphenanthren-4-yl)ethynyl]phenyl}but-1-yn-1-</u> yl]benzoate 34

A Schlenk flask was charged with 4bromophenanthrene-3-carbaldehyde (356 mg, 1.25 mmol), bis(triphenylphosphine)palladium chloride (17.5 mg, 0.03 mmol, 2 mol%), copper(I) iodide (9.52 mg, 0.05 mmol, 4 mol%) and flushed with argon. The degassed tetrahydrofuran (10 mL) and degassed triethylamine (10 mL) were added and the mixture was heated to 50 °C. Then diyne **19** (500 mg, 1.38 mmol, 1.1 equiv.) in degassed tetrahydrofuran (10 mL) was slowly added and the reaction was stirred at 50 °C for 3 hours. The solvents were evaporated under the reduced pressure. The residue was chromatographed on silica gel (hexane-ethyl acetate 20:1 to 10:1) to afford the desired product **34** (502 mg, 71%).

¹**H NMR** (400 MHz, CDCl₃): 1.05 (t, *J* = 7.1, 3H), 3.09 (dd, *J* = 17.0, 6.2, 1H), 3.15 (dd, *J* = 17.0, 6.7, 1H), 3.51 (dq, *J* = 9.5, 7.1, 1H), 3.73 (s, 3H), 3.72 – 3.80 (m, 1H), 4.71 (d, *J* = 7.0, 1H), 4.83 (d, *J* = 7.0, 1H), 5.56 (t, *J* = 6.4, 1H), 7.18 – 7.27 (m, 2H), 7.31 – 7.35 (m, 1H), 7.41 (td, *J* = 7.5, 1.4, 1H), 7.50 (td, *J* = 7.6, 1.4, 1H), 7.66 (ddd, *J* = 8.0, 7.0, 1.2, 1H), 7.69 – 7.80 (m, 5H), 7.88 (d, *J* = 8.6, 1H), 7.90 – 7.95 (m, 2H), 8.14 (d, *J* = 8.2, 1H), 10.29 – 10.34 (m, 1H), 11.13 (d, *J* = 0.9, 1H).

¹³C NMR (101 MHz, CDCl₃): 15.0, 28.8, 52.0, 63.8, 74.8, 81.4, 91.5, 92.2, 93.6, 101.3, 121.6, 124.0, 124.06, 124.07, 126.7, 126.9, 127.0, 127.3, 127.4, 127.7, 128.2, 128.9, 129.7, 129.8, 130.1, 130.4, 130.99, 131.01, 131.5, 131.9, 132.7, 133.5, 134.5, 136.5, 136.7, 143.2, 166.7, 192.9.

IR (CHCl₃): 3066 w, 2979 w, 2953 w, 2933 w, 2885 w, 2884 w, sh, 2230 vw, 2193 w, 1727 s, 1686 vs, 1588 m, 1568 w, 1486 m, 1467 w, 1448 m, 1435 m, 1395 w, sh, 1297 m, 1278 m, 1256 vs, 1232 m, 1164 w, 1148 w, 1131 m, 1111 m, 1099 m, 1044 m, 1018 m, 964 w, 869 w, 849 m, 701 w, 637 w, 521 w cm⁻¹.

ESI MS: 589 ([M+Na]⁺).

HR APCI MS: calcd for C₃₈H₃₀O₅Na 589.1986, found 589.1984.

<u>Methyl 2-{4-[2-({3-[1-(acetyloxy)but-3-yn-1-yl]phenanthren-4-yl}ethynyl)phenyl]-4-</u> (ethoxymethoxy)but-1-yn-1-yl}benzoate 35

A Schlenk flask was filled with zinc powder (106 mg, 1.62 mmol, 2 equiv.) and flushed with argon. Freshly distilled tetrahydrofuran (4 mL) was added and vigorously stirred. Then propargyl bromide (80 wt. % in toluene, 180 μ L, 1.62 mmol, 2 equiv.) was added and stirred for 10 min, before it was transferred by a syringe

to the second Schlenk flask, which contained aldehyde 34 (461 mg, 0.81 mmol) and

tetrahydrofuran (20 mL). The reaction mixture was stirred for 5 min at room temperature, before triethylamine (331 μ L, 2.43 mmol, 3 equiv.) and acetic anhydride (230 μ L, 2.43 mmol, 3 equiv.) were added and the solution was stirred for 4 h at room temperature. The solvents were evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 10:1) to obtain acetate **35** (405 mg, 77%) as a mixture of diastereomers in a ratio about 1:1.

¹**H NMR** (400 MHz, CDCl₃, mixture of diastereomers): 0.98 (t, J = 7.1, 3H), 1.02 (t, J = 7.1, 3H), 2.02 (t, J = 2.6, 1H), 2.03 (t, J = 2.6, 1H), 2.17 (s, 3H), 2.18 (s, 3H), 2.95 (dt, J = 17.1, 6.5, 2H), 3.08 (dt, J = 17.1, 5.1, 2H), 3.16 – 3.21 (m, 4H), 3.48 (dq, J = 9.4, 7.0, 1H), 3.51 (dq, J = 9.4, 7.0, 1H), 3.66 – 3.75 (m, 2H), 3.73 (s, 3H), 3.75 (s, 3H), 4.76 (d, J = 6.8, 1H), 4.77 (d, J = 6.9, 1H), 4.85 (d, J = 6.8, 1H), 4.89 (d, J = 6.8, 1H), 5.63 (t, J = 6.1, 1H), 5.64 (t, J = 6.1, 1H), 6.96 (t, J = 6.1, 1H), 6.97 (t, J = 6.1, 1H), 7.19 – 7.29 (m, 4H), 7.30 – 7.36 (m, 2H), 7.397 (td, J = 7.5, 1.5, 1H), 7.400 (td, J = 7.5, 1.5, 1H), 7.44 – 7.49 (m, 2H), 7.59 (ddd, J = 8.0, 7.0, 1.1, 1H), 7.60 (ddd, J = 8.0, 7.0, 1.1, 1H), 7.69 (d, J = 8.8, 2H), 7.71 – 7.85 (m, 12H), 7.88 (dt, J = 7.9, 1.6, 2H), 7.91 (bd, J = 8.3, 2H), 10.34 – 10.38 (m, 2H).

¹³C NMR (101 MHz, CDCl₃, mixture of diastereomers): 14.98, 15.03, 21.2 (2C), 25.96, 26.04, 28.8, 28.9, 52.0, 52.1, 63.77, 63.82, 71.17, 71.20, 71.9, 72.0, 74.9, 75.0, 79.7 (2C), 81.2, 81.3, 92.0, 92.1, 93.6, 93.8, 94.0, 94.1, 99.7, 99.9, 117.0 (2C), 121.8 (2C), 121.9 (2C), 123.7, 123.8, 124.22, 124.23, 126.32, 126.34, 126.67, 126.71, 127.08 (2C), 127.13 (2C), 127.2 (2C), 127.30, 127.32, 128.03, 128.04, 128.4 (2C), 128.6 (2C), 129.1, 129.2, 129.7, 129.8, 130.12, 130.14, 130.8 (2C), 131.4, 131.5, 131.9, 132.0, 132.7 (2C), 132.8, 132.9, 133.44 (2C), 134.46, 134.50, 142.3, 142.4, 142.9 (2C), 166.87 (2C), 169.88, 169.91.

IR (CHCl₃): 3309 m, 3054 w, 2979 w, 2952 w, 2933 w, 2886 w, 2845 w, 2232 w, 2192 vw, 2124 vw, 1732 vs, 1625 vw, 1597 w, 1568 w, 1486 m, 1448 m, 1435 m, 1373 m, 1297 m, 1278 m, 1253 s, 1238 vs, 1163 w, 1147 w, 1131 m, 1111 m, 1099 m, 1044 vs, 1022 s, 965 w, 868 w, 845 m, 701 w, 640 w, 602 w cm⁻¹.

ESI MS: 671 ([M+Na]⁺).

HR ESI MS: calculated for C₄₃H₃₆O₆Na 671.2404, found 671.2402.

Methyl 2-heptahelicen-7-ylbenzoate 36

Triyne **35** (364 mg, 0.56 mmol) was loaded to a microwave vial and chlorobenzene (12 mL) was added. The solution was bubbled with nitrogen for 5 minutes before CpCo(CO)(fum) (109 mg, 0.39 mmol, 0.7 equiv, fum = dimethylfumarate) was added. The seal was closed and the reaction mixture was heated to 180 °C in the microwave

reactor for 20 minutes. *p*-Toluenesulfonic acid monohydrate (532 mg, 2.80 mmol, 5 equiv.) was added and the reaction mixture was strirred for 1 h at 95 °C. The solvent was evaporated in vacuum. The residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 20:1) to obtain helicene **36** (175 mg, 61%) as a mixture of two atropodiastereomers in a ratio 3.7:1.

¹H NMR (400 MHz, CDCl₃, major atropodiastereomer): 3.71 (s, 3H), 6.42 (ddd, *J* = 8.4, 6.9, 1.4, 1H), 6.54 (ddd, *J* = 8.4, 6.9, 1.5, 1H), 6.90 (ddd, *J* = 8.0, 6.9, 1.2, 1H), 6.92 (ddd, *J* = 8.2, 6.9, 1.2, 1H), 7.21 (dd, *J* = 8.5, 1.1, 1H), 7.25 - 7.29 (m, 1H), 7.32 (dd, *J* = 8.0, 1.4, 1H), 7.36 (d, *J* = 8.8, 1H), 7.38 (d, *J* = 8.7, 1H), 7.48 - 7.53 (m, 2H), 7.53 (d, *J* = 8.7, 1H), 7.61 (td, *J* = 7.6, 1.5, 1H), 7.68 (td, *J* = 7.5, 1.5, 1H), 7.83 (s, 1H), 7.94 (d, *J* = 8.2, 1H), 7.99 - 8.04 (m, 3H), 8.05 (d, *J* = 8.2, 1H), 8.23 (dd, *J* = 7.8, 1.5, 1H).

¹³C NMR (101 MHz, CDCl₃, major atropodiastereomer): 52.1, 123.2, 123.8, 123.9, 124.8, 124.9, 125.01, 125.04, 125.1, 125.6, 125.8, 126.0, 126.5, 126.7, 126.8, 127.0, 127.2 (2C), 127.4, 127.5, 128.0, 128.3, 128.4, 129.5, 129.6, 130.0, 130.5, 131.0, 131.30, 131.34, 131.5, 131.8, 132.0, 132.2 (2C), 139.6, 141.9, 167.6.

IR (CHCl₃): 3053 w, 2953 w, 2928 w, 2855 w, 2844 w, sh, 1723 vs, 1617 vw, 1599 w, 1571 w, 1541 w, 1497 w, 1488 w, 1470 w, sh, 1447 w, 1434 m, 1417 vw, 1359 w, sh, 1294 s, 1275 m, 1260 s, 1238 w, 1163 w, 1133 m, 1091 m, 1073 w, 1044 w, 1035 w, 964 w, 889 w, 881 w, 838 vs, 825 m, 688 w, 648 w, 613 m, 604 w, 588 w, 566 w, 534 w, 525 w, 472 vw cm⁻¹.

ESI MS: 535 ([M+Na]⁺).

HR ESI MS: calcd for C₃₈H₂₄O₂Na 535.1669, found 535.1670.

14H-Naphtho[3,2,1-gh]heptahelicen-14-one 4A

15H-Indeno[1,2-i]heptahelicen-15-one 4F

Ester **36** (152 mg, 0.30 mmol) was dissolved in tetrahydrofuran (4 mL) and methanol (4 mL), and potassium hydroxide (168 mg, 3.00 mmol, 10 equiv.) was added. The mixture was heated

to 65 °C and stirred for 5 h. Then the reaction was cooled to rt and diluted hydrochloric acid was added to reach pH 1. The mixture was extracted with diethyl ether (2x 20 mL), and the combined organic layers were dried over anhydrous magnesium sulfate. The solvents were evaporated under the reduced pressure to obtain crude carboxylic acid, which was directly used further. This acid was dissolved in methanesulfonic acid (10 mL) and the flask was put to the oil bath pre-heated to 80 °C. The stirring was continued for 2 h at 80 °C and then the reaction mixture was poured over crushed ice. The mixture was extracted with dichloromethane (2x 20 mL), the combined organic layers were washed with saturated sodium bicarbonate solution (10 mL), dried over anhydrous magnesium sulfate. The solvent was evaporated *in vacuo* and the residue was purified by flash chromatography on silica gel (hexane-dichloromethane 2:1 to 1:3) to afford **4A** (20.8 mg, 14%) as an orange solid and **4F** (64.4 mg, 45%) as a red solid.

14H-Naphtho[3,2,1-gh]heptahelicen-14-one 4A

Optical rotation: $[\alpha]^{20}_{D}$ +3493° (c 0.024, CH₂Cl₂); $[\alpha]^{20}_{D}$ -3526° (c 0.021, CH₂Cl₂).

¹H NMR (400 MHz, CDCl₃): 6.34 (ddd, *J* = 8.4, 6.8, 1.4, 1H), 6.55 (ddd, *J* = 8.4, 6.9, 1.4, 1H), 6.89 (ddd, *J* = 8.0, 6.8, 1.2, 1H), 7.00 (ddd, *J* = 8.0, 6.8, 1.2, 1H), 7.14 (bd, *J* = 8.4, 1H), 7.23 (bd, *J* = 8.6, 1H), 7.30 (dd, *J* = 8.0, 1.3, 1H), 7.50 (d, *J* = 8.5, 1H), 7.57 (dd, *J* = 8.1, 1.3, 1H), 7.63 (td, *J* = 7.5, 1.1, 1H), 7.72 (d, *J* = 8.5, 1H), 7.85 (ddd, *J* = 8.4, 7.1, 1.5, 1H), 7.95 (d, *J* = 8.2, 1H), 8.00 (d, *J* = 8.3, 1H), 8.07 (d, *J* = 8.2, 1H), 8.12 (d, *J* = 8.2, 1H), 8.59 (t, *J* = 7.0, 1H), 8.60 (d, *J* = 7.8, 1H), 8.82 (s, 1H), 8.86 (s, 1H).

M.p.: 125 - 126 °C (CH₃CN).

¹³C NMR (101 MHz, CDCl₃): 123.9, 124.2, 124.3, 124.4, 124.7, 125.4 (3C), 125.6, 125.7, 126.0
(2C), 126.2, 126.6, 126.9, 127.0, 127.3, 127.8, 128.0, 128.39, 128.42, 128.5 (2C), 128.8, 129.1, 129.2, 130.8, 131.1, 131.3, 131.8, 131.9, 132.0, 132.1, 132.7, 133.9, 136.8, 184.5.

IR (CHCl₃): 3053 w, 3027 w, 2957 w, 2928 vs, 2855 m, 1653 vs, 1610 m, 1601 m, 1583 m, 1554 w, 1522 w, 1498 w, 1486 w, 1465 vw, 1441 w, 1395 w, 1379 w, 1365 vw, 1330 w, 1280 m, 1265 m, 1261 m, 1249 w, 1172 w, 1148 w, 1117 w, 1083 w, sh, 1031 w, 982 w, 963 w, 883 w, 839 m, 829 w, 812 w, 700 w, 621 w, 609 m, 565 w, 541 w, 516 w, 472 w cm⁻¹.

APCI MS: 481 ([M+H]⁺).

HR APCI MS: calcd for C₃₇H₂₁O 481.1587, found 481.1585.

15H-Indeno[1,2-i]heptahelicen-15-one 4F

M.p.: 304 – 305 °C (CH₃CN).

¹**H NMR** (600 MHz, CD₂Cl₂): 6.43 (ddd, *J* = 8.3, 6.8, 1.4, 1H), 6.51 (ddd, *J* = 8.3, 6.8, 1.4, 1H), 6.959 (ddd, *J* = 8.0, 6.9, 1.2, 1H), 6.963 (ddd, *J* = 8.0, 6.9, 1.1, 1H), 7.09 (dq, *J* = 8.4, 0.8, 1H), 7.31 (ddt, *J* = 8.1, 1.2, 0.6,

1H), 7.32 (ddt, *J* = 8.1, 1.3, 0.6, 1H), 7.34 (dq, *J* = 8.5, 0.9, 1H), 7.41 (ddd, *J* = 7.7, 7.1, 0.8, 1H), 7.47 (dt, *J* = 8.4, 0.7, 1H), 7.60 (dt, *J* = 8.8, 0.7, 1H), 7.62 (td, *J* = 7.5, 1.3, 1H), 7.71 (d, *J* = 8.5, 1H), 7.75 (ddd, *J* = 7.1, 1.3, 0.6, 1H), 7.94 (dd, *J* = 8.1, 0.5, 1H), 8.00 (dd, *J* = 8.1, 0.5, 1H), 8.13 (dd, *J* = 8.4, 0.5, 1H), 8.21 (dq, *J* = 7.4, 0.7, 1H), 8.47 (d, *J* = 8.9, 1H), 9.35 (d, *J* = 8.4, 1H).

¹³C NMR (151 MHz, CD₂Cl₂): 121.6, 122.5, 124.0, 124.1, 124.48, 124.50, 124.7, 125.4, 126.0, 126.1, 126.2, 126.3, 126.6, 126.8, 126.9, 127.0, 127.2, 127.3, 127.8, 128.37, 128.42, 128.43, 128.8, 129.3, 129.73, 129.75, 129.9, 131.7, 132.2, 132.4, 132.8, 134.7, 135.2, 136.2, 144.2, 144.4, 195.8.

IR (CHCl₃): 3051 w, 2956 w, 2928 w, 2856 w, 1702 vs, 1614 w, 1608 w, 1583 w, 1568 w, 1551 w, 1516 w, 1502 w, 1475 w, 1464 m, 1396 w, 1337 w, 1278 w, 1234 m, 1195 w, 1173 w, 1158 w, 1088 w, 1009 w, 994 w, 959 vw, 900 w, 884 vw, 846 s, 828 m, 806 w, 662 w, 648 w, 617 m, 565 w, 524 w, 471 vw cm⁻¹.

APCI MS: 481 ([M+H]⁺).

HR APCI MS: calcd for C₃₇H₂₁O 481.1587, found 481.1582.

Synthesis of compounds 5A and 5F

(a) 2-Bromo-1,4-dimethylbenzene 37 (1.0 equiv.), NBS (2.02 equiv.), AIBN (cat.), CHCl₃, 62 °C, 4 h;

(b) compound 38 (1.0 equiv.), P(OEt)₃ (2.01 equiv.), 120°C, 14 h;

(c) compound 39 (1.0 equiv.), 2-naphthaldehyde (2.77 equiv.), NaH (4.19 equiv.), PhMe, 120 °C, 30 min;

(d) stilbene 40 (1.0 equiv.), I₂ (0.17 equiv.), PhMe:EtOAc (19:1), rt, 40 h;

(e) helicene 41 (1.0 equiv.), 2-methoxycarbonylphenylboronic acid (1.5 equiv.), Pd_2dba_3 (2 mol%), Xphos (4 mol%), K_3PO_4 . H_2O (6.0 equiv.), PhMe, 90°C, 14 h;

(f) ester 42 (1.0 equiv.), NaOH (5.0 equiv.), THF:MeOH:H₂O (8:2:1), 70 °C, 16 h;

(g) MeSO₃H, 80°C, 30 min.

2-Bromo-1,4-bis(bromoethyl)benzene 38

2-Bromo-1,4-dimethylbenzene **37** (6.0 mL, 44 mmol), NBS (15.82 g, 88.9 mmol, 2.02 eq.) and AIBN (60 mg, 0.365 mmol, 0.08 equiv.) were charged in a round bottom flask. Chloroform was added (200 mL) and the reaction was refluxed under inert for 4 h. The whole reaction mixture was filtered through a short silica gel pad (eluent chloroform) to remove polar succinimide. Organic solvent

was removed *in vacuo* and the residue was adsorbed on silica-gel and extracted by continuous extraction by hot pentane through Thiele-Pappe attachment. After 5 hours of extraction the product **38** as a white precipitate (6.8 g, 45%) was collected by filtration over a glass frit S3. ¹H NMR spectrum is in agreement with the published data.¹¹

¹H NMR (400 MHz, CDCl₃): 4.41 (s, 2H), 4.58 (s, 2H), 7.32 (dd, *J* = 7.9, 1.8, 1H), 7.43 (d, *J* = 7.9, 1H), 7.61 (d, *J* = 1.8, 1H).

¹¹ L. Pan, K-M. Lee, Y-Y. Chan, Z. Ke, Y-Y. Yeung Org. Lett. 2023, 25, 53.

Tetraethyl [(2-bromobenzene-1,4-diyl)dimethanediyl]bis(phosphonate) 39

2-Bromo-1,4-bis(bromoethyl)benzene **38** (6.86 g, 20 mmol) and the triethylphosphite (6.9 mL, 40.2 mmol, 2.01 equiv.) were added in well dry round bottom flask and stirred overnight at 120°C under inert. The excess of triethylphosphite was removed *in vacuo* by heating the reaction mixture at 70°C for 4 h. The product **39** as a colorless oil (8.74 g, 99%) was used directly in the next step without any further purification. ¹H NMR

spectrum is in agreement with the published data.¹²

¹**H NMR** (400 MHz, CDCl₃): 1.22 – 1.27 (m, 12H), 3.04 – 3.11 (m, 2H), 3.33 – 3.40 (m, 2H), 3.98 – 4.08 (m, 8H), 7.19 - 7.22 (m, 1H), 7.37 – 7.41 (m, 1H), 7.49 (bs, 1H).

2,2'-[(2-Bromobenzene-1,4-diyl)di(E)ethene-2,1-diyl]dinaphthalene 40

In a well dry round bottom flask were dissolved previous bisphosphate **39** (8.74 g, 19.1 mmol) and 2-naphthaldehyde (8.27 g, 53 mmol, 2.77 equiv.) in dry toluene (350 mL). To this mixture was added NaH (60%, dispersion in mineral oil, 3.2 g, 80 mmol, 4.19 equiv.) and the mixture was heated at 120 °C for 30 min under inert. The reaction mixture was cooled to room temperature and then slowly poured into a mixture of ice-water-37 % HCl (100 g -100 ml-100 ml). The organic phase with partially precipitated yellow product was separated and the water phase was extracted with toluene (3 x 100 mL). The organic portions were combined and the volume was reduced to its 20 % on rotavap. The product **40** as a yellow precipitate (7.8 g, 89%)

was collected by filtration over a glass frit S3. ¹H NMR spectrum is in agreement with the published data.¹³

¹**H NMR** (400 MHz, CD₂Cl₂): 7.21 (d, *J* = 16.3, 1H), 7.29 – 7.37 (m, 2H), 7.46 – 7.53 (m, 4H), 7.58 (dd, *J* = 8.0, 1.8, 1H), 7.64 (d, *J* = 16.3, 1H) 7.76 - 7.90 (m, 12H).

¹³C NMR (101 MHz, CD₂Cl₂): 123.9, 124.1, 125.1, 126.3, 126.76, 126.77, 127.0 (2C), 127.2, 127.5, 127.6, 127.7 (2C), 128.2 (2C), 128.60, 128.61, 129.0 (2C), 130.6, 131.5, 131.8, 133.8, 133.9, 134.2 (2C), 135.0, 135.1, 136.5, 139.0.

¹² Z.-P. Zhuang, M.-P. Kung, C. Hou, D. M. Skovronsky, T. L. Gur, K. Plössl, J. Q. Trojanowski, V. M.-Y. Lee, H. F. Kung, *J. Med. Chem.* **2001**, *44*, 1905.

¹³ L Liu, B. Yang, T. J. Katz, M. K. Poindexter J. Org. Chem. 1991, 56, 3769.

9-Bromoheptahelicene 41

The previous stilbene **40** (3.2 g, 6.94 mmol) was suspended in toluene (400 mL). This mixture was heated to fully dissolve the starting material. When all the solid was dissolved, the mixture was diluted with toluene (1500 mL) and ethyl acetate (100 mL). Iodine (0.3 g, 1.18 mmol) was

added to the mixture and the reaction mixture was irradiated with medium-pressure mercury (150 W) lamp for 40 h open to air. The whole reaction mixture was evaporated, and the residue was adsorbed on silica-gel. The product was isolated by continuous extraction with refluxing cyclohexane using Thiele-Pappe attachment. After evaporation of cyclohexane, the residue was triturated in diethyl ether and filtered over glass frit S4 to get slightly yellow product **41** (1.25 g, 39%). ¹H NMR spectrum is in agreement with the published data.¹⁴

¹H NMR (400 MHz, CDCl₃): 6.40 – 6.44 (m, 2H), 6.89 – 6.94 (m, 2H), 7.04 (d, J = 2.7, 1H), 7.06 (d, J = 2.9, 1H), 7.30 (d, J = 7.9, 2H), 7.48 – 7.52 (m, 2H), 7.69 – 7.52 (m, 2H), 7.90 (d, J = 8.2, 2H), 8.01 (d, J = 8.5, 1H), 8.34 (s, 1H), 8.45 (d, J = 8.5, 1H).

Methyl 2-heptahelicen-9-ylbenzoate 42

In a dry Schlenk flask was dissolved 9-bromo[7]helicene **41** (100 mg, 0.22 mmol), 2-methoxycarbonylphenylboronic acid (60 mg, 0.33 mmol, 1.5 equiv.), Pd₂dba₃ (4 mg, 4.4 μ mol, 2 mol%), Xphos (4.2 mg, 8.8 μ mol, 4 mol%) and K₃PO₄.H₂O (304 mg, 1.32 mmol, 6 equiv.) in dry toluene (6 mL). The reaction mixture was thoroughly

degassed and then heated at 90 °C overnight. The solvent was evaporated *in vacuo* and the residue was purified by column chromatography on silca gel (cyclohexane- ethyl acetate 20:1). The product **42** was obtained as a yellow solid (104 mg, 92%). The ¹H NMR spectrum shows a mixture of two atropodiastereomers (1:1.7).

¹**H NMR** (400 MHz, CD₂Cl₂): 3.24 and 3.35 (s, in ratio 1:1.7, 3H), 6.36 – 6.44 (m, 2H), 6.87 – 6.93 (m, 2H), 7.08 – 7.11 (m, 1H), 7.14 – 7.20 (m, 1H), 7.28 – 7.32 (m, 2H), 7.47 – 7.52 (m, 2H), 7.59 – 7.64 (m, 3H), 7.69 – 7.77 (m, 3H), 7.79 – 7.82 (m, 1H), 7.85 – 7.87 (m, 1H), 7.94 – 8.01 (m, 2H), 8.11 and 8.17 (m, in ratio 1:1.7, 1H).

¹⁴ L Liu, B. Yang, T. J. Katz, M. K. Poindexter J. Org. Chem. 1991, 56, 3769.

¹³C NMR: Not recorded due to mixture of atropoisomers.

ESI MS: 535 ([M+Na] +).

HR ESI MS: calcd for C₃₈H₂₄O₂Na 535.1669; found 535.1665.

2-Heptahelicen-9-ylbenzoic acid 43

The previous compound **42** (104 mg, 0.203 mmol) and sodium hydroxide (41 mg, 1.01 mmol, 5 equiv.) was dissolved in a mixture of solvents of THF-methanol-water (4:1:0.5 mL). The mixture was stirred overnight at 70 °C under inert. Then the reaction was acidified by diluted hydrochloric acid and the mixture was extracted with

dichloromethane (4 x 10 mL). The combined organic portions were dried over MgSO₄. After filtration and evaporation of all the volatiles was obtained product **43** as an amorphous yellow solid (101 mg, yield 99%).

¹H NMR (400 MHz, tetrachloroethane-*d*₂, 110°C): 6.39 – 6.46 (m, 2H), 6.88 – 6.95 (m, 2H), 7.12
– 7.20 (m, 2H), 7.29 – 7.32 (m, 2H), 7.47 – 7.52 (m, 2H), 7.57 – 7.80 (m, 7H), 7.85 – 7.87 (m, 1H), 7.94 (s, 2H), 8.12 and 8.16 (d, in ratio 1:1.3, 1H).

¹³C NMR: Not recorded due to mixture of atropoisomers.

ESI MS: 497 ([M-H]⁻).

HR ESI MS: calcd for C₃₇H₂₁O₂ 497.1547; found 497.1544.

14H-Naphtho[3,2,1-jk]heptahelicen-14-one 5A

19H-Indeno[1,2-/]heptahelicen-19-one 5F

The previous acid **43** (320 mg, 0.64 mmol) was suspended in methanesulfonic acid (12.4 mL) and the reaction was stirred at 80 °C for 30 min. Then, the reaction was poured in water and neutralized by potassium carbonate solution. The mixture was extracted with dichloromethane (4 x 20 mL). The organic phase was dried over MgSO₄, filtered over the glass frit (S3) and evaporated *in vacuo*. The residue was chromatographed on silica gel (toluene). The first isolated product corresponds to the fluoreno-derivative **5F** and is red crystalline solid (126.8 mg, 41%) the second corresponds to the aceno-derivative **5A** and is an orange solid (42.3 mg, 14%). The combined yield (169 mg) is 55%.

<u>14H-Naphtho[3,2,1-jk]heptahelicen-14-one</u> 5A

M.p.: 299 - 300 °C (CH₃CN).

Optical rotation: $[\alpha]^{20}_{D}$ +3620° (c 0.026, CH₂Cl₂); $[\alpha]^{20}_{D}$ -3672° (c 0.025, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃): 6.44 – 6.51 (m, 2H), 6.93 – 6.99 (m, 2H), 7.21 (d, *J* = 8.5, 1H), 7.23 (d, *J* = 8.5, 1H), 7.31 (d, *J* = 3.8, 1H), 7.33 (d,

J = 4.2, 1H), 7.51 (d, J = 8.5, 1H), 7.56 (d, J = 8.5, 1H), 7.61 – 7.64 (m, 1H), 7.72 (d, J = 8.5, 1H), 7.85 (ddd, J = 8.4, 7.1, 1.5, 1H), 7.92 (d, J = 8.5, 1H), 7.98 (d, J = 8.2, 1H), 8.11 (d, J = 8.3, 1H), 8.58 – 8.62 (m, 2H), 8.91 (s, 1H), 9.19 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): 123.8, 124.1, 124.2, 124.3, 124.5, 124.9, 125.5, 125.77, 125.79, 125.9, 126.3, 126.46, 126.52, 126.6, 126.7, 126.9, 127.0, 127.3, 128.2 (2C), 128.3, 128.4, 128.47, 128.49, 129.2, 129.7, 130.3, 130.98, 131.03, 131.8, 131.9, 132.0, 132.3, 133.2, 133.8, 136.7, 184.2.

IR (CHCl₃): 3054 w, 2928 w, 2853 w, 1651 vs, 1602 s, 1585 vs, 1574 s, 1554 w, 1499 w, 1474 m, 1451 w, 1425 w, 1372 s, 1333 w, 1300 m, 1286 m, 1277 m, 1176 w, 1139 w, 1109 w, 1016 m, 952 w, 922 w, 885 w, 867 w, 833 s, 813 m, 698 w, 650 m, 642 m, 607 w, 522 w cm⁻¹.

ESI MS: 481 ([M+H] ⁺).

HR ESI MS: calcd for C₃₇H₂₁O 481.1587; found 481.1582.

19H-Indeno[1,2-/]heptahelicen-19-one 5F

M.p.: 307 - 308 °C (CH₃CN).

¹H NMR (400 MHz, CDCl₃): 6.44 – 6.49 (m, 2H), 6.90 – 6.95 (m, 2H),
7.02 (d, *J* = 13.6, 1H), 7.05 (d, *J* = 13.6, 1H), 7.27 (td, *J* = 1.5, 0.7, 1H),
7.29 (td, *J* = 1.4, 0.7, 1H), 7.37 (ddd, *J* = 7.8, 7.1, 0.8, 1H), 7.44 (d, *J* =

8.4, 1H), 7.51 (d, J = 8.4, 1H), 7.58 (td, J = 7.6, 1.3, 1H), 7.67 (d, J = 14.0, 1H), 7.69 (d, J = 14.0, 1H), 7.76 (ddd, J = 7.2, 1.3, 0.6, 1H), 7.99 (d, J = 8.4, 1H), 8.01 (d, J = 8.4, 1H), 8.18 (d, J = 7.5, 1H), 8.69 (d, J = 8.6, 1H), 9.33 (d, J = 8.5, 1H).

¹³C NMR (101 MHz, CDCl₃): 122.62, 122.63, 123.5, 123.9, 124.2, 124.5, 124.7, 124.9, 125.1, 125.3, 125.4, 125.7, 125.9, 126.8, 126.88, 126.93, 127.4, 127.9, 128.0, 128.5 (2C), 128.9, 129.0, 129.2 (2C), 129.6, 130.0, 131.2, 131.5, 131.9, 132.0, 132.2, 134.3, 135.9, 143.4, 144.2, 195.7.
IR (CHCl₃): 3053 w, 2929 w, 2856 w, 1700 vs, 1619 w, 1607 w, 1587 w, 1552 w, 1518 w, 1477 w, 1465 m, 1427 w, 1386 w, 1376 w, 1334 w, 1288 w, 1250 w, 1233 w, 1186 w, 1174 w, 1090 w, 1047 w, 1017 w, 954 w, 905 w, 842 m, 829 s, 656 w, 639 m, 618 m, 527 w, 471 w cm⁻¹.

ESI MS: 481 ([M+H] +).

HR ESI MS: calcd for C₃₇H₂₁O 481.1587; found 481.1589.

Synthesis of compounds 6A and 6F

(a) helicene 41 (1.0 equiv.), $B_2 pin_2$ (1.5 equiv.), $PdCl_2(dppf)$ (4 mol%), KOAc (3.0 equiv.), dioxane, 70 °C, 24 h;

(b) methyl 3-iodo-2-naphthoate (1.0 equiv.), compound 44 (1.0 equiv.), $Pd(PPh_3)Cl_2$ (4 mol%), K_2CO_3

(1.0 equiv.), PhMe:EtOH:H₂O (4:4:1), 90 °C, 16 h;

(c) ester 45 (1.0 equiv.), NaOH (5.0 equiv.), THF:MeOH: H_2O (19:4.8:2.4), 70 °C, 16 h;

(d) MeSO₃H, 80°C, 1h.

2-Heptahelicen-9-yl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 44

A Schlenk flask was charged with 9-bromo[7]helicene **41** (600 mg, 1.31 mmol), bis(pinacolato)diboron (500 mg, 1.97 mmol, 1.5 equiv.), PdCl₂(dppf) (38.3 mg, 52.4 μ mol, 4 mol%) and potassium acetate (386 mg, 3.93 mmol, 3 equiv.), flushed with argon and anhydrous dioxane

(40 mL) was injected. The reaction mixture was degassed and then it was stirred under inert atmosphere at 70 °C for 1 day. After cooling to rt, the solvent was evaporated under the reduced pressure and the residue was purified by chromatography on silica gel (hexane-ethyl acetate 30:1 to 20:1) to afford product **44** (612 mg, 93%) as a yellow amorphous solid. ¹H NMR spectrum is in agreement with the published data.¹⁵

¹⁵ M. Jakubec, I. Ghosh, J. Storch, B. König Chem. Eur. J. 2020, 26, 543.

¹**H NMR** (400 MHz, CD₂Cl₂): 1.53 (s, 12H), 6.38 – 6.43 (m, 2H), 6.87 – 6.93 (m, 2H), 7.03 – 7.08 (m, 2H), 7.26 – 7.32 (m, 2H), 7.47 (d, *J* = 6.5, 1H), 7.49 (d, *J* = 6.5, 1H), 7.70 – 7.75 (m, 2H), 7.92 (d, *J* = 8.1, 1H), 7.97 (d, *J* = 8.5, 1H), 8.05 (d, *J* = 8.3, 1H), 8.66 (s, 1H), 8.98 (d, *J* = 8.5, 1H).

Methyl 3-heptahelicen-9-yl)naphthalene-2-carboxylate 45

In a dry Schlenk flask was dissolved helicene **44** (474 mg, 0.94 mmol), methyl 3-iodo-2-naphthoate (293 mg, 0.94 mmol, 1.0 equiv.), PdCl₂(PPh₃)₂ (26.4 mg, 37.6 μmol, 4 mol%), K₂CO₃ (130 mg, 0.94 mmol, 1 equiv.) and the mixture of solvents of toluene-ethanol-water (25.6 mL, 4:4:1). The reaction mixture was thoroughly degassed and then heated at

90 °C overnight. The solvent was evaporated *in vacuo* and the residue was purified by column chromatography on silca gel (cyclohexane- ethyl acetate 20:1). The product **45** was obtained as a yellow solid (439 mg, 83%). The ¹H NMR spectrum shows mixture of two atropodiastereomers (1:1.8).

¹**H NMR** (400 MHz, CD₂Cl₂): 3.17 and 3.34 (s, in ratio 1:1.8, 3H), 6.39 – 6.49 (m, 2H), 6.90 – 6.96 (m, 2H), 7.09 – 7.25 (m, 2H), 7.29 – 7.35 (m, 2H), 7.48 – 7.53 (m, 2H), 7.63 – 7.72 (m, 4H), 7.73 – 7.80 (m, 2H), 7.92 – 8.05 (m, 4H), 8.08 – 8.14 (m, 2H), 8.68 and 8.75 (s, in ratio 1:1.8, 1H).

¹³C NMR: Not recorded due to mixture of atropoisomers.

FD MS: 562 ([M]^{+•}).

HR MS FD: calcd for C₄₂H₂₆O₂ 562.1927; found 562.1912.

3-Heptahelicen-9-ylnaphthalene-2-carboxylic acid 46

The previous compound **45** (550 mg, 0.977 mmol) and sodium hydroxide (195 mg, 4.88 mmol, 5 equiv.) was dissolved in a mixture of solvents of THF-methanol-water (19:4.8:2.4 mL). The mixture was stirred overnight at 70 °C under inert. Then the reaction was acidified by diluted hydrochloric acid and the

mixture was extracted with dichloromethane (4 x 20 mL). The combined organic portions were dried over MgSO₄. After filtration and evaporation of all the volatiles was obtained product **46** as an amorphous yellow solid (504 mg, yield 94%).

¹H NMR (400 MHz, tetrachloroethane-*d*₂, 110°C): 6.47 – 6.52 (m, 2H), 6.93 – 7.00 (m, 2H), 7.19
– 7.23 (m, 1H), 7.25 – 7.30 (m, 1H), 7.33 – 7.38 (m, 2H), 7.52 – 7.58 (m, 2H), 7.69 – 7.87 (m, 6H), 7.98 – 8.09 (m, 4H), 8.14 – 8.20 (m, 2H), 8.80 and 8.85 (s, in ratio 1:1.6, 1H).
¹³C NMR: Not recorded due to mixture of atropoisomers.
FD MS: 548 ([M]^{+•}).
HR MS FD: calcd for C₄₁H₂₄O₂ 548.1771; found 548.1797.

14H-Anthra[3,2,1-jk]heptahelicen-14-one 6A

21H-Benzo[5,6]indeno[1,2-/]heptahelicen-21-one 6F

The previous acid **46** (300 mg, 0.547 mmol) was suspended in methanesulfonic acid (12 mL) and the reaction was stirred at 80 °C for 1 hour. Then, the reaction was poured into water where brown solid was formed. The solid was collected by filtration over glass frit S4 and washed with water and then with methanol and dried. This solid was chromatographed on silica gel (toluene). The first isolated product corresponds to the fluoreno-derivative **6F** and is red crystalline solid (192 mg, 66%) the compound corresponds to the aceno-derivative **6A** and is an orange solid (80 mg, 28%). The combined yield (272 mg) is 94%.

14H-Anthra[3,2,1-jk]heptahelicen-14-one 6A

M.p.: 279 - 280 °C (CH₃CN).

Optical rotation: [α]²⁰_D +2014° (c 0.029, CH₂Cl₂); [α]²⁰_D -1945° (c 0.020, CH₂Cl₂).

6.8, 1.1, 1H), 7.01 (ddd, *J* = 8.0, 6.8, 1.1, 1H), 7.22 (d, *J* = 8.5, 1H), 7.24 (d, *J* = 8.4, 1H), 7.34 – 7.36 (m, 2H), 7.54 (d, *J* = 8.4, 1H), 7.59 (d, *J* = 8.4, 1H), 7.64 (ddd, *J* = 8.1, 6.7, 1.1, 1H), 7.73 (ddd, *J* = 7.9, 6.7, 1.2, 1H), 7.76 (d, *J* = 8.5, 1H), 7.95 (d, *J* = 8.5, 1H), 8.04 (d, *J* = 8.2, 1H), 8.15 – 8.16 (m, 2H), 8.20 (d, *J* = 8.2, 1H), 9.06 (s, 1H), 9.09 (s, 1H), 9.15 (s, 1H), 9.20 (s, 1H).

¹³C NMR (151 MHz, tetrachloroethane-*d2*): 123.1, 123.6 (2C), 124.1, 124.2, 124.9, 125.2, 125.3, 125.59, 125.61, 125.7, 126.2, 126.7, 126.8, 126.9, 127.1 (2C), 127.8, 128.0, 128.3, 128.4, 128.50, 128.52, 128.8, 129.0, 129.1, 129.7, 129.8, 129.9, 130.4, 131.5, 131.7 (2C), 132.0, 132.2, 132.3, 132.8, 135.9, 184.2.

IR (KBr): 3048 w, 2968 w, 2924 w, 2853 w, 1659 vs, 1623 m, 1587 m, 1572 w, 1553 w, 1502 w, 1489 w, 1478 w, 1464 w, 1445 w, 1424 w, 1373 m, 1364 w, 1355 w, 1337 w, 1285 m, 1274 m,

1208 w, 1190 s, 1166 w, 1111 w, 1027 w, 921 w, 881 w, 830 m, 808 m, 745 s, 681 w, 608 w, 518 w, 475 w cm⁻¹.

FD MS: 530 ([M]^{+•}).

HR MS FD: calcd for C₄₁H₂₂O 530.1665; found 530.1673.

21H-Benzo[5,6]indeno[1,2-/]heptahelicen-21-one 6F

M.p.: > 325 °C (CH₃CN). **Optical rotation**: $[\alpha]^{20}_{D}$ +434° (c 0.025, CH₂Cl₂); $[\alpha]^{20}_{D}$ -391° (c 0.032, CH₂Cl₂).

¹**H NMR** (600 MHz, tetrachloroethane- d_2): 6.49 – 6.52 (m,

2H), 6.94 – 6.97 (m, 2H), 7.02 – 7.04 (m, 2H), 7.30 – 7.32 (m, 2H), 7.47 (d, *J* = 8.1, 1H), 7.54 – 7.57 (m, 2H), 7.64 (ddd, *J* = 8.1, 6.9, 1.3, 1H), 7.69 (d, *J* = 8.4, 1H), 7.75 (d, *J* = 8.5, 1H), 7.96 (d, *J* = 7.9, 1H), 8.02 (d, *J* = 8.0, 1H), 8.05 (d, *J* = 8.5, 1H), 8.12 (d, *J* = 8.5, 1H), 8.22 (s, 1H), 8.51 (s, 1H), 8.88 (d, *J* = 8.5, 1H), 9.43 (d, *J* = 8.4, 1H).

¹³C NMR (151 MHz, tetrachloroethane-*d*₂): 122.3, 122.6, 122.9, 124.1, 124.2, 124.3, 124.4, 124.6, 125.1 (2C), 125.36, 125.40, 126.63, 126.65, 126.7, 127.3, 127.46, 127.54, 127.9, 128.2, 128.5 (2C), 128.6, 128.8, 129.0, 129.16, 129.19, 129.4, 129.8, 130.4, 131.1, 131.3, 131.57, 131.59, 132.2, 133.1, 134.4, 136.7, 138.1, 143.6, 194.2.

IR (KBr): 3047 w, 2925 w, 2853 w, 1692 vs, 1629 s, 1604 w, 1593 w, 1551 w, 1512 m, 1495 w, 1474 w, 1439 w, 1421 w, 1353 w, 1337 w, 1291 w, 1267 w, 1250 m, 1239 w, 1203 w, 1180 w, 1151 w, 1142 w, 1119 w, 1106 w, 1059 w, 1024 w, 909 m, 876 w, 841 m, 828 m, 789 w, 744 s, 626 m, 606 w, 526 w, 473 m cm⁻¹.

FD MS: 530 ([M]^{+•}).

HR MS FD: calcd for C₄₁H₂₂O 530.1665; found 530.1677.

Synthesis of compounds 7A and 7F

(a) 4-Bromophenanthrene-3-carbaldehyde (1.0 equiv.), diyne 22 (1.1 equiv.), Pd(PPh₃)Cl₂ (2 mol%), Cul (4 mol%), THF:Et₃N (3:2), 50 °C, 3 h.;

(b) Zn (2.0 equiv.), propargyl bromide (2.0 equiv.), compound 37 (1.0 equiv.), THF, rt, 15 min. then Et_3N (3.0 equiv.), Ac_2O (3.0 equiv.), THF, rt, 3 h.;

(c) triyne 38 (1.0 equiv.), CpCo(CO)(fum) (0.7 equiv.), PhCl, 180 °C, 20 min. then *p*-TsOH.H₂O (5.0 equiv.), 95 °C, 1h;

(d) ester 39 (1.0 equiv.), KOH (10.0 equiv.), THF:MeOH (1:1), 65 °C, 5 h. then MeSO₂H, 80°C, 2h.

Methyl 2-[4-(ethoxymethoxy)-4-{1-[(3-formylphenanthren-4-yl)ethynyl]naphthalen-2-

yl}but-1-yn-1-yl]benzoate 47

A Schlenk flask was charged with 4bromophenanthrene-3-carbaldehyde (442 mg, 1.55 mmol), bis(triphenylphosphine)palladium chloride (21.7 mg, 0.03 mmol, 2 mol%), copper(I) iodide (11.8 mg, 0.06 mmol, 4 mol%) and flushed with argon. The degassed tetrahydrofuran (20 mL) and degassed

triethylamine (20 mL) were added and the mixture was heated to 50 °C. Then diyne **30** (700 mg, 1.70 mmol, 1.1 equiv.) in degassed tetrahydrofuran (10 mL) was slowly added and the reaction was stirred at 50 °C for 3 hours. The solvents were evaporated under the reduced pressure. The residue was chromatographed on silica gel (hexane-ethyl acetate 20:1 to 10:1) to afford the desired product **47** (716 mg, 75%).

¹H NMR (400 MHz, CDCl₃): 1.01 (t, J = 7.1, 3H), 3.15 (dd, J = 17.2, 6.3, 1H), 3.21 (dd, J = 17.2, 6.9, 1H), 3.50 (dq, J = 9.5, 7.1, 1H), 3.63 (s, 3H), 3.74 (dq, J = 9.5, 7.1, 1H), 4.73 (d, J = 6.9, 1H), 4.85 (d, J = 6.9, 1H), 5.85 (t, J = 6.4, 1H), 7.18 - 7.27 (m, 3H), 7.52 - 7.59 (m, 3H), 7.62 (ddd, J

= 8.0, 7.0, 1.2, 1H), 7.74 - 7.78 (m, 2H), 7.87 (d, J = 8.6, 1H), 7.89 - 7.94 (m, 3H), 7.98 (d, J = 8.5, 1H), 8.00 (d, J = 8.4, 1H), 8.19 (d, J = 8.2, 1H), 8.51 - 8.54 (m, 1H), 10.39 - 10.43 (m, 1H), 11.19 (d, J = 0.9, 1H).

¹³C NMR (101 MHz, CDCl₃): 15.0, 28.9, 51.9, 63.8, 75.0, 81.4, 91.5, 93.7, 96.8, 99.4, 118.6, 123.9, 124.0, 124.1, 124.2, 126.5, 126.8, 126.9, 127.0, 127.1, 127.4, 127.6, 127.7, 128.5, 128.9, 130.0, 130.07, 130.14, 130.4, 131.0, 131.1, 131.4, 131.9, 133.0, 133.37, 133.44, 134.4, 136.73, 136.74, 142.5, 166.7, 192.9.

IR (CHCl₃): 3061 w, 2978 w, 2953 w, 2931 w, 2884 w, 2233 w, 2187 w, 1728 s, 1699 m, 1682 vs, 1629 w, 1599 w, sh, 1588 m, 1568 w, 1509 w, 1468 w, sh, 1449 w, 1435 m, 1394 m, 1300 m, 1276 m, 1257 vs, 1147 m, 1131 m, 1097 m, 1043 m, sh, 1029 s, 965 w, 868 w, 850 m, 825 w, 636 w, 576 vw, 541 w, 522 w cm⁻¹.

ESI MS: 639 ([M+Na]⁺).

HR ESI MS: calcd for C₄₂H₃₂O₅Na 639.2142, found 639.2140.

<u>Methyl 2-{4-[1-({3-[1-(acetyloxy)but-3-yn-1-yl]phenanthren-4-yl}ethynyl)naphthalen-2-yl]-</u> <u>4-(ethoxymethoxy)but-1-yn-1-yl}benzoate</u> 48

A Schlenk flask was filled with zinc powder (143 mg, 2.18 mmol, 2 equiv.) and flushed with argon. Freshly distilled tetrahydrofuran (6 mL) was added and vigorously stirred. Then propargyl bromide (80 wt. % in toluene, 243 μ L, 2.18 mmol, 2 equiv.) was added and stirred for 10 min, before it was transferred by a syringe

to the second Schlenk flask, which contained aldehyde **47** (673 mg, 1.09 mmol) and tetrahydrofuran (40 mL). The reaction mixture was stirred for 5 min at room temperature, before triethylamine (449 μ L, 3.27 mmol, 3 equiv.) and acetic anhydride (309 μ L, 3.27 mmol, 3 equiv.) were added and the solution was stirred for 3 h at room temperature. The solvents were evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 10:1) to obtain acetate **48** (532 mg, 70%) as a mixture of diastereomers in a ratio about 1:1.

¹H NMR (400 MHz, CDCl₃, mixture of diastereomers): 0.93 (t, *J* = 7.1, 3H), 0.96 (t, *J* = 7.1, 3H),
1.99 (t, *J* = 2.6, 1H), 2.00 (t, *J* = 2.6, 1H), 2.14 (s, 3H), 2.15 (s, 3H), 2.93 - 3.11 (m, 4H), 3.17 3.24 (m, 4H), 3.42 - 3.54 (m, 2H), 3.63 (s, 3H), 3.63 - 3.72 (m, 2H), 3.66 (s, 3H), 4.76 (d, *J* = 6.8,

1H), 4.79 (d, J = 6.8, 1H), 4.84 (d, J = 6.8, 1H), 4.89 (d, J = 6.8, 1H), 5.88 (t, J = 6.1, 1H), 5.89 (t, J = 6.1, 1H), 7.027 (t, J = 5.9, 1H), 7.031 (t, J = 5.9, 1H), 7.19 – 7.32 (m, 6H), 7.43 – 7.51 (m, 2H), 7.52 – 7.59 (m, 6H), 7.73 (d, J = 8.8, 2H), 7.77 – 7.81 (m, 4H), 7.836 (d, J = 8.3, 1H), 7.840 (d, J = 8.3, 1H), 7.86 – 7.93 (m, 6H), 7.94 – 7.99 (m, 4H), 8.63 – 8.70 (m, 2H), 10.39 (bd, J = 8.5, 2H). ¹³C NMR (101 MHz, CDCl₃, mixture of diastereomers): 14.96, 15.01, 21.18, 21.20, 26.0, 26.1, 28.8, 29.0, 51.9, 52.0, 63.7, 63.8, 71.4 (2C), 71.9, 72.0, 75.0, 75.5, 79.5 (2C), 81.17, 81.22, 92.14, 92.15, 94.1, 94.2, 97.2, 97.4, 98.3, 98.5, 117.1, 117.2, 118.7, 118.9, 123.8 (2C), 124.19, 124.22, 124.3 (2C), 126.4, 126.5, 126.7 (2C), 126.8, 126.9, 127.02, 127.04, 127.1 (2C), 127.2, 127.28 (2C), 127.31, 127.39, 127.41, 128.3 (2C), 128.48 (2C), 128.53 (2C), 129.4 (2C), 130.0 (2C), 130.1 (2C), 130.3 (2C), 130.8 (2C), 131.42, 131.44, 131.97, 131.99, 132.8 (2C), 133.0 (2C), 133.4 (2C), 133.5 (2C), 134.5 (2C), 142.1, 142.2, 142.4, 142.5, 166.87, 166.88, 169.7, 169.8. **IR** (CHCl₃): 3309 m, 3058 w, 2977 w, 2953 m, 2930 m, 2886 w, 2233 w, 2192 vw, 2124 vw, 1733 vs, 1712 s, sh, 1624 w, 1597 w, 1568 w, 1503 w, 1486 m, 1469 w, sh, 1449 m, 1435 m, 1372 m, 1300 m, 1277 m, 1253 s, sh, 1239 vs, 1164 w, 1146 m, 1131 w, 1097 m, 1043 vs, 1028 s, 966 w, 868 w, 845 m, 824 w, 640 w, 539 w cm⁻¹.

ESI MS: 721 ([M+Na]⁺).

HR ESI MS: calculated for C₄₇H₃₈O₆Na 721.2561, found 721.2560.

Methyl 2-octahelicen-9ylbenzoate 49

Triyne **48** (506 mg, 0.72 mmol) was loaded to a microwave vial and chlorobenzene (18 mL) was added. The solution was bubbled with nitrogen for 5 minutes before CpCo(CO)(fum) (149 mg, 0.50 mmol, 0.7 equiv, fum = dimethylfumarate) was added. The seal was closed and the reaction mixture was heated to 180 °C in the microwave

reactor for 20 minutes. *p*-Toluenesulfonic acid monohydrate (684 mg, 3.60 mmol, 5 equiv.) was added and the reaction mixture was strirred for 1 h at 95 °C. The solvent was evaporated in vacuum. The residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 20:1 to 10:1) to obtain helicene **49** (218 mg, 54%) as a mixture of two atropodiastereomers in a ratio 3.3:1.

¹**H NMR** (400 MHz, CDCl₃, major atropodiastereomer): 3.67 (s, 3H), 6.39 – 6.45 (m, 1H), 6.49 (ddd, *J* = 8.3, 6.8, 1.4, 1H), 6.95 – 7.06 (m, 4H), 7.07 – 7.20 (m, 4H), 7.26 – 7.33 (m, 3H), 7.37

(d, *J* = 8.7, 1H), 7.407 (d, *J* = 8.4, 1H), 7.413 (d, *J* = 8.2, 1H), 7.57 (dd, *J* = 7.4, 1.5, 1H), 7.60 – 7.65 (m, 1H), 7.79 (d, *J* = 8.2, 1H), 7.84 (s, 1H), 7.96 – 8.03 (m, 2H), 8.22 (dd, *J* = 7.9, 1.5, 1H). ¹³C NMR (101 MHz, CDCl₃, major atropodiastereomer): 52.1, 123.85, 123.87, 124.0 (2C), 124.5 (2C), 125.1, 125.3, 125.7, 125.8, 125.9, 126.3, 126.4, 126.69 (2C), 126.74 (2C), 126.76, 126.8, 126.9, 127.0, 127.4, 127.8, 127.9, 127.96, 128.01, 128.1, 130.1, 130.51, 130.53, 130.9, 131.4, 131.7, 131.76, 131.82, 132.0, 132.2, 132.3, 139.1, 141.6, 167.9.

IR (CHCl₃): 3053 w, 2953 w, 1724 s, 1618 vw, 1597 vw, 1570 vw, 1506 vw, 1485 w, 1465 vw, 1447 w, 1434 w, 1393 w, 1293 s, 1272 m, 1258 s, 1236 m, 1190 m, sh, 1164 w, 1132 w, sh, 1099 w, 1077 w, 1043 w, 963 w, sh, 881 w, 834 vs, 810 vw, 692 w, 644 vw, 608 w, 599 w, 587 w, 552 w, 525 w cm⁻¹.

ESI MS: 585 ([M+Na]⁺).

HR ESI MS: calculated for C₄₂H₂₆O₂Na 585.1825, found 585.1824.

16H-Naphtho[3,2,1-jk]octahelicen-16-one 7A

17H-Indeno[1,2-/]octahelicen-17-one 7F

Ester **49** (182 mg, 0.32 mmol) was dissolved in tetrahydrofuran (10 mL) and methanol (10 mL), and potassium hydroxide (180 mg, 3.20 mmol, 10 equiv.) was added. The mixture was heated to 65 °C and stirred for 5 h. Then the reaction was cooled to rt and diluted hydrochloric acid was added to reach pH 1. The mixture was extracted with diethyl ether (2x 20 mL), and the combined organic layers were dried over anhydrous magnesium sulfate. The solvents were evaporated under the reduced pressure to obtain crude carboxylic acid, which was directly used further. This acid was dissolved in methanesulfonic acid (10 mL) and the flask was put to the oil bath pre-heated to 80 °C. The stirring was continued for 2 h at 80 °C and then the reaction mixture was poured over crushed ice. The mixture was extracted with dichloromethane (2x 20 mL), the combined organic layers were washed with saturated sodium bicarbonate solution (10 mL), dried over anhydrous magnesium sulfate. The solvent was evaporated *in vacuo* and the residue was purified by flash chromatography on silica gel (hexane-dichloromethane 2:1 to 1:3) to afford **7A** (26.3 mg, 15%) as an orange solid and **7F** (76.5 mg, 45%) as a red solid.

16H-Naphtho[3,2,1-jk]octahelicen-16-one 7A

M.p.: > 315 °C (CH₃CN).

Optical rotation: $[\alpha]^{20}_{D}$ +4789° (c 0.026, CH₂Cl₂); $[\alpha]^{20}_{D}$ -4633° (c 0.025, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃): 6.37 (ddd, *J* = 8.4, 6.8, 1.4, 1H), 6.49 (ddd, *J* = 8.4, 6.9, 1.4, 1H), 6.99 (ddd, *J* = 8.0, 6.8, 1.2, 1H), 7.04 (ddd, *J* =

8.0, 6.8, 1.1, 1H), 7.05 – 7.10 (m, 3H), 7.19 (d, *J* = 8.5, 1H), 7.21 (d, *J* = 8.5, 1H), 7.23 (d, *J* = 7.9, 1H), 7.33 (dt, *J* = 8.0, 1.7, 2H), 7.42 (d, *J* = 8.2, 1H), 7.64 (ddd, *J* = 8.0, 7.1, 1.1, 1H), 7.77 (d, *J* = 8.2, 1H), 7.86 (ddd, *J* = 8.2, 7.1, 1.5, 1H), 8.02 (d, *J* = 8.2, 1H), 8.11 (d, *J* = 8.3, 1H), 8.61 (dd, *J* = 7.9, 1.5, 1H), 8.62 (dd, *J* = 7.9, 1.0, 1H), 8.67 (s, 1H), 8.89 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): 123.7, 123.9, 124.4, 124.5, 124.6, 125.0, 125.1, 125.23, 125.25, 125.5, 125.9, 126.0, 126.1, 126.3, 126.4, 126.6, 126.99, 127.04, 127.10, 127.13, 127.5, 127.6, 127.7, 127.8, 128.0, 128.1, 128.36, 128.40, 128.5, 130.3, 130.6, 130.7, 131.1, 131.2, 131.8, 132.3, 132.9, 133.1, 133.7, 136.8, 184.1.

IR (CHCl₃): 3045 w, 2958 w, 2928 w, 2856 w, 1648 vs, 1601 s, 1581 vs, 1752 m, 1553 w, 1487 m, 1466 w, 1424 w, 1372 s, 1333 w, 1300 m, 1284 s, 1271 m, 1260 w, 1175 w, 1168 w, 1128 w, 1070 vw, 1008 w, 962 vw, 919 w, 883 w, sh, 838 s, 811 m, 699 w, 685 w, 624 m, 603 w, 593 vw, 552 w, 520 w, 476 vw cm⁻¹.

APCI MS: 531 ([M+H]⁺).

HR APCI MS: calcd for C₄₁H₂₃O 531.1743, found 531.1736.

17H-Indeno[1,2-/]octahelicen-17-one 7F

M.p.: > 315 °C (CH₃CN). ¹H NMR (600 MHz, CD₂Cl₂): 6.47 (ddd, J = 8.3, 6.8, 1.4, 1H), 6.52

(ddd, J = 8.3, 6.7, 1.4, 1H), 6.95 (dt, J = 8.4, 1.0, 1H), 7.00 (ddd, J = 7.9, 6.7, 1.2, 1H), 7.04 (ddd, J = 7.9, 6.7, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.04 (ddd, J = 7.9, 1.2, 1H), 7.06 (d, J = 8.3, 1.2, 1H), 7.06 (d, J =

1H), 7.07 (d, *J* = 8.3, 1H), 7.18 (d, *J* = 8.4, 1H), 7.21 (d, *J* = 8.5, 1H), 7.27 (dt, *J* = 8.4, 0.9, 1H), 7.32 (ddt, *J* = 7.9, 1.4, 0.8, 1H), 7.35 (ddt, *J* = 8.0, 1.4, 0.7, 1H), 7.37 (d, *J* = 8.1, 1H), 7.41 (td, *J* = 7.6, 0.8, 1H), 7.52 (d, *J* = 8.5, 1H), 7.62 (td, *J* = 7.5, 1.3, 1H), 7.75 (d, *J* = 8.1, 1H), 7.77 (ddt, *J* = 7.1, 1.3, 0.6, 1H), 8.07 (d, *J* = 8.4, 1H), 8.21 (dq, *J* = 7.5, 0.6, 1H), 8.53 (d, *J* = 8.5, 1H), 9.31 (d, *J* = 8.4, 1H).

¹³C NMR (151 MHz, CD₂Cl₂): 122.5, 122.6, 123.7, 123.9 (2C), 124.1, 124.8, 124.99, 125.00, 125.03, 125.3, 125.6, 126.20, 126.23, 126.6, 127.14, 127.15, 127.2, 127.3, 127.9, 127.98, 128.01, 128.2, 128.4, 128.5 (2C), 128.6, 128.8, 129.3, 129.9, 131.3, 132.1, 132.2, 132.3, 132.4, 132.9, 134.7, 136.2, 144.0, 144.6, 195.8.

IR (CHCl₃): 3044 w, 3014 w, 2953 w, 2920 w, 2851 w, 1695 s, 1606 w, 1590 w, 1582 w, 1562 w, 1515 w, 1463 w, 1431 vw, 1375 vw, 1329 vw, 1275 w, 1240 w, 1230 vw, 1192 vw, 1171 w, 1087 w, 1044 w, 1005 w, 943 w, 892 w, 860 w, 839 m, 823 vs, 689 w, 610 m, 602 w, 590 w, 553 w, 536 w, 524 m, 476 w cm⁻¹.

APCI MS: 531 ([M+H]⁺).

HR APCI MS: calcd for C₄₁H₂₃O 531.1743, found 531.1735.

Synthesis of compounds 8A and 8F

(a) Compound 39 (1.0 equiv.), aldehyde 50 (2.0 equiv.), NaH (4.0 equiv.), PhMe, 120 °C, 30 min;

(b) stilbene 51 (1.0 equiv.), I $_{_2}$ (0.55 equiv.), PhMe:EtOAc (8:1), hv, rt, 40 h;

(c) helicene 52 (1.0 equiv.), 2-methoxycarbonylphenylboronic acid (1.3 equiv.), Pd₂dba₃ (4 mol%),

Xphos (8 mol%), K₃PO₄.H₂O (6.0 equiv.), PhMe, 90°C, 14 h;

(d) ester 42 (1.0 equiv.), NaOH (5.0 equiv.), THF:MeOH:H₂O (11:2.8:1.4), 70 °C, 16 h;

(e) MeSO₃H, 80°C, 1 h.

Phenanthrene-3-carbaldehyde 50

In a well dried Schlenk flask, 3-bromophenanthrene (2.28 g, 8.87 mmol) was dissolved in anhydrous THF (110 mL) under argon. The solution was cooled to -78 °C and then a solution of n-butyllithium (2.5 M in hexanes,

3.6 mL, 9.0 mmol, 1.01 equiv.) was added dropwise. This reaction mixture was stirred at the same temperature for 30 min and then dimethylformamide (1.37 mL, 17.7 mmol, 2.0 equiv.) was added dropwise. The reaction was stirred at -78 °C for 30 min and then warmed to -20 °C.

At this temperature the reaction was quenched with brine (50 mL). The organic phase was separated and the water phase was extracted with diethyl ether (3 x 50 mL). The organic portions were combined and evaporated *in vacuo* and the residue was purified by column chromatography on silca gel (cyclohexane- ethyl acetate 30:1). The product **50** was obtained as a white solid (1.52 g, yield 83%). ¹H NMR spectrum is in agreement with the published data.¹⁶

¹**H NMR** (400 MHz, CDCl₃): 7.68 (ddd, *J* = 8.1, 7.0, 1.2, 1H), 7.75 (ddd, *J* = 8.4, 7.0, 1.5, 1H), 7.79 (d, *J* = 8.8, 1H), 7.90 (d, *J* = 8.9, 1H), 7.94 (dd, *J* = 7.8, 1.5, 1H), 8.00 (d, *J* = 8.2, 1H), 8.08 (dd, *J* = 8.2, 1.5, 1H), 8.78 (d, *J* = 8.2, 1H), 9.17 (s, 1H) 10.27 (s, 1H).

3,3'-[(2-Bromobenzene-1,4-diyl)di(E)ethene-2,1-diyl]diphenanthrene 51

In a well dry round bottom flask were solved previous bisphosphate **39** (1.66 g, 3.63 mmol) and aldehyde **50** (1.5 g, 7.27 mmol, 2.0 equiv.) in dry toluene (90 mL). To this mixture was added NaH (60%, dispersion in mineral oil, 322 mg, 13.45 mmol, 4.0 equiv.) and the mixture was heated at 120 °C for 30 min under inert. The reaction mixture was cooled to room temperature and then slowly poured into a mixture of ice-water- 37 % HCl (100 g -100 ml-100 ml). The organic phase with partially precipitated yellow product was separated and the water phase was extracted with toluene (3 x 50 mL). The organic portions were combined and the volume was reduced to its 20 % on rotavap. The

product **51** as a yellow precipitate (1.33 g, 65%) was collected by filtration over a glass frit S3. ¹H NMR (400 MHz, CD₂Cl₂): 7.28 – 7.32 (m, 1H), 7.43 – 7.50 (m, 2H), 7.63 – 7.70 (m, 3H), 7.72 – 7.79 (m, 7H), 7.84 – 7.88 (m, 2H), 7.92 - 7.96 (m, 6H), 8.79 – 8.83 (m, 4H).

¹³C NMR (101 MHz, CD₂Cl₂): 121.9, 122.1, 122.55, 122.56, 124.1, 124.2, 124.6, 125.7, 126.55, 126.58, 126.6, 126.8 (3C), 126.9 (2C), 127.1, 127.19, 127.22, 127.3, 128.7, 129.05, 129.06, 129.9 (2C), 130.2, 130.27, 130.28, 130.9, 131.4, 131.67, 131.73, 132.09, 132.10, 134.9, 135.1, 135.8, 138.2.

FD MS: 560 ([M]^{+•}).

HR MS FD: calcd for C₃₈H₂₅⁷⁹Br 560.1134; found 560.1144.

¹⁶ S. Fujino, M. Yamaji, H. Okamoto, T. Mutai, I. Yoshikawa, H. Houjou, F. Tani *Photochem. Photobiol. Sci.*, **2017**, *16*, 925.

11-Bromononahelicene 52

The previous stilbene **51** (1 g, 1.78 mmol) was suspended in toluene (400 mL). This mixture was heated to fully dissolve the starting material. When all the solid was dissolved, the mixture was diluted with toluene (1200 mL) and ethyl acetate (200 mL). Iodine (250 mg,

0.985 mmol) was added to the mixture and the reaction mixture was irradiated with mediumpressure mercury (150 W) lamp for 40 h open to air. The whole reaction mixture was evaporated, and the residue was adsorbed on silica-gel. The product was isolated by continuous extraction with refluxing cyclohexane using Thiele-Pappe attachment. After evaporation of cyclohexane, the residue was triturated in diethyl ether and filtered over glass frit S4 to get slightly yellow product **52** (350 mg, 35%).

¹H NMR (400 MHz, CD₂Cl₂): 6.41 (ddt, *J* = 8.3, 6.8, 1.4, 2H), 6.99 – 7.06 (m, 3H), 7.08 – 7.14 (m, 5H), 7.19 (d, *J* = 8.5, 1H), 7.32 (d, *J* = 6.2, 1H), 7.34 (d, *J* = 6.1, 1H), 7.36 – 7.40 (m, 1H), 7.46 (d, *J* = 8.2, 1H), 7.55 (d, *J* = 8.4, 1H), 7.75 (d, *J* = 8.2, 1H), 8.24 (d, *J* = 8.4, 1H), 8.32 (s, 1H).

¹³C NMR (151 MHz, tetrachloroethane-d₂): 121.1, 122.3, 122.5, 123.56, 123.60, 124.2, 124.6, 124.65, 124.7, 124.8, 125.1, 125.3, 125.4, 125.6, 126.0, 126.1, 126.2, 126.38, 126.43, 126.6, 126.7, 126.8, 127.0, 127.4, 127.5, 128.7, 129.2, 129.7, 129.9, 130.0, 131.0, 131.8, 131.88, 131.92, 131.94.

FD MS: 556 ([M]^{+•}).

HR MS FD: calcd for $C_{38}H_{21}^{79}Br$ 556.0821; found 556.0830.

Methyl 2-nonahelicen-11-ylbenzoate 53

In a dry Schlenk flask was dissolved 11-bromo[9]helicene **52** (270 mg, 0.48 mmol), 2-methoxy-carbonylphenylboronic acid (113 mg, 0.63 mmol, 1.3 equiv.), Pd_2dba_3 (17.6 mg, 19.2 µmol, 4 mol%), Xphos (18.3 mg, 38.4 µmol, 8 mol%) and K₃PO₄.H₂O (663 mg, 2.88 mmol, 6 equiv.) in dry toluene (32 mL). The

reaction mixture was thoroughly degassed and then heated at 90 °C overnight. The solvent was evaporated *in vacuo* and the residue was purified by column chromatography on silica gel (cyclohexane - dichloromethane 2:1 to 1:1). The product **53** was obtained as a yellow solid (193 mg, 65%). The ¹H NMR shows mixture of two atropodiastereomers (1:2.5).

¹**H NMR** (400 MHz, CD₂Cl₂): 3.19 and 3.68 (s, in ratio 1:2.5, 3H), 6.37 – 6.51 (m, 2H), 6.94 – 7.13 (m, 6H), 7.14 – 7.23 (m, 3H), 7.25 – 7.48 (m, 8H), 7.64 – 7.69 (m, 1H), 7.74 – 7.86 (m, 4H), 8.11 and 8.23 (m, in ratio 1:2.4, 1H).

¹³C NMR: Not recorded due to mixture of atropoisomers.

FD MS: 612 ([M]^{+•}).

HR MS FD: calcd for $C_{46}H_{28}O_2$ 612.2084; found 612.2090.

2-Nonahelicene-11-ylbenzoic acid 54

The previous compound **53** (276 mg, 0.45 mmol) and sodium hydroxide (90 mg, 2.25 mmol, 5 equiv.) was dissolved in a mixture of solvents of THF-methanol-water (11 mL:2.8 mL:1.4 mL). The mixture was stirred overnight at 70 °C under inert. Then the reaction was acidified by diluted hydrochloric

acid and the mixture was extracted with dichloromethane (4 x 10 mL). The combined organic portions were dried over MgSO₄. After filtration and evaporation of all the volatiles was obtained product **54** as an amorphous yellow solid (267 mg, yield 99%).

¹H NMR (400 MHz, tetrachloroethane-*d*₂, 110°C): 6.44 – 6.53 (m, 2H), 7.03 – 7.13 (m, 6H), 7.21
– 7.24 (m, 3H), 7.29 – 7.50 (m, 8H), 7.68 – 7.71 (m, 1H), 7.79 – 7.91 (m, 4H), 8.24 and 8.32 (d, in ratio 1:2.3, 1H).

¹³C NMR: Not recorded due to mixture of atropoisomers.

FD MS: 598 ([M]^{+•}).

HR MS FD: calcd for C₄₅H₂₆O₂ 598.1927; found 598.1934.

18H-Naphtho[3,2,1-mn]nonahelicen-18-one 8A

23H-Indeno[1,2-o]nonahelicen-23-one 8F

The previous acid **54** (200 mg, 0.334 mmol) was suspended in methanesulfonic acid (8 mL) and the reaction was stirred at 80 °C for 1 hour. Then, the reaction was poured into water where brown solid was formed. The solid was collected by filtration over glass frit S4 and washed with water and then with methanol and dried. This solid was chromatographed on silica gel (toluene). The first isolated product corresponds to the fluoreno-derivative **8F** and is red solid (130 mg, 66%) the compound corresponds to the aceno-derivative **8A** and is an orange solid (20 mg, 10%). The combined yield (150 mg) is 76 %.

18H-Naphtho[3,2,1-mn]nonahelicen-18-one 8A

M.p.: > 325 °C (CH₃CN). **Optical rotation**: $[\alpha]^{20}_{D}$ +6015° (c 0.026, CH₂Cl₂); $[\alpha]^{20}_{D}$ -6297° (c 0.028, CH₂Cl₂).

¹**H NMR** (600 MHz, tetrachloroethane-*d*₂): 6.36 (ddd, *J* = 8.3, 6.7,

1.3, 1H), 6.52 (ddd, *J* = 8.3, 6.7, 1.3, 1H), 7.05 (ddd, *J* = 7.9, 6.7, 1.2, 1H), 7.10 (ddd, *J* = 7.9, 6.7, 1.1, 1H), 7.13 (s, 2H), 7.17 (d, *J* = 8.6, 1H), 7.18 (d, *J* = 8.2, 1H), 7.20 (d, *J* = 8.6, 1H), 7.22 (d, *J* = 8.5, 1H), 7.25 (d, *J* = 8.5, 1H), 7.33 (d, *J* = 8.1, 1H), 7.37 – 7.45 (m, 4H), 7.56 (d, *J* = 8.1, 1H), 7.69 – 7.71 (m, 1H), 7.94 (ddd, *J* = 8.2, 7.1, 1.5, 1H), 7.98 (d, *J* = 8.1, 1H), 8.62 (dd, *J* = 7.8, 1.4, 1H), 8.70 (s, 1H), 8.71 (d, *J* = 8.2, 1H), 8.95 (s, 1H).

¹³C NMR (151 MHz, tetrachloroethane-*d*₂): 122.3, 122.8, 123.6, 123.9, 124.1, 124.4, 124.5, 124.86, 124.88, 125.0, 125.2, 125.4, 125.5, 125.8, 125.9, 126.0, 126.1, 126.30, 126.33, 126.59, 126.62, 126.7, 126.9, 127.1, 127.2, 127.58, 127.62, 127.65, 127.8, 128.0, 128.06, 128.10, 128.4, 129.9, 130.3, 130.7, 130.8, 131.1, 131.7, 131.9, 132.3, 132.6, 133.7, 136.5, 183.7.
IR (KBr): 3045 w, 2977 w, 2924 w, 2854 w, 1646 s, 1641 s, 1600 m, 1508 m, 1565 w, 1487 w, 1464 w, 1371 w, 1292 m, 1278 w, 1260 w, 1228 w, 1165 w, 1139 w, 1129 w, 1062 w, 1012 w, 976 w, 876 w, 828 s, 753 vs, 744 s, 721 w, 650 w, 621 m, 599 w, 589 m, 521 w, 489 w cm⁻¹.
FD MS: 580 ([M]^{+*}).

HR MS FD: calcd for C₄₅H₂₄O 580.1822; found 580.1832.

23H-Indeno[1,2-o]nonahelicen-23-one 8F

¹H NMR (600 MHz, tetrachloroethane-*d*₂): 6.51 – 6.57 (m, 2H), 7.05 – 7.13 (m, 6H), 7.20 (d, *J* = 8.5, 2H), 7.21 (d, *J* = 8.5, 1H), 7.34

(m, J = 8.5, 3H), 7.41 – 7.43 (m, 2H), 7.44 – 7.46 (m, 1H), 7.49 (d,

J = 8.4, 1H), 7.56 (d, J = 8.4, 1H), 7.66 (td, J = 7.5, 1.3, 1H), 7.82 (d, J = 7.2, 1H), 8.24 (d, J = 7.4, 1H), 8.53 (d, J = 8.4, 1H), 9.07 (d, J = 8.3, 1H).

M.p.: > 350°C (CH₃CN).

¹³C NMR (151 MHz, tetrachloroethane-*d*₂): 121.4, 121.7, 122.6, 122.9, 123.4, 123.6, 123.9, 124.2, 124.7, 124.84, 124.86, 124.91, 124.94, 125.3, 125.4, 125.7, 125.8, 126.17, 126.23, 126.3, 126.4, 126.58, 126.61, 126.7, 126.79, 126.83, 126.85, 126.9, 127.2, 127.9, 128.4, 128.6, 128.9, 129.2, 129.99, 130.03, 131.9, 132.0, 132.1, 132.9, 133.4, 135.6, 143.8, 144.0, 195.8.

IR (ATR): 3043 w, 1695 ms, 1606 m, 1584 w, 1561 w, 1575 w, 1519 w, 1504 w, 1483 w, 1460 m, 1433 w, 1395 w, 1377 w, 1330 m, 1273 w, 1236 w, 1225 m, 1216 m, 1182 m, 1168 m, 1156 m, 1087 w, 1044 w, 1037 w, 1028 w, 1007 w, 975 w, 947 w, 936 w, 920 w, 885 w, 863 w, 850 m, 831 ms, 813 m, 788 ms, 750 m, 739 ms, 722 s, 701 ms, 680 w, 674 w, 656 w, 646 w, 637 w, 623 m, 608 w, 597 m, 590 m, 536 m, 524 m, 507 w, 472 w, 443 w, 427 w, 416 w cm⁻¹. **FD MS:** 580 ([M]^{+•}).

HR MS FD: calcd for C₄₅H₂₄O 580.1822; found 580.1815.

HPLC Resolution of 1A, 2A, 3A, 4A, 5A, 6A, 6F, 7A, and 8A into Enantiomers

Chiral resolution of 1A

Chiral HPLC separation: *Anal*.: ChiralArt Amylose-SA (150 x 3 mm, 3 μ m, YMC), heptane – toluene 50:50, 1.0% IPA @ 1.0 mL/min., 35 °C, t_R(+) = 6.0 min. (>99% *ee*), t_R(-) = 8.4 min. (>99% *ee*); *Semiprep*.: ChiralArt Amylose-SA (250 x 20 mm, 5 μ m, YMC), heptane – toluene 50:50, 0.5% IPA @20 mL/min.

Figure S4. HPLC of *rac*-**1A** (red: UV detector (315 nm), blue: downstream polarimetric detector).

Figure S5. HPLC of (+)-(*P*)-**1A** (red: UV detector (315 nm), blue: downstream polarimetric detector).

Figure S6. HPLC of (-)-(*M*)-**1A** (red: UV detector (315 nm), blue: downstream polarimetric detector).

Chiral resolution of 2A

Chiral HPLC separation: *Anal*.: Chiralpak IE (250 x 4.6 mm, 5 mm, DAICEL), toluene, 1% IPA @ 1.0 mL/min., 35 °C, $t_R(+) = 7.2$ min. (>99% *ee*), $t_R(-) = 8.8$ min. (>99% *ee*); *Semiprep*.: CHIRALPAK[®] IE (250 x 20 mm, 5 μ m, Chiral Technologies), toluene, 0.5% IPA @20 mL/min.

Figure S7. HPLC of *rac*-**2A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S8. HPLC of (+)-(*P*)-**2A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S9. HPLC of (-)-(*M*)-**2A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Chiral resolution of 3A

Chiral HPLC separation: *Anal*.: Chiralpak IE (250 x 4.6 mm, 5 mm, DAICEL), toluene, 1% IPA @ 1.0 mL/min., 35 °C, $t_R(+) = 6.2$ min. (>99% *ee*), $t_R(-) = 7.0$ min. (>99% *ee*); *Semiprep*.: CHIRALPAK[®] IE (250 x 20 mm, 5 μ m, DAICEL), toluene, 0.5% IPA @20 mL/min.

Figure S10. HPLC of *rac*-**3A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S11. HPLC of (+)-(*P*)-**3A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S12. HPLC of (-)-(*M*)-**3A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Chiral resolution of 4A

Chiral HPLC separation: *Anal*.: Chiralpak IE (250 x 4.6 mm, 5 mm, DAICEL), toluene, 1% IPA @ 1.0 mL/min., 35 °C, $t_R(+) = 6.1$ min. (>99% *ee*), $t_R(-) = 7.0$ min. (>99% *ee*); *Semiprep*.: CHIRALPAK[®] IE (250 x 20 mm, 5 μ m, DAICEL), toluene, 0.5% IPA @20 mL/min.

Figure S13. HPLC of *rac*-**4A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S14. HPLC of (+)-(*P*)-**4A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S15. HPLC of (-)-(*M*)-**4A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Chiral resolution of 5A

Chiral HPLC separation: *Anal*.: Chiralpak IE (250 x 4.6 mm, 5 mm, DAICEL), toluene, 1% IPA @ 1.0 mL/min., 35 °C, $t_R(+) = 8.5$ min. (>99% *ee*), $t_R(-) = 10.1$ min. (>99% *ee*); *Semiprep*.: CHIRALPAK[®] IE (250 x 20 mm, 5 μ m, Chiral Technologies), toluene, 0.5% IPA @20 mL/min.

Figure S16. HPLC of *rac*-**5A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S17. HPLC of (+)-(*P*)-**5A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S18. HPLC of (-)-(*M*)-**5A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Chiral resolution of 6A

Chiral HPLC separation: *Anal*.: Chiralpak IE (250 x 4.6 mm, 5 mm, DAICEL), toluene, 1% IPA @ 1.0 mL/min., 35 °C, $t_R(+) = 8.8$ min. (>99% *ee*), $t_R(-) = 12.5$ min. (>99% *ee*); *Semiprep*.: CHIRALPAK[®] IE (250 x 20 mm, 5 μ m, Chiral Technologies), toluene, 0.5% IPA @20 mL/min.

				Result Table (Uncar - Data(AJ-94_30_06_2023 14_17_35_660 - DAD 6.1L; Channel 2)									
	Reten, Time	Area	Height	Area	Height	W05	PDA Peak	Compound Name					
	[min]	[mAU.s]	[mÃU]	[%]	[%]	[min]	Purity						
1	8.818	909.797	58.068	49.9	60.5	0.24	770						
2	12,498	911.965	37.874	50.1	39.5	0.37	821						
	Total	1821.762	95.943	100.0	100.0								

Figure S19. HPLC of *rac*-**6A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S20. HPLC of (+)-(*P*)-**6A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S21. HPLC of (-)-(*M*)-**6A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Chiral resolution of 6F

Chiral HPLC separation: *Anal*.: Chiralpak IE (250 x 4.6 mm, 5 mm, DAICEL), toluene, 1% IPA @ 1.0 mL/min., 35 °C, $t_R(+) = 5.3$ min. (>99% *ee*), $t_R(-) = 7.4$ min. (>99% *ee*); *Semiprep*.: CHIRALPAK[®] IE (250 x 20 mm, 5 μ m, Chiral Technologies), toluene, 0.5% IPA @20 mL/min.

					Result Table (Uncal - Data AJ-7F_30_06_2023 13_15_52_677 - DAD 6.1L; Channel 2)										
Τ		Reten, Time	Area	Height	Area	Height	W05	PDA Peak	Compound Name						
1		[min]	[mAU.s]	[mAU]	[%]	[%]	[min]	Purity							
Ι	1	5.343	810.851	64.310	50.1	51.9	0.20	902							
[2	7.393	808.579	59.572	49.9	48.1	0.21	890							
[Total	1619.430	123.882	100.0	100.0									

Figure S22. HPLC of *rac*-**6F** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S23. HPLC of (+)-(*P*)-**6F** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S24. HPLC of (-)-(*M*)-**6F** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Chiral resolution of 7A

Chiral HPLC separation: *Anal*.: Chiralpak IE (250 x 4.6 mm, 5 mm, DAICEL), toluene, 1% IPA @ 1.0 mL/min., 35 °C, $t_R(+) = 7.9$ min. (>99% *ee*), $t_R(-) = 10.0$ min. (>99% *ee*); *Semiprep*.: CHIRALPAK[®] IE (250 x 20 mm, 5 μ m, Chiral Technologies), toluene, 0.5% IPA @20 mL/min.

Figure S25. HPLC of *rac*-**7A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S26. HPLC of (+)-(*P*)-**7A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S27. HPLC of (-)-(*M*)-**7A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Chiral resolution of 8A

Chiral HPLC separation: *Anal*.: Chiralpak IE (250 x 4.6 mm, 5 mm, DAICEL), toluene, 1% IPA @ 1.0 mL/min., 35 °C, $t_R(+) = 7.6$ min. (>99% *ee*), $t_R(-) = 10.4$ min. (>99% *ee*); *Semiprep*.: CHIRALPAK[®] IE (250 x 20 mm, 5 μ m, Chiral Technologies), toluene, 0.5% IPA @20 mL/min.

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W05 [min]	PDA Peak Purity	Compound Name
1	7.640	255.991	19.681	49.8	59.6	0.20	816	
2	10.388	257.787	13.340	50.2	40.4	0.30	870	
	Total	513.778	33.021	100.0	100.0			

Figure S28. HPLC of *rac*-**8A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S29. HPLC of (+)-(*P*)-**8A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

Figure S30. HPLC of (-)-(*M*)-**8A** (red: UV detector (350 nm), blue: downstream polarimetric detector).

¹H and ¹³C NMR spectra of 1–54

88.88 88.85 86.85

S95

100 90 f1 (ppm)

															· · ·				· · · · ·	· · · ·	
20	0 190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
										f1 (pp	m)										

1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2
1.1.1.2

. 140 100 90 f1 (ppm)

100.88 112.85 11

S111

S116

S117

S124

i) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in hexane ii) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in dichloromethane (DCM) iii) CD spectra collected in dichloromethane (DCM) iv) CPEL spectra and glum values collected in DCM

a) Energy-level diagram calculated by TDDFT M06/6-31G(d,p) method in ACN. b) CV voltammograms vs Fc/Fc^+ redox couple in acetonitrile (ACN) with a supporting electrolyte $[Bu_4N][PF_6]$ (0.1M), at a scan rate 0.1 V s⁻¹ i) full CV voltammogram collected in the full range of ACN, the second irreversible reduction process lead to a product(s) with oxidation peak located at -0.6 V ii) CV voltammogram of the first reversible one-electron process.

 λ (nm) i) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in hexane ii) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in dichloromethane (DCM) iii) CD spectra collected in dichloromethane (DCM) iii) CD spectra collected in dichloromethane (DCM) iii) CD spectra collected in DCM

a) Energy-level diagram calculated by TDDFT M06/6-31G(d,p) method in ACN. b) CV voltammograms vs Fc/Fc^+redox couple in acetonitrile (ACN) with a supporting electrolyte $[Bu_4N][PF_6]$ (0.1M), at a scan rate 0.1 V s⁻¹ i) full CV voltammogram collected in the full range of ACN, the second irreversible reduction process lead to a product(s) with oxidation peak located at -0.6 V ii) CV voltammogram of the first reversible one-electron process.

i) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in hexane ii) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in dichloromethane (DCM) iii) CD spectra collected in dichloromethane (DCM) iv) CPEL spectra and glum values collected in DCM

a) Energy-level diagram calculated by TDDFT M06/6-31G(d,p) method in ACN. b) CV voltammogram vs Fc/Fc⁺ redox couple in acetonitrile (ACN) with a supporting electrolyte [Bu₄N][PF₆] (0.1M), at a scan rate 0.1 V s⁻¹, the second irreversible reduction process lead to a product(s) with oxidation peak located at -0.6 V.

i) UV-vis absorption and emission ($\lambda_{(exc)}$ = 336 nm) in hexane ii) UV-vis absorption and emission ($\lambda_{(exc)}$ = 336 nm) in dichloromethane (DCM) iii) CD spectra collected in dichloromethane (DCM) iv) CPEL spectra and glum values collected in DCM

a) Energy-level diagram calculated by TDDFT M06/6-31G(d,p) method in ACN. b) CV voltammogram vs Fc/Fc⁺ redox couple in acetonitrile (ACN) with a supporting electrolyte [Bu₄N][PF₆] (0.1M), at a scan rate 0.1 V s⁻¹

i) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in hexane ii) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in dichloromethane (DCM) iii) CD spectra collected in dichloromethane (DCM) iv) CPEL spectra and glum values collected in DCM

a) Energy-level diagram calculated by TDDFT M06/6-31G(d,p) method in ACN. b) CV voltammogram vs Fc/Fc⁺ redox couple in acetonitrile (ACN) with a supporting electrolyte $[Bu_4N][PF_6]$ (0.1M), at a scan rate 0.1 V s⁻¹

i) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in hexane ii) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in dichloromethane (DCM) iii) CD spectra collected in dichloromethane (DCM) iv) CPEL spectra and glum values collected in DCM

a) Energy-level diagram calculated by TDDFT M06/6-31G(d,p) method in ACN. b) CV voltammogram vs Fc/Fc^+ redox couple in acetonitrile (ACN) with a supporting electrolyte $[Bu_4N][PF_6]$ (0.1M), at a scan rate 0.1 V s⁻¹, the second irreversible reduction process lead to a product(s) with oxidation peak located at -0.6 V.

i) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in hexane ii) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in dichloromethane (DCM) iii) CD spectra collected in dichloromethane (DCM) iv) CPEL spectra and glum values collected in DCM

a) Energy-level diagram calculated by TDDFT M06/6-31G(d,p) method in ACN. b) CV voltammogram vs Fc/Fc⁺ redox couple in acetonitrile (ACN) with a supporting electrolyte $[Bu_4N][PF_6]$ (0.1M), at a scan rate 0.1 V s⁻¹

i) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in hexane ii) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in dichloromethane (DCM) iii) CD spectra collected in dichloromethane (DCM) iv) CPEL spectra and glum values collected in DCM and cyclohexane (CHX)

a) Wavelength of excitation b) Measured in dichloromethane (c $\approx 1 \times 10^{-5}$ M) c) Measured at room temperature (c $\approx 1 \times 10^{-6}$ M) d) radiative rate constant calculated as $k_r = \Phi_{PL}/t_{fl}$ e) nonradiative decay rate constant calculated as $\Phi_{PL} = k_r/(k_r+k_{nr})$ f) Calculated as $E_{HOMO} = E_{LUMO} - E(0,0)$ g) Calculated using the equation $E_{LUMO} = -[E'_{red/onset} + 4.8]$ referenced against Fc/Fc*. h) Determined from the intersection of the absorption and emission curves and using equation $E_g = hc/\lambda$ i) Calculated by TDDFT M06/6-31G(d,p) method j) determined from the phosphorescence λ_{onset}

a) Energy-level diagram calculated by TDDFT M06/6-31G(d,p) method in ACN. b) CV voltammogram vs Fc/Fc^+ redox couple in acetonitrile (ACN) with a supporting electrolyte $[Bu_4N][PF_6]$ (0.1M), at a scan rate 0.1 V s⁻¹

Table S1: photophysical data

	aceno[6]helicenones				aceno[7]helicenones				helicenone	aceno[9]helicenone			
			24				SA C	GA				84	
Helicene	λ _(onset) [nm] hexane	λ _(em) λ _(exc) ª [nm] DCM	g _{lum} b (10 ⁻³) DCM (hexane)	[α] _D ²⁰ DCM	Φ _{ΡL} ^c (%) hexane/DCM/ACN	t _{fl} [ns] hexane/DCM/ACN	kr ^d [10 ⁷ s ⁻¹] hexane/DCM/ACN	k _{nr} e [10 ⁷ s ⁻¹] Hexane/DCM/ACN	Е _{номо} f [eV]	E _{LUMO} ^g [eV]	E _(0,0) h [eV] DCM (hexane)	E _(0,0) i [eV]	E _{T1-S0} j [eV]
1A	469	513(303)	+1.7 -1.5	+2147 -2167	3.6/12.5/11.4	2.34/4.0/4.25	1.5/3.1/2.7	41.2/21.9/20.8	-5.89	-3.21	2.55 (2.68)	2.59	2.08
2A	475	534(303)	+0.58 -0.52	+770 -748	5.0/8.3/7.6	1.93/2.71/2.5	2.7/3.0/3.0	50.5/33.9/37	-5.88	-3.23	2.49 (2.65)	2.51	2.09
3A	467	494(303)	+1.2 -1.0	+1094 -1031	1.3/8.5/7.8	0.79/2.71/2.89	1.6/3.1/2.7	125.2/33.8/31.9	-5.95	-3.27	2.60 (2.68)	2.58	2.00
4A	481	520(336)	+3.0 -2.9	+3493 -3526	3.4/8.3/7.6	2.76/3.68/3.85	1.21/2.25/1.97	35.0/24.9/24.0	-5.82	-3.2	2.51 (2.62)	2.49	2.00
5A	493	530(303)	+2.0 -2.0	+3620 -3672	3.3/6.6/5.8	2.56/3.42/4.09	1.3/1.9/1.4	37.8/27.3/23.0	-5.78	-3.23	2.45 (2.55)	2.46	1.96
6A	497	546(303)	+0.82 -0.80	+2014 -1945	7.9/11.2/10.8	2.71/2.45/2.95	2.9/4.6/3.7	33.9/36.2/30.2	-5.78	-3.23	2.41 (2.53)	2.42	2.00
7A	501	538(303)	+3.0 -3.1	+4789 -4633	4.0/4.9/6.8	2.83/3.34/3.53	1.4/1.5/1.9	33.9/28.5/26.4	-5.74	-3.23	2.41 (2.51)	2.42	1.93
8A	517	555(303)	+6.2 (-7.8) -6.1 (8.0)	+6015 -6297	5.1/6.4/4.9	3.31/3.09/3.16	1.54/2.07/1.55	28.7/30.3/30.1	-5.68	-3.25	2.33 (2.43)	2.33	1.90

a) Wavelength of excitation b) Measured in dichloromethane (c $\approx 1 \times 10^{-5}$ M) c) Measured at room temperature (c $\approx 1 \times 10^{-6}$ M) d) radiative rate constant calculated as $k_r = \Phi_{p_L}/t_{fl}$ e) nonradiative decay rate constant calculated as $\Phi_{PL} = k_r/(k_r+k_{nr})$ f) Calculated as $E_{HOMO} = E_{LUMO} - E(0,0)$ g) Calculated using the equation $E_{LUMO} = -[E'_{red/onset} + 4.8]$ referenced against Fc/Fc⁺. h) Determined from the intersection of the absorption and emission curves and using equation $E_g = hc/\lambda$ i) Calculated by TDDFT M06/6-31G(d,p) method j) determined from the phosphorescence λ_{onset}

S₀^{fc}

0.0

S₀

 T_2

T₃

T₄

2.319

2.555

2.569

i) UV-vis absorption and emission (λ_(exc) = 303nm) in hexane ii) UV-vis absorption and emission (λ_(exc) = 303nm) in dichloromethane (DCM) iii) CV voltammogram vs Fc/Fc⁺ redox couple in dimethylformamide (DMF) with a supporting electrolyte [Bu₄N][PF₆] (0.1M), at a scan rate 0.1 V s⁻¹ iv) Energy-level diagram calculated by TDDFT M06/6-31G(d,p) method in ACN.

1.0

0.5

0.0

Ш

S₀

 S_0^{fc}

S₁

T₁

 T_2

T₃

T₄

2.081

1.650

2.296

2.458

2.583

using the equation $E_{LUMO} = -[E'_{red/onset} + 4.8]$ referenced against Fc/Fc⁺ g) Determined from the intersection of the absorption and emission curves and using equation $E_g = hc/\lambda h$) Calculated by TDDFT M06/6-31G(d,p) method

i) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in hexane ii) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in dichloromethane (DCM) iii) CV voltammogram vs Fc/Fc⁺ redox couple in dimethylformamide (DMF) with a supporting electrolyte [Bu₄N][PF₆] (0.1M), at a scan rate 0.1 V s⁻¹ iv) Energy-level diagram calculated by TDDFT M06/6-31G(d,p) method in ACN.

P-(+) Peak at [nm]	G _{abs} DCM (CHX)
500	-2.5*10 ⁻³ (-2.8*10 ⁻³)
400	3.1*10 ⁻³ (5.8*10 ⁻³)
380	0.7*10 ⁻³ (1.1*10 ⁻³)
344	1.8*10 ⁻³ (1.6*10 ⁻³)
299	0.8*10 ⁻³ (0.8*10 ⁻³)
263	-5.7*10 ⁻³ (-5.9*10 ⁻³)

S153

a) Measured in dichloromethane. b) wavelength of excitation c) Measured in dichloromethane ($c \approx 1 \times 10^{-5}$ M) e) Measured at room temperature ($c \approx 1 \times 10^{-6}$ M) f) radiative rate constant calculated as $k_r = \Phi_{PL}/t_{fl}$ g) nonradiative decay rate constant calculated as $\Phi_{PL} = k_r/(k_r+k_{nr})$ h) Calculated as $E_{HOMO} = E_{LUMO} - E(0,0)$ i) Calculated using the equation $E_{LUMO} = -[E'_{red/onset} + 4.8]$ referenced against Fc/Fc⁺. j) Determined from the intersection of the absorption and emission curves and using equation $E_g = hc/\lambda$ k) Calculated by TDDFT M06/6-31G(d,p) method l) determined from the phosphorescence λ_{onset}

a) Energy-level diagram calculated by TDDFT M06/6-31G(d,p) method in ACN. b) CV voltammogram vs Fc/Fc⁺ redox couple in dimethylformamide (DMF) with a supporting electrolyte $[Bu_4N][PF_6]$ (0.1M), at a scan rate 0.1 V s⁻¹

0.5

0.0

S₀

S₀^{fc}

T₁

T₂

T3

T₄

1.531

2.153

2.280

2.373

i) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in hexane ii) UV-vis absorption and emission ($\lambda_{(exc)}$ = 303nm) in dichloromethane (DCM) iii) CV voltammogram vs Fc/Fc⁺ redox couple in dimethylformamide (DMF) with a supporting electrolyte [Bu₄N][PF₆] (0.1M), at a scan rate 0.1 V s⁻¹ iv) Energy-level diagram calculated by TDDFT M06/6-31G(d,p) method in ACN.

 T_4

2.312

S156

Table S2: photophysical data

		fluoreno[6]helicenes					fluo	reno[7]helicenes		fluoren	o[8]helicene	luoreno[9]helicene
K.	۰ ۱F	3 > <	2F	→ → → 3F		ŷ	4F	5F	6F	Ŷ	7F	8F
	Helicene	λ _(onset) [nm] hexane	λ _(em) λ _(exc) ª [nm] hexane	$\Phi_{ m PL}{}^{ m b}$ (%) hexane/DCM/ACN	t _{fi} [ns hexane/D0] CM/ACN	k _r c [10 ⁷ s⁻1] hexane/DCM/ACN	k _{nr} d [10 ⁷ s ⁻¹] Hexane/DCM/ACN	Е _{номо} е [eV]	E _{LUMO} f [eV]	E _(0,0) g [eV] Hexane (DC	E _{(0,0}) ^h [eV] M)
	1F	535	545(303)	5.5/0.6/0.6	6.38/1.1	4/1.15	0.86/0.53/0.52	14.8/87.2/86.4	-5.8	-3.43	2.37 (2.24)	2.05
	2F	515	521(336)	22.0/13.9/13.5	10.2/8.9	6/8.28	2.2/1.5/1.6	7.6/9.6/10.4	-5.87	-3 <mark>.</mark> 43	2.44 (2.34)	2.22
	3F	534	545(303)	11.5/1.9/1.85	9.21/1.	9/2.0	1.2/1.1/0.9	9.8/57.4/49.1	-5.79	-3.42	2.37 (2.27)	2.08
	4F	549	557(303)	6.9/1.07/0.76	6.48/9.	1/8.4	1.07/0.12/0.09	14.4/10.9/11.8	-5.68	-3.37	2.31 (2.23)	2.01
	5F	549	560(336)	4.22/0.55/0.61	6.38/1.1	5/1.16	0.66/0.47/0.53	15.0/85.7/86.4	-5.71	- <mark>3.4</mark>	2.31 (2.23)	2.00
	6F	528	532(336)	12.0/10.0/8.4	7.1/6.9	9/6.3	1.7/1.45/1.32	12.5/13.0/14.5	-5.76	-3.37	2.39 (2.27)	2.16
	7F	560	575(303)	6.2/0.86/0.72	6.23/0.9	5/0.94	1.0/0.91/0.76	15.0/104.9/105.4	-5.69	-3.43	2.26 (2.19)	1.96
	8F	588	600(303)	2.9/0.38/0.70	5.07/0.7	4/0.76	0.57/0.51/0.92	19.15/135.0/130.1	-5.62	-3.44	2.18 (2.07)	1.90

a) Wavelength of excitation b) Measured in dichloromethane ($c \approx 1 \times 10^{-5}$ M) c) radiative rate constant calculated as $k_r = \Phi_{p_L}/t_{fl}$ d) nonradiative decay rate constant calculated as $\Phi_{p_L} = k_r/(k_r+k_{nr})$ e) Calculated as $E_{HOMO} = E_{LUMO} - E(0,0)$ f) Calculated using the equation $E_{LUMO} = -[E'_{red/onset} + 4.8]$ referenced against Fc/Fc⁺. g) Determined from the intersection of the absorption and emission curves and using equation $E_g = hc/\lambda h$) Calculated by TDDFT M06/6-31G(d,p) method Figure S31. Plots showing the evolution of energy levels.

S158

Experimental and Calculated Circular Dichroism Spectra

All calculations were performed using Gaussian 16 Rev C.02. The molecular geometries were optimized at the CAM-B3LYP/Def2SVP level. The CD spectra were calculated using the time-dependent density functional theory (TD-DFT) method at the CAM-B3LYP/Def2TZVP level with the solvent effect (dichloromethane; SMD model). The calculated spectra were shifted by -0.35 eV to compensate for the overestimation of the vertical excitation energy by the CAM-B3LYP functional.

Experimental and Calculated Circular Dichroism Spectra

All calculations were performed using Gaussian 16 Rev C.02. The molecular geometries were optimized at the CAM-B3LYP/Def2SVP level. The CD spectra were calculated using the time-dependent density functional theory (TD-DFT) method at the CAM-B3LYP/Def2TZVP level with the solvent effect (dichloromethane; SMD model). The calculated spectra were shifted by -0.35 eV to compensate for the overestimation of the vertical excitation energy by the CAM-B3LYP functional.

Experimental and Calculated Circular Dichroism Spectra

All calculations were performed using Gaussian 16 Rev C.02. The molecular geometries were optimized at the CAM-B3LYP/Def2SVP level. The CD spectra were calculated using the time-dependent density functional theory (TD-DFT) method at the CAM-B3LYP/Def2TZVP level with the solvent effect (dichloromethane; SMD model). The calculated spectra were shifted by -0.35 eV to compensate for the overestimation of the vertical excitation energy by the CAM-B3LYP functional.

Figure S32

Comparison of HOMO and LUMO orbitals with apparent loss of symmetry

Table S3

Dipole moments of acenohelicenes in the ground and excited state

acenohelicene	Hexane μ(S₀) / μ(S₁)	DCM μ(S₀) / μ(S₁)	ACN μ(S₀) / μ(S₁)
1A	4.30 D / 10.37 D	5.20 D / 11.11 D	
2A	3.79 D / 9.16 D		4.89 D / 12.05 D
3A	4.69 D / 7.87 D		5.87 D / 10.59 D
4A	4.12 D / 8.60 D		5.44 D / 12.01 D
5A	4.70 D / 10.22 D	5.67 D / 12.64 D	
6A	4.15 D / 8.51D	5.05 D / 10.52 D	
7A	4.53 D / 9.30 D		
8A	4.72 D / 8.89 D	5.81 D / 11.32 D	

Figure S33

Proposed mechanism for two single electron reductions

 $n \ge R_4 N^+$

Figure S34

X-ray structure and crystal packing of racemic **5F** (CCDC 2295946), racemic **6F** (CCDC 2295945) and recamic **8F** (CCDC 2295947). Two conformers of each enantiomer in a racemic mixture were found in the centrosymetric unit cells of 5F and 6F. For 8F, the absolute structure cannot be determinded reliably due to the source and the absence of strong scatterer / heavy atom.

Table S4: crystallographic data

Compound	5F	6F	8F
Formula	C ₃₇ H ₂₀ O	$C_{41}H_{22}O$	C45H24O
FW (g • mol ⁻¹)	480.53	530.58	580.64
Crystal color	purple	orange	red
Crystal size (mm)	0.60 x 0.32 x 0.20	0.32 x 0.11 x 0.02	0.35 x 0.18 x 0.12
Crystal system	monoclinic	monoclinic	orthorhombic
Space group	$P2_1/c$	P21/c	P212121
Temperature	120 K	120 K	120 K
<i>a</i> (Å)	15.5109(11)	8.0168(4)	10.6528(7)
b (Å)	8.9771(7)	42.038(2)	13.9671(9)
<i>c</i> (Å)	16.8196(13)	15.3836(7)	18.2044(11)
β (°)	101.427(4)	97.965(3)	90
$V(\text{\AA}^3)$	2295.6(3)	5134.4(4)	2708.6(3)
Z	4	8	4
$\mathbf{d}_{\mathrm{calc}}$	1.390	1.373	1.424
μ (mm ⁻¹)	0.082	0.081	0.083
θ_{\min} - θ_{\max}	2.471 ° - 30.464°	1.651 ° - 25.051 °	1.838° - 28.354°
Refl. coll. / unique	156291 / 6760	110110 / 9071	201477 / 6779
Completeness to 20	0.971	0.996	1.000
R _{int}	0.0304	0.0822	0.0081
Refined param./restr.	343 / 0	757 / 0	416 / 0
${}^{\mathrm{a}}\mathbf{R}_{1} (I > 2\sigma(I))$	0.0861	0.0632	0.0442
^b wR ₂ (all data)	0.2198	0.1397	0.1296
Goodness of fit	1.164	1.057	1.117

 ${}^{a}R_{1} = \Sigma ||F_{0}| - |F_{C}|| / \Sigma |F_{0}| \text{ and } {}^{b}wR_{2} = [\Sigma w (F_{0}{}^{2} - F_{C}{}^{2})^{2} / \Sigma w (F_{o}{}^{2})^{2}]^{1/2}$

ORTEP-type views of 5F, 6F and 8F as found in the crystals at 120 K. Thermal ellipsoids are depicted at a 50 % probability level. H atoms are omitted for clarity. C: grey, O: red.

Table S5.	xyz coordinates	[in A] and energies	s [in A.U.] of r	nolecules optim	ised in
ground (SC)) and first electro	nically excited (S1) states		

			1A			
	E(S0) =	-1342.6886	A.U.	E(S1) =	-1342.5935	A.U.
	Х	У	Z	Х	У	Z
Н	-6.0630	-1.4168	0.7522	5.9915	1.5126	0.7439
Н	-7.4844	0.6403	0.8671	7.4389	-0.5168	0.8963
Н	-6.4168	2.8630	0.5248	6.4243	-2.7706	0.5635
С	-5.6386	-0.4277	0.6009	5.5810	0.5167	0.5978
С	-4.2680	-0.3410	0.3372	4.2128	0.4208	0.3194
С	-1.5883	2.1824	-0.4271	1.6019	-2.2109	-0.4580
С	-2.2118	0.9934	-0.1371	2.2189	-0.9692	-0.1646
С	-0.1832	2.2891	-0.5228	0.2298	-2.3395	-0.5483
С	-1.4208	-0.2006	-0.1813	1.4204	0.2162	-0.2280
С	0.6315	1.1469	-0.3146	-0.6031	-1.1822	-0.3427
С	-0.0260	-0.1355	-0.4062	0.0296	0.1129	-0.4786
С	0.4114	3.5473	-0.8144	-0.3798	-3.6150	-0.7951
С	1.7649	3.6679	-0.8746	-1.7270	-3.7536	-0.7636
С	2.5995	2.5960	-0.4559	-2.5515	-2.6665	-0.3364
С	2.0320	1.3681	-0.0423	-1.9560	-1.4089	0.0159
Н	-2.1598	3.0996	-0.5498	2.2058	-3.1054	-0.5882
С	-3.6536	0.9093	0.1305	3.6266	-0.8602	0.1133
Н	-0.2401	4.3939	-1.0215	0.2683	-4.4566	-1.0308
Н	2.2323	4.6058	-1.1682	-2.2040	-4.7002	-1.0071
С	4.0142	2.7808	-0.4219	-3.9504	-2.8094	-0.2902
С	2.8802	0.4564	0.7027	-2.7843	-0.4618	0.7466
С	4.2879	0.6571	0.6937	-4.1978	-0.6187	0.7215
С	4.8346	1.8195	0.0737	-4.7603	-1.7910	0.1573
Н	4.4179	3.7125	-0.8139	-4.3858	-3.7442	-0.6369
Н	5.9154	1.9480	0.0695	-5.8426	-1.9024	0.1487
С	-1.3341	-2.6322	-0.1892	1.2326	2.6488	-0.2167
С	-2.0534	-1.4788	-0.0357	2.0159	1.5111	-0.0757
С	0.0091	-2.6029	-0.6286	-0.0959	2.5680	-0.6649
С	0.6524	-1.3486	-0.8167	-0.6857	1.2864	-0.9023
С	0.6833	-3.8036	-0.9494	-0.8691	3.7288	-0.9157
С	1.9363	-3.7764	-1.5089	-2.1276	3.6393	-1.4606
С	2.5334	-2.5359	-1.7993	-2.6561	2.3810	-1.8166
С	1.9079	-1.3569	-1.4643	-1.9439	1.2355	-1.5438
Н	-1.8374	-3.5856	-0.0395	1.6926	3.6182	-0.0381
С	-3.4908	-1.5934	0.2853	3.4288	1.6568	0.2428
Н	0.1721	-4.7472	-0.7675	-0.4320	4.6992	-0.6861
Н	2.4490	-4.7011	-1.7601	-2.7024	4.5418	-1.6537
Н	3.4970	-2.5055	-2.3018	-3.6197	2.3163	-2.3149
Н	2.3873	-0.4153	-1.7141	-2.3544	0.2713	-1.8343
С	5.1322	-0.2607	1.3551	-5.0186	0.3561	1.3282

С	2.3782	-0.5936	1.5040	-2.2521	0.5775	1.5249
С	4.6125	-1.3163	2.0658	-4.4662	1.4209	2.0094
С	3.2181	-1.4602	2.1655	-3.0743	1.5098	2.1364
Н	6.2078	-0.0974	1.3103	-6.0987	0.2365	1.2680
Н	5.2717	-2.0142	2.5757	-5.1061	2.1651	2.4752
Н	2.7966	-2.2544	2.7769	-2.6314	2.3100	2.7233
Н	1.3045	-0.7148	1.6135	-1.1760	0.6524	1.6567
0	-4.0161	-2.6845	0.4937	3.9517	2.7725	0.4301
С	-6.4193	0.7112	0.6638	6.3774	-0.6107	0.6808
С	-5.8190	1.9566	0.4689	5.8080	-1.8783	0.4902
С	-4.4615	2.0532	0.2116	4.4615	-1.9966	0.2144
Н	-4.0274	3.0407	0.0846	4.0428	-2.9913	0.0898
			2A			
	E(S0) =	-1496.2203	A.U.	E(S1) =	-1496.1281	A.U.
	х	У	Z	Х	у	Z
Н	-3.3364	0.2379	-1.6633	-3.3153	0.1347	-1.7520
Н	7.3523	1.5714	0.7029	7.2869	1.6112	0.7567
Н	8.9905	-0.2860	0.7346	8.9293	-0.2350	0.8144
Н	8.2282	-2.6283	0.4012	8.1989	-2.5847	0.4580
С	7.9347	-0.4880	0.5740	7.8791	-0.4473	0.6311
Н	4.9878	2.3426	0.4831	4.9260	2.3805	0.4880
С	7.0302	0.5420	0.5564	6.9673	0.5828	0.5994
С	6.1729	-2.1011	0.1797	6.1423	-2.0679	0.1959
С	4.6883	1.3076	0.3285	4.6301	1.3450	0.3284
С	3.3524	1.0376	0.1186	3.2918	1.0863	0.0961
С	0.9996	-1.8219	-0.6094	1.0100	-1.8472	-0.6730
С	1.4719	-0.5676	-0.3080	1.4720	-0.5470	-0.3572
С	-0.3809	-2.1154	-0.6476	-0.3371	-2.1494	-0.7097
С	0.5277	0.5107	-0.2877	0.5243	0.5291	-0.3502
С	-1.3310	-1.0987	-0.3727	-1.2997	-1.1189	-0.4137
С	-0.8551	0.2617	-0.4562	-0.8507	0.2518	-0.5391
С	-0.8144	-3.4360	-0.9493	-0.7842	-3.4829	-0.9890
С	-2.1406	-3.7375	-0.9539	-2.0992	-3.7940	-0.9075
С	-3.0915	-2.7976	-0.4697	-3.0329	-2.8432	-0.3872
С	-2.6757	-1.5132	-0.0480	-2.5963	-1.5362	-0.0053
Н	1.6833	-2.6493	-0.7852	1.7156	-2.6501	-0.8694
С	2.9008	-0.3016	-0.0899	2.8610	-0.2684	-0.1274
Н	-0.0656	-4.1821	-1.2079	-0.0438	-4.2232	-1.2842
Н	-2.4911	-4.7235	-1.2526	-2.4638	-4.7842	-1.1714
С	-4.4650	-3.1744	-0.3787	-4.3949	-3.1906	-0.2672
С	-3.6041	-0.7407	0.7562	-3.5038	-0.7382	0.8041
С	-4.9708	-1.1307	0.8028	-4.8775	-1.1018	0.8635
С	-5.3840	-2.3443	0.1776	-5.3055	-2.3222	0.2783
Н	-4.7565	-4.1443	-0.7773	-4.7133	-4.1637	-0.6351
Н	-6.4366	-2.6189	0.2170	-6.3598	-2.5865	0.3302
С	0.1094	2.9089	-0.2254	0.0279	2.9173	-0.2600

C	0.9858	1.8622	-0.1358	0.9590	1.8865	-0.1854
C	-1.2363	2.7055	-0.6075	-1.2972	2.6762	-0.6498
C	-1.7091	1.3796	-0.8059	-1.7341	1.3335	-0.8878
C	-2.0821	3.8091	-0.8643	-2.2194	3.7379	-0.8443
C	-3.3438	3.6224	-1.3722	-3.4788	3.5018	-1.3348
C	-3.7768	2.3187	-1.6761	-3.8665	2.1901	-1.6870
C	-2.9807	1.2298	-1.4026	-3.0084	1,1381	-1.4669
H	0.4840	3.9190	-0.0711	0.3675	3.9340	-0.0760
C	2.4070	2.1705	0.1224	2.3511	2.2078	0.0756
H	-1.6976	4.8097	-0.6757	-1.8926	4.7514	-0.6170
Н	-3.9892	4.4730	-1.5742	-4.1688	4.3286	-1.4863
C	-5.9001	-0.3487	1.5229	-5.7892	-0.2852	1.5670
C	-3.2122	0.3526	1.5617	-3.0805	0.3506	1.5864
C	-5.4957	0.7544	2.2365	-5.3553	0.8259	2.2556
C	-4.1302	1.0847	2.2799	-3.9849	1.1227	2.2910
н	-6 9448	-0.6557	1 5201	-6 8403	-0 5678	1 5737
н	-6 2190	1 3467	2 7912	-6.0630	1 4476	2 7970
н	-3 7923	1 9170	2.7912	-3 6262	1 9615	2.7570
н	-2 1607	0.6162	1 6284	-2 0222	0 5886	1 6468
0	2.1007	3 3219	0 3267	2.0222	3 3819	0 2643
C C	5 6524	0 2847	0.3267	5 5982	0 3247	0.2045
C	5 2130	-1 0585	0.5405	5.5502	-1 0281	0.5656
C	3 8419	-1 3137	-0.0552	3 8218	-1 2873	-0 0838
н	3 5453	-2 3530	-0 1785	3 5301	-2 3261	-0 2190
н	5 8371	-3 1262	0.1705	5 8125	-3 0932	0.2130
C	7 4999	-1 8213	0.0000	7 4648	-1 7842	0.0300
н	-4 7478	2 1674	-2 1410	-4 8377	2 0135	-2 1417
		2.1071	30	1.0077	2.0100	2.111
	F(SO) =	-1342 6902		F(S1) =	-1342 5953	ΔIJ
	- (30) v	10 12:0002 V	7	L(31)	10 12.0000	7
н	6 0611	-1 6429	-0 4062	6 0404	-1 6740	-0 3931
н	7 5827	0 2424	0 2203	7 5629	0 2424	0 1022
н	6.5869	2.4335	0.8572	6.5884	2.4681	0.6584
C	5.6675	-0.6704	-0.1222	5.6440	-0.6935	-0.1422
C	4.2784	-0.5065	-0.1146	4.2557	-0.5492	-0.1035
C	1.6392	2,0948	0.5258	1.6482	2,1098	0.5684
C	2.2423	0.8974	0.2268	2.2578	0.8759	0.2392
C	0.2535	2,2993	0.3416	0.2929	2.3060	0.4049
C	1.4015	-0.2248	-0.0650	1.4155	-0.2598	-0.0241
C	-0.5694	1.2357	-0.0862	-0.5315	1.2159	-0.0685
C	-0.0136	-0.0950	-0.0372	-0.0012	-0.1192	0.0230
Č	-0.3011	3.5996	0.5512	-0.3054	3.5867	0.6532
Č	-1.6031	3.8544	0.2678	-1.5914	3.8254	0.3133
C C	-2.4081	2,8638	-0.3713	-2.3555	2.8375	-0.4006
C C	-1 8744	1 5694	-0.6196	-1 7945	1 5509	-0.6570
н	2,2258	2 9558	0.8372	2.2457	2 9474	0.9166
		2.3330	0.0072	2.273/		0.0100

С	3.7022	0.7292	0.2400	3.6869	0.7149	0.2194
Н	0.3480	4.3762	0.9515	0.3115	4.3595	1.1066
Н	-2.0365	4.8347	0.4566	-2.0535	4.7908	0.5085
С	-3.7099	3.1810	-0.8148	-3.6391	3.1356	-0.8678
С	-2.6292	0.6962	-1.4351	-2.5191	0.6692	-1.4971
С	-3.8852	1.0370	-1.8827	-3.7724	0.9966	-1.9721
С	-4.4496	2.2786	-1.5423	-4.3535	2.2231	-1.6323
Н	-4.1066	4.1694	-0.5886	-4.0678	4.1079	-0.6330
Н	-5.4492	2.5355	-1.8833	-5.3488	2.4742	-1.9888
С	1.1720	-2.5667	-0.6469	1.1378	-2.6162	-0.5766
С	1.9800	-1.4891	-0.3828	1.9813	-1.5301	-0.3190
С	-0.2154	-2.5108	-0.4111	-0.2327	-2.5302	-0.3523
С	-0.7974	-1.3044	0.0448	-0.8090	-1.3006	0.1089
С	-1.0175	-3.6807	-0.5893	-1.0864	-3.6566	-0.5786
С	-2.3316	-3.6784	-0.2550	-2.4064	-3.6089	-0.2700
С	-2.9019	-2.5515	0.4120	-2.9645	-2.4736	0.4033
С	-2.1184	-1.3859	0.6356	-2.1444	-1.3404	0.6656
Н	1.6303	-3.5007	-0.9664	1.5823	-3.5512	-0.9091
С	3.4416	-1.6631	-0.4832	3.4213	-1.7187	-0.4018
Н	-0.5442	-4.5664	-1.0083	-0.6452	-4.5530	-1.0106
Н	-2.9549	-4.5550	-0.4205	-3.0544	-4.4616	-0.4656
С	-4.2208	-2.6128	0.9094	-4.2950	-2.4970	0.8578
С	-2.6533	-0.3899	1.4834	-2.6762	-0.3341	1.5006
С	-3.9313	-0.4844	1.9850	-3.9775	-0.3869	1.9568
С	-4.7396	-1.5893	1.6674	-4.8099	-1.4604	1.6101
Н	-4.8111	-3.5035	0.7011	-4.9081	-3.3649	0.6195
Н	-5.7552	-1.6501	2.0500	-5.8397	-1.4901	1.9564
Н	-4.3119	0.2965	2.6385	-4.3536	0.4080	2.5964
Н	-2.0404	0.4644	1.7557	-2.0458	0.5001	1.7995
0	3.9376	-2.7281	-0.8461	3.9247	-2.8196	-0.6929
С	6.5041	0.3737	0.2246	6.4844	0.3741	0.1322
С	5.9436	1.6016	0.5817	5.9376	1.6241	0.4468
С	4.5696	1.7760	0.5867	4.5671	1.7892	0.4862
Н	4.1738	2.7481	0.8656	4.1720	2.7733	0.7197
Н	-4.4379	0.3440	-2.5122	-4.3036	0.3010	-2.6159
Н	-2.2067	-0.2609	-1.7271	-2.0714	-0.2788	-1.7815
			4A			
	E(S0) =	-1496.2184	A.U.	E(S1) =	-1496.1271	A.U.
	Х	У	Z	Х	У	Z
Н	1.3935	-3.7936	2.9478	1.1322	-3.7599	2.9594
С	1.6591	-2.8502	2.4774	1.4409	-2.8260	2.4970
С	0.7458	-1.7814	2.4734	0.5487	-1.7413	2.4387
Н	-6.0748	-1.8172	0.2874	-6.0119	-1.8124	0.3090
Н	-7.6828	0.0373	0.7723	-7.5937	0.0413	0.8561
Н	-6.8379	2.3784	0.8381	-6.7450	2.3855	0.9283
С	-5.7481	-0.7812	0.3196	-5.6765	-0.7789	0.3436

С	-4.3957	-0.5168	0.0788	-4.3260	-0.5308	0.0676
С	-1.9702	2.3473	-0.1589	-1.9240	2.3886	-0.2464
С	-2.4820	1.0725	-0.1332	-2.4433	1.0694	-0.1775
С	-0.5803	2.5957	-0.2295	-0.5683	2.6391	-0.3305
С	-1.5903	-0.0129	-0.4216	-1.5672	-0.0191	-0.4672
С	0.3272	1.5107	-0.2809	0.3522	1.5280	-0.3427
С	-0.2154	0.2251	-0.6420	-0.1929	0.2270	-0.7071
С	-0.0925	3.9331	-0.2422	-0.0527	3.9778	-0.3305
С	1.2448	4.1713	-0.3179	1.2824	4.1987	-0.2848
С	2.1773	3.1047	-0.1806	2.1935	3.1095	-0.0988
С	1.7151	1.7792	0.0229	1.6867	1.7716	0.0501
Н	-2.6203	3.2149	-0.0755	-2.5938	3.2435	-0.2006
С	-3.9060	0.8039	0.1075	-3.8327	0.8042	0.0939
Н	-0.8119	4.7495	-0.2441	-0.7601	4.8024	-0.3912
Н	1.6294	5.1834	-0.4275	1.6912	5.2045	-0.3537
С	3.5732	3.3640	-0.2478	3.5764	3.3108	-0.1500
С	2.6643	0.8006	0.4969	2.6143	0.7550	0.5347
С	4.0367	1.0515	0.2792	4.0021	0.9690	0.3276
С	4.4695	2.3465	-0.1187	4.4598	2.2486	-0.0353
Н	3.9029	4.3810	-0.4507	3.9505	4.3154	-0.3365
Н	5.5356	2.5191	-0.2536	5.5289	2.4082	-0.1587
С	-1.2631	-2.3878	-0.8376	-1.2178	-2.3896	-0.9247
С	-2.0932	-1.3525	-0.4999	-2.0661	-1.3618	-0.5543
С	0.0627	-2.1520	-1.2676	0.0962	-2.1320	-1.3518
С	0.5704	-0.8241	-1.2548	0.5947	-0.7904	-1.3289
С	0.8498	-3.2086	-1.7816	0.9345	-3.1684	-1.8260
С	2.0771	-2.9588	-2.3438	2.1823	-2.8949	-2.3342
С	2.5314	-1.6305	-2.4438	2.6267	-1.5596	-2.4250
С	1.7970	-0.5924	-1.9168	1.8502	-0.5349	-1.9369
Н	-1.6652	-3.3992	-0.8458	-1.6070	-3.4056	-0.9349
С	-3.5062	-1.6591	-0.2029	-3.4620	-1.6693	-0.2517
Н	0.4442	-4.2182	-1.7495	0.5584	-4.1898	-1.7986
Н	2.6757	-3.7719	-2.7456	2.8109	-3.7016	-2.7027
Н	3.4700	-1.4176	-2.9499	3.5807	-1.3369	-2.8963
Н	2.1622	0.4239	-2.0294	2.1883	0.4911	-2.0538
С	4.9928	0.0074	0.4636	4.9256	-0.1009	0.5400
С	2.3062	-0.4117	1.2031	2.2078	-0.4141	1.2481
С	4.6111	-1.2229	0.8950	4.5005	-1.3030	1.0076
С	3.2694	-1.4506	1.3231	3.1452	-1.4814	1.4161
Н	6.0340	0.2180	0.2257	5.9749	0.0721	0.3093
Н	5.3331	-2.0319	0.9915	5.1946	-2.1311	1.1365
С	2.9072	-2.6739	1.9280	2.7239	-2.6846	2.0103
С	1.0651	-0.5939	1.8542	0.9225	-0.5652	1.8322
0	-3.9249	-2.8153	-0.1966	-3.8972	-2.8349	-0.2785
С	-6.6327	0.2463	0.5877	-6.5478	0.2501	0.6456
С	-6.1571	1.5587	0.6225	-6.0709	1.5688	0.6827

С	-4.8190	1.8309	0.3908	-4.7444	1.8365	0.4144
Н	-4.4851	2.8632	0.4410	-4.4020	2.8659	0.4699
Н	0.3534	0.2261	1.8854	0.2354	0.2756	1.8310
Н	3.6523	-3.4665	1.9778	3.4410	-3.4987	2.0988
Н	-0.2168	-1.8875	2.9682	-0.4406	-1.8283	2.8809
			5A			
	E(S0) =	-1496.2166	A.U.	E(S1) =	-1496.1261	A.U.
	х	у	Z	Х	у	Z
Н	-6.3756	-1.8098	0.4393	-6.3358	-1.8262	0.4414
Н	-7.9873	0.0964	0.2582	-7.9393	0.0881	0.3353
Н	-7.0999	2.3936	-0.1082	-7.0614	2.3961	-0.0064
С	-6.0308	-0.7925	0.2739	-5.9881	-0.8080	0.2869
С	-4.6527	-0.5827	0.1631	-4.6098	-0.6147	0.1481
С	-2.1399	2.1618	-0.3882	-2.1222	2.1809	-0.4424
С	-2.6879	0.9239	-0.1569	-2.6755	0.9029	-0.1882
С	-0.7456	2.3891	-0.3208	-0.7592	2.4046	-0.3792
С	-1.7990	-0.1988	-0.0841	-1.7982	-0.2214	-0.1289
С	0.1324	1.3161	-0.0347	0.1201	1.3101	-0.0683
С	-0.3981	-0.0185	-0.2076	-0.3943	-0.0299	-0.2730
С	-0.2244	3.6967	-0.5293	-0.2095	3.7138	-0.5839
С	1.1152	3.9205	-0.4458	1.1178	3.9364	-0.4248
С	1.9876	2.9042	0.0347	1.9632	2.9073	0.0969
С	1.4743	1.6350	0.3833	1.4143	1.6236	0.4180
Н	-2.7701	3.0287	-0.5733	-2.7678	3.0283	-0.6581
С	-4.1376	0.7113	-0.0502	-4.0991	0.6952	-0.0573
Н	-0.9142	4.4955	-0.7946	-0.8812	4.5107	-0.8967
Н	1.5359	4.8962	-0.6816	1.5581	4.9072	-0.6407
С	3.3835	3.1703	0.1636	3.3447	3.1290	0.2486
С	2.3268	0.7506	1.1506	2.2353	0.7220	1.2061
С	3.7210	1.0199	1.2122	3.6342	0.9614	1.2982
С	4.2312	2.2326	0.6615	4.1729	2.1597	0.7669
Н	3.7542	4.1374	-0.1715	3.7540	4.0833	-0.0761
Н	5.3023	2.4191	0.7167	5.2448	2.3319	0.8409
С	-1.4633	-2.5869	0.1573	-1.4201	-2.6132	0.0788
С	-2.3184	-1.5151	0.0999	-2.3112	-1.5446	0.0404
С	-0.0975	-2.4488	-0.1612	-0.0715	-2.4469	-0.2456
С	0.4112	-1.1747	-0.5032	0.4316	-1.1542	-0.5925
С	0.7607	-3.5917	-0.1552	0.8298	-3.5524	-0.1950
С	2.0608	-3.4844	-0.5273	2.1356	-3.4131	-0.5493
С	2.5526	-2.2633	-1.0811	2.6170	-2.1900	-1.1113
С	1.7048	-1.1243	-1.1505	1.7438	-1.0671	-1.1989
Н	-1.8712	-3.5702	0.3835	-1.8059	-3.6013	0.3203
С	-3.7627	-1.7538	0.2795	-3.7310	-1.7900	0.2219
Н	0.3454	-4.5420	0.1743	0.4463	-4.5102	0.1525
Н	2.7297	-4.3418	-0.4833	2.8224	-4.2550	-0.4794
С	3.8520	-2.1992	-1.6270	3.9233	-2.1084	-1.6296

-						
С	2.1457	-0.0235	-1.9187	2.1974	0.0465	-1.9392
С	3.4035	0.0025	-2.4773	3.4732	0.0947	-2.4642
С	4.2831	-1.0788	-2.2982	4.3608	-0.9757	-2.2832
Н	4.4961	-3.0720	-1.5336	4.5758	-2.9741	-1.5243
Н	5.2833	-1.0442	-2.7226	5.3704	-0.9250	-2.6826
Н	3.7123	0.8624	-3.0666	3.7860	0.9709	-3.0277
Н	1.4731	0.8119	-2.0901	1.5240	0.8811	-2.1164
С	4.5787	0.1202	1.8814	4.4567	0.0440	1.9857
С	1.8370	-0.3340	1.9119	1.7006	-0.3447	1.9455
С	4.0776	-0.9747	2.5453	3.9120	-1.0455	2.6341
С	2.6875	-1.1773	2.5908	2.5226	-1.2189	2.6398
Н	5.6468	0.3320	1.8873	5.5288	0.2288	2.0163
Н	4.7462	-1.6563	3.0649	4.5521	-1.7433	3.1665
Н	2.2771	-2.0010	3.1702	2.0788	-2.0385	3.1989
Н	0.7655	-0.4971	1.9818	0.6233	-0.4784	1.9935
0	-4.2040	-2.8776	0.5095	-4.1878	-2.9312	0.4198
С	-6.9169	0.2636	0.1740	-6.8705	0.2555	0.2282
С	-6.4173	1.5507	-0.0331	-6.3776	1.5520	0.0337
С	-5.0539	1.7699	-0.1393	-5.0200	1.7645	-0.1031
Н	-4.7033	2.7872	-0.2878	-4.6663	2.7830	-0.2362
			6A			
	E(S0) =	-1649.7464	A.U.	E(S1) =	-1649.6576	A.U.
	x	v	Z	x	V	7
	1 1	5	-		y	L
Н	-7.7759	-1.8096	0.4157	-7.7336	-1.8045	0.4623
H H	-7.7759 -9.5031	-1.8096 -0.0430	0.4157 0.2415	-7.7336 -9.4463	-1.8045 -0.0224	0.4623 0.3802
H H H	-7.7759 -9.5031 -8.8354	-1.8096 -0.0430 2.3232	0.4157 0.2415 -0.1245	-7.7336 -9.4463 -8.7800	-1.8045 -0.0224 2.3485	0.4623 0.3802 0.0417
Н Н С	-7.7759 -9.5031 -8.8354 -8.4492	-1.8096 -0.0430 2.3232 0.2097	0.4157 0.2415 -0.1245 0.1584	-7.7336 -9.4463 -8.7800 -8.3945	-1.8045 -0.0224 2.3485 0.2274	0.4623 0.3802 0.0417 0.2668
Н Н С Н	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633	-1.8096 -0.0430 2.3232 0.2097 -2.4618	0.4157 0.2415 -0.1245 0.1584 0.4087	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289	-1.8045 -0.0224 2.3485 0.2274 -2.4843	0.4623 0.3802 0.0417 0.2668 0.3681
н н с н с	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129
Н Н С Н С С	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701
ннснссс	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141
нннснссс	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715
нннснсссс	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290
нннснссссс	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042 -1.9454	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877 0.6064	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038 -0.1806	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008 -1.9351	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872 0.5667	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290 -0.2652
нннснсссссс	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042 -1.9454 -0.1365	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877 0.6064 2.2356	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038 -0.1806 -0.3231	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008 -1.9351 -0.1659	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872 0.5667 2.2353	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290 -0.2652 -0.4502
нннонососос	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042 -1.9454 -0.1365 -0.9628	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877 0.6064 2.2356 -0.4358	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038 -0.4038 -0.1806 -0.3231 -0.1070	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008 -1.9351 -0.1659 -0.9583	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872 0.5667 2.2353 -0.4751	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290 -0.2652 -0.4502 -0.4502 -0.1933
ннгснссссссс	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042 -1.9454 -0.1365 -0.9628 0.8299	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877 0.6064 2.2356 -0.4358 1.2420	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038 -0.1806 -0.3231 -0.1070 -0.0357	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008 -1.9351 -0.1659 -0.9583 0.8040	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872 0.5667 2.2353 -0.4751 1.2283	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290 -0.2652 -0.4502 -0.4502 -0.1933 -0.1076
нннснссссссс	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042 -1.9454 -0.1365 -0.9628 0.8299 0.4182	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877 0.6064 2.2356 -0.4358 1.2420 -0.1319	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038 -0.1806 -0.3231 -0.1070 -0.0357 -0.2208	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008 -1.9351 -0.1659 -0.9583 0.8040 0.4219	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872 0.5667 2.2353 -0.4751 1.2283 -0.1556	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290 -0.2652 -0.4502 -0.4502 -0.1933 -0.1076 -0.3192
ннгснсссссссс	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042 -1.9454 -0.1365 -0.9628 0.8299 0.4182 0.2690	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877 0.6064 2.2356 -0.4358 1.2420 -0.1319 3.5855	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038 -0.1806 -0.3231 -0.1070 -0.0357 -0.2208 -0.5212	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008 -1.9351 -0.1659 -0.9583 0.8040 0.4219 0.2591	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872 0.5667 2.2353 -0.4751 1.2283 -0.1556 3.5881	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290 -0.2652 -0.4502 -0.4502 -0.1933 -0.1076 -0.3192 -0.6603
нннснссссссссс	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042 -1.9454 -0.1365 -0.9628 0.8299 0.4182 0.2690 1.5824	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877 0.6064 2.2356 -0.4358 1.2420 -0.1319 3.5855 3.9261	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038 -0.1806 -0.3231 -0.1070 -0.0357 -0.2208 -0.5212 -0.4241	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008 -1.9351 -0.1659 -0.9583 0.8040 0.4219 0.2591 1.5548	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872 0.5667 2.2353 -0.4751 1.2283 -0.4751 1.2283 -0.1556 3.5881 3.9338	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290 -0.2652 -0.4502 -0.4502 -0.1933 -0.1076 -0.3192 -0.6603 -0.4723
ннноноссоссоссо	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042 -1.9454 -0.1365 -0.9628 0.8299 0.4182 0.2690 1.5824 2.5368	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877 0.6064 2.2356 -0.4358 1.2420 -0.1319 3.5855 3.9261 2.9877	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038 -0.1806 -0.3231 -0.1070 -0.357 -0.2208 -0.5212 -0.4241 0.0593	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008 -1.9351 -0.1659 -0.9583 0.8040 0.4219 0.2591 1.5548 2.4784	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872 0.5667 2.2353 -0.4751 1.2283 -0.1556 3.5881 3.9338 2.9935	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290 -0.2652 -0.4502 -0.4502 -0.1933 -0.1076 -0.3192 -0.6603 -0.4723 0.0856
ннноносососососос	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042 -1.9454 -0.1365 -0.9628 0.8299 0.4182 0.2690 1.5824 2.5368 2.1360	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877 0.6064 2.2356 -0.4358 1.2420 -0.1319 3.5855 3.9261 2.9877 1.6754	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038 -0.1806 -0.3231 -0.1070 -0.0357 -0.2208 -0.5212 -0.4241 0.0593 0.3948	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008 -1.9351 -0.1659 -0.9583 0.8040 0.4219 0.2591 1.5548 2.4784 2.0534	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872 0.5667 2.2353 -0.4751 1.2283 -0.4751 1.2283 -0.1556 3.5881 3.9338 2.9935 1.6679	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290 -0.2652 -0.4502 -0.4502 -0.1933 -0.1076 -0.3192 -0.6603 -0.4723 0.0856 0.4061
ннноносссоссосси	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042 -1.9454 -0.1365 -0.9628 0.8299 0.4182 0.2690 1.5824 2.5368 2.1360 -2.2064	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877 0.6064 2.2356 -0.4358 1.2420 -0.1319 3.5855 3.9261 2.9877 1.6754 2.6971	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038 -0.1806 -0.3231 -0.1070 -0.357 -0.2208 -0.5212 -0.4241 0.0593 0.3948 -0.5902	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008 -1.9351 -0.1659 -0.9583 0.8040 0.4219 0.2591 1.5548 2.4784 2.0534 -2.2180	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872 0.5667 2.2353 -0.4751 1.2283 -0.1556 3.5881 3.9338 2.9935 1.6679 2.6683	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290 -0.2652 -0.4502 -0.4502 -0.1933 -0.1076 -0.3192 -0.6603 -0.4723 0.0856 0.4061 -0.7674
нннонососососсосно	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042 -1.9454 -0.1365 -0.9628 0.8299 0.4182 0.2690 1.5824 2.5368 2.1360 -2.2064 -3.3736	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877 0.6064 2.2356 -0.4358 1.2420 -0.1319 3.5855 3.9261 2.9877 1.6754 2.6971 0.2723	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038 -0.1806 -0.3231 -0.1070 -0.0357 -0.2208 -0.5212 -0.4241 0.0593 0.3948 -0.5902 -0.0795	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008 -1.9351 -0.1659 -0.9583 0.8040 0.4219 0.2591 1.5548 2.4784 2.0534 -2.2180 -3.3318	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872 0.5667 2.2353 -0.4751 1.2283 -0.4751 1.2283 -0.1556 3.5881 3.9338 2.9935 1.6679 2.6683 0.2371	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290 -0.2652 -0.4502 -0.4502 -0.1933 -0.1076 -0.3192 -0.6603 -0.4723 0.0856 0.4061 -0.7674 -0.1359
нннонососсоссоссинон	-7.7759 -9.5031 -8.8354 -8.4492 -5.3633 -7.4954 -6.7450 -5.1067 -3.7737 -1.5042 -1.9454 -0.1365 -0.9628 0.8299 0.4182 0.2690 1.5824 2.5368 2.1360 -2.2064 -3.3736 -0.4866	-1.8096 -0.0430 2.3232 0.2097 -2.4618 -0.7702 1.8994 -1.4169 -1.0828 1.8877 0.6064 2.2356 -0.4358 1.2420 -0.1319 3.5855 3.9261 2.9877 1.6754 2.6971 0.2723 4.3213	0.4157 0.2415 -0.1245 0.1584 0.4087 0.2550 -0.1577 0.2438 0.1339 -0.4038 -0.1806 -0.3231 -0.1070 -0.0357 -0.2208 -0.5212 -0.4241 0.0593 0.3948 -0.5902 -0.0795 -0.7893	-7.7336 -9.4463 -8.7800 -8.3945 -5.3289 -7.4446 -6.6928 -5.0659 -3.7286 -1.5008 -1.9351 -0.1659 -0.9583 0.8040 0.4219 0.2591 1.5548 2.4784 2.0534 -2.2180 -3.3318 -0.4795	-1.8045 -0.0224 2.3485 0.2274 -2.4843 -0.7659 1.9083 -1.4391 -1.1282 1.8872 0.5667 2.2353 -0.4751 1.2283 -0.4751 1.2283 -0.1556 3.5881 3.9338 2.9935 1.6679 2.6683 0.2371 4.3150	0.4623 0.3802 0.0417 0.2668 0.3681 0.3129 -0.0701 0.2141 0.0715 -0.5290 -0.2652 -0.4502 -0.4502 -0.4502 -0.1933 -0.1076 -0.3192 -0.6603 -0.4723 0.0856 0.4061 -0.7674 -0.1359 -0.9919

С	3.9012	3.3782	0.2048	3.8256	3.3629	0.2784
С	3.0583	0.8656	1.1636	2.9436	0.8549	1.2153
С	4.4216	1.2602	1.2429	4.3058	1.2423	1.3487
С	4.8255	2.5187	0.7070	4.7317	2.4910	0.8281
Н	4.1856	4.3773	-0.1205	4.1400	4.3538	-0.0429
Н	5.8745	2.8015	0.7755	5.7774	2.7735	0.9331
С	-0.4143	-2.7871	0.1230	-0.3662	-2.8227	0.0358
С	-1.3615	-1.7958	0.0694	-1.3529	-1.8398	-0.0241
С	0.9352	-2.5259	-0.1897	0.9652	-2.5345	-0.2645
С	1.3287	-1.2093	-0.5204	1.3550	-1.2017	-0.6097
С	1.8926	-3.5867	-0.1864	1.9643	-3.5546	-0.1914
С	3.1804	-3.3595	-0.5481	3.2575	-3.2966	-0.5143
С	3.5637	-2.0950	-1.0897	3.6389	-2.0322	-1.0674
С	2.6161	-1.0370	-1.1583	2.6670	-0.9982	-1.1865
Н	-0.7333	-3.8043	0.3421	-0.6640	-3.8400	0.2798
С	-2.7781	-2.1672	0.2474	-2.7436	-2.2164	0.1399
Н	1.5628	-4.5731	0.1340	1.6607	-4.5431	0.1493
Н	3.9239	-4.1532	-0.5045	4.0181	-4.0708	-0.4252
С	4.8567	-1.9086	-1.6223	4.9460	-1.8277	-1.5457
С	2.9621	0.1053	-1.9146	3.0330	0.1491	-1.9236
С	4.2172	0.2499	-2.4606	4.3138	0.3183	-2.4101
С	5.1903	-0.7479	-2.2802	5.2942	-0.6599	-2.1929
Н	5.5768	-2.7198	-1.5288	5.6748	-2.6266	-1.4154
Н	6.1872	-0.6186	-2.6938	6.3066	-0.5141	-2.5608
Н	4.4520	1.1395	-3.0400	4.5579	1.2178	-2.9711
Н	2.2184	0.8780	-2.0863	2.2876	0.9139	-2.1267
С	5.3509	0.4357	1.9135	5.2030	0.4177	2.0607
С	2.6624	-0.2676	1.9091	2.5078	-0.2679	1.9402
С	4.9457	-0.7078	2.5602	4.7614	-0.7231	2.6942
С	3.5797	-1.0375	2.5880	3.3972	-1.0455	2.6596
Н	6.3951	0.7440	1.9331	6.2471	0.7191	2.1228
Н	5.6688	-1.3313	3.0800	5.4568	-1.3493	3.2464
Н	3.2407	-1.9017	3.1544	3.0294	-1.9097	3.2071
Н	1.6096	-0.5281	1.9665	1.4516	-0.5224	1.9524
0	-3.1129	-3.3272	0.4748	-3.0970	-3.3974	0.3232
С	-6.1198	-0.4472	0.1474	-6.0731	-0.4567	0.1677
С	-5.7342	0.9100	-0.0633	-5.6886	0.9069	-0.0295
С	-4.3653	1.2315	-0.1666	-4.3285	1.2163	-0.1739
Н	-4.1144	2.2798	-0.3132	-4.0686	2.2644	-0.3024
Н	-6.4507	2.9352	-0.3178	-6.3924	2.9442	-0.2185
С	-8.0683	1.5564	-0.0500	-8.0163	1.5760	0.0742
			7A			
	E(S0) =	-1803.2723	A.U.	E(S1) =	-1803.1868	A.U.
	х	У	Z	х	У	Z
Н	0.0495	-2.0237	1.6863	0.0751	-2.0569	1.7127
Н	0.9739	-4.2619	1.9695	0.9871	-4.3213	1.8819

Н	4.9437	-2.6315	2.1329	4.9792	-2.7342	1.9622
Н	-0.0495	5.0961	-2.0613	-0.3735	5.1032	-1.9275
С	0.3564	4.0934	-1.9528	0.0875	4.1220	-1.8484
С	-0.4674	2.9722	-2.1511	-0.6848	2.9630	-2.0407
Н	-6.7252	1.3142	0.9963	-6.6951	1.2228	1.0093
Н	-8.2827	-0.4518	0.1478	-8.2179	-0.5187	0.0614
Н	-7.3276	-2.4956	-0.9055	-7.2308	-2.5205	-1.0497
С	-6.3500	0.4050	0.5338	-6.3016	0.3338	0.5225
С	-4.9636	0.2537	0.4295	-4.9089	0.2045	0.4517
С	-2.3638	-2.1507	-0.8455	-2.2716	-2.2133	-0.8225
С	-2.9536	-1.0464	-0.2795	-2.8972	-1.0719	-0.2604
С	-0.9720	-2.2107	-1.1002	-0.9076	-2.2592	-1.0673
С	-2.0969	-0.0334	0.2687	-2.0780	-0.0562	0.3038
С	-0.1488	-1.1198	-0.7441	-0.1020	-1.1218	-0.7226
С	-0.6919	-0.1711	0.1975	-0.6628	-0.1897	0.2452
С	-0.3943	-3.3657	-1.7006	-0.2825	-3.3851	-1.6964
С	0.9506	-3.4284	-1.9000	1.0428	-3.3598	-1.9839
С	1.7667	-2.2772	-1.7080	1.8086	-2.1638	-1.8024
С	1.1787	-1.0536	-1.3025	1.1636	-0.9724	-1.3332
Н	-2.9603	-2.9990	-1.1736	-2.8670	-3.0740	-1.1179
С	-4.4102	-0.8996	-0.1626	-4.3354	-0.9365	-0.1713
Н	-1.0401	-4.2094	-1.9362	-0.8880	-4.2657	-1.9029
Н	1.4220	-4.3411	-2.2595	1.5480	-4.2360	-2.3856
С	3.1714	-2.3508	-1.9085	3.1990	-2.1590	-1.9813
С	1.9528	0.1537	-1.4565	1.8922	0.2807	-1.4507
С	3.3571	0.0300	-1.5380	3.3060	0.2213	-1.5294
С	3.9504	-1.2485	-1.7267	3.9424	-1.0164	-1.7502
Н	3.6098	-3.3140	-2.1633	3.6923	-3.0904	-2.2531
Н	5.0350	-1.3114	-1.7972	5.0285	-1.0424	-1.8165
С	-1.8173	2.1080	1.3659	-1.7950	2.0394	1.5047
С	-2.6512	1.1286	0.8860	-2.6424	1.0794	0.9685
С	-0.4248	1.9045	1.4585	-0.4136	1.8248	1.5840
С	0.1245	0.6641	1.0456	0.1414	0.5888	1.1180
С	0.4262	2.9290	1.9610	0.4734	2.8402	2.0278
С	1.7651	2.7137	2.0613	1.8270	2.6330	2.0474
С	2.3006	1.4090	1.8671	2.3711	1.3402	1.8188
С	1.4577	0.3405	1.4875	1.5062	0.2719	1.4766
Н	-2.2540	3.0346	1.7340	-2.2284	2.9613	1.8876
С	-4.1085	1.3381	0.9521	-4.0852	1.2716	1.0353
Н	-0.0151	3.8898	2.2177	0.0563	3.8074	2.3025
Н	2.4407	3.5106	2.3667	2.5055	3.4388	2.3217
С	3.6904	1.1778	2.0902	3.7661	1.1016	1.9851
С	1.9622	-1.0088	1.6532	2.0025	-1.0703	1.6270
С	3.3551	-1.2034	1.8637	3.4037	-1.2791	1.7800
С	4.2116	-0.0742	2.0219	4.2755	-0.1574	1.9048
Н	4.3241	2.0367	2.3046	4.4138	1.9568	2.1703

Н	5.2776	-0.2452	2.1631	5.3445	-0.3368	2.0041
С	3.8696	-2.5108	1.9990	3.9033	-2.5940	1.8694
С	1.1277	-2.1469	1.7332	1.1523	-2.2004	1.7013
С	4.1836	1.1914	-1.4667	4.0754	1.4217	-1.4386
С	1.3824	1.4758	-1.6273	1.2585	1.5602	-1.6051
С	3.6414	2.4341	-1.3974	3.4697	2.6352	-1.3728
С	2.2328	2.6124	-1.5364	2.0537	2.7433	-1.5083
Н	5.2633	1.0509	-1.4558	5.1604	1.3346	-1.4199
Н	4.2724	3.3173	-1.3126	4.0540	3.5490	-1.2808
С	1.6883	3.9084	-1.6659	1.4373	4.0066	-1.6024
С	0.0351	1.7001	-1.9935	-0.1135	1.7174	-1.9249
0	-4.5902	2.3660	1.4241	-4.5930	2.2740	1.5667
С	-7.2061	-0.5728	0.0631	-7.1386	-0.6312	-0.0033
С	-6.6684	-1.7185	-0.5264	-6.5832	-1.7572	-0.6252
С	-5.2973	-1.8766	-0.6391	-5.2125	-1.9028	-0.7079
Н	-4.9174	-2.7775	-1.1123	-4.8136	-2.7795	-1.2105
Н	-0.6154	0.8504	-2.1808	-0.7196	0.8371	-2.1166
Н	2.3573	4.7618	-1.5643	2.0594	4.8943	-1.4999
С	3.0353	-3.6036	2.0066	3.0534	-3.6776	1.8721
Н	3.4409	-4.6052	2.1252	3.4523	-4.6855	1.9543
Н	-1.5077	3.1058	-2.4386	-1.7394	3.0487	-2.2911
С	1.6472	-3.4103	1.9049	1.6639	-3.4729	1.8170
			8A			
			••••			
	E(S0) =	-1803.2723	A.U.	E(S1) =	-1803.1868	A.U.
	E(S0) = x	-1803.2723 y	A.U.	E(S1) = x	-1803.1868 y	A.U. z
н	E(S0) = x 0.0495	-1803.2723 y -2.0237	A.U. z 1.6863	E(S1) = x 0.0751	-1803.1868 y -2.0569	A.U. z 1.7127
H H	E(S0) = x 0.0495 0.9739	-1803.2723 y -2.0237 -4.2619	A.U. z 1.6863 1.9695	E(S1) = x 0.0751 0.9871	-1803.1868 y -2.0569 -4.3213	A.U. z 1.7127 1.8819
H H H	E(S0) = x 0.0495 0.9739 4.9437	-1803.2723 y -2.0237 -4.2619 -2.6315	A.U. z 1.6863 1.9695 2.1329	E(S1) = x 0.0751 0.9871 4.9792	-1803.1868 y -2.0569 -4.3213 -2.7342	A.U. z 1.7127 1.8819 1.9622
ннн	E(S0) = x 0.0495 0.9739 4.9437 -0.0495	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961	A.U. z 1.6863 1.9695 2.1329 -2.0613	E(S1) = x 0.0751 0.9871 4.9792 -0.3735	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032	A.U. z 1.7127 1.8819 1.9622 -1.9275
Н Н Н С	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484
Н Н Н С С	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407
Н Н Н С С Н	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093
нннсснн	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228 -0.5187	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614
н н н с с н н н	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827 -7.3276	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518 -2.4956	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478 -0.9055	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179 -7.2308	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228 -0.5187 -2.5205	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614 -1.0497
нннсснннс	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827 -7.3276 -6.3500	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518 -2.4956 0.4050	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478 -0.9055 0.5338	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179 -7.2308 -6.3016	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228 -0.5187 -2.5205 0.3338	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614 -1.0497 0.5225
н н н с с н н н с с	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827 -7.3276 -6.3500 -4.9636	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518 -2.4956 0.4050 0.2537	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478 -0.9055 0.5338 0.4295	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179 -7.2308 -6.3016 -4.9089	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228 -0.5187 -2.5205 0.3338 0.2045	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614 -1.0497 0.5225 0.4517
н н н н с с н н н с с с	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827 -7.3276 -6.3500 -4.9636 -2.3638	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518 -2.4956 0.4050 0.2537 -2.1507	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478 -0.9055 0.5338 0.4295 -0.8455	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179 -7.2308 -6.3016 -4.9089 -2.2716	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228 -0.5187 -2.5205 0.3338 0.2045 -2.2133	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614 -1.0497 0.5225 0.4517 -0.8225
н н н н с с н н н с с с с	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827 -7.3276 -6.3500 -4.9636 -2.3638 -2.9536	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518 -2.4956 0.4050 0.2537 -2.1507 -1.0464	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478 -0.9055 0.5338 0.4295 -0.8455 -0.2795	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179 -7.2308 -6.3016 -4.9089 -2.2716 -2.8972	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228 -0.5187 -2.5205 0.3338 0.2045 -2.2133 -1.0719	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614 -1.0497 0.5225 0.4517 -0.8225 -0.2604
нннгссссс	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827 -7.3276 -6.3500 -4.9636 -2.3638 -2.9536 -0.9720	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518 -2.4956 0.4050 0.2537 -2.1507 -1.0464 -2.2107	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478 -0.9055 0.5338 0.4295 -0.8455 -0.2795 -1.1002	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179 -7.2308 -6.3016 -4.9089 -2.2716 -2.8972 -0.9076	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228 -0.5187 -2.5205 0.3338 0.2045 -2.2133 -1.0719 -2.2592	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614 -1.0497 0.5225 0.4517 -0.8225 -0.2604 -1.0673
н н н н с с н н н с с с с с	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827 -7.3276 -6.3500 -4.9636 -2.3638 -2.9536 -0.9720 -2.0969	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518 -2.4956 0.4050 0.2537 -2.1507 -1.0464 -2.2107 -0.0334	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478 -0.9055 0.5338 0.4295 -0.8455 -0.2795 -1.1002 0.2687	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179 -7.2308 -6.3016 -4.9089 -2.2716 -2.8972 -0.9076 -2.0780	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228 -0.5187 -2.5205 0.3338 0.2045 -2.2133 -1.0719 -2.2592 -0.0562	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614 -1.0497 0.5225 0.4517 -0.8225 -0.2604 -1.0673 0.3038
нннсссссс	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827 -7.3276 -6.3500 -4.9636 -2.3638 -2.9536 -0.9720 -2.0969 -0.1488	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518 -2.4956 0.4050 0.2537 -2.1507 -1.0464 -2.2107 -0.0334 -1.1198	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478 -0.9055 0.5338 0.4295 -0.8455 -0.2795 -1.1002 0.2687 -0.7441	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179 -7.2308 -6.3016 -4.9089 -2.2716 -2.8972 -0.9076 -2.0780 -0.1020	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228 -0.5187 -2.5205 0.3338 0.2045 -2.2133 -1.0719 -2.2592 -0.0562 -1.1218	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614 -1.0497 0.5225 0.4517 -0.8225 -0.2604 -1.0673 0.3038 -0.7226
нннсснннсссссс	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827 -7.3276 -6.3500 -4.9636 -2.3638 -2.9536 -0.9720 -2.0969 -0.1488 -0.6919	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518 -2.4956 0.4050 0.2537 -2.1507 -1.0464 -2.2107 -0.0334 -1.1198 -0.1711	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478 -0.9055 0.5338 0.4295 -0.8455 -0.2795 -1.1002 0.2687 -0.7441 0.1975	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179 -7.2308 -6.3016 -4.9089 -2.2716 -2.8972 -0.9076 -2.0780 -0.1020 -0.6628	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228 -0.5187 -2.5205 0.3338 0.2045 -2.2133 -1.0719 -2.2592 -0.0562 -1.1218 -0.1897	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614 -1.0497 0.5225 0.4517 -0.8225 -0.2604 -1.0673 0.3038 -0.7226 0.2452
нннсоннсоссос	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827 -7.3276 -6.3500 -4.9636 -2.3638 -2.9536 -0.9720 -2.0969 -0.1488 -0.6919 -0.3943	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518 -2.4956 0.4050 0.2537 -2.1507 -1.0464 -2.2107 -0.0334 -1.1198 -0.1711 -3.3657	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478 -0.9055 0.5338 0.4295 -0.8455 -0.2795 -1.1002 0.2687 -0.7441 0.1975 -1.7006	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179 -7.2308 -6.3016 -4.9089 -2.2716 -2.8972 -0.9076 -2.0780 -0.1020 -0.6628 -0.2825	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228 -0.5187 -2.5205 0.3338 0.2045 -2.2133 -1.0719 -2.2592 -0.0562 -1.1218 -0.1897 -3.3851	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614 -1.0497 0.5225 0.4517 -0.8225 -0.2604 -1.0673 0.3038 -0.7226 0.2452 -1.6964
нннсснннссссссс	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827 -7.3276 -6.3500 -4.9636 -2.3638 -2.9536 -0.9720 -2.0969 -0.1488 -0.6919 -0.3943 0.9506	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518 -2.4956 0.4050 0.2537 -2.1507 -1.0464 -2.2107 -0.0334 -1.1198 -0.1711 -3.3657 -3.4284	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478 -0.9055 0.5338 0.4295 -0.8455 -0.2795 -1.1002 0.2687 -0.7441 0.1975 -1.7006 -1.9000	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179 -7.2308 -6.3016 -4.9089 -2.2716 -2.8972 -0.9076 -2.0780 -0.1020 -0.6628 -0.2825 1.0428	-1803.1868 y -2.0569 -4.3213 -2.7342 5.1032 4.1220 2.9630 1.2228 -0.5187 -2.5205 0.3338 0.2045 -2.2133 -1.0719 -2.2592 -0.0562 -1.1218 -0.1897 -3.3851 -3.3598	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614 -1.0497 0.5225 0.4517 -0.8225 -0.2604 -1.0673 0.3038 -0.7226 0.2452 -1.6964 -1.9839
нннсоннноссоссосс	E(S0) = x 0.0495 0.9739 4.9437 -0.0495 0.3564 -0.4674 -6.7252 -8.2827 -7.3276 -6.3500 -4.9636 -2.3638 -2.9536 -0.9720 -2.0969 -0.1488 -0.6919 -0.3943 0.9506 1.7667	-1803.2723 y -2.0237 -4.2619 -2.6315 5.0961 4.0934 2.9722 1.3142 -0.4518 -2.4956 0.4050 0.2537 -2.1507 -1.0464 -2.2107 -0.0334 -1.1198 -0.1711 -3.3657 -3.4284 -2.2772	A.U. z 1.6863 1.9695 2.1329 -2.0613 -1.9528 -2.1511 0.9963 0.1478 -0.9055 0.5338 0.4295 -0.8455 -0.2795 -1.1002 0.2687 -0.7441 0.1975 -1.7006 -1.9000 -1.7080	E(S1) = x 0.0751 0.9871 4.9792 -0.3735 0.0875 -0.6848 -6.6951 -8.2179 -7.2308 -6.3016 -4.9089 -2.2716 -2.8972 -0.9076 -2.0780 -0.1020 -0.6628 -0.2825 1.0428 1.8086	$\begin{array}{c} y\\ -2.0569\\ -4.3213\\ -2.7342\\ 5.1032\\ 4.1220\\ 2.9630\\ 1.2228\\ -0.5187\\ -2.5205\\ 0.3338\\ 0.2045\\ -2.2133\\ -1.0719\\ -2.2592\\ -0.0562\\ -1.1218\\ -0.1897\\ -3.3851\\ -3.3598\\ -2.1638\end{array}$	A.U. z 1.7127 1.8819 1.9622 -1.9275 -1.8484 -2.0407 1.0093 0.0614 -1.0497 0.5225 0.4517 -0.8225 -0.2604 -1.0673 0.3038 -0.7226 0.2452 -1.6964 -1.9839 -1.8024

Н	-2.9603	-2.9990	-1.1736	-2.8670	-3.0740	-1.1179
С	-4.4102	-0.8996	-0.1626	-4.3354	-0.9365	-0.1713
Н	-1.0401	-4.2094	-1.9362	-0.8880	-4.2657	-1.9029
Н	1.4220	-4.3411	-2.2595	1.5480	-4.2360	-2.3856
С	3.1714	-2.3508	-1.9085	3.1990	-2.1590	-1.9813
С	1.9528	0.1537	-1.4565	1.8922	0.2807	-1.4507
С	3.3571	0.0300	-1.5380	3.3060	0.2213	-1.5294
С	3.9504	-1.2485	-1.7267	3.9424	-1.0164	-1.7502
Н	3.6098	-3.3140	-2.1633	3.6923	-3.0904	-2.2531
Н	5.0350	-1.3114	-1.7972	5.0285	-1.0424	-1.8165
С	-1.8173	2.1080	1.3659	-1.7950	2.0394	1.5047
С	-2.6512	1.1286	0.8860	-2.6424	1.0794	0.9685
С	-0.4248	1.9045	1.4585	-0.4136	1.8248	1.5840
С	0.1245	0.6641	1.0456	0.1414	0.5888	1.1180
С	0.4262	2.9290	1.9610	0.4734	2.8402	2.0278
С	1.7651	2.7137	2.0613	1.8270	2.6330	2.0474
С	2.3006	1.4090	1.8671	2.3711	1.3402	1.8188
С	1.4577	0.3405	1.4875	1.5062	0.2719	1.4766
Н	-2.2540	3.0346	1.7340	-2.2284	2.9613	1.8876
С	-4.1085	1.3381	0.9521	-4.0852	1.2716	1.0353
Н	-0.0151	3.8898	2.2177	0.0563	3.8074	2.3025
Н	2.4407	3.5106	2.3667	2.5055	3.4388	2.3217
С	3.6904	1.1778	2.0902	3.7661	1.1016	1.9851
С	1.9622	-1.0088	1.6532	2.0025	-1.0703	1.6270
С	3.3551	-1.2034	1.8637	3.4037	-1.2791	1.7800
С	4.2116	-0.0742	2.0219	4.2755	-0.1574	1.9048
Н	4.3241	2.0367	2.3046	4.4138	1.9568	2.1703
Н	5.2776	-0.2452	2.1631	5.3445	-0.3368	2.0041
С	3.8696	-2.5108	1.9990	3.9033	-2.5940	1.8694
С	1.1277	-2.1469	1.7332	1.1523	-2.2004	1.7013
С	4.1836	1.1914	-1.4667	4.0754	1.4217	-1.4386
С	1.3824	1.4758	-1.6273	1.2585	1.5602	-1.6051
С	3.6414	2.4341	-1.3974	3.4697	2.6352	-1.3728
С	2.2328	2.6124	-1.5364	2.0537	2.7433	-1.5083
Н	5.2633	1.0509	-1.4558	5.1604	1.3346	-1.4199
Н	4.2724	3.3173	-1.3126	4.0540	3.5490	-1.2808
С	1.6883	3.9084	-1.6659	1.4373	4.0066	-1.6024
С	0.0351	1.7001	-1.9935	-0.1135	1.7174	-1.9249
0	-4.5902	2.3660	1.4241	-4.5930	2.2740	1.5667
С	-7.2061	-0.5728	0.0631	-7.1386	-0.6312	-0.0033
С	-6.6684	-1.7185	-0.5264	-6.5832	-1.7572	-0.6252
С	-5.2973	-1.8766	-0.6391	-5.2125	-1.9028	-0.7079
Н	-4.9174	-2.7775	-1.1123	-4.8136	-2.7795	-1.2105
Н	-0.6154	0.8504	-2.1808	-0.7196	0.8371	-2.1166
Н	2.3573	4.7618	-1.5643	2.0594	4.8943	-1.4999
С	3.0353	-3.6036	2.0066	3.0534	-3.6776	1.8721

н	3.4409	-4.6052	2.1252	3.4523	-4.6855	1.9543
Н	-1.5077	3.1058	-2.4386	-1.7394	3.0487	-2.2911
С	1.6472	-3.4103	1.9049	1.6639	-3.4729	1.8170
			1F			
	E(S0) =	-1342.6669	A.U.	E(S1) =	-1342.5915	A.U.
	X	у	Z	X	у	Z
Н	-4.0261	-2.5580	1.0569	3.9027	2.5747	1.1922
Н	-6.4429	-2.3335	1.3067	6.3135	2.3641	1.4947
Н	-7.6063	-0.2175	0.7985	7.5129	0.2799	0.9133
0	-3.7078	2.8729	-0.6127	3.7362	-2.8452	-0.7349
С	-4.4865	-1.6124	0.7907	4.3931	1.6532	0.8942
С	-4.4348	0.6785	0.0776	4.3756	-0.6537	0.0667
С	-2.1277	1.0437	-0.2650	2.1472	-1.0220	-0.3637
С	-2.3114	-0.2901	0.0584	2.2930	0.3539	0.0541
С	-0.8422	1.6144	-0.4200	0.8799	-1.5951	-0.5275
С	-1.2130	-1.1856	-0.0220	1.1754	1.2321	-0.0345
С	0.2895	0.7726	-0.2341	-0.2658	-0.7734	-0.2807
С	0.0744	-0.6542	-0.3147	-0.0897	0.6801	-0.3536
С	-0.6663	2.9896	-0.7361	0.7226	-2.9800	-0.8287
С	0.5893	3.5056	-0.8377	-0.5223	-3.5319	-0.8392
С	1.7232	2.7458	-0.4412	-1.6418	-2.7870	-0.3883
С	1.5648	1.4112	-0.0055	-1.4842	-1.4282	0.0334
С	-3.4501	1.7178	-0.3171	3.4550	-1.6747	-0.3996
С	-3.7562	-0.5260	0.3315	3.6677	0.5654	0.3613
Н	-1.5497	3.5923	-0.9215	1.6197	-3.5465	-1.0607
Н	0.7423	4.5372	-1.1498	-0.6754	-4.5665	-1.1389
С	3.0160	3.3498	-0.4521	-2.9300	-3.3809	-0.3783
С	2.6691	0.8061	0.7143	-2.5856	-0.8201	0.7695
С	3.9510	1.4184	0.6544	-3.8659	-1.4327	0.7214
С	4.1031	2.6849	0.0164	-4.0155	-2.7053	0.0963
Н	3.1076	4.3556	-0.8582	-3.0339	-4.3886	-0.7751
Н	5.0947	3.1319	-0.0247	-5.0051	-3.1571	0.0686
С	-0.3350	-3.4511	-0.0671	0.2515	3.4755	-0.1492
С	-1.3732	-2.5985	0.1217	1.3052	2.6473	0.0871
С	0.9140	-2.9728	-0.5576	-0.9770	2.9634	-0.6429
С	1.0966	-1.5794	-0.7644	-1.1258	1.5550	-0.8214
С	1.9386	-3.8773	-0.9084	-2.0308	3.8329	-0.9960
С	3.0916	-3.4370	-1.5135	-3.1846	3.3499	-1.5642
С	3.2309	-2.0735	-1.8247	-3.2990	1.9727	-1.8380
С	2.2565	-1.1723	-1.4628	-2.2975	1.1032	-1.4832
Н	-0.4636	-4.5222	0.0763	0.3560	4.5517	-0.0252
Н	-2.3476	-2.9967	0.3759	2.2665	3.0720	0.3517
Н	1.7827	-4.9369	-0.7128	-1.8997	4.8999	-0.8241
Н	3.8739	-4.1414	-1.7842	-3.9903	4.0276	-1.8343
Н	4.1089	-1.7272	-2.3640	-4.1824	1.5948	-2.3467
н	2.3798	-0.1272	-1.7301	-2.4011	0.0500	-1.7275

С	5.0542	0.7988	1.2808	-4.9635	-0.8169	1.3564
С	2.5318	-0.3383	1.5320	-2.4351	0.3163	1.5849
С	4.8994	-0.3591	2.0050	-4.8000	0.3430	2.0810
С	3.6156	-0.9108	2.1576	-3.5178	0.8926	2.2197
Н	6.0300	1.2747	1.1968	-5.9398	-1.2925	1.2823
Н	5.7551	-0.8254	2.4868	-5.6507	0.8099	2.5702
Н	3.4731	-1.7892	2.7823	-3.3690	1.7739	2.8383
Н	1.5476	-0.7722	1.6822	-1.4487	0.7497	1.7235
С	-5.8730	-1.4793	0.9493	5.7537	1.5298	1.0800
С	-6.5300	-0.2887	0.6675	6.4388	0.3350	0.7537
С	-5.7974	0.8188	0.2306	5.7529	-0.7565	0.2559
Н	-6.2724	1.7745	0.0198	6.2568	-1.6906	0.0180
	_		2F			
	E(S0) =	-1496.2014	A.U.	E(S1) =	-1496.1199	A.U.
Н	-8.1289	-2.3879	1.2205	8.0375	2.4186	1.3448
Н	-5.7031	-2.8257	1.0594	5.6113	2.8432	1.1652
Н	-9.0311	-0.1256	0.7224	8.9599	0.1722	0.7909
С	-7.9623	-0.3084	0.6488	7.8899	0.3457	0.7084
С	-7.4506	-1.5893	0.9307	7.3644	1.6277	1.0246
Н	-3.4586	-2.0635	0.6281	3.3896	2.0690	0.6812
С	-6.0992	-1.8352	0.8417	6.0224	1.8638	0.9260
С	-7.1109	0.7088	0.2831	7.0609	-0.6673	0.3049
0	-2.4898	3.3626	-0.8124	2.4922	-3.3818	-0.9193
С	-3.7990	-1.0650	0.3679	3.7507	1.0834	0.3984
С	-3.4873	1.2381	-0.2572	3.4394	-1.2451	-0.2975
С	-1.1439	1.3593	-0.4456	1.1531	-1.3701	-0.5436
C	-1.4821	0.0386	-0.1916	1.4762	-0.0012	-0.2192
C	0.2027	1.7985	-0.4906	-0.1776	-1.8046	-0.5866
С	-0.4740	-0.9630	-0.2493	0.4585	0.9923	-0.2815
С	1.2261	0.8387	-0.2648	-1.2062	-0.8465	-0.3067
С	0.8758	-0.5558	-0.4297	-0.8811	0.5725	-0.4777
C	0.5382	3.1591	-0.7274	-0.5080	-3.1761	-0.7989
С	1.8437	3.5470	-0.7139	-1.8012	-3.5843	-0.6858
C	2.8617	2.6589	-0.2747	-2.7947	-2.6967	-0.1961
С	2.5370	1.3309	0.0837	-2.4583	-1.3446	0.1339
С	-2.3773	2.1750	-0.5495	2.3727	-2.1728	-0.6349
С	-2.9490	-0.0608	-0.0096	2.8865	0.0692	-0.0201
Н	-0.2644	3.8563	-0.9458	0.3015	-3.8492	-1.0649
Н	2.1223	4.5690	-0.9647	-2.0894	-4.6083	-0.9143
C	4.2070	3.1233	-0.1669	-4.1332	-3.1406	-0.0600
C	3.5178	0.5838	0.8480	-3.4282	-0.5801	0.9092
С	4.8561	1.0596	0.9063	-4.7672	-1.0477	0.9890
C	5.1829	2.3287	0.3424	-5.1006	-2.3243	0.4521
Н	4.4305	4.1296	-0.5166	-4.3765	-4.1485	-0.3896
Н	6.2154	2.6701	0.3912	-6.1322	-2.6641	0.5211

C	0 1691	-3 3028	-0 3671	-0 2241	3 3169	-0 4628	
C	-0 7882	-2 3554	-0 1991	0 7487	2 3886	-0 2521	
C	1 4922	-2 9348	-0 7430	-1 5356	2.0000	-0 8374	
C	1 8299	-1 5597	-0 8584	-1 8496	1 5333	-0.9203	
C C	2 1/28	-3 92/2	-1 0739	-2 5113	3 8878	-1 1668	
C C	2.4420	2 5788	1 5722	2.5115	2 5112	1.1000	
C C	2 0756	-3.3788	-1.5752	-3.7323	3.JIIZ 2 1/22	-1.0200	
C C	2 0720	-2.2235	-1.790Z	2 1122	2.1433	-1.8007	
с ц	0.0700	-1.2455	-1.4510	-5.1125	1.1047	-1.4074	
		-4.5005	-0.2905		4.5795	-0.4104	
	-1.8155	-2.6601	-0.0407	1.7075	2.7109	-0.0822	
н	2.1055	-4.9696	-0.9496	-2.2501	4.9403	-1.0699	
H	4.4001	-4.3475	-1.8296	-4.4976	4.2611	-1.8/29	
Н	4.9217	-1.9457	-2.2540	-4.9939	1.8420	-2.2208	
Н	3.3222	-0.2055	-1.6509	-3.3497	0.1392	-1.6410	
C	5.8409	0.3022	1.5767	-5.7404	-0.2825	1.6642	
С	3.2036	-0.5716	1.5981	-3.0944	0.5717	1.6436	
С	5.5153	-0.8619	2.2312	-5.3977	0.8869	2.3061	
С	4.1742	-1.2810	2.2679	-4.0571	1.2964	2.3193	
Н	6.8638	0.6755	1.5838	-6.7647	-0.6498	1.6879	
Н	6.2810	-1.4355	2.7473	-6.1527	1.4701	2.8263	
Н	3.8971	-2.1645	2.8378	-3.7670	2.1865	2.8716	
Н	2.1716	-0.9051	1.6579	-2.0598	0.9005	1.6836	
С	-5.2009	-0.8135	0.4656	5.1251	0.8400	0.5041	
С	-5.7216	0.4846	0.1836	5.6624	-0.4644	0.1892	
С	-4.8156	1.5200	-0.1749	4.7887	-1.4939	-0.2025	
Н	-5.1797	2.5281	-0.3704	5.1748	-2.4891	-0.4194	
Н	-7.4952	1.7038	0.0657	7.4620	-1.6506	0.0661	
			3F				
	E(S0) =	-1342.6670	A.U.	E(S1) =	-1342.5906	A.U.	
	Х	У	Z	Х	У	Z	
Н	4.0025	-2.8332	-0.3991	3.9970	-2.8326	-0.5273	
Н	6.4255	-2.7745	-0.1193	6.4140	-2.7474	-0.2618	
Н	7.6146	-0.6849	0.4365	7.5761	-0.6567	0.3708	
0	3.7521	2.7315	0.7624	3.7243	2.7468	0.8622	
С	4.4734	-1.8807	-0.1812	4.4618	-1.8865	-0.2709	
С	4.4486	0.4714	0.2943	4.3960	0.4893	0.3170	
С	2.1474	0.9867	0.1696	2.1530	0.9840	0.2199	
С	2.3086	-0.3550	-0.1344	2.3133	-0.4044	-0.1517	
С	0.8931	1.6349	0.0725	0.9033	1.6126	0.1425	
С	1.1733	-1.1641	-0.3917	1.1686	-1.2113	-0.4000	
С	-0.2424	0.8569	-0.2606	-0.2221	0.8291	-0.2441	
С	-0.1228	-0.5819	-0.2333	-0.1194	-0.6274	-0.2045	
С	0.7657	3.0411	0.2925	0.7592	3.0207	0.3608	
С	-0.4287	3.6607	0.1144	-0.4227	3.6349	0.1036	
С	-1.5440	2.9550	-0.4267	-1.4991	2.9186	-0.5013	
С	-1.4364	1.5624	-0.6887	-1.3698	1.5178	-0.7516	
C 3.7541 -0.7022 -0.0446 3.7050 -0.7108 -0.0763 H 1.6470 3.5871 0.6140 1.6300 3.5561 0.7272 H -0.5373 4.7252 0.3151 -0.5528 4.6986 0.2942 C -2.7275 3.6451 -0.7646 -2.6799 3.5823 -0.8789 C -3.6186 1.6541 -1.7638 -3.5234 1.5626 -1.8872 C -3.7623 3.0046 -1.4044 -3.6878 2.9164 -1.5430 H -2.7919 4.7061 -0.5283 -2.7747 4.6424 -0.6510 H -4.6688 3.5458 -1.6631 4.5928 3.4455 1.8318 C 0.1613 -3.2750 -1.0046 0.1126 -3.3325 -0.9111 C 1.2370 -1.4890 -0.0716 -1.2315 -1.4955 -0.0046 C -2.2481 -3.6527 -0.6706 -2.3028 -3.6485 -0.5622	С	3.4776	1.5833	0.4545	3.4551	1.5770	0.5141
---	---	---------	------------	---------	---------	------------	---------
H 1.6470 3.5871 0.6140 1.6300 3.5561 0.7272 H -0.5373 4.7252 0.3151 -0.5528 4.6986 0.2942 C -2.7275 3.6451 -0.7646 -2.6799 3.5823 -0.8789 C -3.6186 1.6541 -1.7638 -3.5234 1.5626 -1.8872 C -3.7623 3.0046 -1.4044 -3.6878 2.9164 -1.5430 H -2.7919 4.7061 -0.5283 -2.7747 4.6424 -0.6511 C 1.6631 -3.750 -1.0046 0.1126 -3.325 -0.9111 C 1.2759 -2.5196 -0.8146 1.2433 -2.5706 -0.7956 C -1.1098 -2.7975 -0.5871 -1.1365 -2.8347 -0.4855 C -2.2481 -3.6527 -0.0076 -2.3028 -3.6485 -0.5578 C -3.4553 -3.2559 -0.1919 -3.5048 -3.1930 -1.2220	С	3.7541	-0.7022	-0.0446	3.7050	-0.7108	-0.0763
H -0.5373 4.7252 0.3151 -0.5528 4.6986 0.2942 C -2.7275 3.6451 -0.7646 -2.6799 3.5823 -0.8789 C -2.4828 0.9565 -1.4194 -2.3914 0.8838 -1.5020 C -3.6186 1.6541 -1.7638 -3.5234 1.5626 -1.8872 C -3.7623 3.0046 -1.4044 -3.6878 2.9164 -1.5430 H -2.7919 4.7061 -0.5283 -2.7747 4.6424 -0.6510 H -4.6688 3.5458 -1.6631 -4.5928 3.4445 -1.8318 C 1.1098 -2.7975 -0.5871 -1.1365 -2.8347 -0.4856 C -1.2370 -1.4890 -0.0716 -1.2315 -1.4955 -0.0404 C -3.5787 -0.5271 -3.6023 -1.9402 0.5578 C -3.5787 -0.2728 -1.1378 -2.2073 -4.6401 -1.0033 <	Н	1.6470	3.5871	0.6140	1.6300	3.5561	0.7272
C -2.7275 3.6451 -0.7646 -2.6799 3.5823 -0.8789 C -2.4828 0.9565 -1.4198 -2.3914 0.8838 -1.5062 C -3.7623 3.0046 -1.4044 -3.6878 2.9164 -1.5430 H -2.7919 4.7061 -0.5283 2.7747 4.6424 -0.6510 H -4.6688 3.5458 -1.6631 -4.5928 3.4445 -1.8318 C 0.1613 -3.2750 -1.046 0.1126 -3.3325 -0.9111 C 1.2759 -2.5196 -0.8146 1.2433 -2.5706 -0.7956 C -1.1098 -2.7975 -0.5871 -1.1355 -2.8347 -0.6022 C -3.4553 -3.2559 -0.1919 -3.5048 -3.1938 -0.1202 C -3.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2399 -4.2079 0.5221 -3.6023 -1.9402 0.578 <td>Н</td> <td>-0.5373</td> <td>4.7252</td> <td>0.3151</td> <td>-0.5528</td> <td>4.6986</td> <td>0.2942</td>	Н	-0.5373	4.7252	0.3151	-0.5528	4.6986	0.2942
C -2.4828 0.9565 -1.4198 -2.3914 0.8838 -1.5062 C -3.6186 1.6541 -1.7638 -3.5234 1.5626 -1.8872 C -3.7623 3.0046 -1.4044 -3.6878 2.9164 -1.5430 H -4.6688 3.5458 1.6631 -4.5928 3.4445 -1.8318 C 0.1613 -3.2750 1.0046 0.1126 -3.3325 -0.9111 C 1.2759 -2.5196 -0.8146 1.2433 -2.5706 -0.7956 C -1.1098 -2.7975 -0.5871 -1.1365 -2.8347 -0.4856 C -2.2481 -3.6527 -0.6706 -2.3028 -3.6485 -0.5622 C -3.4553 -3.2559 -0.1919 -3.5048 -3.1938 -0.1202 C -3.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2339 +4.2811 -4.0678 1.1378 -2.2073 -4.6401	С	-2.7275	3.6451	-0.7646	-2.6799	3.5823	-0.8789
C -3.6186 1.6541 -1.7638 -3.5234 1.5626 -1.8872 C -3.7623 3.0046 -1.4044 -3.6878 2.9164 -1.5430 H -2.7919 4.7061 -0.5283 -2.7747 4.6424 -0.6510 H -4.6688 3.5458 -1.6631 -4.5928 3.4445 -1.81318 C 0.1613 -3.2750 -1.0046 0.1126 -3.3250 -0.9111 C 1.2759 -2.5196 -0.8146 1.2433 -2.5706 -0.7956 C -1.1098 -2.7975 -0.5871 -1.1365 -2.8347 -0.4856 C -1.2370 -1.4890 -0.0716 -1.2315 -1.4955 -0.0046 C -3.5787 -2.0279 0.5221 3.6023 -1.9492 0.5578 C -2.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2339 -4.2811 -1.4074 0.1693 -4.3501 -1.2920	С	-2.4828	0.9565	-1.4198	-2.3914	0.8838	-1.5062
C -3.7623 3.0046 -1.4044 -3.6878 2.9164 -1.5430 H -2.7919 4.7061 -0.5283 -2.7747 4.6424 -0.6510 H -4.6688 3.5458 -1.6631 -4.5928 3.4445 -1.8318 C 0.1613 -3.2750 -1.0046 0.1126 -3.3255 -0.9756 C -1.1098 -2.7975 -0.5871 -1.1365 -2.8347 -0.4856 C -1.2370 -1.4890 -0.0716 -1.2315 -1.4955 -0.0046 C -2.4538 -3.6527 -0.6706 -2.3028 -3.6485 -0.5622 C -3.4553 -3.2559 -0.1919 -3.6048 -3.1938 -0.102 C -2.4538 -1.1674 0.6493 -2.4517 -1.1187 0.6933 C -2.4538 -1.1674 0.6493 -2.4503 -1.2920 H 2.2493 -2.9272 -1.0593 2.2005 -2.9938 -1.0766	С	-3.6186	1.6541	-1.7638	-3.5234	1.5626	-1.8872
H -2.7919 4.7061 -0.5283 -2.7747 4.6424 -0.6510 H -4.6688 3.5458 -1.6631 -4.5928 3.4445 -1.8318 C 0.1613 -3.2750 -1.0046 0.1126 -3.3325 -0.9111 C 1.2759 -2.5196 -0.8146 1.2433 -2.5706 -0.9756 C -1.1098 -2.7975 -0.5871 -1.1365 -2.8347 -0.4856 C -2.2481 -3.6527 -0.6706 -2.3028 -3.6485 -0.5622 C -3.4553 -3.2559 -0.1919 -3.5048 -3.1938 -0.1202 C -3.4533 -3.2559 -0.1919 -3.6023 -1.9402 0.5578 C -2.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2339 -4.2831 1.4074 0.1693 -4.5516 -1.5438 1.5920 H -2.1240 -4.6278 1.1378 -2.2073 -4.6401	С	-3.7623	3.0046	-1.4044	-3.6878	2.9164	-1.5430
H -4.6688 3.5458 -1.6631 -4.5928 3.4445 -1.8318 C 0.1613 -3.2750 -1.0046 0.1126 -3.3325 -0.9111 C 1.2759 -2.5196 -0.8146 1.2433 -2.5706 -0.7956 C -1.0370 -1.4890 -0.0716 -1.2315 -1.4955 -0.4856 C -2.2481 -3.6527 -0.6706 -2.3028 -3.6485 -0.522 C -3.5787 -2.0279 0.5221 -3.6023 -1.9402 0.5578 C -2.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2399 -4.2831 -1.4074 0.1693 -4.3501 -1.2920 H -2.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2399 -4.2831 -1.4074 0.1693 -4.3501 -1.0291 H 2.2493 -2.9272 -1.0593 2.2005 -2.9938 -1.0765	Н	-2.7919	4.7061	-0.5283	-2.7747	4.6424	-0.6510
C 0.1613 -3.2750 -1.0046 0.1126 -3.3325 -0.9111 C 1.2759 -2.5196 -0.8146 1.2433 -2.5706 -0.7956 C -1.1098 -2.7975 -0.5871 -1.1365 -2.8347 -0.4856 C -1.2370 -1.4890 -0.0716 -1.2315 -1.4955 -0.0046 C -2.2481 -3.6527 -0.6706 -2.3028 -3.6485 -0.5022 C -3.5787 -2.0279 0.5221 -3.6023 -1.9402 0.5578 C -2.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2339 -4.2831 -1.4074 0.1693 -4.3501 -1.2920 H -2.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2339 -4.2831 -1.4074 0.1693 -3.8052 -0.2116 C -2.4538 -0.2570 -0.0691 1.5374 -2.5867 -0.0671	Н	-4.6688	3.5458	-1.6631	-4.5928	3.4445	-1.8318
C 1.2759 -2.5196 -0.8146 1.2433 -2.5706 -0.7956 C -1.1098 -2.7975 -0.5871 -1.1365 -2.8347 -0.4856 C -1.2370 -1.4890 -0.0716 -1.2315 -1.4955 -0.0046 C -2.2481 -3.6527 -0.6706 -2.3028 -3.6485 -0.5622 C -3.4553 -3.2559 -0.1919 -3.5048 -3.1938 -0.1202 C -3.5787 -2.0279 0.5221 -3.6023 -1.9402 0.5578 C -2.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2339 -4.2831 1.4074 0.1693 -4.3501 -1.2920 H 2.2493 -2.9272 -1.0593 2.2005 -2.9338 -1.0766 H -2.1240 -4.6278 -1.1378 -2.2073 -4.6401 -1.0003 H -3.7584 0.2262 2.1583 -3.7288 0.3527 2.1484 C -4.8958 -0.5714 1.9445 -4.891 -0.4030 </td <td>С</td> <td>0.1613</td> <td>-3.2750</td> <td>-1.0046</td> <td>0.1126</td> <td>-3.3325</td> <td>-0.9111</td>	С	0.1613	-3.2750	-1.0046	0.1126	-3.3325	-0.9111
C-1.1098-2.7975-0.5871-1.1365-2.8347-0.4856C-1.2370-1.4890-0.0716-1.2315-1.4955-0.0046C-2.2481-3.6527-0.6706-2.3028-3.6485-0.5222C-3.4553-3.2559-0.1919-3.5048-3.1938-0.1202C-3.5787-2.02790.5221-3.6023-1.94020.5578C-2.4538-1.16740.6493-2.4515-1.11870.6938H0.2339-4.2831-1.40740.1693-4.3501-1.2920H2.2493-2.9272-1.05932.2005-2.9938-1.0766H-2.1240-4.6278-1.1378-2.2073-4.6401-1.0003H-4.3321-3.8941-0.2856-4.4005-3.8052-0.2116C-4.7955-1.69101.1537-4.8165-1.54381.1539C-2.5701-0.06911.5304-2.5367-0.00671.5557C-3.75840.22622.1583-3.72880.35272.1484H-5.6485-2.35401.01885.6929-2.17441.0141H-5.8636-0.32272.4294-5.8299-0.10902.3798H-3.81221.07772.8321-3.76321.21832.8049H-1.70190.55331.7260-1.64520.57851.7658H-4.40331.1563-2.3284-4.28801.0543-2.4686 <td>С</td> <td>1.2759</td> <td>-2.5196</td> <td>-0.8146</td> <td>1.2433</td> <td>-2.5706</td> <td>-0.7956</td>	С	1.2759	-2.5196	-0.8146	1.2433	-2.5706	-0.7956
C -1.2370 -1.4890 -0.0716 -1.2315 -1.4955 -0.0046 C -2.2481 -3.6527 -0.6706 -2.3028 -3.6485 -0.5622 C -3.4553 -3.2559 -0.1919 -3.5048 -3.1938 -0.1202 C -3.5787 -2.0279 0.5221 -3.6023 -1.9402 0.5578 C -2.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2339 -4.2831 -1.4074 0.1693 -4.3501 -1.2920 H 2.2493 -2.9272 -1.0593 2.2005 -2.9938 -1.0766 H -2.1240 -4.6278 -1.1378 -2.2073 -4.6401 -1.0003 H -3.321 -3.8941 -0.2856 -4.4005 -3.8052 -0.2116 C -4.7955 -1.6910 1.1537 -4.8165 -1.5438 1.1539 C -2.5701 -0.0691 1.5304 -2.5367 -0.0067 1.5557 C -3.7584 0.2262 2.1583 -3.7288 0.3527<	С	-1.1098	-2.7975	-0.5871	-1.1365	-2.8347	-0.4856
C -2.2481 -3.6527 -0.6706 -2.3028 -3.6485 -0.5622 C -3.4553 -3.2559 -0.1919 -3.5048 -3.1938 -0.1202 C -3.5787 -2.0279 0.5221 -3.6023 -1.9402 0.5578 C -2.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2339 -4.2831 -1.4074 0.1693 -4.3501 -1.2920 H 2.2493 -2.9272 -1.0593 2.2005 -2.9938 -1.0766 H -2.1240 -4.6278 -1.1378 -2.2073 -4.6401 -1.0030 H -4.3321 -3.8941 -0.2856 -4.4005 -3.8052 -0.2116 C -4.7955 -1.6910 1.1537 -4.8165 -1.5438 1.1539 C -2.5701 -0.0691 1.548 -1.5438 1.0539 -2.1744 1.0141 H -5.6485 -0.5714 1.9445 -4.8891 -0.4030	С	-1.2370	-1.4890	-0.0716	-1.2315	-1.4955	-0.0046
C -3.4553 -3.2559 -0.1919 -3.5048 -3.1938 -0.1202 C -3.5787 -2.0279 0.5221 -3.6023 -1.9402 0.5578 C -2.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2339 -4.2831 -1.4074 0.1693 -4.3501 -1.2920 H 2.2493 -2.9272 -1.0593 2.2005 -2.9938 -1.0766 H -2.1240 -4.6278 -1.1378 -2.2073 -4.6401 -1.0003 H -4.3321 -3.8941 -0.2856 -4.4005 -3.8052 -0.2116 C -4.7955 -1.6910 1.1537 -4.8165 -1.5438 1.539 C -2.5701 -0.0691 1.5304 -2.5367 -0.0067 1.5557 C -3.7584 0.2262 2.1583 -3.7288 0.3527 2.1484 C -4.8958 -0.5714 1.9445 -4.8911 -0.4030 1.9218 H -5.6485 -2.3540 1.0188 -5.6929 -0.1090	С	-2.2481	-3.6527	-0.6706	-2.3028	-3.6485	-0.5622
C -3.5787 -2.0279 0.5221 -3.6023 -1.9402 0.5578 C -2.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2339 -4.2831 -1.4074 0.1693 -4.3501 -1.2920 H 2.2493 -2.9272 -1.0593 2.2005 -2.9938 -1.0766 H -2.1240 -4.6278 -1.1378 -2.2073 -4.6401 -1.0003 H -4.3321 -3.8941 -0.2856 -4.4005 -3.8052 -0.2116 C -4.7955 -1.6910 1.1537 -4.8165 -1.5438 1.539 C -2.5701 -0.0691 1.5304 -2.5367 -0.0067 1.5557 C -3.7584 0.2262 2.1583 -3.7288 0.3527 2.1484 C -4.8958 -0.5714 1.9445 -4.891 -0.4030 1.9218 H -5.6485 -2.3540 1.0188 -5.6929 -0.1090 2.4984 <td>С</td> <td>-3.4553</td> <td>-3.2559</td> <td>-0.1919</td> <td>-3.5048</td> <td>-3.1938</td> <td>-0.1202</td>	С	-3.4553	-3.2559	-0.1919	-3.5048	-3.1938	-0.1202
C -2.4538 -1.1674 0.6493 -2.4515 -1.1187 0.6938 H 0.2339 -4.2831 -1.4074 0.1693 -4.3501 -1.2920 H 2.2493 -2.9272 -1.0593 2.2005 -2.9938 -1.0766 H -2.1240 -4.6278 -1.1378 -2.2073 -4.6401 -1.0003 H -4.3321 -3.8941 -0.2856 -4.4005 -3.8052 -0.2116 C -4.7955 -1.6910 1.537 -4.8165 -1.5438 1.539 C -2.5701 -0.0691 1.5304 -2.5367 -0.0067 1.5557 C -3.7584 0.2262 2.1583 -3.7288 0.3527 2.1484 C -4.8958 -0.5714 1.9445 -4.8991 -0.4030 1.9218 H -5.6485 -2.3540 1.0188 -5.6929 -2.1744 1.0141 H -5.8363 -0.3227 2.4294 -5.8299 -0.1090 2.3798 H -1.7019 0.5533 1.7660 1.6452 0.5785	С	-3.5787	-2.0279	0.5221	-3.6023	-1.9402	0.5578
H0.2339-4.2831-1.40740.1693-4.3501-1.2920H2.2493-2.9272-1.05932.2005-2.9938-1.0766H-2.1240-4.6278-1.1378-2.2073-4.6401-1.0003H-4.3321-3.8941-0.2856-4.4005-3.8052-0.2116C-4.7955-1.69101.1537-4.8165-1.54381.1539C-2.5701-0.06911.5304-2.5367-0.00671.5557C-3.75840.22622.1583-3.72880.35272.1484C-4.8958-0.57141.9445-4.8891-0.40301.9218H-5.6485-2.35401.0188-5.6929-2.17441.0141H-5.8363-0.32272.4294-5.8299-0.10902.3798H-3.81221.07772.8321-3.76321.21832.8049H-1.70190.55331.7260-1.64520.57851.7658H-4.40331.1563-2.3284-4.28801.0543-2.4686H-2.3897-0.0808-1.7277-2.2688-0.1541-1.8017C5.8640-1.8501-0.00765.8308-1.8427-0.1108C5.81490.51010.47215.78030.51330.4770H6.30211.44610.73676.26731.43950.7355H-4.6137-2.34982.94710.2879-2.38652.8588H <td>С</td> <td>-2.4538</td> <td>-1.1674</td> <td>0.6493</td> <td>-2.4515</td> <td>-1.1187</td> <td>0.6938</td>	С	-2.4538	-1.1674	0.6493	-2.4515	-1.1187	0.6938
H2.2493-2.9272-1.05932.2005-2.9938-1.0766H-2.1240-4.6278-1.1378-2.2073-4.6401-1.0003H-4.3321-3.8941-0.2856-4.4005-3.8052-0.2116C-4.7955-1.69101.1537-4.8165-1.54381.1539C-2.5701-0.06911.5304-2.5367-0.00671.5557C-3.75840.22622.1583-3.72880.35272.1484C-4.8958-0.57141.9445-4.8891-0.40301.9218H-5.6485-2.35401.0188-5.6929-2.17441.0141H-5.8633-0.32272.4294-5.8299-0.10902.3798H-3.81221.07772.8321-3.76321.21832.8049H-1.70190.55331.7260-1.64520.57851.7658H-4.40331.1563-2.3284-4.28801.0543-2.4686H-2.3897-0.0808-1.7277-2.2688-0.1541-1.8017C5.8640-1.8501-0.0765.8308-1.8427-0.1108C6.5357-0.67620.30846.4951-0.64820.2556C5.81490.51010.47215.78030.51330.4770H6.30211.44610.73676.26731.43950.7355H-2.6204-3.63662.94072.4121-3.69012.9031H<	Н	0.2339	-4.2831	-1.4074	0.1693	-4.3501	-1.2920
H-2.1240-4.6278-1.1378-2.2073-4.6401-1.0003H-4.3321-3.8941-0.2856-4.4005-3.8052-0.2116C-4.7955-1.69101.1537-4.8165-1.54381.1539C-2.5701-0.06911.5304-2.5367-0.00671.5557C-3.75840.22622.1583-3.72880.35272.1484C-4.8958-0.57141.9445-4.891-0.40301.9218H-5.6485-2.35401.0188-5.6929-2.17441.0141H-5.8363-0.32272.4294-5.8299-0.10902.3798H-3.81221.07772.8321-3.76321.21832.8049H-1.70190.55331.7260-1.64520.57851.7658H-4.40331.1563-2.3284-4.28801.0543-2.4686H-2.3897-0.0808-1.7277-2.2688-0.1541-1.8017C5.8640-1.8501-0.00765.8308-1.8427-0.1108C6.5357-0.67620.30846.4951-0.64820.2556C5.81490.51010.47215.78030.51330.4770H6.30211.44610.73676.26731.43950.7735H0.4817-2.34982.94710.2879-2.38652.8588H2.6204-3.63662.94072.4121-3.69012.9031H	н	2.2493	-2.9272	-1.0593	2.2005	-2.9938	-1.0766
H-4.3321-3.8941-0.2856-4.4005-3.8052-0.2116C-4.7955-1.69101.1537-4.8165-1.54381.1539C-2.5701-0.06911.5304-2.5367-0.00671.5557C-3.75840.22622.1583-3.72880.35272.1484C-4.8958-0.57141.9445-4.8891-0.40301.9218H-5.6485-2.35401.0188-5.6929-2.17441.0141H-5.8363-0.32272.4294-5.8299-0.10902.3798H-3.81221.07772.8321-3.76321.21832.8049H-1.70190.55331.7260-1.64520.57851.7658H-4.40331.1563-2.3284-4.28801.0543-2.4686H-2.3897-0.0808-1.7277-2.2688-0.1541-1.8017C5.8640-1.8501-0.00765.8308-1.8427-0.1108C6.5357-0.67620.30846.4951-0.64820.2556C5.81490.51010.47215.78030.51330.4770H6.30211.44610.73676.26731.43950.7735HFLKVXYZKYZXYZH0.4817-2.34982.94710.2879-2.38652.8588 <td>Н</td> <td>-2.1240</td> <td>-4.6278</td> <td>-1.1378</td> <td>-2.2073</td> <td>-4.6401</td> <td>-1.0003</td>	Н	-2.1240	-4.6278	-1.1378	-2.2073	-4.6401	-1.0003
C-4.7955-1.69101.1537-4.8165-1.54381.1539C-2.5701-0.06911.5304-2.5367-0.00671.5557C-3.75840.22622.1583-3.72880.35272.1484C-4.8958-0.57141.9445-4.8891-0.40301.9218H-5.6485-2.35401.0188-5.6929-2.17441.0141H-5.8363-0.32272.4294-5.8299-0.10902.3798H-3.81221.07772.8321-3.76321.21832.8049H-1.70190.55331.7260-1.64520.57851.7658H-4.40331.1563-2.3284-4.28801.0543-2.4686H-2.3897-0.0808-1.7277-2.2688-0.1541-1.8017C5.8640-1.8501-0.00765.8308-1.8427-0.1108C6.5357-0.67620.30846.4951-0.64820.2556C5.81490.51010.47215.78030.51330.4770H0.4817-2.34982.94710.2879-2.38652.8588H2.6204-3.63662.94072.4121-3.69012.9031H4.6618-2.59461.99374.5020-2.65412.0678C1.3641-1.93722.46351.1912-1.96862.4214C2.5722-2.65552.47492.3926-2.69722.4612H-4.02	Н	-4.3321	-3.8941	-0.2856	-4.4005	-3.8052	-0.2116
C1.00001.00001.00001.00001.0000C-2.5701-0.06911.5304-2.5367-0.00671.5557C-3.75840.22622.1583-3.72880.35272.1484C-4.8958-0.57141.9445-4.8891-0.40301.9218H-5.6485-2.35401.0188-5.6929-2.17441.0141H-5.8363-0.32272.4294-5.8299-0.10902.3798H-3.81221.07772.8321-3.76321.21832.8049H-1.70190.55331.7260-1.64520.57851.7658H-4.40331.1563-2.3284-4.28801.0543-2.4686H-2.3897-0.0808-1.7277-2.2688-0.1541-1.8017C5.8640-1.8501-0.00765.8308-1.8427-0.1108C6.5357-0.67620.30846.4951-0.64820.2556C5.81490.51010.47215.78030.51330.4770H6.30211.44610.73676.26731.43952.8588H2.6204-3.63662.94072.4121-3.69012.9031H4.6618-2.59461.99374.5020-2.65412.0678C1.3641-1.93722.46351.1912-1.96862.4214C2.5722-2.65552.47492.3926-2.69722.4612H-4.0222-2.8777 <td>C</td> <td>-4.7955</td> <td>-1.6910</td> <td>1.1537</td> <td>-4.8165</td> <td>-1.5438</td> <td>1.1539</td>	C	-4.7955	-1.6910	1.1537	-4.8165	-1.5438	1.1539
C-3.75840.22622.1583-3.72880.35272.1484C-4.8958-0.57141.9445-4.8891-0.40301.9218H-5.6485-2.35401.0188-5.6929-2.17441.0141H-5.8363-0.32272.4294-5.8299-0.10902.3798H-3.81221.07772.8321-3.76321.21832.8049H-1.70190.55331.7260-1.64520.57851.7658H-4.40331.1563-2.3284-4.28801.0543-2.4686H-2.3897-0.0808-1.7277-2.2688-0.1541-1.8017C5.8640-1.8501-0.00765.8308-1.8427-0.1108C6.5357-0.67620.30846.4951-0.64820.2556C5.81490.51010.47215.78030.51330.4770H6.30211.44610.73676.26731.43950.7735H0.4817-2.34982.94710.2879-2.38652.8588H2.6204-3.63662.94072.4121-3.69012.9031H4.6618-2.59461.99374.5020-2.65412.0678C1.3641-1.93722.46351.1912-1.96862.4214C2.5722-2.65552.47492.3926-2.69722.4612H-4.0222-2.87770.2937-3.8712-2.90270.4271H-6.4327 </td <td>C</td> <td>-2.5701</td> <td>-0.0691</td> <td>1.5304</td> <td>-2.5367</td> <td>-0.0067</td> <td>1.5557</td>	C	-2.5701	-0.0691	1.5304	-2.5367	-0.0067	1.5557
C-4.8958 -0.5714-0.5714 1.94451.9445 -4.8891-0.4030 -0.40301.9218 1.9218H-5.6485 -2.3540-2.3540 1.01881.0188 -5.6929-2.1744 -2.17441.0141 1.0141H-5.8363 -0.3227-0.3227 2.42942.4294 -5.8299-0.1090 -0.10902.3798 2.3798H-3.8122 -1.70191.0777 0.55332.8321 -3.7632-3.7632 1.21831.2183 2.8049H-1.7019 -1.70190.5533 0.55331.7260 -1.6452-1.6452 0.57850.5785 1.7658H-4.4033 -0.80881.1563 -2.3284-2.2688 -4.28801.0543 1.0543-2.4686 H -2.3897 -0.0808 -0.6080-1.7277 -2.2688 -0.5785-0.1108 1.8017 -0.1108C5.8640 -1.8501 -1.8501-0.0076 -0.00765.8308 -1.8427 -0.1108-0.1108 0.2556C5.8149 -0.51010.4721 0.47215.7803 -0.6482 -0.6482 0.25560.2556C5.8149 -0.51010.4721 0.47215.7803 -0.6482 -0.6482 0.25560.2576C5.8149 -0.51010.4721 0.47215.7803 -0.6482 -0.51330.4770 -0.4700H0.4817 -2.3498 2.94710.2879 0.2879 -2.3865 -2.3865 -2.8588-4.0224 -2.9474-3.6901 -2.90112.9031 -2.9031H4.6618 -2.59461.9937 -2.94744.5020 -2.6541 -2.6972 -2.69722.4612 -2.6673H-4.0222 -2.6555-2.4749 -2.9027-2.6972 <br< td=""><td>C</td><td>-3.7584</td><td>0.2262</td><td>2.1583</td><td>-3.7288</td><td>0.3527</td><td>2.1484</td></br<>	C	-3.7584	0.2262	2.1583	-3.7288	0.3527	2.1484
H -5.6485 -2.3540 1.0188 -5.6929 -2.1744 1.0141 H -5.8363 -0.3227 2.4294 -5.8299 -0.1090 2.3798 H -3.8122 1.0777 2.8321 -3.7632 1.2183 2.8049 H -1.7019 0.5533 1.7260 -1.6452 0.5785 1.7658 H -4.4033 1.1563 -2.3284 -4.2880 1.0543 -2.4686 H -2.3897 -0.0808 -1.7277 -2.2688 -0.1541 -1.8017 C 5.8640 -1.8501 -0.0076 5.8308 -1.8427 -0.1108 C 6.5357 -0.6762 0.3084 6.4951 -0.6482 0.2556 C 5.8149 0.5101 0.4721 5.7803 0.5133 0.4770 H 6.3021 1.4461 0.7367 6.2673 1.4395 0.7735 H 0.4817 -2.3498 2.9471 0.2879 -2.3865 2.8588 H 2.6204 -3.6366 2.9407 2.4121 -3.6901 2.9031 </td <td>C</td> <td>-4.8958</td> <td>-0.5714</td> <td>1.9445</td> <td>-4.8891</td> <td>-0.4030</td> <td>1.9218</td>	C	-4.8958	-0.5714	1.9445	-4.8891	-0.4030	1.9218
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Н	-5.6485	-2.3540	1.0188	-5.6929	-2.1744	1.0141
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Н	-5.8363	-0.3227	2.4294	-5.8299	-0.1090	2.3798
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Н	-3.8122	1.0777	2.8321	-3.7632	1.2183	2.8049
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Н	-1.7019	0.5533	1.7260	-1.6452	0.5785	1.7658
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	н	-4.4033	1.1563	-2.3284	-4.2880	1.0543	-2.4686
C5.8640-1.8501-0.00765.8308-1.8427-0.1108C6.5357-0.67620.30846.4951-0.64820.2556C5.81490.51010.47215.78030.51330.4770H6.30211.44610.73676.26731.43950.7355FE(S0) = -1496.1949A.U.E(S1) = -1496.1212A.U.XYZXYZH0.4817-2.34982.94710.2879-2.38652.8588H2.6204-3.63662.94072.4121-3.69012.9031H4.6618-2.59461.99374.5020-2.65412.0678C1.3641-1.93722.46351.1912-1.96862.4214C2.5722-2.65552.47492.3926-2.69722.4612H-4.0222-2.87770.2937-3.8712-2.90270.4271H-6.4327-2.94740.6408-6.2729-2.99760.8216	Н	-2.3897	-0.0808	-1.7277	-2.2688	-0.1541	-1.8017
C6.5357-0.67620.30846.4951-0.64820.2556C5.81490.51010.47215.78030.51330.4770H6.30211.44610.73676.26731.43950.7735 F E(S0) =-1496.1949A.U.E(S1) =-1496.1212A.U.XYZXYZH0.4817-2.34982.94710.2879-2.38652.8588H2.6204-3.63662.94072.4121-3.69012.9031H4.6618-2.59461.99374.5020-2.65412.0678C1.3641-1.93722.46351.1912-1.96862.4214C2.5722-2.65552.47492.3926-2.69722.4612H-4.0222-2.87770.2937-3.8712-2.90270.4271H-6.4327-2.94740.6408-6.2729-2.99760.8216	С	5.8640	-1.8501	-0.0076	5.8308	-1.8427	-0.1108
C5.81490.51010.47215.78030.51330.4770H6.30211.44610.73676.26731.43950.7735 4F E(S0) =-1496.1949A.U.E(S1) =-1496.1212A.U.XyzXyzH0.4817-2.34982.94710.2879-2.38652.8588H2.6204-3.63662.94072.4121-3.69012.9031H4.6618-2.59461.99374.5020-2.65412.0678C1.3641-1.93722.46351.1912-1.96862.4214C2.5722-2.65552.47492.3926-2.69722.4612H-4.0222-2.87770.2937-3.8712-2.90270.4271H-6.4327-2.94740.6408-6.2729-2.99760.8216	С	6.5357	-0.6762	0.3084	6.4951	-0.6482	0.2556
H6.30211.44610.73676.26731.43950.7735 4F E(S0) =-1496.1949A.U.E(S1) =-1496.1212A.U.xyzxyzH0.4817-2.34982.94710.2879-2.38652.8588H2.6204-3.63662.94072.4121-3.69012.9031H4.6618-2.59461.99374.5020-2.65412.0678C1.3641-1.93722.46351.1912-1.96862.4214C2.5722-2.65552.47492.3926-2.69722.4612H-4.0222-2.87770.2937-3.8712-2.90270.4271H-6.4327-2.94740.6408-6.2729-2.99760.8216	С	5.8149	0.5101	0.4721	5.7803	0.5133	0.4770
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Н	6.3021	1.4461	0.7367	6.2673	1.4395	0.7735
E(SO) = -1496.1949 A.U. $E(S1) =$ -1496.1212 A.U.xyzxyzH 0.4817 -2.3498 2.9471 0.2879 -2.3865 2.8588 H 2.6204 -3.6366 2.9407 2.4121 -3.6901 2.9031 H 4.6618 -2.5946 1.9937 4.5020 -2.6541 2.0678 C 1.3641 -1.9372 2.4635 1.1912 -1.9686 2.4214 C 2.5722 -2.6555 2.4749 2.3926 -2.6972 2.4612 H -4.0222 -2.8777 0.2937 -3.8712 -2.9027 0.4271 H -6.4327 -2.9474 0.6408 -6.2729 -2.9976 0.8216				4F			
xyzxyzH0.4817-2.34982.94710.2879-2.38652.8588H2.6204-3.63662.94072.4121-3.69012.9031H4.6618-2.59461.99374.5020-2.65412.0678C1.3641-1.93722.46351.1912-1.96862.4214C2.5722-2.65552.47492.3926-2.69722.4612H-4.0222-2.87770.2937-3.8712-2.90270.4271H-6.4327-2.94740.6408-6.2729-2.99760.8216		E(S0) =	-1496.1949	A.U.	E(S1) =	-1496.1212	A.U.
H0.4817-2.34982.94710.2879-2.38652.8588H2.6204-3.63662.94072.4121-3.69012.9031H4.6618-2.59461.99374.5020-2.65412.0678C1.3641-1.93722.46351.1912-1.96862.4214C2.5722-2.65552.47492.3926-2.69722.4612H-4.0222-2.87770.2937-3.8712-2.90270.4271H-6.4327-2.94740.6408-6.2729-2.99760.8216		X	y	Z	X	у	Z
H2.6204-3.63662.94072.4121-3.69012.9031H4.6618-2.59461.99374.5020-2.65412.0678C1.3641-1.93722.46351.1912-1.96862.4214C2.5722-2.65552.47492.3926-2.69722.4612H-4.0222-2.87770.2937-3.8712-2.90270.4271H-6.4327-2.94740.6408-6.2729-2.99760.8216	Н	0.4817	-2.3498	2.9471	0.2879	-2.3865	2.8588
H4.6618-2.59461.99374.5020-2.65412.0678C1.3641-1.93722.46351.1912-1.96862.4214C2.5722-2.65552.47492.3926-2.69722.4612H-4.0222-2.87770.2937-3.8712-2.90270.4271H-6.4327-2.94740.6408-6.2729-2.99760.8216	Н	2.6204	-3.6366	2.9407	2.4121	-3.6901	2.9031
C1.3641-1.93722.46351.1912-1.96862.4214C2.5722-2.65552.47492.3926-2.69722.4612H-4.0222-2.87770.2937-3.8712-2.90270.4271H-6.4327-2.94740.6408-6.2729-2.99760.8216	Н	4.6618	-2.5946	1.9937	4.5020	-2.6541	2.0678
C2.5722-2.65552.47492.3926-2.69722.4612H-4.0222-2.87770.2937-3.8712-2.90270.4271H-6.4327-2.94740.6408-6.2729-2.99760.8216	С	1.3641	-1.9372	2.4635	1.1912	-1.9686	2.4214
H-4.0222-2.87770.2937-3.8712-2.90270.4271H-6.4327-2.94740.6408-6.2729-2.99760.8216	С	2.5722	-2.6555	2.4749	2.3926	-2.6972	2.4612
Н -6.4327 -2.9474 0.6408 -6.2729 -2.9976 0.8216	Н	-4.0222	-2.8777	0.2937	-3.8712	-2.9027	0.4271
	Н	-6.4327	-2.9474	0.6408	-6.2729	-2.9976	0.8216

Н	-7.7960	-0.8908	0.6884	-7.6733	-0.9582	0.7851
0	-4.2497	2.8013	-0.0285	-4.2594	2.8055	-0.1586
С	-4.5693	-1.9413	0.2826	-4.4482	-1.9850	0.3728
С	-4.7468	0.4471	0.1457	-4.6661	0.4376	0.1204
С	-2.5008	1.1033	-0.1640	-2.4988	1.1112	-0.2658
С	-2.5477	-0.2812	-0.1468	-2.5019	-0.3306	-0.1734
С	-1.2808	1.8192	-0.2245	-1.3002	1.8323	-0.3327
С	-1.3740	-1.0263	-0.4384	-1.3167	-1.0563	-0.4771
С	-0.0744	1.0729	-0.2747	-0.0778	1.0888	-0.3155
С	-0.1609	-0.3164	-0.6553	-0.1241	-0.3258	-0.7038
С	-1.2414	3.2425	-0.2328	-1.2747	3.2591	-0.3189
С	-0.0429	3.8830	-0.3038	-0.0811	3.9103	-0.2746
С	1.1793	3.1682	-0.1629	1.1275	3.1915	-0.0690
С	1.1589	1.7654	0.0367	1.0989	1.7677	0.0957
С	-3.8774	1.6395	-0.0202	-3.8600	1.6240	-0.1143
С	-3.9540	-0.7125	0.0921	-3.8425	-0.7397	0.1035
Н	-2.1820	3.7839	-0.2343	-2.2269	3.7774	-0.3789
Н	0.0038	4.9654	-0.4099	-0.0282	4.9938	-0.3604
С	2.4194	3.8596	-0.2201	2.3711	3.8573	-0.0930
С	2.3674	1.1380	0.5162	2.3040	1.1190	0.5847
С	3.5899	1.8153	0.3109	3.5352	1.7888	0.4105
С	3.5920	3.1810	-0.0837	3.5426	3.1594	0.0490
Н	2.4079	4.9292	-0.4205	2.3827	4.9294	-0.2775
Н	4.5489	3.6840	-0.2101	4.5013	3.6649	-0.0491
С	-0.2564	-3.1376	-0.8870	-0.1699	-3.1245	-1.0338
С	-1.3765	-2.4515	-0.5449	-1.2963	-2.4743	-0.6327
С	0.9150	-2.4463	-1.3100	0.9837	-2.4000	-1.4349
С	0.9348	-1.0270	-1.2811	0.9758	-0.9745	-1.3488
С	2.0190	-3.1548	-1.8293	2.1135	-3.0649	-1.9534
С	3.0849	-2.4885	-2.3865	3.1879	-2.3582	-2.4412
С	3.0532	-1.0860	-2.4755	3.1400	-0.9513	-2.4654
С	2.0035	-0.3759	-1.9388	2.0636	-0.2782	-1.9396
Н	-0.2618	-4.2253	-0.9232	-0.1575	-4.2099	-1.1140
Н	-2.2897	-2.9963	-0.3416	-2.1972	-3.0442	-0.4384
Н	1.9917	-4.2430	-1.8095	2.1062	-4.1533	-1.9796
Н	3.9277	-3.0420	-2.7926	4.0526	-2.8804	-2.8426
Н	3.8581	-0.5559	-2.9789	3.9562	-0.3900	-2.9140
Н	1.9901	0.7051	-2.0413	2.0337	0.8054	-2.0052
С	4.8285	1.1320	0.5028	4.7629	1.0951	0.6278
С	2.4123	-0.1304	1.2137	2.3115	-0.1435	1.2685
С	4.8583	-0.1577	0.9272	4.7662	-0.1967	1.0494
С	3.6566	-0.8061	1.3399	3.5476	-0.8362	1.4218
Н	5.7490	1.6673	0.2762	5.6939	1.6224	0.4293
Н	5.8007	-0.6928	1.0298	5.6992	-0.7431	1.1733
С	3.7016	-2.0839	1.9382	3.5530	-2.1267	1.9881
С	1.2902	-0.7066	1.8510	1.1528	-0.7211	1.8421

С	-5.9546	-1.9820	0.4941	-5.8068	-2.0385	0.6101
С	-6.7238	-0.8263	0.5241	-6.6063	-0.8729	0.5948
С	-6.1090	0.4173	0.3530	-6.0374	0.3644	0.3570
Н	-6.6739	1.3465	0.3847	-6.6283	1.2777	0.3582
Н	0.3524	-0.1594	1.8778	0.2264	-0.1542	1.8582
			5F			
	E(S0) =	-1496.1949	A.U.	E(S1) =	-1496.1214	A.U.
	Х	У	Z	Х	У	Z
Н	4.4565	-2.7827	-0.5161	4.3776	-2.7601	-0.7984
Н	6.8890	-2.6601	-0.4891	6.8068	-2.6318	-0.8368
Н	8.0768	-0.5325	-0.0991	8.0046	-0.5388	-0.2834
0	4.1861	2.8094	0.5202	4.1795	2.7921	0.7003
С	4.9191	-1.8165	-0.3472	4.8557	-1.8239	-0.5285
С	4.8845	0.5436	0.0798	4.8233	0.5343	0.1186
С	2.5732	1.0142	0.1491	2.5752	0.9962	0.2745
С	2.7304	-0.3412	-0.0884	2.7136	-0.4058	-0.0476
С	1.3044	1.6438	0.1391	1.3214	1.6208	0.2652
С	1.5881	-1.1838	-0.1405	1.5623	-1.2408	-0.0593
С	0.1603	0.8363	-0.0915	0.1777	0.8161	-0.0310
С	0.3057	-0.5948	0.0744	0.2924	-0.6337	0.1664
С	1.1570	3.0426	0.3577	1.1799	3.0290	0.4462
С	-0.0834	3.6031	0.3375	-0.0429	3.6062	0.2937
С	-1.2162	2.8564	-0.0897	-1.1419	2.8537	-0.2013
С	-1.0717	1.4986	-0.4466	-0.9876	1.4679	-0.5089
С	3.9099	1.6441	0.2866	3.8940	1.6112	0.4119
С	4.1864	-0.6557	-0.1451	4.1103	-0.6792	-0.1758
Н	2.0454	3.6260	0.5776	2.0668	3.5907	0.7236
Н	-0.2210	4.6548	0.5829	-0.1935	4.6637	0.5014
С	-2.4953	3.4841	-0.1606	-2.4145	3.4641	-0.3318
С	-2.1603	0.8735	-1.1674	-2.0589	0.8144	-1.2464
С	-3.4355	1.5018	-1.1700	-3.3306	1.4441	-1.3118
С	-3.5828	2.8055	-0.6107	-3.4890	2.7637	-0.7992
Н	-2.5802	4.5146	0.1799	-2.5217	4.5013	-0.0210
Н	-4.5679	3.2685	-0.6211	-4.4717	3.2283	-0.8546
С	0.5494	-3.3570	-0.3836	0.4924	-3.4119	-0.1433
С	1.6686	-2.5837	-0.3894	1.6242	-2.6513	-0.2152
С	-0.6915	-2.8299	0.0652	-0.7386	-2.8426	0.2557
С	-0.7834	-1.4708	0.4337	-0.8044	-1.4535	0.5561
С	-1.8381	-3.6743	0.1392	-1.9161	-3.6398	0.3096
С	-3.0226	-3.2008	0.6063	-3.1082	-3.1047	0.6886
С	-3.1043	-1.8946	1.1726	-3.1743	-1.7730	1.1989
С	-1.9617	-1.0490	1.1632	-2.0050	-0.9664	1.2170
Н	0.6007	-4.4096	-0.6551	0.5313	-4.4805	-0.3456
Н	2.6232	-3.0274	-0.6428	2.5745	-3.1294	-0.4198
Н	-1.7437	-4.7007	-0.2105	-1.8431	-4.6830	0.0079
Н	-3.9101	-3.8310	0.6216	-4.0162	-3.7049	0.6839

С	-4.2915	-1.4619	1.8025	-4.3715	-1.2812	1.7591
С	-2.0176	0.1316	1.9377	-2.0524	0.2381	1.9479
С	-3.1754	0.5181	2.5739	-3.2264	0.6893	2.5144
С	-4.3388	-0.2645	2.4760	-4.4076	-0.0583	2.3906
Н	-5.1625	-2.1144	1.7678	-5.2621	-1.9055	1.7083
Н	-5.2558	0.0568	2.9633	-5.3340	0.3082	2.8254
Н	-3.1841	1.4322	3.1629	-3.2295	1.6239	3.0698
Н	-1.1257	0.7414	2.0490	-1.1439	0.8187	2.0850
С	-4.5299	0.8609	-1.7907	-4.4052	0.7925	-1.9524
С	-2.0091	-0.3002	-1.9399	-1.8836	-0.3804	-1.9693
С	-4.3664	-0.3266	-2.4637	-4.2225	-0.4195	-2.5797
С	-3.0823	-0.8886	-2.5696	-2.9419	-0.9903	-2.6139
Н	-5.5036	1.3471	-1.7514	-5.3765	1.2838	-1.9648
Н	-5.2143	-0.8072	-2.9454	-5.0541	-0.9128	-3.0757
Н	-2.9308	-1.7896	-3.1594	-2.7742	-1.9163	-3.1584
Н	-1.0222	-0.7384	-2.0587	-0.8962	-0.8300	-2.0325
С	6.3193	-1.7482	-0.3283	6.2334	-1.7507	-0.5603
С	6.9905	-0.5527	-0.1083	6.9181	-0.5538	-0.2481
С	6.2603	0.6201	0.1034	6.2157	0.5883	0.0869
Н	6.7479	1.5757	0.2840	6.7189	1.5244	0.3187
			6F			
	E(S0) =	-1649.7293	A.U.	E(S1) =	-1649.6499	A.U.
	Х	У	Z	Х	У	Z
Н	-8.6160	-2.6590	0.4426	-8.5647	-2.6735	0.5334
H H	-8.6160 -6.1731	-2.6590 -3.0165	0.4426 0.5070	-8.5647 -6.1223	-2.6735 -3.0292	0.5334 0.5898
H H H	-8.6160 -6.1731 -9.5415	-2.6590 -3.0165 -0.3810	0.4426 0.5070 0.0758	-8.5647 -6.1223 -9.4910	-2.6735 -3.0292 -0.3990	0.5334 0.5898 0.1197
н н н С	-8.6160 -6.1731 -9.5415 -8.4650	-2.6590 -3.0165 -0.3810 -0.5280	0.4426 0.5070 0.0758 0.1030	-8.5647 -6.1223 -9.4910 -8.4135	-2.6735 -3.0292 -0.3990 -0.5416	0.5334 0.5898 0.1197 0.1426
Н Н С С	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178	0.4426 0.5070 0.0758 0.1030 0.3107	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389	0.5334 0.5898 0.1197 0.1426 0.3786
н н с с н	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164
Н Н С С Н С	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102
ннсснсс	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557
н н с с н с о	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115
ннсснссос	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404
н н с с н с с о с с	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708 -3.9775	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458 1.2117	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153 -0.1587	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414 -3.9287	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611 1.2214	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404 -0.1973
ннсснссосс	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708 -3.9775 -1.6323	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458 1.2117 1.4053	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153 -0.1587 -0.1798	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414 -3.9287 -1.6332	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611 1.2214 1.4176	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404 -0.1973 -0.2449
ннсснссоссс	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708 -3.9775 -1.6323 -1.9453	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458 1.2117 1.4053 0.0695	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153 -0.1587 -0.1798 0.0272	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414 -3.9287 -1.6332 -1.9400	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611 1.2214 1.4176 0.0301	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404 -0.1973 -0.2449 0.0103
ннсснссоссс	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708 -3.9775 -1.6323 -1.9453 -0.2984	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458 1.2117 1.4053 0.0695 1.8861	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153 -0.1587 -0.1798 0.0272 -0.1380	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414 -3.9287 -1.6332 -1.6332 -1.9400 -0.3145	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611 1.2214 1.4176 0.0301 1.8890	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404 -0.1973 -0.2449 0.0103 -0.2091
ннсснссосссс	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708 -3.9775 -1.6323 -1.9453 -0.2984 -0.9028	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458 1.2117 1.4053 0.0695 1.8861 -0.8983	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153 -0.1587 -0.1587 -0.1798 0.0272 -0.1380 0.0767	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414 -3.9287 -1.6332 -1.9400 -0.3145 -0.8947	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611 1.2214 1.4176 0.0301 1.8890 -0.9304	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404 -0.1973 -0.2449 0.0103 -0.2091 0.0497
ннсснссосссс	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708 -3.9775 -1.6323 -1.9453 -0.2984 -0.9028 0.7416	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458 1.2117 1.4053 0.0695 1.8861 -0.8983 0.9501	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153 -0.1587 -0.1798 0.0272 -0.1380 0.0767 0.0910	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414 -3.9287 -1.6332 -1.9400 -0.3145 -0.8947 0.7270	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611 1.2214 1.4176 0.0301 1.8890 -0.9304 0.9443	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404 -0.1973 -0.2449 0.0103 -0.2091 0.0497 0.0591
ннсснссоссссс	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708 -3.9775 -1.6323 -1.9453 -0.2984 -0.9028 0.7416 0.4383	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458 1.2117 1.4053 0.0695 1.8861 -0.8983 0.9501 -0.4530	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153 -0.1587 -0.1587 -0.1798 0.0272 -0.1380 0.0767 0.0910 -0.1113	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414 -3.9287 -1.6332 -1.9400 -0.3145 -0.8947 0.7270 0.4411	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611 1.2214 1.4176 0.0301 1.8890 -0.9304 0.9443 -0.4768	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404 -0.1973 -0.2449 0.0103 -0.2091 0.0497 0.0591 -0.1676
ннсснссосссссс	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708 -3.9775 -1.6323 -1.9453 -0.2984 -0.9028 0.7416 0.4383 0.0100	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458 1.2117 1.4053 0.0695 1.8861 -0.8983 0.9501 -0.4530 3.2632	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153 -0.1587 -0.1587 -0.1798 0.0272 -0.1380 0.0767 0.0910 -0.1113 -0.3193	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414 -3.9287 -1.6332 -1.9400 -0.3145 -0.8947 0.7270 0.4411 -0.0061	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611 1.2214 1.4176 0.0301 1.8890 -0.9304 0.9443 -0.4768 3.2750	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404 -0.1973 -0.2409 0.0103 -0.2091 0.0497 0.0591 -0.1676 -0.3526
ннсснссоссссссс	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708 -3.9775 -1.6323 -1.9453 -0.2984 -0.9028 0.7416 0.4383 0.0100 1.3059	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458 1.2117 1.4053 0.0695 1.8861 -0.8983 0.9501 -0.4530 3.2632 3.6789	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153 -0.1587 -0.1587 -0.1798 0.0272 -0.1380 0.0767 0.0910 -0.1113 -0.3193 -0.2647	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414 -3.9287 -1.6332 -1.9400 -0.3145 -0.8947 0.7270 0.4411 -0.0061 1.2766	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611 1.2214 1.4176 0.0301 1.8890 -0.9304 0.9443 -0.4768 3.2750 3.6977	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404 -0.1973 -0.2449 0.0103 -0.2091 0.0497 0.0591 -0.1676 -0.3526 -0.1917
ннсснссосссссссс	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708 -3.9775 -1.6323 -1.9453 -0.2984 -0.9028 0.7416 0.4383 0.0100 1.3059 2.3378	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458 1.2117 1.4053 0.0695 1.8861 -0.8983 0.9501 -0.4530 3.2632 3.6789 2.7989	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153 -0.1587 -0.1587 -0.1798 0.0272 -0.1380 0.0767 0.0910 -0.1113 -0.3193 -0.2647 0.1618	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414 -3.9287 -1.6332 -1.9400 -0.3145 -0.8947 0.7270 0.4411 -0.0061 1.2766 2.2800	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611 1.2214 1.4176 0.0301 1.8890 -0.9304 0.9443 -0.4768 3.2750 3.6977 2.8055	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404 -0.1973 -0.2449 0.0103 -0.2091 0.0497 0.0591 -0.1676 -0.3526 -0.1917 0.2762
нннсснссосссссссс	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708 -3.9775 -1.6323 -1.9453 -0.2984 -0.9028 0.7416 0.4383 0.0100 1.3059 2.3378 2.0332	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458 1.2117 1.4053 0.0695 1.8861 -0.8983 0.9501 -0.4530 3.2632 3.6789 2.7989 1.4579	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153 -0.1587 -0.1798 0.0272 -0.1380 0.0767 0.0910 -0.1113 -0.3193 -0.2647 0.1618 0.4820	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414 -3.9287 -1.6332 -1.9400 -0.3145 -0.8947 0.7270 0.4411 -0.0061 1.2766 2.2800 1.9609	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611 1.2214 1.4176 0.0301 1.8890 -0.9304 0.9443 -0.4768 3.2750 3.6977 2.8055 1.4405	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404 -0.1973 -0.2449 0.0103 -0.2091 0.0497 0.0591 -0.1676 -0.3526 -0.1917 0.2762 0.5515
нннсснссосссссссссс	-8.6160 -6.1731 -9.5415 -8.4650 -7.9402 -3.9301 -6.5790 -7.6170 -3.0115 -4.2708 -3.9775 -1.6323 -1.9453 -0.2984 -0.9028 0.7416 0.4383 0.0100 1.3059 2.3378 2.0332 -2.8792	-2.6590 -3.0165 -0.3810 -0.5280 -1.8178 -2.1653 -2.0190 0.5423 3.3879 -1.1458 1.2117 1.4053 0.0695 1.8861 -0.8983 0.9501 -0.4530 3.2632 3.6789 2.7989 1.4579 2.1915	0.4426 0.5070 0.0758 0.1030 0.3107 0.3691 0.3471 -0.0653 -0.5339 0.2153 -0.1587 -0.1587 -0.1798 0.0272 -0.1380 0.0767 0.0910 -0.1113 -0.3193 -0.2647 0.1618 0.4820 -0.3237	-8.5647 -6.1223 -9.4910 -8.4135 -7.8858 -3.8930 -6.5338 -7.5764 -2.9978 -4.2414 -3.9287 -1.6332 -1.9400 -0.3145 -0.8947 0.7270 0.4411 -0.0061 1.2766 2.2800 1.9609 -2.8634	-2.6735 -3.0292 -0.3990 -0.5416 -1.8389 -2.1748 -2.0373 0.5241 3.4127 -1.1611 1.2214 1.4176 0.0301 1.8890 -0.9304 0.9443 -0.9304 0.9443 -0.4768 3.2750 3.6977 2.8055 1.4405 2.1942	0.5334 0.5898 0.1197 0.1426 0.3786 0.4164 0.4102 -0.0557 -0.6115 0.2404 -0.1973 -0.2409 0.0103 -0.2091 0.0497 0.0591 -0.1676 -0.3526 -0.1917 0.2762 0.5515 -0.3850

Н	-0.8025	3.9483	-0.5388	-0.8198	3.9454	-0.6122
Н	1.5662	4.7134	-0.4819	1.5524	4.7346	-0.3731
С	3.6789	3.2741	0.2674	3.6162	3.2537	0.4073
С	3.0311	0.6951	1.2026	2.9502	0.6460	1.2661
С	4.3689	1.1741	1.2410	4.2901	1.1161	1.3329
С	4.6734	2.4655	0.7172	4.6030	2.4169	0.8480
Н	3.8869	4.2956	-0.0462	3.8465	4.2774	0.1192
Н	5.7045	2.8126	0.7544	5.6347	2.7589	0.9040
С	-0.1163	-3.1786	0.2792	-0.0764	-3.2092	0.1596
С	-1.1426	-2.2845	0.2922	-1.1112	-2.3223	0.2415
С	1.1805	-2.7839	-0.1443	1.2043	-2.7925	-0.2716
С	1.4276	-1.4355	-0.4795	1.4308	-1.4182	-0.5660
С	2.2291	-3.7476	-0.2226	2.2756	-3.7242	-0.3479
С	3.4658	-3.3970	-0.6617	3.5189	-3.3350	-0.7422
С	3.6996	-2.0956	-1.1967	3.7395	-2.0149	-1.2378
С	2.6565	-1.1302	-1.1834	2.6765	-1.0715	-1.2322
Н	-0.2884	-4.2242	0.5265	-0.2331	-4.2619	0.3871
Н	-2.1433	-2.6244	0.5276	-2.0974	-2.6817	0.5096
Н	2.0173	-4.7646	0.1021	2.0814	-4.7536	-0.0520
Н	4.2793	-4.1203	-0.6788	4.3471	-4.0411	-0.7571
С	4.9366	-1.7822	-1.8003	4.9829	-1.6615	-1.8019
С	2.8529	0.0535	-1.9296	2.8644	0.1306	-1.9441
С	4.0559	0.3244	-2.5412	4.0807	0.4471	-2.5129
С	5.1249	-0.5830	-2.4457	5.1626	-0.4412	-2.4134
Н	5.7303	-2.5269	-1.7696	5.7920	-2.3894	-1.7691
Н	6.0792	-0.3540	-2.9133	6.1237	-0.1823	-2.8504
Н	4.1739	1.2445	-3.1086	4.1937	1.3846	-3.0519
Н	2.0344	0.7593	-2.0392	2.0320	0.8200	-2.0608
С	5.3723	0.3989	1.8619	5.2831	0.3262	1.9499
С	2.7339	-0.4720	1.9418	2.6370	-0.5318	1.9686
С	5.0632	-0.7782	2.5015	4.9592	-0.8665	2.5563
С	3.7222	-1.1934	2.5727	3.6188	-1.2774	2.5926
Н	6.3952	0.7722	1.8501	6.3068	0.6961	1.9614
Н	5.8424	-1.3632	2.9836	5.7281	-1.4672	3.0347
Н	3.4591	-2.0858	3.1358	3.3436	-2.1863	3.1219
Н	1.7018	-0.7988	2.0330	1.6032	-0.8601	2.0330
С	-5.6833	-0.9411	0.1788	-5.6283	-0.9565	0.2096
С	-6.2178	0.3647	-0.0318	-6.1680	0.3604	-0.0306
С	-5.3159	1.4497	-0.2046	-5.2860	1.4361	-0.2344
Н	-5.6913	2.4584	-0.3732	-5.6718	2.4373	-0.4221
Н	-8.0116	1.5439	-0.2273	-7.9779	1.5195	-0.2376
			7F			
	E(S0) =	-1649.7225	A.U.	E(S1) =	-1649.6506	A.U.
	х	у	Z	х	у	Z
Н	0.1461	-2.7511	-3.0171	0.4270	-2.8983	-2.7942
Н	-1.9650	-4.0821	-3.0784	-1.6475	-4.2724	-2.9513

Н	-4.0954	-3.0122	-2.3943	-3.8417	-3.2369	-2.4480
С	-0.7811	-2.3190	-2.6477	-0.5302	-2.4715	-2.5049
С	-1.9723	-3.0640	-2.6969	-1.7024	-3.2426	-2.6074
Н	4.4264	-2.8352	0.4792	4.3551	-2.8495	0.2000
Н	6.8631	-2.8781	0.4238	6.7862	-2.8829	0.0766
Н	8.1889	-0.8193	0.1192	8.1059	-0.7947	-0.0630
0	4.5254	2.8125	-0.2289	4.4823	2.8916	-0.0859
С	4.9534	-1.8999	0.3257	4.8899	-1.9058	0.1654
С	5.0756	0.4755	0.0084	4.9975	0.5320	0.0540
С	2.7994	1.0998	-0.0134	2.7789	1.1483	0.1042
С	2.8689	-0.2738	0.1492	2.8387	-0.2880	0.2377
С	1.5672	1.7814	-0.1741	1.5572	1.8102	-0.0729
С	1.6798	-1.0233	0.3562	1.6545	-1.0192	0.5263
С	0.3746	1.0173	-0.1293	0.3703	1.0133	-0.0843
С	0.4448	-0.3139	0.4319	0.4205	-0.3064	0.5595
С	1.5019	3.1926	-0.3594	1.4803	3.2128	-0.3264
С	0.2904	3.8012	-0.4747	0.2725	3.7793	-0.5906
С	-0.9036	3.0393	-0.6211	-0.8825	2.9717	-0.7872
С	-0.8403	1.6242	-0.6295	-0.7844	1.5457	-0.7163
С	4.1741	1.6511	-0.0996	4.1305	1.6990	0.0153
С	4.3004	-0.6863	0.1672	4.2173	-0.6673	0.1677
Н	2.4288	3.7573	-0.3482	2.3998	3.7866	-0.2619
Н	0.2155	4.8865	-0.5159	0.1682	4.8581	-0.6895
С	-2.1563	3.6960	-0.7495	-2.1495	3.5691	-0.9544
С	-1.9974	0.9021	-1.0975	-1.9180	0.7646	-1.1758
С	-3.2444	1.5656	-1.0776	-3.1840	1.3897	-1.2040
С	-3.3026	2.9708	-0.8738	-3.2775	2.7966	-1.0551
Н	-2.1802	4.7830	-0.6987	-2.2186	4.6549	-0.9418
Н	-4.2759	3.4580	-0.8890	-4.2618	3.2587	-1.1014
С	0.5010	-3.1078	0.7009	0.4891	-3.0412	1.1740
С	1.6661	-2.4422	0.4760	1.6509	-2.4032	0.8458
С	-0.6834	-2.3976	1.0348	-0.7067	-2.3128	1.3683
С	-0.6800	-0.9867	1.0337	-0.7028	-0.8991	1.1979
С	-1.8637	-3.1133	1.3904	-1.9136	-2.9852	1.7058
С	-2.9735	-2.4589	1.8201	-3.0659	-2.2934	1.9230
С	-2.9397	-1.0506	2.0401	-3.0532	-0.8680	1.9816
С	-1.7758	-0.3089	1.6965	-1.8522	-0.1620	1.7014
Н	0.4748	-4.1957	0.7069	0.4768	-4.1166	1.3407
Н	2.5802	-3.0008	0.3170	2.5761	-2.9659	0.8117
Н	-1.8508	-4.1984	1.3054	-1.8973	-4.0723	1.7565
Н	-3.8829	-3.0030	2.0697	-3.9974	-2.8142	2.1374
С	-4.0282	-0.4018	2.6636	-4.1998	-0.1581	2.3967
С	-1.7098	1.0359	2.1290	-1.8086	1.2089	2.0286
С	-2.7723	1.6413	2.7594	-2.9320	1.8797	2.4638
С	-3.9596	0.9284	3.0020	-4.1510	1.1998	2.6153
Н	-4.8006	1.4171	3.4875	-5.0381	1.7356	2.9434

Н	-2.6858	2.6769	3.0797	-2.8659	2.9387	2.7011
Н	-0.7938	1.6009	1.9817	-0.8682	1.7487	1.9510
С	-4.4506	0.8311	-1.2878	-4.3607	0.6169	-1.4339
С	-1.9604	-0.4357	-1.6529	-1.8166	-0.5795	-1.6764
С	-4.4217	-0.4960	-1.5734	-4.2792	-0.7118	-1.7056
С	-3.1780	-1.1499	-1.8214	-3.0091	-1.3330	-1.8835
Н	-5.3960	1.3628	-1.1945	-5.3242	1.1206	-1.3828
Н	-5.3425	-1.0635	-1.6972	-5.1763	-1.3094	-1.8555
С	-3.1517	-2.4758	-2.3063	-2.9201	-2.6715	-2.3205
С	-0.7793	-1.0393	-2.1422	-0.5876	-1.1734	-2.0556
С	6.3549	-1.9247	0.3021	6.2684	-1.9270	0.0828
С	7.1037	-0.7675	0.1327	7.0220	-0.7355	-0.0022
С	6.4536	0.4615	-0.0123	6.3883	0.4932	-0.0226
Н	7.0046	1.3913	-0.1359	6.9448	1.4246	-0.1029
Н	0.1485	-0.4747	-2.1390	0.3225	-0.5808	-2.0249
Н	-4.9164	-0.9884	2.8930	-5.1182	-0.7158	2.5729
			8F			
	E(S0) =	-1803.2506	A.U.	E(S1) =	-1803.1809	A.U.
	х	У	Z	Х	У	Z
Н	4.0432	-3.7964	1.8370	4.1465	-3.8240	1.5993
Н	-0.2416	-4.0515	1.9849	-0.1285	-4.1140	1.9101
С	0.6648	-3.4607	1.8752	0.7683	-3.5121	1.7843
Н	1.9849	-5.1778	1.9255	2.1004	-5.2189	1.7278
Н	-0.4064	-1.6246	1.8142	-0.3144	-1.6803	1.8396
Н	-0.5760	3.8858	-2.1340	-0.8856	3.8586	-1.9544
Н	1.4521	5.3186	-1.8748	1.0736	5.3825	-1.7180
Н	3.6661	4.2438	-1.5669	3.3519	4.4260	-1.5298
С	0.3905	3.4305	-1.9303	0.1088	3.4457	-1.8037
С	1.5334	4.2371	-1.7984	1.2152	4.3052	-1.6837
Н	-4.7678	2.4310	1.4152	-4.7224	2.5673	1.0783
Н	-7.2018	2.3072	1.3894	-7.1502	2.4282	1.0153
Н	-8.3924	0.4118	0.3504	-8.3132	0.3970	0.2129
0	-4.5029	-2.5458	-1.3355	-4.4266	-2.7503	-1.0789
С	-5.2336	1.5801	0.9304	-5.1826	1.6463	0.7356
С	-5.2026	-0.5128	-0.2423	-5.1095	-0.6158	-0.1707
С	-2.8906	-0.9129	-0.5022	-2.8479	-1.0278	-0.3606
С	-3.0487	0.2941	0.1581	-3.0090	0.2807	0.2252
C	-1.6203	-1.3973	-0.9062	-1.5900	-1.5040	-0.7551
С	-1.9063	1.0040	0.6185	-1.8738	0.9893	0.6973
C	-0.4816	-0.6163	-0.5908	-0.4627	-0.6590	-0.5167
C	-0.6260	0.4145	0.4125	-0.5924	0.3995	0.4960
C	-1.4660	-2.6442	-1.5771	-1.4224	-2.7423	-1.4449
C	-0.2171	-3.0975	-1.8722	-0.1841	-3.1088	-1.8723
C	0.9236	-2.2606	-1.7175	0.9108	-2.2039	-1.7909
С	0.7664	-0.9346	-1.2464	0.7141	-0.8843	-1.2726
С	-4.2267	-1.4935	-0.7829	-4.1586	-1.6304	-0.6024

С	-4.5039	0.5627	0.3330	-4.4184	0.5420	0.3123
Н	-2.3537	-3.2351	-1.7792	-2.2987	-3.3711	-1.5689
Н	-0.0708	-4.0941	-2.2855	-0.0088	-4.0896	-2.3105
С	2.2187	-2.7543	-2.0291	2.2135	-2.6215	-2.1311
С	1.8622	-0.0170	-1.4462	1.7753	0.0863	-1.4722
С	3.1512	-0.5623	-1.6395	3.0827	-0.3989	-1.7005
С	3.3102	-1.9523	-1.8914	3.2813	-1.7709	-1.9902
Н	2.3180	-3.7948	-2.3330	2.3619	-3.6502	-2.4533
Н	4.3154	-2.3402	-2.0470	4.2950	-2.1209	-2.1769
С	-0.8530	2.9195	1.6540	-0.8189	2.8368	1.8546
С	-1.9832	2.2774	1.2538	-1.9501	2.2214	1.4070
С	0.4026	2.2525	1.6479	0.4385	2.1875	1.7856
С	0.4833	0.9147	1.1922	0.5133	0.8624	1.2610
С	1.5743	2.9267	2.0835	1.6256	2.8580	2.1627
С	2.7753	2.2853	2.0753	2.8395	2.2392	2.0468
С	2.8434	0.8867	1.8299	2.9167	0.8523	1.7537
С	1.6720	0.1632	1.5148	1.7387	0.1191	1.4888
Н	-0.8979	3.9364	2.0391	-0.8671	3.8276	2.3027
Н	-2.9415	2.7738	1.3438	-2.9115	2.6974	1.5578
Н	1.4942	3.9719	2.3756	1.5539	3.8924	2.4935
Н	3.6937	2.8125	2.3279	3.7620	2.7772	2.2580
С	4.0962	0.2121	1.9382	4.1795	0.1887	1.7796
С	1.7238	-1.2811	1.6291	1.8051	-1.3190	1.5706
С	2.9900	-1.9223	1.7203	3.0812	-1.9535	1.5846
С	4.1772	-1.1375	1.8169	4.2642	-1.1596	1.6370
Н	4.9880	0.8138	2.1061	5.0742	0.7952	1.9102
Н	5.1369	-1.6491	1.8680	5.2294	-1.6632	1.6297
С	3.0599	-3.3301	1.7954	3.1606	-3.3617	1.6143
С	0.5733	-2.0913	1.7664	0.6630	-2.1411	1.7258
С	4.2991	0.2856	-1.6222	4.1908	0.5004	-1.6954
С	1.7193	1.4220	-1.5594	1.5568	1.5053	-1.5594
С	4.1749	1.6320	-1.5047	4.0013	1.8380	-1.5566
С	2.8839	2.2384	-1.5332	2.6826	2.3802	-1.5404
Н	5.2801	-0.1813	-1.6958	5.1908	0.0828	-1.7985
Н	5.0522	2.2755	-1.4647	4.8462	2.5236	-1.5243
С	2.7596	3.6420	-1.6166	2.4799	3.7752	-1.5706
С	0.4844	2.0619	-1.8131	0.2766	2.0816	-1.7462
С	-6.6337	1.5064	0.9225	-6.5626	1.5727	0.6915
С	-7.3063	0.4404	0.3402	-7.2263	0.4167	0.2307
С	-6.5780	-0.5959	-0.2517	-6.5005	-0.6775	-0.2049
Н	-7.0673	-1.4531	-0.7093	-6.9859	-1.5771	-0.5771
Н	-0.4105	1.4610	-1.9462	-0.5845	1.4340	-1.8855
С	1.9188	-4.0948	1.8560	2.0255	-4.1349	1.6951

Computional Investigation of intramolecular Electrophilic Aromatic Cyclization

For clarity, only atropodiastereomers with *M*-helixity are shown.

Mechanism of Intramolecular Electrophilic Aromatic Cyclization:

S190

All calculations were performed using GRRM 23 program with Gaussian 16 Rev C.02. The equilibrium (EQ) and transition structures (TS) were optimized at the level of ω B97X-D/Def2SVP. The values of the Gibbs free energy of EQs and TSs were calculated at 353.15 K.

S2-conf-1 has two conformers that are close in energy, and these structures are in equilibrium. One conformer has a reaction pathway leading to the transition state that gives **1a**, and the other has a reaction pathway leading to the transition state that gives **1f**.

All calculations were performed using GRRM 23 program with Gaussian 16 Rev C.02. The equilibrium (EQ) and transition structures (TS) were optimized at the level of ω B97X-D/Def2SVP. The values of the Gibbs free energy of EQs and TSs were calculated at 353.15 K.

S2-conf-2 also has two conformers that are close in energy, and these structures are in equilibrium. One conformer has a reaction pathway leading to the transition state that gives **2a**, and the other has a reaction pathway leading to the transition state that gives **2f**.

Table S6. Optimized geometry (Cartesian coordinates, Å) of S2-conf-1 (to_1a)

C	-0 42401600	-0 79563600	-0 77707100
Č	-0.04963500	0 59472400	-0 57172100
C	0.55864600	-1 64467300	-1 34956000
C C	-1 71568300	-1 37278600	-0.48060900
C C	-2.08981600	-2 5/153700	-0.48000000
C C	0.18320000	2.94133700	1 03007/00
C C	0.18323300	2 26808100	1 04012100
C	-1.12551600	-3.20898100	-1.94013100
C	-2.02483900	-0.808/0800	0.34023000
C	-3.43019800	-3.02380/00	-1.10520100
C U	1.92650700	-1.2/8/6000	-1.26289100
H	0.94986300	-3.50332800	-2.41438200
H	-1.43/14300	-4.18051300	-2.45282600
C	1.31530800	0.90989700	-0.38860200
C	-1.00259400	1.69305500	-0.64847000
C	-0.60355900	2.99088700	-0.23036100
C	1.69763900	2.25306200	-0.04990900
C	0.76672200	3.23344500	0.09301500
C	-2.30500300	1.55162700	-1.18926800
C	-1.53808300	4.05500100	-0.23034400
С	2.30869200	-0.10335500	-0.66138300
Н	1.07078200	4.24586400	0.36822800
С	-2.23219100	0.04126400	1.55187700
С	-3.95734300	-1.35950900	0.57760000
С	-4.87179800	-0.84294000	1.52674600
С	-3.13087100	0.51123000	2.48437000
С	-4.47409900	0.09042800	2.45677000
С	-4.34907900	-2.42021700	-0.30301300
Н	-5.89800800	-1.21744600	1.52366900
Н	-1.19536000	0.36836800	1.61197500
Н	-2.79575200	1.20912500	3.25412600
Н	-5.18541300	0.47809100	3.18831000
С	-3.18913200	2.60665100	-1.20976800
Н	-4.18349000	2.46613600	-1.63731000
С	-2.81866000	3.86436800	-0.69419500
Н	-5.38144100	-2.77543200	-0.27038400
Н	-3.71395500	-3.89012100	-1.71204000
Н	2.67685000	-2.01026700	-1.57397500
С	3.72085500	0.07188400	-0.29662000
Н	-1.21513200	5.03891700	0.11744400
Н	-2.61433100	0.59917600	-1.61491100
С	4.09034200	0.42003900	1.03922600
C	4.77834100	-0.13923100	-1.18675400
Č	3.09467900	0.51964100	1.99897500
C	5 43981900	0 59079000	1 45769200
Č	6 09985500	0.01776400	-0.78251600
H	4 54830500	-0 39728100	-2.22169300
Н	6 89831400	-0 13830000	-1 51132600
C	6 43765700	0 39007500	0 53112200
Ĥ	5 67095300	0.86563400	2.48827100
н	7 48223400	0 51713000	0.81705900
Н	2 75362700	2 51110200	0.05382600
0	2.75552700	0 57538800	2 83537600
H	-3.53265600	4.68989600	-0.69845500

Table S7. Optimized geometry (Cartesian coordinates, Å) of S3-conf-1a

С	-0.46766100	-0.95136400	-0.76060900
С	-0.03122200	0.38328600	-0.41838200
С	0.51377200	-1.79920000	-1.33565100
C	-1.80545300	-1.47136600	-0.59387700
Č	-2.19097100	-2.55646400	-1.41122200
Ċ	0.11437800	-2.98412500	-2.02598700
C	-1 20662400	-3 29032100	-2.14172800
Č	-2 75689300	-0.98979600	0 39635200
Č	-3 56858700	-2 94540100	-1 47889300
C	1 88582500	-1 48182900	-1 19814400
н	0.87893800	-3 61017000	-2 49011800
Н	-1 52788400	-4 14797300	-2 73622800
II C	1 33821700	0.63798100	-0.25250300
C C	0.03205100	1 52571700	0.25250500
C C	0.54183300	2 72074800	0.35286000
C C	1 20170100	2.72074800	0.33280900
C C	0.77712400	2 80656100	0.20410100
C	0.77713400	2.89030100	0.00011900
C C	-2.18/84300	1.33100200	-0.99880800
C C	-1.49399900	5.77145000	0.59289200
C U	2.32434500	-0.32844100	-0.5/819900
н С	1.1104/200	5.77859800	1.24007200
C C	-2.38101500	-0.22210200	1.52745200
C	-4.1211/200	-1.30483500	0.2/618800
C	-5.07368600	-0.84611500	1.18/31400
C	-3.31963300	0.24543600	2.42158400
C	-4.68693400	-0.03/16000	2.23189700
C	-4.50660800	-2.32452400	-0.71696400
H	-6.12254300	-1.12624900	1.06564600
H	-1.326/1500	-0.02642700	1./1981600
H	-2.99896100	0.81890400	3.29363900
H	-5.42813400	0.3456/100	2.93579900
C	-3.05603900	2.60863400	-0.80439900
Н	-4.02590600	2.58994700	-1.30664300
C	-2.73739900	3.70761500	0.03355400
Н	-5.56001500	-2.60076600	-0.79983300
Η	-3.85064400	-3.74506400	-2.16678800
Н	2.60224900	-2.22251800	-1.55595400
C	3.74895100	-0.08149600	-0.24308000
Η	-1.17991500	4.63592500	1.18160400
Η	-2.49034900	0.72197300	-1.63526100
С	4.10489800	0.98724600	0.60946200
С	4.77300900	-0.93276700	-0.67809000
С	3.10744400	1.98805400	1.03283500
С	5.42579700	1.15813400	1.04331900
С	6.08760700	-0.74358800	-0.26451100
Н	4.55528300	-1.76451700	-1.34817300
Н	6.86364100	-1.42212000	-0.62398500
С	6.42029900	0.29553400	0.60702100
Н	5.64906900	1.99136600	1.71205100
Н	7.45221000	0.43331700	0.93340300
Н	2.15702000	2.51343500	-0.71542500
0	3.28585200	2.84007300	1.86385900
Н	-3.46415100	4.50596200	0.18748100

Table S8. Optimized geometry (Cartesian coordinates, Å) of the transition state between S2-conf-1 (to_1a) and S3-conf-1a

С	-0.42846	-0.83721	-0.88151
С	-0.02698	0.53947	-0.63316
С	0.52755	-1.67296	-1.51265
С	-1.71619	-1.41157	-0.56752
С	-2.13097	-2.53950	-1.31175
С	0.11793	-2.88459	-2.13858
С	-1.19634	-3.24609	-2.12385
С	-2.58168	-0.94916	0.50852
С	-3.48551	-3.00114	-1.21847
С	1.91159	-1.34567	-1.42076
Н	0.86259	-3.49450	-2.65413
Н	-1.53620	-4.12983	-2.66773
С	1.34842	0.83405	-0.55781
С	-0.95887	1.65457	-0.57464
C	-0.51205	2.92239	-0.08764
Č	1.79166	2.16818	-0.22269
Č	0.87186	3.15570	0.06922
Č	-2.29640	1.57274	-1.03048
C	-1 43712	3 99004	0.08330
Č	2 32633	-0 18034	-0.83506
H	1 21360	4 16266	0 32112
C	-2 13323	-0 11417	1 56097
C	-3 92401	-1 41020	0.55816
C	-4 79643	-0.92448	1 56170
C	-2 99107	0 32385	2 54623
C	-4 34655	-0.05704	2.54025
C	-4.36386	-0.03704	-0.36434
н	-5.83181	-2.41024 -1.27286	1 57000
н	-1.08317	0 17098	1.57000
и Ц	2 61368	0.17070	3 3/076
н	-5.02577	0.30394	3 30608
п С	-3.16375	2 63267	-0.89050
с ц	-5.10575	2.03207	1 25456
n C	-4.10027	2.55504	-1.23430
с u	-2.74821	3.84200	-0.29000
п u	-3.40229	-2.73162	-0.31981
п u	-5.79710	-3.65050	-1.63009
п	2.03536	-2.11105	-1.71333
U U	3.70265	-0.00220	-0.34008
п u	-1.0/499	4.93977	0.48500
п	-2.04693	0.00230	-1.51000
C	3.90377	0.07829	0.00090
C	4.02037	-0.3/410	-0.95491
C	2.83132	1.33/18	1.30093
C	5.10580	0.75452	1.51519
U U	0.08240	-0.48148	-0.33247
Н II	4.72451	-1.09414	-1.88833
H	6.94522	-0.93042	-0.82879
U H	6.25/08	0.1/126	0.8918/
H H	5.2/668	1.2/665	2.46/24
H	1.24359	0.23009	1.35325
H	2.80552	2.48855	-0.4/466
0	2.36902	1.70312	2.54582
Н	-3.45597	4.66332	-0.16783

Table S9. Optimized geometry (Cartesian coordinates, Å) of S2-conf-1 (to 1f)

С	-0.45026300	-0.82993400	-0.55866200
C	-0.06309400	0.56567000	-0.44145500
C	0 55591000	-1 75065200	-0.95150900
Č	-1 78109100	-1 35291900	-0 33432200
C	-2 12256100	-2 57173800	-0.96359400
C C	0.2007/000	-3 03/39800	-0.90339400
C C	1 110/1300	3 38812700	1 55243400
C	-1.11041300	-3.38812700	-1.55245400
C	-2.70308800	-0.74555000	0.04900400
C	-3.46336000	-3.01337200	-0.96004300
C U	1.9181/000	-1.38218900	-0.85550100
H	0.98897500	-3./0514900	-1.81098700
H	-1.40148500	-4.33594500	-2.00980500
C	1.28884400	0.87883200	-0.17486800
C	-0.98595800	1.67360200	-0.63827/00
C	-0.61270600	2.97281900	-0.20293400
C	1.63076100	2.19607600	0.28240900
C	0.70105700	3.18619200	0.32153600
С	-2.22521600	1.53222800	-1.30967000
С	-1.52246600	4.04904900	-0.33325800
С	2.28895100	-0.13763400	-0.36167800
Н	0.96365400	4.17521100	0.70329900
С	-2.43724400	0.22839100	1.52643400
С	-4.11180600	-1.19128900	0.49157100
С	-5.09503800	-0.57151800	1.29984000
С	-3.40454400	0.79858400	2.32438700
С	-4.75443200	0.42087800	2.19053900
С	-4.45201200	-2.31340100	-0.33235900
H	-6.12950000	-0.91400900	1.22267700
Н	-1.39872400	0.52296400	1.67041700
Н	-3 11900200	1 54175000	3 07130400
Н	-5 51869000	0.88800400	2.81436100
C	-3.08200300	2 60013900	-1 45656500
н	-4 02664700	2 46356900	-1 98594500
C	-2 74558900	3 86522200	-0.93655100
н	-5 49447600	-2 63663800	-0 37512700
н	-3.731/0500	-2.03003000	-1.53/26900
н Ц	2 67755500	2 10010800	1 1 5 9 2 0 2 0 0
II C	2.07753500	0.11754000	-1.13920200
с u	1 22714900	5.02548200	-0.18443400
	-1.22714800	0.57000100	1 73721200
П	-2.30236400	0.37009100	-1.73721200
C	4.48250500	-0.79207200	0.00791300
C	4.44349900	1.15391200	-0.79289500
C	3.76964400	-1./4143400	1.33240900
C	5.89541200	-0./2085600	0.75430200
C	5.82404200	1.23620100	-0.64977700
H	3.91027500	1.8/139/00	-1.41822500
H	6.36195800	2.03831700	-1.15989800
C	6.55329800	0.30439200	0.11331400
H	6.43243500	-1.44911300	1.36411400
Н	7.63666900	0.39493900	0.20024500
Н	2.64382900	2.39825200	0.63300600
0	3.28527100	-2.50136900	2.01300100
Н	-3.43956500	4.70126700	-1.04062700

Table S10. Optimized geometry (Cartesian coordinates, Å) of S3-conf-1f

С	-0.35692800	-0.75964000	-0.36456900
С	-0.05663900	0.65939400	-0.43784700
С	0.68026200	-1.63931800	-0.73264200
С	-1.65438100	-1.30245400	-0.04361800
С	-1.94567500	-2.60914600	-0.50017800
С	0.39532900	-2.97150300	-1.07259000
C	-0.90655400	-3.41636400	-1.02210200
Ċ	-2.64708900	-0.62103200	0 77023500
Č	-3.28630100	-3.11811600	-0.41378600
C	2,06575400	-1 10672200	-0.85378200
н	1 20204400	-3 63295400	-1 38711600
Н	-1 14398300	-4 43405400	-1 34030000
C C	1 27134500	1 12735200	-0.10931100
C	-1 02907900	1 64214900	-0.82845900
C C	-0.80142100	3 00932000	-0.02043700
C C	1 /3/36300	2 50507200	0.30424300
C C	0.42728100	2.30307200	0.15386500
C C	2 20212700	1 2002/000	1 54000200
C C	1 78528200	2.06515000	-1.54909200
C	-1.76326200	0.00010900	-0.80411000
U U	2.51951100	0.23739200	-0.20334300
П	0.33043300	4.42988400	1 50802600
C	-2.34339000	0.46777400	0.70659100
C C	-3.97261600	-1.13007200	1 52192200
C C	-4.9/103300	-0.43653600	2 21620600
C	-3.32810100	1.13201900	2.31030000
C C	-4.00281100	0.08090000	2.23504500
C U	-4.27207000	-2.37715000	0.15000200
П	-3.9910/900	-0.82879400	1.31434100
П	-1.51560000	1.07810200	1.70361400
П	-5.00044500	1.97619200	2.93311000
П	-3.43901700	1.20000300	2.81081700
C U	-3.13494600	2.20052800	-1.8/019100
П	-4.02333200	1.96362100	-2.43/19/00
C U	-2.93800300	3.39331000	-1.4/241/00
П	-5.29777400	-2.75055000	0.18299400
H	-3.49508700	-4.1081/300	-0.82392400
П	2.29914400	-0.99091400	-1.95552000
C U	3.73850500	0.32075800	0.07792600
H	-1.62104200	5.00/58400	-0.52426100
н С	-2.35449100	0.27105800	-1.8/25/900
C	4.2/335600	-0.9/826600	0.10544900
C C	4.5/082000	1.4110/400	0.37114500
C	3.25529200	-1.96243100	-0.33582800
C	5.59208900	-1.23627700	0.45370000
C	5.90215000	1.15611300	0./1581600
H	4.23640300	2.44265800	0.30164200
H	6.56413200	1.99433800	0.94074700
C	6.40568100	-0.1498/500	0.//192000
H	3.90309500	-2.20190500	0.4/1/1500
H	/.44685900	-0.31316800	1.05623800
Н	2.38044600	2.82238600	0.75521300
U	5.55666800	-3.13365500	-0.3529/800
н	-3.0903//00	4.54892500	-1./1351/00

Table S11. Optimized geometry (Cartesian coordinates, Å) of the transition state between S2-conf-1 to S3-conf-1f

С	-0.38074	-0.77421	-0.57688
С	-0.04727	0.64100	-0.53374
С	0.63980	-1.65915	-1.00787
С	-1.67497	-1.33939	-0.26924
С	-1.99534	-2.59370	-0.83888
C	0.31677	-2.96601	-1.46315
Č	-0.98265	-3 38157	-1 45809
Č	-2 63902	-0 73511	0.63924
C	-3 33784	-3.09218	-0.76816
C	1 99516	-1 22313	-0.97698
с и	1 11008	3 61220	1 8/280
н Ц	1.11098	-3.01229	1 86881
C II	-1.23432	1 02220	-1.80881
C	1.50221	1.02329	-0.51055
C	-1.02049	1.09859	-0./3104
C	-0.68/63	3.02625	-0.34803
C	1.60111	2.36559	0.10039
C	0.63058	3.313/1	0.13345
C	-2.27663	1.47853	-1.34940
C	-1.64807	4.05556	-0.47942
С	2.32761	0.05819	-0.52711
Н	0.85826	4.32544	0.47538
С	-2.30452	0.28722	1.56029
С	-3.96671	-1.23882	0.66458
С	-4.93474	-0.62618	1.49588
С	-3.25546	0.85152	2.38174
С	-4.59320	0.41502	2.32897
С	-4.29892	-2.40697	-0.09762
Н	-5.95646	-1.01244	1.48436
Н	-1.27269	0.62588	1.64428
Н	-2.96576	1.63403	3.08557
Н	-5.34539	0.87593	2.97176
С	-3.18377	2.50299	-1.49894
Н	-4.14022	2.30984	-1.98766
C	-2.88241	3.79754	-1.03253
Н	-5 32738	-2.77388	-0.07403
Н	-3 57195	-4 03102	-1 27411
Н	2 74954	-1 83666	-1 48066
C	3 75299	0 23659	-0.20266
н	-1 38634	5.06559	-0.15665
н	-2 52522	0.49066	-1 73392
C	4 26049	-0.85928	0 52460
C	4.63116	1 26956	-0 52944
C	3 26008	1.20950	-0.32744 0.83424
C	5.20098	-1.02072	0.03424
C	5.00839	-0.96510	0.30038
	J.90904	1.10203	-0.13162
п	4.20/02	2.12083	-1.10920
п	0.00208	1.90039	-0.42/26
U	6.45/51	0.05432	0.558/2
H	5.96295	-1.85098	1.46490
H	/.50994	0.01212	0.84284
H	2.61510	2.61792	0.41005
0	2.80913	-2.69272	1.42781
Н	-3.61534	4.59954	-1.13778

Table S12. Optimized geometry (Cartesian coordinates, Å) of S2-conf-2 (to 2a)

С	-0.56144800	-1.09306800	-0.16038000
С	0.01807800	0.23187100	-0.04812700
C	0.33049100	-2.18075800	-0.35505100
Ċ	-1.97852500	-1.39129400	-0.10632100
Č	-2.42231900	-2.58647200	-0.71385800
Ċ	-0.15711900	-3.43447000	-0.83138600
Č	-1 48268400	-3 59153800	-1 09581100
C	-2 96248700	-0 57973100	0 59565600
C	-3 82330300	-2 81520200	-0.90955900
C	1 71433800	-2 01097100	-0.09890100
с н	0 55235700	-1 21362500	-1.01669300
н	-1 85692000	-4.51937200	-1.533/3900
II C	1 35963500	0 35188700	0.37/66500
C C	0.68160200	1 45027200	0.37400300
C	-0.08100200	1.43927200	-0.40708000
C C	-0.1/248100	2.70780000	0.05892800
C C	1.82888800	1.02321200	0.80009200
C	1.06699000	2.74304600	0./5389600
C	-1.82070100	1.4/300300	-1.24/38400
C	-0.87236900	3.901/8100	-0.25557800
C	2.21751000	-0.80367800	0.32033100
H	1.41111900	3.69124800	1.17303100
C	-2.61896400	0.39032800	1.56915700
С	-4.34315600	-0.81679000	0.35995000
С	-5.31403300	0.00260200	0.98510200
С	-3.58091100	1.15611900	2.18982400
С	-4.94251800	0.98707700	1.87210400
С	-4.74406200	-1.92913600	-0.44948600
Η	-6.36982700	-0.17942400	0.77156900
Η	-1.57678700	0.52296300	1.85628100
Н	-3.28457200	1.89039700	2.94132800
Н	-5.69918100	1.60790400	2.35536000
С	-2.46798000	2.65052400	-1.55158400
Н	-3.34036400	2.63094500	-2.20721000
С	-2.01200800	3.87524900	-1.02727200
Н	-5.80909100	-2.09108000	-0.62980500
Н	-4.13398200	-3.71496900	-1.44466400
Н	2.38176300	-2.86325200	-0.25071700
С	3.67268500	-0.68049800	0.52587200
H	-0.48096100	4.84926000	0.12192500
H	-2.18654100	0.54175000	-1.67689200
С	4.43898400	0.26303400	-0.22202700
C	4 39132700	-1 49900000	1 39817500
Č	3 80134400	1 02111900	-1 19851600
C	5 84394800	0.41453900	-0.08024700
C	5 77104200	-1 36259900	1 53871200
с н	3.8/721000	-2 23/78000	1.99261300
Н	6 29879700	-2 01008600	2 24165000
C	6 4001 8 200	_0.40603700	0.81356200
Ч	6 38668000	1 15/187600	-0.67066400
н	7 57715500	-0.31315/00	0.07000400
н Н	7.57715500	1 67/05100	1 30216200
0	2.10333300	1.07403100	2 04525500
о н	2.57002800	1.03000900	1 25508400
11	-2.34420300	-100023000	-1.23370400

Table S13. Optimized geometry (Cartesian coordinates, Å) of S3-conf-2a

C	-0.62182200	-1.19859700	-0.15537100
Č	-0.00349100	0.10907700	-0.15955800
C	0 25149400	-2.30101800	-0 34752200
C	-2 03463900	-1 46036700	-0.00498800
C	-2 52725100	-2 69224300	-0.49096100
C	-0 28104400	-3 57770500	-0 70345800
C C	1 62337700	3 73575000	0.85740700
C	-1.02337700	-3.73575900	-0.63749700
C	2.30340100	-0.30320100	0.00331000
C	-3.93970300	-2.91049400	-0.38901200
C U	1.04/4/300	-2.13124900	-0.20382900
п	0.40038000	-4.40051200	-0.88410900
П	-2.03402100	-4.08/34900	-1.20022000
C	1.57006200	0.21590200	0.12/51400
C	-0.6/532600	1.30367800	-0.64/03500
C	-0.09913800	2.61522500	-0.42/34/00
C	1.96156000	1.54811100	0.43385900
С	1.16540500	2.71894900	0.09004600
C	-1.84898100	1.25843600	-1.42658600
C	-0.79452400	3.80400100	-0.84676000
С	2.21694300	-0.91961100	0.13896500
Н	1.63700800	3.69566900	0.23514200
С	-2.56558500	0.48815900	1.52178100
С	-4.36379200	-0.79304700	0.51455500
С	-5.28984000	0.10394800	1.10091900
С	-3.48377100	1.33119500	2.10885200
С	-4.86155200	1.16172900	1.87029800
С	-4.82190700	-1.96885000	-0.16535700
Н	-6.35746100	-0.07621300	0.95597100
Н	-1.50960600	0.61632800	1.75853300
Н	-3.14213600	2.12193300	2.77980200
Н	-5.58453900	1.83967400	2.32742400
С	-2.46776700	2.41693500	-1.84987300
Н	-3.37400400	2.33464600	-2.45426500
С	-1.96869000	3.70689600	-1.53215400
Н	-5.89701200	-2.12649300	-0.27550400
Н	-4.29242900	-3.84730300	-1.02560200
Н	2.27924900	-3.00635200	-0.36496200
C	3.67570200	-0.76418600	0.35357900
H	-0 34132000	4 77393900	-0 63188000
Н	-2 27649000	0.29886300	-1 70820900
C C	4 28231000	0.50753400	0.26823200
C	4 50510700	-1 86877700	0.58539400
C	3 47291800	1 73254100	0.13075200
C C	5 6731/1300	0.650/15900	0.35512700
C C	5 88/17/00	-1 7185/1900	0.55512700
с u	1.07557400	2 86523800	0.09243700
н	4.07337400	2.00525000	0.09333200
C II	6 17679200	-2.39000000	0.07037700
с и	6 0080/700	1 65196100	0.30370800
и П	7 55079500	0.25002000	0.2/043900
11 11	1.00200000	1 50402000	0.04200800
п О	2 01100200	1.37402800	1.33361800
U Н	2 50117200	2.03227200	1 86677200
11	-2.3011/300	7.57113100	-1.000//300

Table S14. Optimized geometry (Cartesian coordinates, Å) of the transition state between S2-conf-2 to S3-conf-2a

С	-0.57839	-1.18340	-0.04984
С	0.03383	0.12939	0.04685
С	0.29731	-2.29282	-0.18310
С	-2.00239	-1.43792	-0.04752
C	-2.45559	-2.64886	-0.61723
Č	-0.20773	-3.55236	-0.61734
Č	-1 53013	-3 69184	-0.91424
Č	-2.99268	-0 56286	0 56496
Č	-3 85369	-2 84648	-0.86641
C	1 69210	-2 13688	0.05457
н	0.48637	-4 38467	-0 75005
н	-1 91122	-4 63009	-0.75005
C	1.36124	0.21588	0.49780
C	-0 58519	1 37001	-0 40081
C	-0.38319	2.62476	-0.40081
C	-0.03900	2.02470	0.01032
C	1.00001	1.49333	0.95514
C	1.14142	2.04550	1 20501
C	-1.0/992	1.39323	-1.29301
C	-0.6/319	3.8368/	-0.37227
C H	2.21512	-0.93011	0.45217
Н	1.48656	3.38337	1.22436
C	-2.66645	0.44116	1.50953
C	-4.36/09	-0./6/89	0.27025
C	-5.33902	0.11309	0.80299
C	-3.63127	1.26798	2.04206
C	-4.97946	1.12856	1.65997
C	-4.76551	-1.90985	-0.49962
H	-6.38852	-0.04596	0.54467
Н	-1.63770	0.54765	1.85154
Н	-3.34949	2.02482	2.77668
Н	-5.73817	1.79571	2.07325
С	-2.25172	2.58661	-1.68579
Н	-3.09174	2.57281	-2.38276
С	-1.76947	3.81996	-1.19903
Н	-5.82553	-2.04893	-0.72322
Η	-4.16772	-3.76365	-1.36893
Н	2.34731	-2.99421	-0.11697
С	3.67555	-0.73073	0.52845
Η	-0.25773	4.78269	-0.01768
Η	-2.07193	0.46144	-1.69416
С	4.23813	0.41037	-0.09685
С	4.56462	-1.65303	1.07658
С	3.39619	1.40228	-0.69531
С	5.62695	0.62158	-0.18738
С	5.94304	-1.44359	1.00799
Η	4.17070	-2.54238	1.57142
Η	6.61611	-2.17723	1.45638
С	6.47790	-0.31636	0.37849
Н	6.02164	1.50818	-0.68702
Н	7.55760	-0.16942	0.33015
Н	2.71411	1.49930	1.66131
0	3.19310	2.16839	-1.51638
Н	-2.24938	4.75222	-1.50096

Table S15. Optimized geometry (Cartesian coordinates, Å) of S2-conf-2 (to 2f)

С	-0.57728400	-0.93563000	-0.35950000
С	-0.01507400	0.38851300	-0.14025500
С	0.32074800	-1.96087600	-0.75287800
С	-1.97399600	-1.28555800	-0.23096300
С	-2.43492400	-2.42050800	-0.93753100
С	-0.16731700	-3.16834300	-1.33230500
С	-1.50619700	-3.34029900	-1.50955700
С	-2.92047800	-0.58662200	0.62826200
С	-3.84076300	-2.67585800	-1.04706500
С	1.70853000	-1.79314900	-0.51250500
Н	0.54479600	-3.92903500	-1.65963900
Н	-1.89171800	-4.22430800	-2.02157100
С	1.34375500	0.50139100	0.22935400
Ċ	-0.76187800	1.61612000	-0.36728400
C	-0 23173100	2.84795300	0 10172900
C	1 86674100	1 76848700	0.65052600
C	1.08662900	2 88139500	0.65273300
C C	-1 97/7/600	2.66157500	-1 09992200
C C	0.07774700	1.05071000	0.04087000
C C	-0.97774700	4.04209000	-0.04987900
U U	2.20170000	-0.04428000	0.07082000
П	1.46042000	3.83400000	1.00348000
C C	-2.32048700	0.29313300	1.00382000
C	-4.30826800	-0.8494/900	0.4/83/200
C	-5.24802600	-0.13838400	1.26245800
C	-3.45660300	0.95596800	2.43599100
C	-4.83381000	0.76453000	2.21521200
C	-4.74332800	-1.88182400	-0.41569700
H	-6.31191500	-0.33823700	1.11559800
Н	-1.46877600	0.44384600	1.87550000
Н	-3.12091100	1.62506600	3.23055800
Η	-5.56590600	1.30296700	2.81983800
С	-2.66868400	2.83593600	-1.26441000
Н	-3.59746800	2.83748000	-1.83768300
С	-2.18639800	4.03656800	-0.70629400
Н	-5.81479300	-2.06210400	-0.52764000
Η	-4.17055700	-3.51991500	-1.65628100
Η	2.35841300	-2.65926700	-0.67332900
С	3.61941100	-0.62546100	0.46006000
Н	-0.56366600	4.97419100	0.34130200
Н	-2.36253400	0.75091700	-1.55843900
С	4.61161600	-0.94675600	-0.50886700
С	4.07781200	-0.36119000	1.75498300
С	4.19953000	-1.04202900	-1.83175300
С	5.99578300	-1.07155200	-0.20116200
C	5.42855800	-0.47230600	2.06269800
H	3.35303000	-0.10728500	2.53018000
Н	5.75499500	-0.28920200	3.08879700
Ċ	6.38720300	-0.83463400	1.09638300
Ĥ	6.71892900	-1.33304800	-0.97531200
H	7.43876600	-0.92035200	1.37250100
H	2,90756900	1 84620300	0.96771800
0	3 96801600	-1 07103400	-2,93665100
H	-2.75349400	4.96162300	-0.82493800

Table S16. Optimized geometry (Cartesian coordinates, Å) of S3-conf-2f

C	-0.46067400	-0.85252300	-0.25575000
С	0.04529300	0.46152100	0.11127900
C	0.49187200	-1.80022000	-0.68076300
Ċ	-1.85854300	-1.20045900	-0.33060500
Č	-2.22417000	-2.25194400	-1.20366300
Č	0 10548000	-2 91265200	-1 44599800
C	-1 22100900	-3 07193200	-1 77538800
C C	-2 8965/1100	-0.58/193200	0.48016400
C C	-3 61038000	-2 /9811200	-1 / 8961300
C C	1 88004200	1 65502500	0.2051/100
С ц	0.86305700	-1.05392500	1 81315200
	1.52207000	-3.00400700	-1.81313200
П	-1.32297900	-3.86339200	-2.44134400
C C	1.50077500	0.01/93000	0.08911400
C C	-0.09207800	1.00042500	-0.1/948300
C	-0.31523300	2.88427900	0.45861200
C	1./28/5100	1.882/8000	1.28664500
C	0.89163500	2.94082400	1.24136800
C	-1./6856/00	1.69839500	-1.10414000
C	-1.09513100	4.03913400	0.26539200
C	2.27694200	-0.40267600	0.48412400
H	1.15915000	3.88198600	1.72520100
C	-2.62258500	0.19827400	1.62/51100
C	-4.25581800	-0.82/3/000	0.14816000
C	-5.27926600	-0.18243100	0.88192600
C	-3.63504700	0.79979300	2.34202700
C	-4.97729700	0.63390400	1.94911300
C	-4.58189100	-1.77125600	-0.88370700
H	-6.31962800	-0.36287800	0.60242700
H	-1.59665900	0.30864100	1.97968300
Н	-3.39655000	1.39043500	3.22846200
Н	-5.77570800	1.11916800	2.51340800
C	-2.49579700	2.84954600	-1.30547200
Н	-3.31299300	2.85559400	-2.02810400
C	-2.18038700	4.01880800	-0.58975700
Н	-5.63329600	-1.93941800	-1.12623800
Η	-3.86260000	-3.27701900	-2.21191800
Н	1.99943200	-2.44727900	0.57083200
C	3.74254700	-0.38463100	0.56775100
Н	-0.81593300	4.96040500	0.78039800
Н	-2.01085600	0.80928100	-1.68330700
С	4.24585500	-1.23988700	-0.43524000
С	4.63928500	0.30284700	1.39293500
С	3.12781800	-1.95146000	-1.10454800
С	5.60623000	-1.39322700	-0.66617300
С	6.00596100	0.14032700	1.17192300
Η	4.30307400	0.92349600	2.22269700
Η	6.71510400	0.66364800	1.81595200
C	6.48850900	-0.68207500	0.14644300
H	5.95947900	-2.05456700	-1.45939500
H	7.56521400	-0.77334700	-0.00795100
Н	2.69221800	1.97643600	1.77969800
0	3.14925100	-2.65007200	-2.07327500
H	-2.77379800	4.92319600	-0.73775500

Table S17. Optimized geometry (Cartesian coordinates, Å) of the transition state between S2-conf-2 to S3-conf-2f

С	-0.50621	-0.94019	-0.24118
С	0.03793	0.38295	0.04650
С	0.41902	-1.96003	-0.56571
С	-1.90873	-1.28174	-0.24838
С	-2.30552	-2.40719	-1.00889
С	-0.01090	-3.15919	-1.19229
C	-1.33121	-3.32315	-1.49745
Č	-2.92859	-0.58501	0.52359
Č	-3 69698	-2.65133	-1 25639
Č	1 78784	-1 79210	-0 19006
н	0 72529	-3 92094	-1 45774
н	-1 66791	-4 20015	-2 05407
C II	1 35878	0 50165	0 54830
C	0.67885	1 60800	0.34830
C	-0.07883	1.00690	-0.23110
C	-0.20090	2.83841	0.28105
C	1.83827	1./00/5	1.02/13
C	1.05509	2.87392	0.96476
C	-1.81236	1.65297	-1.102//
C	-0.93313	4.02963	0.06588
C	2.22646	-0.62633	0.44236
H	1.41073	3.82549	1.36569
С	-2.62924	0.28104	1.60277
С	-4.29650	-0.83482	0.23555
С	-5.30210	-0.12330	0.93202
С	-3.62468	0.94310	2.28761
С	-4.97495	0.76638	1.93047
С	-4.65000	-1.85584	-0.70772
Н	-6.34834	-0.31223	0.68115
Η	-1.59627	0.41497	1.92130
Η	-3.36342	1.59883	3.12029
Н	-5.75833	1.30438	2.46734
С	-2.48977	2.82933	-1.32680
Η	-3.35505	2.83514	-1.99175
С	-2.06950	4.02482	-0.71040
Н	-5.70683	-2.02664	-0.92423
Η	-3.97191	-3.48755	-1.90240
Η	2.39321	-2.70275	-0.13001
С	3.68746	-0.56453	0.63209
Н	-0.56609	4.95995	0.50477
Н	-2.14745	0.74786	-1.60573
С	4.36308	-0.96714	-0.53596
Č	4.44485	-0.19820	1.74220
C	3 45623	-1 26038	-1 60276
C	5 76181	-1.05907	-0.63063
C	5 83493	-0.28092	1 66184
н	3 95977	0.11121	2 66897
н	6 43307	-0.01663	2.00077
C	6/800/	-0.01003	0/0/21
н	6 25014	-0.70450	_1 55175
н	7 57078	-1.50050	-1.55175
и П	7 81110	1 82770	0.40920
0	2.04144 3 19172	1.03/19	1.44070 2.70561
U II	3.101/3	-1.30420	-2./0304
п	-2.02301	4.94933	-0.8//10