# **Supporting Information**

### Stabilization of Ni-containing Keggin-type Polyoxometalates with Variable Oxidation States as Novel Catalysts for Electrochemical Water Oxidation

Xiang Li<sup>a</sup>, Bryan Ng<sup>a</sup>, Ping-Luen Ho<sup>a</sup>, Chunbo Jia<sup>b</sup>, Jining Shang<sup>b</sup>, Tatchamapan Yoskamtorn<sup>a</sup>, Xuelei Pan<sup>a</sup>, Yiyang Li<sup>a</sup>, Guangchao Li<sup>a</sup>, Tai-Sing Wu<sup>c</sup>, Yun-Liang Soo<sup>c</sup>, Heyong He<sup>b\*</sup>, Bin Yue<sup>b\*</sup>, S.C.E Tsang<sup>a\*</sup> <sup>a</sup>Department of Chemistry, University of Oxford, Oxford, OX1 3QR, United Kingdom <sup>b</sup>Department of Chemistry, Fudan University, Shanghai, China <sup>c</sup>National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan

## **Experimental Section**

### Electrospray ionisation mass spectrometric measurement

The mass spectrometric measurements were performed on a Bruker MicrOTOF II mass spectrometer in the m/z range of 300-2500 with a capillary voltage of 4000 V and an electrospray ionisation (ESI) source. The mode was negative ion. The nebuliser pressure was 1.0 bar and the dry heater temperature was 180 °C with a dry gas flow of 4.0 L·min<sup>-1</sup>.

### **BET** analysis

BET analysis was conducted by N<sub>2</sub> adsorption method measured at 77 K and the pressure up to 1 bar. The isotherm was recorded on a Micromeritics Tristar instrument. All sorption isotherms were obtained using ultrahigh purity gases (99.999%). Before the sorption analysis, a sample (0.05-0.1 g) was loaded into a sample cell and subjected to a vacuum of 10-5 Torr at 423 K for 12 h. N<sub>2</sub> adsorption data with an initial slope (0.01 to 0.1 *P*/*P*<sub>0</sub>) permitted calculation of the apparent surface areas based on the Brunauer-Emmett-Teller (BET) equations. Pore size distribution (PSD) was calculated by DFT embedded in a Micromeritics software. A model used in the PSD analysis is based on a cylindrical pore structure with oxide surface analyzed by N<sub>2</sub> at 77 K.50mg of MIL-101(Cr) and 100mg of PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite were used for the analysis respectively.

### Extended X-ray Absorption Fine Structure (EXAFS) analysis

X-ray absorption spectroscopy (XAS) data of  $Cs_4K-1$  and  $Cs_4KH-2$  was measured at beamline TLS07A of Taiwan Light Source at National Synchrotron Radiation Research Centre (NSRRC). XAS data of PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite was measured at beamline BL11B of Shanghai Synchrotron Radiation Facility (SSRF). Fluorescence mode was used for Ni K-edge measurements and achieved by using a silicon drift detector. To ascertain the reproducibility of the experimental data, at least 3 scan sets were collected and compared for each sample.

The EXAFS data analysis was performed using IFEFFIT with Horae packages (Athena and Artemis)<sup>3</sup>. The spectra were calibrated with Ni metal foil as a reference to avoid energy shifts of the samples. And the amplitude reducing parameter was obtained from EXAFS data analysis of the Ni foil, which was used as a fixed input parameter in the data fitting to allow the refinement in the coordination number of the absorption element. In this work, the analysis of the data was performed with the assumption of single scattering with the errors estimated by R-factor. The data fitting is performed in the R-space with k<sup>2</sup>-weighted data along with the background. K-range of the data fitting s 2-13 Å<sup>-1</sup> for Cs<sub>4</sub>K-1 and Cs<sub>4</sub>KH-2 and 2-12 Å<sup>-1</sup> for PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite. The R-range of data fitting is 1-4 Å.

#### X-ray Photoelectron Spectroscopy (XPS) analysis

X-ray photoelectron spectroscopy (XPS) were carried out on the Thermo Scientific model Nexsa G2 X-Ray Photoelectron Spectrometer. The aluminum anode tube for the X-ray emission was operated at a voltage of 12 kV and kept constant during all measurements. Survey scans were obtained at a pass energy of 200 eV, 5 scans with step size 1 eV, whereas for those detailed spectra 40 eV pass energy, 10 scans with 0.1 eV step size were used.

#### **Electron microscopy**

Conventional transmission electron microscopy (CTEM) and scanning transmission electron microscopy (STEM) images of the samples were captured on JEM-2100 (JEOL, Japan) electron microscope with a 200kV accelerating voltage. By combining dark-field-STEM with energy-dispersive X-ray spectroscopy (EDS), the elemental spectrum and mapping can be recorded with an Oxford instrument 80mm thin window EDS detector. Statistical analysis of compositions was obtained from elemental maps recorded over regions of several tens of 250 nm to 450 nm in size for arbitrary grain orientations, the data collection time about 600 to 1200 seconds to ensure the EDS minimum integral signal of zero peak is higher than 0.1 cps/eV.



Fig.S1 Photos of freshly prepared (left) and partially reduced (middle) Cs<sub>4</sub>K-1 solid and Cs<sub>4</sub>KH-2 sample (right).



**Fig.S2** Selected structure models of  $[PW_9Ni^{III}_2Ni^{II}O_{34}(OH)_4(OH_2)_2]^{5-}$  used for computational investigations. Structures with other protonation states were modified based on the structures shown here. See Supporting Information for structural details. P, W, Ni, O and H atoms are shown as purple, grey, green, red and white spheres, respectively.

**B**-α-2

A-α-2



Fig.S3 ESI mass spectrum of  $Cs_4KH-2$  (above) and corresponding ions with less Ni centres (below) in aqueous solution.



Fig.S4 Thermogravimetric curve of Cs<sub>4</sub>K-1.



Fig.S5 Thermogravimetric curve of Cs<sub>4</sub>KH-2.



Fig.S6 Powder XRD pattern of Cs<sub>4</sub>K-1.



Fig.S7 Powder XRD pattern of Cs<sub>4</sub>KH-2.



Fig.S8 Comparison of experimental and simulated IR spectra of B-Keggin-type isomers of anion 1 with different protonation states under PBE0-D3BJ/def2svp level.



Fig.S9 Comparison of experimental and simulated IR spectra of A-Keggin-type isomers of anion 1 with different protonation states under PBE0-D3BJ/def2svp level.



Fig.S10 Comparison of experimental and simulated IR spectra of B-Keggin-type isomers of anion 1 with different protonation states under



Fig.S11 Comparison of experimental and simulated IR spectra of B-Keggin-type isomers of anion 1 with different protonation states under PBE0-D3BJ/6-31G(d)/lanl2dz level.



Fig.S12 Pair distribution function analysis of the X-ray total scattering pattern of  $Cs_4K-1$  (a), and its comparison (black line) with simulated (red line) Pair Distribution Function analysis of the X-Ray scattering pattern corresponding to  $A-\alpha-1$ (b) and  $B-\alpha-1$ (c).



Fig.S13 Pair distribution function analysis of the X-ray total scattering pattern of Cs<sub>4</sub>KH-2
(a), and its comparison (black line) with simulated (red line) Pair Distribution Function analysis of the X-Ray scattering pattern corresponding to A-α-2(b) and B-α-2(c).



Fig.S14 XPS spectrum of Cs<sub>4</sub>K-1(a) and Cs<sub>4</sub>KH-2(b). Small amounts of Cs4K-1 existed in the Cs<sub>4</sub>KH-2 sample due to unavoidable incomplete reduction.



Fig.S15 Magnetisation curve of Cs<sub>4</sub>K-1 and Cs<sub>4</sub>KH-2 samples under different external magnetic fields.



**Fig.S16** Time-dependent UV-Vis spectra of  $Cs_4K-1$  in aqueous solution in the range of 500~1200 nm (a), TD-DFT predicted UV-Vis spectrum (black line) and transitions (red lines) of  $[PW_9Ni_3O_{34}(OH)_3(OH_2)_3]^{4-}$  (b) and anion 1 (c), predicted density distribution of holes (d) and photoelectrons (e) for the NIR transition of anion 1. An isosurface value of 0.002 was used for illustration.



Fig.S17 Time-dependent UV-Vis spectra of  $Cs_4K-1$  in aqueous solution in the range of  $200\sim500$  nm.



Fig.S18 Overall cyclic voltammogram of  $Cs_4K-1$  in 0.5M Na<sub>2</sub>SO4 solution. The potential value is relative to the Ag/AgCl reference electrode. Redox peaks in the potential range of  $-1.2 \sim 0V$  vs. Ag/AgCl corresponds to reduction peaks of oxygen.



Fig.S19 Differential pulse voltammogram of  $Cs_4K-1$  (a) and  $PW_9Ni_3/MIL-101(Cr)$  composite (b). Forward and reverse scans represent anodic and cathodic currents, respectively.



**Fig.S20** (a) Cyclic voltammogram of  $Cs_4K-1$  and blank glassy carbon electrode (GCE) in 0.5M Na<sub>2</sub>SO4 solution in the range of  $-1.0 \sim 0.2V$  vs. NHE under nitrogen atmosphere. (b) Differential pulse voltammogram and blank glassy carbon electrode (GCE) in 0.5M Na<sub>2</sub>SO4 solution in the range of  $-0.9 \sim 0.3V$  vs. NHE under nitrogen atmosphere. The peaks

corresponding to W<sup>6+</sup>/W<sup>5+</sup> redox reactions are marked with arrows. Forward and reverse scan corresponds to anodic and cathodic currents, respectively.



Fig.S21 TD-DFT predicted UV-Vis spectrum (red line) and transitions (black lines) of [PW<sub>9</sub>Ni<sub>3</sub>O<sub>34</sub>(OH)<sub>3</sub>(OH<sub>2</sub>)<sub>3</sub>]<sup>6-</sup>.



Fig.S22 Comparison of cyclic voltammogram of  $Cs_4K-1$  in 0.5M Na<sub>2</sub>SO4 solution in the range of  $0.7 \sim 2.0V$  vs. NHE before (a) and after (b) chronoamperometric test.



**Fig.S23** Comparison of IR spectrua of MIL-101(Cr) and the composite after 20 mins of sonication. Peaks corresponding to anion **1** are indicated by arrows.



Fig.S24 (a) Comparison of IR spectrua of MIL-101(Cr) and the composite. Peaks corresponding to anion 2 are indicated by arrows. (b) Comparison of IR spectrua of Cs<sub>4</sub>KH-2 and the difference spectrum between the composite and MIL-101(Cr).



Fig.25 Comparison of XRD patterns between MIL-101(Cr) (above) and polyoxometalate-MOF composite (below)



Fig.S26 (a) Comparison of experimental (blue) and simulated (red) k<sup>3</sup>-weighted phase shift-corrected Fourier transformed EXAFS result of PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite at Ni K edge, including the magnitude (above) and real part (below). (b) Comparison of experimental (blue) and simulated (red) EXAFS chi functions of PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite in k space at Ni K edge. (c) Comparison of experimental (blue) and simulated (red) EXAFS result of PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite at Ni K edge.



Fig.S27 XPS spectrum of Ni in PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite.



Fig.S28 EDX mapping result of PW9Ni3/MIL-101(Cr) composite with multiple crystallites.



Fig.S29 EDX spectrum of PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite.



Fig.S30 Brunauer-Emmett-Teller (BET) curves of MIL-101(Cr) and the composite.



Fig.S31 Pore distribution of the PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite.



**Fig.S32** (a) Overall cyclic voltammogram of  $PW_9Ni_3/MIL-101(Cr)$  composite in 0.5M Na<sub>2</sub>SO4 solution in the range of -0.3 ~2.0 V vs. NHE. The strong current occurred in the range of E < 0 V corresponds to the ORR current. (b) Cyclic voltammogram of  $PW_9Ni_3/MIL-101(Cr)$  composite in 0.5M Na<sub>2</sub>SO4 solution in the range of -0.6 ~0 V vs. NHE.



**Fig.S33** Left: linear scan voltammogram of PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite (a) and MIL-101(Cr) (b) on carbon paper. Right: Tafel plots of PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite based on LSV data.



**Fig.S34** Electrochemical impedance plots of MIL-101(Cr) and PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite on carbon paper electrode, showing the proposed equivalent circuit used for fitting.



**Fig.S35** Chronoamperometric test of the PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite and raw MIL-101(Cr) loaded on carbon paper electrodes under applied potential of 1.65V vs. Ag/AgCl.



Fig.S36 (a) Comparison of IR spectra of (i) raw carbon paper, (ii) MIL-101(Cr) and (iii) PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite after electrolytic test. (b) Comparison of IR spectra of (i) Cs<sub>4</sub>K-1, (ii) Cs<sub>4</sub>KH-2, (iii) PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite after 20 mins of sonication, (iv) PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite and (v) PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite after catalytic test, in the wavenumber range of 2500~4000 cm<sup>-1</sup>.



**Fig.S37** Cyclic voltammogram of the PW<sub>9</sub>Ni<sub>3</sub>/MIL-101(Cr) composite before and after 10000 s of OER test.

| Experimental m/z | <b>Relative Intensity</b> | Simulated m/z | <b>Relative Intensity</b> |
|------------------|---------------------------|---------------|---------------------------|
| 1355.5728        | 0.1821                    | 1355.5631     | 0.1783                    |
| 1356.0647        | 0.2570                    | 1356.0592     | 0.2509                    |
| 1356.5568        | 0.3369                    | 1356.5607     | 0.3601                    |
| 1357.0724        | 0.4457                    | 1357.0621     | 0.4558                    |
| 1357.5646        | 0.5737                    | 1357.5636     | 0.5954                    |
| 1358.0569        | 0.6387                    | 1358.0651     | 0.6834                    |
| 1358.5728        | 0.7886                    | 1358.5611     | 0.8244                    |
| 1359.0653        | 0.8642                    | 1359.0626     | 0.8704                    |
| 1359.5579        | 0.8917                    | 1359.5641     | 0.9821                    |
| 1360.0741        | 0.9732                    | 1360.0655     | 0.9463                    |
| 1360.5669        | 1.0000                    | 1360.5671     | 1                         |
| 1361.0797        | 0.8733                    | 1361.0686     | 0.8786                    |
| 1361.5762        | 0.8990                    | 1361.5646     | 0.8837                    |
| 1362.0692        | 0.7742                    | 1362.0661     | 0.7127                    |
| 1362.5624        | 0.6738                    | 1362.5676     | 0.6832                    |
| 1363.0791        | 0.5699                    | 1363.0691     | 0.4975                    |
| 1363.5724        | 0.5065                    | 1363.5706     | 0.4581                    |
| 1364.0659        | 0.3553                    | 1364.0667     | 0.3007                    |
| 1364.5829        | 0.3204                    | 1364.5681     | 0.2714                    |
| 1365.0765        | 0.2197                    | 1365.0691     | 0.158                     |
| 1365.5702        | 0.1843                    | 1365.5711     | 0.1402                    |

Table S1. Comparison of simulated and experimental ESI-MS peaks centered at m/z=1360.6.

Table S2. Comparison of simulated and experimental ESI-MS peaks centered at m/z=1426.5.

| Experimental m/z | <b>Relative Intensity</b> | Simulated m/z | <b>Relative Intensity</b> |  |
|------------------|---------------------------|---------------|---------------------------|--|
| 1421.5242        | 0.1924                    | 1421.5096     | 0.1791                    |  |
| 1422.0040        | 0.2569                    | 1422.0074     | 0.25                      |  |
| 1422.5079        | 0.3470                    | 1422.5108     | 0.3594                    |  |
| 1423.0119        | 0.4240                    | 1423.0085     | 0.4529                    |  |
| 1423.5159        | 0.5584                    | 1423.5119     | 0.5948                    |  |
| 1424.0201        | 0.6615                    | 1424.0096     | 0.6818                    |  |
| 1424.5243        | 0.7456                    | 1424.5130     | 0.827                     |  |
| 1425.0046        | 0.8429                    | 1425.0106     | 0.8618                    |  |
| 1425.5090        | 0.9147                    | 1425.5140     | 0.9802                    |  |
| 1426.0135        | 0.9237                    | 1426.0118     | 0.9416                    |  |
| 1426.5181        | 1.0000                    | 1426.5159     | 1                         |  |
| 1427.0228        | 0.8925                    | 1427.0129     | 0.8723                    |  |
| 1427.5276        | 0.8763                    | 1427.5163     | 0.8844                    |  |
| 1428.0324        | 0.7250                    | 1428.0141     | 0.7103                    |  |
| 1428.5133        | 0.7226                    | 1428.5174     | 0.6814                    |  |
| 1429.0183        | 0.5712                    | 1429.0151     | 0.4967                    |  |

| Experimental m/z | <b>Relative Intensity</b> | Simulated m/z | <b>Relative Intensity</b> |
|------------------|---------------------------|---------------|---------------------------|
| 1429.5235        | 0.4900                    | 1429.5185     | 0.4589                    |
| 1430.0287        | 0.3779                    | 1430.0162     | 0.3009                    |
| 1430.5340        | 0.3179                    | 1430.5196     | 0.2706                    |
| 1431.0153        | 0.2253                    | 1431.0173     | 0.1578                    |
| 1431.5208        | 0.1969                    | 1431.5207     | 0.1389                    |

Table S3. Computated relative electronic energy ( $\Delta E$ ) and Gibbs free energy ( $\Delta G_{298K}$ ) for selected structures compared with structure B- $\alpha$ -1.

|              | 1                   |                     |
|--------------|---------------------|---------------------|
| Structure    | <i>E</i> (kcal/mol) | <b>G</b> (kcal/mol) |
| Α-α-1        | 2.3                 | 1.3                 |
| Β-α-1        | 0.0                 | 0.0                 |
| Α-β-1        | 6.6                 | 6.0                 |
| Β-β-1        | 3.3                 | 3.0                 |
| Β-β2-1       | 7.4                 | 7.0                 |
| <b>C-α-1</b> | 4.2                 | 5.3                 |
| <b>D-α-1</b> | 6.2                 | 7.0                 |

Table S4. Computated relative electronic energy ( $\Delta E$ ) and Gibbs free energy ( $\Delta G_{298K}$ ) of isomer A- $\alpha$ -2 and B- $\alpha$ -2.

| Structure | <i>E</i> (kcal/mol) | <b>G</b> (kcal/mol) |
|-----------|---------------------|---------------------|
| Α-α-2     | 3.1                 | 2.8                 |
| Β-α-2     | 0.0                 | 0.0                 |

| 1 abic 55. C | ai testali sti uetui ai e | bol unlates of optimiz | Lu sil uctul c A-u-l. |
|--------------|---------------------------|------------------------|-----------------------|
| Atom         | X                         | У                      | Z                     |
| W            | 0.995161                  | 1.777294               | 2.611960              |
| W            | 0.838261                  | -1.706150              | 2.683035              |
| W            | -2.107440                 | 0.158364               | 2.549983              |
| W            | 0.070781                  | 3.584134               | -0.554380             |
| W            | 3.252628                  | 1.581267               | -0.370880             |
| W            | 3.099554                  | -1.881460              | -0.278530             |
| W            | -0.246250                 | -3.614580              | -0.389390             |
| W            | -3.160970                 | -1.758110              | -0.508670             |
| W            | -3.025850                 | 2.016686               | -0.577880             |
| Ni           | -0.826800                 | 1.733375               | -2.996160             |
| Ni           | -0.961560                 | -1.699060              | -2.903530             |
| Ni           | 2.146984                  | -0.172680              | -2.800810             |
| Р            | -0.009810                 | -0.008160              | -0.382340             |
| О            | 1.620981                  | 2.839409               | 3.803336              |
| О            | 1.372183                  | -2.750220              | 3.934367              |
| О            | -0.056830                 | 0.061402               | 1.158778              |
| О            | -3.339880                 | 0.241840               | 3.742893              |
| О            | -0.202620                 | 3.410690               | -2.364320             |
| О            | 0.388484                  | 5.259390               | -0.387710             |
| Ο            | 3.347084                  | 1.145788               | -2.177210             |
| О            | 4.624987                  | 2.586647               | -0.169630             |
| О            | 3.223603                  | -1.561440              | -2.104700             |
| Ο            | -0.468700                 | -3.575100              | -2.174580             |
| Ο            | -2.914870                 | -2.016890              | -2.270480             |
| Ο            | -4.761160                 | -2.322070              | -0.250680             |
| Ο            | -2.776440                 | 2.177539               | -2.334890             |
| Ο            | -4.572600                 | 2.722342               | -0.330060             |
| О            | 1.476285                  | -0.087090              | -0.826060             |
| Ο            | -0.777330                 | -1.263990              | -0.873370             |
| Ο            | -0.676390                 | 1.261065               | -1.005920             |
| О            | -1.512150                 | 0.084405               | -3.581020             |
| Ο            | 0.965313                  | -1.469970              | -3.440910             |
| Ο            | 1.098075                  | 1.199111               | -3.459640             |
| Ο            | 1.446082                  | 0.041955               | 3.306583              |
| О            | -0.770000                 | 1.443665               | 3.245502              |
| 0            | 0.296267                  | 2.941729               | 1.290584              |

Table S5. Cartesian structural coordinates of optimized structure A-α-1.

| Atom | Y         | V             | 7         |
|------|-----------|---------------|-----------|
| 0    | 2 472525  | J<br>1.577992 | 1 404094  |
| 0    | 2.4/2535  | 1.5//883      | 1.404084  |
| 0    | -0.880170 | -1.160350     | 3.327020  |
| 0    | 2.332348  | -1.677890     | 1.494869  |
| 0    | 0.026576  | -2.842760     | 1.452720  |
| 0    | -2.696480 | -1.149380     | 1.373366  |
| Ο    | -2.589330 | 1.455816      | 1.313270  |
| Ο    | 1.843638  | 2.834821      | -0.746650 |
| Ο    | -1.816130 | 3.491454      | -0.212630 |
| Ο    | 3.946828  | -0.170430     | 0.048806  |
| Ο    | 1.595885  | -3.029890     | -0.562300 |
| 0    | -2.119250 | -3.326490     | -0.051800 |
| Ο    | -3.410070 | 0.133924      | -0.727860 |
| Ο    | 4.382559  | -2.984320     | -0.009100 |
| Ο    | -0.077170 | -5.288190     | -0.049500 |
| Ο    | -1.078050 | 2.489069      | -4.626580 |
| Ο    | 3.593289  | -0.278950     | -4.435860 |
| 0    | -1.657580 | -2.916380     | -4.536490 |
| Н    | 1.382718  | -2.288290     | -3.130330 |
| Н    | 1.595173  | 1.986191      | -3.186330 |
| Н    | -2.452160 | 0.172641      | -3.365750 |
| Н    | -1.281690 | -3.694170     | -4.087160 |
| Н    | -0.817520 | 3.397952      | -4.411280 |
| H    | 4.065299  | 0.467587      | -4.028260 |
| H    | 3 996537  | -1 047320     | -3 996650 |
| н    | -2 555510 | -2 874810     | -4 163290 |

## Table S6. Cartesian structural coordinates of optimized structure B-α-1.

| X         | У                                                                                                                          | Z                                                                                                                                                                                                                                                                                                                                                        |
|-----------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.691660 | 0.063387                                                                                                                   | -3.566600                                                                                                                                                                                                                                                                                                                                                |
| -0.687010 | 3.063263                                                                                                                   | -1.818720                                                                                                                                                                                                                                                                                                                                                |
| 2.274170  | 1.216157                                                                                                                   | -2.118190                                                                                                                                                                                                                                                                                                                                                |
| 2.608034  | 1.205077                                                                                                                   | 1.619202                                                                                                                                                                                                                                                                                                                                                 |
| -0.018340 | -3.163880                                                                                                                  | 1.742745                                                                                                                                                                                                                                                                                                                                                 |
| -0.373610 | -3.141020                                                                                                                  | -1.726240                                                                                                                                                                                                                                                                                                                                                |
| 2.608280  | -2.024410                                                                                                                  | -0.257930                                                                                                                                                                                                                                                                                                                                                |
| -0.361340 | 3.059884                                                                                                                   | 1.874106                                                                                                                                                                                                                                                                                                                                                 |
| -0.005560 | 0.056056                                                                                                                   | 3.608026                                                                                                                                                                                                                                                                                                                                                 |
|           | <b>x</b><br>-0.691660<br>-0.687010<br>2.274170<br>2.608034<br>-0.018340<br>-0.373610<br>2.608280<br>-0.361340<br>-0.005560 | x         y           -0.691660         0.063387           -0.687010         3.063263           2.274170         1.216157           2.608034         1.205077           -0.018340         -3.163880           -0.373610         -3.141020           2.608280         -2.024410           -0.361340         3.059884           -0.005560         0.056056 |

| Atom | X         | У         | Ζ         |
|------|-----------|-----------|-----------|
| Ni   | -3.188970 | 1.537667  | 0.282399  |
| Ni   | -2.827060 | -1.067770 | 1.857074  |
| Ni   | -3.192670 | -1.071260 | -1.197820 |
| Р    | -0.391480 | -0.018640 | 0.003724  |
| 0    | 0.200739  | -1.446100 | -0.026310 |
| 0    | 0.156329  | 0.747480  | 1.232868  |
| 0    | -0.031800 | 0.746402  | -1.292700 |
| 0    | -1.955000 | -0.145960 | 0.122680  |
| 0    | 1.640607  | 2.775829  | 1.929667  |
| 0    | 4.193789  | 1.629857  | 2.112999  |
| 0    | 1.861996  | 0.485032  | 3.226764  |
| 0    | -4.261420 | 0.472445  | -1.047950 |
| 0    | -3.898290 | 0.462544  | 1.873234  |
| 0    | -0.106690 | 3.389124  | 0.003587  |
| 0    | 0.411973  | -1.698830 | 2.914209  |
| 0    | -0.545090 | -4.502090 | -2.759300 |
| Ο    | 1.297454  | 2.803292  | -2.183110 |
| 0    | -2.314580 | 2.609123  | -1.220070 |
| 0    | -0.286650 | 1.950499  | 3.482865  |
| 0    | -0.854500 | 1.994791  | -3.415520 |
| 0    | 1.844841  | -3.083110 | 1.150556  |
| 0    | 0.021670  | -4.524200 | 2.787372  |
| 0    | -0.127210 | -1.692040 | -2.959600 |
| 0    | 2.829683  | -0.628880 | 1.030183  |
| 0    | 3.759848  | 1.647989  | -2.859390 |
| 0    | -4.393470 | 3.297905  | 0.403520  |
| 0    | -0.451530 | 4.639847  | 2.544337  |
| 0    | -3.911330 | -1.860840 | 0.582650  |
| 0    | -2.285250 | -0.191190 | -2.825360 |
| 0    | -2.083900 | -2.590380 | -1.435620 |
| 0    | -0.336760 | -3.986620 | 0.028799  |
| 0    | 0.037509  | -0.182270 | 5.306420  |
| 0    | -3.736080 | -2.026020 | 3.571200  |
| 0    | 4.183728  | -2.686980 | -0.396200 |
| 0    | -2.077460 | 2.614344  | 1.597107  |
| 0    | 2.626240  | 1.582256  | -0.241230 |
| 0    | 1.594454  | -3.079930 | -1.474810 |

| Atom | X         | v         | Z         |
|------|-----------|-----------|-----------|
| 0    | -1.778710 | -2.615970 | 1.839815  |
| О    | 2.623028  | -0.616080 | -1.530260 |
| Ο    | -1.767900 | -0.278680 | 3.177920  |
| Ο    | 1.289354  | 0.503751  | -3.534810 |
| 0    | -0.899400 | 4.653505  | -2.434830 |
| Ο    | -4.425150 | -1.877580 | -2.252110 |
| Ο    | -0.950190 | -0.178430 | -5.250910 |
| Н    | -4.065380 | 0.893692  | -1.898410 |
| Н    | -3.980380 | 3.655510  | -0.401320 |
| Н    | -3.897470 | -2.622230 | -2.579040 |
| Н    | -3.206420 | -2.829880 | 3.438357  |
| Н    | -3.820590 | 3.646124  | 1.109245  |
| Н    | -3.490640 | 0.954751  | 2.604040  |
| Н    | -3.513850 | -2.744680 | 0.523081  |
| Н    | -3.188390 | -1.500630 | 4.178631  |

# Table S7. Cartesian structural coordinates of optimized structure A-β-1.

| Atom | X         | У         | Ζ         |
|------|-----------|-----------|-----------|
| W    | -1.194710 | -1.833810 | -2.510860 |
| W    | 1.868895  | -0.173170 | -2.738300 |
| W    | -1.097070 | 1.670447  | -2.628630 |
| W    | -0.200130 | -3.576650 | 0.605814  |
| W    | 3.150944  | -1.788430 | 0.348148  |
| W    | 3.244146  | 1.643997  | 0.194746  |
| W    | 0.007636  | 3.632984  | 0.335232  |
| W    | -3.020370 | 1.999884  | 0.543359  |
| W    | -3.151790 | -1.792620 | 0.678096  |
| Ni   | -0.873640 | -1.619820 | 3.048442  |
| Ni   | -0.781130 | 1.789990  | 2.900286  |
| Ni   | 2.190786  | 0.070963  | 2.779585  |
| Р    | -0.004610 | 0.016199  | 0.380960  |
| О    | -1.857800 | -2.918580 | -3.662740 |
| О    | 3.016354  | -0.259100 | -4.007910 |
| О    | -0.077750 | -0.070690 | -1.157530 |
| 0    | -1.709790 | 2.672670  | -3.879550 |
| 0    | -0.287110 | -3.318820 | 2.428194  |
| 0    | 0.036324  | -5.267800 | 0.458451  |

| Atom | X         | У         | Z         |
|------|-----------|-----------|-----------|
| 0    | 3.232203  | -1.401610 | 2.162359  |
| Ο    | 4.420091  | -2.919470 | 0.132240  |
| Ο    | 3.294575  | 1.433866  | 2.037478  |
| О    | -0.066530 | 3.594115  | 2.134689  |
| О    | -2.753260 | 2.146361  | 2.315586  |
| О    | -4.596450 | 2.641486  | 0.316117  |
| Ο    | -2.909580 | -1.826550 | 2.441990  |
| 0    | -4.762730 | -2.354560 | 0.470504  |
| 0    | 1.488179  | -0.002840 | 0.815054  |
| 0    | -0.672700 | 1.331331  | 0.870169  |
| 0    | -0.753600 | -1.189570 | 1.041261  |
| Ο    | -1.431380 | 0.069664  | 3.646731  |
| Ο    | 1.120962  | 1.440461  | 3.449791  |
| 0    | 1.072451  | -1.199190 | 3.511532  |
| Ο    | 0.581992  | -1.489820 | -3.263730 |
| 0    | -1.643950 | -0.111390 | -3.238880 |
| Ο    | -0.317200 | -2.975340 | -1.256700 |
| Ο    | 2.535129  | -1.436640 | -1.465910 |
| Ο    | 0.642001  | 1.133228  | -3.381670 |
| 0    | 2.595638  | 1.161320  | -1.585230 |
| Ο    | -0.168580 | 2.849091  | -1.516090 |
| 0    | -2.469330 | 1.639042  | -1.376970 |
| 0    | -2.543630 | -1.644860 | -1.247590 |
| Ο    | 1.619586  | -2.911490 | 0.552731  |
| Ο    | -2.108100 | -3.429380 | 0.515450  |
| Ο    | 4.059471  | -0.101670 | 0.064538  |
| Ο    | 1.781613  | 2.868172  | 0.280635  |
| Ο    | -1.915230 | 3.557119  | 0.225467  |
| Ο    | -3.353430 | 0.112198  | 0.591315  |
| Ο    | 4.573024  | 2.678942  | -0.121610 |
| Ο    | 0.316381  | 5.282992  | -0.024020 |
| Ο    | -1.165160 | -2.365060 | 4.677243  |
| 0    | 3.699264  | 0.094756  | 4.350722  |
| Ο    | -1.367460 | 3.113890  | 4.488494  |
| Н    | 1.587827  | 2.228766  | 3.131327  |
| Н    | 1.514341  | -2.025950 | 3.261187  |
| Н    | -2.379640 | 0.041679  | 3.450576  |

| Atom | X         | У         | Z        |
|------|-----------|-----------|----------|
| Н    | -0.937330 | 3.843468  | 4.007613 |
| Н    | -0.905890 | -3.277050 | 4.473647 |
| Н    | 4.110619  | -0.688760 | 3.947251 |
| Н    | 4.149560  | 0.830868  | 3.903036 |
| Н    | -2.273750 | 3.126572  | 4.134346 |

| Table S8. C | Table S8. Cartesian structural coordinates of optimized structure B-β-1. |           |           |  |  |
|-------------|--------------------------------------------------------------------------|-----------|-----------|--|--|
| Atom        | X                                                                        | У         | Ζ         |  |  |
| W           | -0.481190                                                                | 0.567564  | -3.498980 |  |  |
| W           | 1.189080                                                                 | 2.978407  | -1.723940 |  |  |
| W           | 2.598152                                                                 | -0.223200 | -2.086780 |  |  |
| W           | 2.824324                                                                 | -0.514230 | 1.654663  |  |  |
| W           | -1.811550                                                                | -2.652010 | 1.648801  |  |  |
| W           | -2.066650                                                                | -2.386250 | -1.781960 |  |  |
| W           | 1.031422                                                                 | -3.124550 | -0.333090 |  |  |
| W           | 1.426107                                                                 | 2.686463  | 1.983654  |  |  |
| W           | -0.031290                                                                | 0.014502  | 3.610633  |  |  |
| Ni          | -2.105040                                                                | 2.229832  | 1.771253  |  |  |
| Ni          | -3.541680                                                                | 0.012283  | 0.240949  |  |  |
| Ni          | -2.318950                                                                | 2.430746  | -1.198700 |  |  |
| Р           | -0.319460                                                                | 0.220040  | 0.010895  |  |  |
| О           | -0.644470                                                                | -1.291380 | -0.067200 |  |  |
| О           | 0.554967                                                                 | 0.495607  | 1.259347  |  |  |
| О           | 0.422992                                                                 | 0.668115  | -1.273060 |  |  |
| О           | -1.664700                                                                | 1.030104  | 0.110572  |  |  |
| О           | 2.932726                                                                 | 1.323836  | 1.957630  |  |  |
| О           | 4.371366                                                                 | -1.070220 | 2.142942  |  |  |
| О           | 1.786908                                                                 | -0.755370 | 3.195014  |  |  |
| О           | -2.682890                                                                | 3.494686  | 0.312234  |  |  |
| О           | -3.850970                                                                | 1.158645  | 1.680539  |  |  |
| О           | 1.789296                                                                 | 2.893595  | 0.109707  |  |  |
| Ο           | -0.733290                                                                | -1.626220 | 2.845438  |  |  |
| Ο           | -2.952800                                                                | -3.346650 | -2.894680 |  |  |
| О           | 2.672429                                                                 | 1.643744  | -2.130220 |  |  |
| Ο           | -0.464040                                                                | 3.385588  | -1.220800 |  |  |
| Ο           | 0.965696                                                                 | 1.662530  | 3.576434  |  |  |
| О           | 0.491851                                                                 | 2.223092  | -3.378290 |  |  |

| Atom | X         | У         | Z         |
|------|-----------|-----------|-----------|
| 0    | -0.198290 | -3.594750 | 1.066517  |
| Ο    | -2.559630 | -3.781260 | 2.702493  |
| Ο    | -1.136720 | -1.167000 | -2.923270 |
| Ο    | 2.008328  | -2.145190 | 0.962595  |
| Ο    | 4.055895  | -0.681040 | -2.865370 |
| Ο    | -2.462110 | 3.447319  | 3.478558  |
| О    | 2.217878  | 4.052214  | 2.664675  |
| О    | -4.069110 | 1.328297  | -0.950350 |
| О    | -1.920040 | 1.374695  | -2.715910 |
| Ο    | -3.263510 | -1.081030 | -1.269450 |
| О    | -2.454490 | -3.242370 | -0.087930 |
| Ο    | -0.149300 | -0.298840 | 5.296308  |
| О    | -5.428310 | -1.028800 | 0.331793  |
| О    | 1.945209  | -4.564270 | -0.505510 |
| О    | -0.286730 | 3.190464  | 1.829070  |
| Ο    | 3.078681  | -0.177310 | -0.237910 |
| О    | -0.389120 | -3.389520 | -1.590490 |
| Ο    | -3.039030 | -1.280980 | 1.512427  |
| Ο    | 1.841079  | -1.952960 | -1.589950 |
| Ο    | -1.540660 | 0.904931  | 3.217059  |
| Ο    | 1.334905  | -0.220170 | -3.511050 |
| О    | 1.872277  | 4.461500  | -2.267600 |
| Ο    | -3.036100 | 3.666167  | -2.311330 |
| О    | -0.881380 | 0.533879  | -5.168920 |
| Н    | -1.934390 | 4.109063  | 0.255001  |
| Н    | -1.617920 | 3.917158  | 3.369846  |
| Н    | -2.806100 | 3.272204  | -3.166390 |
| Н    | -5.244650 | -1.525290 | -0.482700 |
| Н    | -2.233930 | 2.718041  | 4.080437  |
| Н    | -3.679900 | 0.547889  | 2.417147  |
| Н    | -4.024900 | 0.834812  | -1.786440 |
| Н    | -5.107470 | -1.620930 | 1.032283  |

## Table S9. Cartesian structural coordinates of optimized structure B-β2-1.

| Atom | X        | У         | Z        |
|------|----------|-----------|----------|
| W    | 2.719071 | 2.402689  | 0.423784 |
| W    | 3.476649 | -0.994960 | 0.371482 |

| Atom | X         | У         | Z         |
|------|-----------|-----------|-----------|
| W    | 2.175093  | 0.607388  | -2.471040 |
| W    | -0.612350 | -1.973500 | -2.571800 |
| W    | -2.967640 | 0.713877  | -1.574900 |
| W    | -2.366610 | 2.479690  | 1.395577  |
| W    | -0.419590 | 3.042839  | -1.453010 |
| W    | 0.766930  | -3.514480 | 0.267027  |
| W    | -2.579580 | -2.527530 | 0.189783  |
| Ni   | 1.151597  | -1.355460 | 3.086771  |
| Ni   | -1.787100 | -0.498250 | 3.038956  |
| Ni   | 0.417881  | 1.553737  | 3.208232  |
| Р    | 0.026885  | 0.016293  | 0.395291  |
| 0    | -0.966710 | 1.100226  | -0.092230 |
| 0    | -0.395160 | -1.381620 | -0.128790 |
| 0    | 1.464668  | 0.336647  | -0.084200 |
| 0    | -0.002290 | 0.000539  | 1.972794  |
| 0    | 0.397022  | -3.294600 | -1.710260 |
| 0    | -0.791950 | -2.564210 | -4.171620 |
| 0    | -2.129780 | -2.741040 | -1.703150 |
| 0    | 1.574601  | 0.353151  | 4.086892  |
| 0    | -0.705930 | -1.763130 | 3.886344  |
| 0    | 2.338018  | -2.483990 | -0.101140 |
| 0    | -3.245090 | -0.828300 | -0.473320 |
| 0    | -3.462330 | 3.612244  | 2.086622  |
| 0    | 3.346795  | -0.574370 | -1.621130 |
| 0    | 2.899619  | -1.104470 | 2.065451  |
| 0    | -1.161360 | -3.800380 | 0.411481  |
| 0    | 3.913222  | 0.883168  | 0.558787  |
| 0    | -1.989570 | 2.229819  | -2.243520 |
| 0    | -4.357330 | 0.719882  | -2.576790 |
| 0    | 1.099829  | 3.198779  | -0.304900 |
| 0    | -1.719620 | -0.377670 | -2.537210 |
| 0    | 2.813039  | 0.786137  | -4.054450 |
| 0    | 2.357494  | -2.723200 | 4.193845  |
| 0    | 1.352787  | -5.129190 | 0.269866  |
| 0    | -1.167590 | 0.728538  | 4.268426  |
| 0    | 1.990061  | 2.163344  | 2.022828  |
| 0    | -0.841910 | 2.693430  | 2.378280  |

| Atom | X         | У         | Z         |
|------|-----------|-----------|-----------|
| 0    | -3.477670 | 1.812925  | -0.133900 |
| 0    | -3.991090 | -3.496470 | 0.306843  |
| 0    | -3.667190 | -0.877520 | 4.028659  |
| 0    | -0.296930 | 4.468279  | -2.395950 |
| 0    | 0.842929  | -3.033300 | 1.995689  |
| 0    | 0.892030  | -0.829030 | -2.729730 |
| 0    | -1.559250 | 3.592260  | -0.040740 |
| 0    | -2.789310 | 0.889890  | 2.259203  |
| 0    | 0.607676  | 1.773770  | -2.441010 |
| 0    | -2.405490 | -1.836430 | 1.873441  |
| 0    | 2.986211  | 2.011640  | -1.548120 |
| 0    | 5.035482  | -1.715630 | 0.418448  |
| 0    | 0.716454  | 2.865786  | 4.420492  |
| 0    | 3.776419  | 3.745235  | 0.628375  |
| Н    | 2.438358  | 0.590895  | 3.717970  |
| Н    | 3.159227  | -2.429320 | 3.728388  |
| Н    | 0.219339  | 3.584721  | 4.001050  |
| Н    | -4.045100 | -0.128790 | 3.532623  |
| Н    | 2.041325  | -3.453710 | 3.632983  |
| Н    | -0.894390 | -2.574970 | 3.388665  |
| Н    | -1.810140 | 1.451957  | 4.238872  |
| Н    | -3.871490 | -1.640630 | 3.463908  |

# Table S10. Cartesian structural coordinates of optimized structure C-α-1.

|      |           | -         |           |
|------|-----------|-----------|-----------|
| Atom | X         | У         | Z         |
| W    | 2.909595  | -2.129090 | 0.047136  |
| W    | 0.148855  | -2.894630 | -1.926150 |
| W    | -2.946650 | -0.776490 | -1.646080 |
| W    | 0.031396  | 3.306683  | -1.010720 |
| W    | 2.918559  | 1.349762  | -1.270590 |
| W    | 0.135871  | 0.617899  | -3.254690 |
| W    | -2.919090 | -1.413770 | 1.815720  |
| W    | -3.008900 | 1.880573  | 0.598201  |
| Ni   | 0.006960  | -0.436200 | 3.487026  |
| Ni   | 0.004962  | 2.392404  | 2.369390  |
| Р    | -0.002390 | -0.038060 | 0.292728  |
| 0    | 0.518216  | 0.899147  | -0.815830 |

| Atom | X         | У         | Ζ         |
|------|-----------|-----------|-----------|
| 0    | -1.548460 | -0.084290 | 0.295536  |
| Ο    | 0.543209  | -1.467640 | 0.050426  |
| Ο    | 0.495830  | 0.472881  | 1.676272  |
| Ο    | -3.606480 | -1.582990 | -0.106800 |
| О    | -4.115920 | -1.192370 | -2.829890 |
| О    | -3.579390 | 0.906214  | -1.023120 |
| О    | 1.991649  | -0.177740 | 3.793787  |
| О    | -0.431330 | 1.507549  | 3.950119  |
| Ο    | -1.740640 | -2.771410 | 1.467834  |
| Ο    | -1.742890 | 2.737872  | -0.636530 |
| Ο    | 4.472345  | 1.837968  | -1.811810 |
| О    | -0.176940 | -3.927260 | -0.422420 |
| Ο    | 0.456957  | -2.341940 | 2.913596  |
| О    | -3.721740 | 0.432450  | 1.548859  |
| Ο    | 1.955324  | -3.368990 | 1.084299  |
| О    | -0.173830 | 2.442759  | -2.775820 |
| Ο    | -0.148730 | 4.962908  | -1.429350 |
| О    | 3.108365  | -0.539930 | -1.074340 |
| О    | -1.638810 | 0.223252  | -2.695490 |
| О    | 0.034453  | -4.042520 | -3.194940 |
| О    | -0.543180 | -1.476550 | 5.279890  |
| О    | -4.224490 | -2.205770 | 2.615618  |
| О    | 1.829925  | 2.366435  | 2.817362  |
| О    | 3.044489  | -0.920020 | 1.475914  |
| Ο    | 3.027841  | 1.459475  | 0.569857  |
| О    | 1.932170  | 3.008737  | -1.336030 |
| О    | -4.249590 | 3.059954  | 0.732572  |
| О    | -0.449450 | 4.375928  | 3.091931  |
| Ο    | 0.012562  | 0.656710  | -4.965330 |
| О    | -1.960770 | -0.704110 | 3.171291  |
| Ο    | -1.641240 | -2.181210 | -1.832430 |
| О    | 1.996017  | 0.963016  | -2.963500 |
| Ο    | 0.351078  | 3.358505  | 0.795835  |
| Ο    | 0.479294  | -1.222920 | -2.887060 |
| Ο    | -1.825740 | 2.359849  | 1.941614  |
| Ο    | 2.025775  | -2.901870 | -1.524780 |
| 0    | 0.121167  | -5.170270 | 1.907072  |

| Atom | X         | У         | Z         |
|------|-----------|-----------|-----------|
| 0    | 4.323326  | 1.141124  | 3.115780  |
| О    | 4.467006  | -2.844470 | -0.026660 |
| Н    | -0.251410 | -2.308250 | 4.864529  |
| Н    | -0.125890 | 4.734391  | 2.246425  |
| Н    | -1.468480 | -1.406670 | 4.978418  |
| Н    | -1.397980 | 1.462424  | 3.855551  |
| Н    | -1.398050 | 4.249698  | 2.922551  |
| W    | 2.757324  | 0.796170  | 2.487340  |
| Ni   | 0.093719  | -3.105590 | 1.259564  |
| Н    | 1.428533  | -2.331460 | 2.922201  |
| Н    | 1.092523  | -5.160810 | 1.851743  |
| Н    | -0.135800 | -5.419320 | 1.001363  |

| Table S11. ( | Table S11. Cartesian structural coordinates of optimized structure D-α-1. |           |           |  |  |
|--------------|---------------------------------------------------------------------------|-----------|-----------|--|--|
| Atom         | X                                                                         | У         | Z         |  |  |
| W            | 3.329033                                                                  | -0.042100 | -0.974050 |  |  |
| W            | 1.074043                                                                  | -2.424290 | -2.130890 |  |  |
| W            | -2.418690                                                                 | -2.494650 | -0.727240 |  |  |
| W            | -2.301370                                                                 | 2.597627  | -0.570600 |  |  |
| W            | 0.940588                                                                  | 2.670662  | -1.883650 |  |  |
| W            | -1.350460                                                                 | 0.284867  | -3.018400 |  |  |
| W            | -3.305390                                                                 | -0.164890 | 1.704075  |  |  |
| Ni           | 1.221848                                                                  | -0.045390 | 3.291156  |  |  |
| Ni           | -0.758520                                                                 | 2.154920  | 2.548147  |  |  |
| Р            | 0.000647                                                                  | -0.009230 | 0.319194  |  |  |
| 0            | -0.471160                                                                 | 0.952494  | -0.790540 |  |  |
| 0            | -1.192340                                                                 | -0.911640 | 0.731450  |  |  |
| 0            | 1.158373                                                                  | -0.909900 | -0.163690 |  |  |
| 0            | 0.491488                                                                  | 0.817677  | 1.545672  |  |  |
| 0            | -1.969550                                                                 | -3.414550 | 0.814123  |  |  |
| 0            | -3.408810                                                                 | -3.626050 | -1.552570 |  |  |
| 0            | -3.679930                                                                 | -1.442770 | 0.219871  |  |  |
| 0            | 2.615386                                                                  | 1.421885  | 3.078439  |  |  |
| 0            | -0.019810                                                                 | 1.389988  | 4.087600  |  |  |
| Ο            | 0.574335                                                                  | -3.153670 | 1.643277  |  |  |
| Ο            | -3.230010                                                                 | 1.145463  | 0.246914  |  |  |
| Ο            | 1.677563                                                                  | 3.918224  | -2.804770 |  |  |

| Atom | X         | У         | Z         |
|------|-----------|-----------|-----------|
| 0    | 1.904329  | -3.309730 | -0.723800 |
| О    | 2.423708  | -1.433900 | 2.505868  |
| О    | -2.722420 | -1.673070 | 2.671434  |
| О    | 3.622298  | -1.517630 | 0.135044  |
| Ο    | -2.495540 | 1.619437  | -2.272120 |
| О    | -3.513840 | 3.802783  | -0.736800 |
| О    | 2.223677  | 1.265427  | -1.935310 |
| О    | -2.298380 | -1.024710 | -2.018310 |
| О    | 1.270260  | -3.513930 | -3.441370 |
| О    | 1.844512  | -1.041410 | 5.083517  |
| О    | -1.768660 | -4.065740 | 3.394770  |
| Ο    | 0.742672  | 3.256574  | 2.422181  |
| Ο    | 3.163780  | 1.159444  | 0.462807  |
| О    | 1.502390  | 2.996403  | -0.152520 |
| Ο    | -0.790010 | 3.433337  | -1.468940 |
| О    | -4.878280 | 0.077418  | 2.351397  |
| Ο    | -2.044690 | 3.514144  | 3.612051  |
| О    | -1.977530 | 0.091723  | -4.603650 |
| О    | -0.297590 | -1.401290 | 3.504718  |
| О    | -0.647230 | -2.881190 | -1.444370 |
| О    | -0.055260 | 1.680083  | -3.257630 |
| О    | -1.556330 | 2.970731  | 1.062062  |
| О    | 0.093832  | -0.954930 | -2.959760 |
| О    | -2.247850 | 0.996510  | 2.671140  |
| О    | 2.632952  | -1.308170 | -2.287680 |
| Ο    | 3.260989  | -3.942420 | 1.703748  |
| О    | 3.440563  | 3.733562  | 1.826164  |
| О    | 4.895761  | 0.285737  | -1.589970 |
| Н    | 2.490125  | -1.538960 | 4.549710  |
| Н    | -2.310950 | 3.924355  | 2.771024  |
| Н    | 1.041369  | -1.590040 | 5.003121  |
| Н    | 0.609212  | 2.068397  | 4.376864  |
| Н    | -2.706930 | 2.811971  | 3.730002  |
| W    | 2.271285  | 2.479967  | 1.670254  |
| W    | 2.267592  | -2.634230 | 1.179414  |
| Ni   | -1.076110 | -2.426000 | 2.154192  |
| Н    | -1.053250 | -0.859950 | 3.788517  |

| Atom | X         | У         | Z        |
|------|-----------|-----------|----------|
| Н    | -2.057800 | -4.520220 | 2.584257 |
| Н    | -2.542930 | -3.514440 | 3.608164 |

| Table S12. ( | Table S12. Cartesian structural coordinates of optimized structure |           |           |  |
|--------------|--------------------------------------------------------------------|-----------|-----------|--|
| Atom         | X                                                                  | У         | Ζ         |  |
| W            | -3.147750                                                          | 0.356200  | 1.740788  |  |
| W            | -3.147750                                                          | 0.356200  | -1.740790 |  |
| W            | -2.167960                                                          | -2.513490 | 0.000000  |  |
| W            | 1.078185                                                           | -2.519600 | -1.873830 |  |
| W            | 3.081434                                                           | 0.349414  | 1.857217  |  |
| W            | 0.067742                                                           | 0.350243  | 3.597542  |  |
| W            | 1.078185                                                           | -2.519600 | 1.873832  |  |
| W            | 0.067742                                                           | 0.350243  | -3.597540 |  |
| W            | 3.081434                                                           | 0.349414  | -1.857220 |  |
| Ni           | -0.858290                                                          | 3.167386  | -1.495850 |  |
| Ni           | 1.729888                                                           | 3.165398  | 0.000000  |  |
| Ni           | -0.858290                                                          | 3.167386  | 1.495852  |  |
| Р            | 0.000573                                                           | 0.410788  | 0.000000  |  |
| 0            | 0.734057                                                           | -0.109470 | 1.270643  |  |
| 0            | 0.734057                                                           | -0.109470 | -1.270640 |  |
| 0            | -1.467970                                                          | -0.106070 | 0.000000  |  |
| 0            | 0.002652                                                           | 1.968124  | 0.000000  |  |
| 0            | 0.427777                                                           | -1.622640 | -3.390520 |  |
| 0            | 1.432251                                                           | -4.085260 | -2.494040 |  |
| 0            | 2.718971                                                           | -1.624040 | -2.058570 |  |
| О            | -1.723050                                                          | 4.175461  | 0.000000  |  |
| Ο            | 0.866000                                                           | 4.181709  | -1.489780 |  |
| О            | -1.693670                                                          | -0.075210 | -2.935700 |  |
| Ο            | 3.396538                                                           | -0.069620 | 0.000000  |  |
| 0            | -0.166490                                                          | 0.407547  | 5.303710  |  |
| 0            | -3.154870                                                          | -1.615470 | -1.323440 |  |
| Ο            | -2.598420                                                          | 2.064122  | -1.682560 |  |
| О            | 1.997834                                                           | 0.464041  | -3.459220 |  |
| О            | -3.993490                                                          | 0.482304  | 0.000000  |  |
| О            | 2.718971                                                           | -1.624040 | 2.058570  |  |
| О            | 4.674867                                                           | 0.404063  | 2.510303  |  |
| 0            | -1.693670                                                          | -0.075210 | 2.935696  |  |

| Atom | X         | У         | Z         |
|------|-----------|-----------|-----------|
| 0    | 1.467389  | -2.728670 | 0.000000  |
| Ο    | -2.881430 | -4.079560 | 0.000000  |
| Ο    | -1.878000 | 4.079153  | -3.276780 |
| Ο    | -0.166490 | 0.407547  | -5.303710 |
| Ο    | 0.866000  | 4.181709  | 1.489777  |
| Ο    | -2.598420 | 2.064122  | 1.682561  |
| Ο    | -0.143000 | 2.059824  | 3.093139  |
| Ο    | 1.997834  | 0.464041  | 3.459222  |
| Ο    | 4.674867  | 0.404063  | -2.510300 |
| Ο    | 3.786384  | 4.070726  | 0.000000  |
| Ο    | 1.432251  | -4.085260 | 2.494040  |
| Ο    | -0.143000 | 2.059824  | -3.093140 |
| Ο    | -0.744060 | -2.710380 | -1.279420 |
| Ο    | 0.427777  | -1.622640 | 3.390522  |
| Ο    | 2.752969  | 2.059609  | 1.421450  |
| Ο    | -0.744060 | -2.710380 | 1.279422  |
| Ο    | 2.752969  | 2.059609  | -1.421450 |
| Ο    | -3.154870 | -1.615470 | 1.323436  |
| Ο    | -4.506960 | 0.413588  | -2.797800 |
| Ο    | -1.878000 | 4.079153  | 3.276778  |
| Ο    | -4.506960 | 0.413588  | 2.797802  |
| Н    | -2.598490 | 3.766897  | 0.000000  |
| Н    | 1.303786  | 3.774743  | 2.248988  |
| Н    | 1.303786  | 3.774743  | -2.248990 |
| Н    | 3.881392  | 3.459143  | 0.755450  |
| Н    | -1.272510 | 3.466123  | -3.736690 |
| Н    | -2.582730 | 3.469138  | 2.985086  |
| Н    | -1.272510 | 3.466123  | 3.736685  |
| Н    | 3.881392  | 3.459143  | -0.755450 |
| Н    | -2.582730 | 3.469138  | -2.985090 |

### Table S13. Cartesian structural coordinates of optimized structure A-α-2.

| Atom | X         | У         | Z         |
|------|-----------|-----------|-----------|
| W    | 1.010721  | 2.626912  | 1.746872  |
| W    | -2.013369 | 2.626834  | 0.000000  |
| W    | 1.010721  | 2.626912  | -1.746872 |
| W    | 3.174434  | -0.452014 | 1.727539  |
|      |           |           |           |

| Atom | X         | У         | Z         |
|------|-----------|-----------|-----------|
| W    | -0.094979 | -0.446129 | 3.615556  |
| W    | -3.084212 | -0.449102 | 1.886666  |
| W    | -3.084212 | -0.449102 | -1.886666 |
| W    | -0.094979 | -0.446129 | -3.615556 |
| W    | 3.174434  | -0.452014 | -1.727539 |
| Ni   | 1.963805  | -2.950273 | 0.000000  |
| Ni   | -0.982297 | -2.945922 | -1.704498 |
| Ni   | -0.982297 | -2.945922 | 1.704498  |
| Р    | 0.000259  | -0.368297 | 0.000000  |
| 0    | 1.623811  | 3.843036  | 2.801471  |
| 0    | -3.237358 | 3.838865  | 0.000000  |
| 0    | 0.003993  | 1.179668  | 0.000000  |
| 0    | 1.623811  | 3.843036  | -2.801471 |
| 0    | 3.307335  | -2.227231 | 1.452823  |
| 0    | 4.496732  | -0.140562 | 2.783961  |
| 0    | -0.397219 | -2.222071 | 3.593722  |
| 0    | 0.158562  | -0.133191 | 5.288595  |
| 0    | -2.909348 | -2.223571 | 2.142921  |
| 0    | -2.909348 | -2.223571 | -2.142921 |
| 0    | -0.397219 | -2.222071 | -3.593722 |
| 0    | 0.158562  | -0.133191 | -5.288595 |
| Ο    | 3.307335  | -2.227231 | -1.452823 |
| 0    | 4.496732  | -0.140562 | -2.783961 |
| Ο    | -0.734844 | -0.887331 | 1.272789  |
| 0    | -0.734844 | -0.887331 | -1.272789 |
| 0    | 1.468611  | -0.892275 | 0.000000  |
| 0    | 0.849730  | -3.644830 | -1.473857 |
| 0    | -1.703769 | -3.633772 | 0.000000  |
| 0    | 0.849730  | -3.644830 | 1.473857  |
| 0    | -0.754120 | 3.320406  | 1.308081  |
| 0    | 1.509248  | 3.322231  | 0.000000  |
| 0    | 2.422694  | 1.407193  | 1.609751  |
| 0    | 0.184406  | 1.411087  | 2.906751  |
| 0    | -0.754120 | 3.320406  | -1.308081 |
| 0    | -2.600373 | 1.402713  | 1.289942  |
| 0    | -2.600373 | 1.402713  | -1.289942 |
| 0    | 0.184406  | 1.411087  | -2.906751 |

| Atom | X         | У         | Z         |
|------|-----------|-----------|-----------|
| 0    | 2.422694  | 1.407193  | -1.609751 |
| Ο    | 1.696707  | -0.672156 | 2.941679  |
| Ο    | 3.945920  | -0.058889 | 0.000000  |
| Ο    | -1.976056 | -0.054143 | 3.421668  |
| Ο    | -3.402178 | -0.676835 | 0.000000  |
| Ο    | -1.976056 | -0.054143 | -3.421668 |
| Ο    | 1.696707  | -0.672156 | -2.941679 |
| Ο    | -4.659911 | -0.136763 | 2.504176  |
| Ο    | -4.659911 | -0.136763 | -2.504176 |
| Ο    | 3.676527  | -4.451266 | 0.000000  |
| Ο    | -1.832146 | -4.448871 | 3.190658  |
| Ο    | -1.832146 | -4.448871 | -3.190658 |
| Н    | -2.609750 | -3.299278 | 0.000000  |
| Н    | 1.306246  | -3.315378 | 2.258641  |
| Н    | 1.306246  | -3.315378 | -2.258641 |
| Н    | -2.609775 | -3.879309 | -3.029097 |
| Н    | 3.921115  | -3.878624 | -0.753577 |
| Н    | -1.301970 | -3.874011 | 3.777385  |
| Н    | -2.609775 | -3.879309 | 3.029097  |
| Н    | -1.301970 | -3.874011 | -3.777385 |
| Н    | 3.921115  | -3.878624 | 0.753577  |

### Table S14. EXAFS Fitting Parameters for Cs<sub>4</sub>K-1.

| Path  | Fitted C.N.   | R (Å)           | σ <sup>2</sup> /10 <sup>-3</sup> |
|-------|---------------|-----------------|----------------------------------|
| Ni-O  | $5.40\pm0.74$ | $2.00\pm0.01$   | $6.4\pm1.7$                      |
| Ni-Ni | 2.00 (Fixed)  | $3.13\pm0.06$   | $9.8\pm5.5$                      |
| Ni-P  | 1.00 (Fixed)  | $3.17 \pm 0.30$ | $9.8\pm5.5$                      |
| Ni-W  | 2.00 (Fixed)  | $3.58 \pm 0.13$ | $9.8\pm5.5$                      |

 $S_0^2$  fixed at 0.935

 $\Delta E_0(O) = -7.72 \pm 1.09$ 

R factor = 2.63%

Fit k<sup>2</sup> with bg

$$\begin{split} \Delta E_0 \left( P \right) = -4.55 \pm 19.97 \\ \Delta E_0 \left( W \right) = -12.07 \pm 19.10 \end{split}$$

 $\Delta E_0$  (Ni) = 0.35 ± 8.45

| Path                   | Fitted C.N.                                                                                                       | <b>R</b> (Å)                              | <b>σ</b> <sup>2</sup> / | 10-3                       |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|----------------------------|--|
| Ni-O                   | $5.71\pm0.76$                                                                                                     | $2.03\pm0.01$                             | 7.3                     | $\pm 1.8$                  |  |
| Ni-Ni                  | 2.00 (Fixed)                                                                                                      | $3.13\pm0.18$                             | 13.3                    | $\pm 11.1$                 |  |
| Ni-P                   | 1.00 (Fixed)                                                                                                      | $3.44\pm0.62$                             | 13.3                    | $\pm 11.1$                 |  |
| Ni-W                   | 2.00 (Fixed)                                                                                                      | $3.55\pm0.09$                             | 7.0                     | $\pm 3.6$                  |  |
| $S_0^2$ fixed at 0.935 | $\Delta E_0(O) = -3.80 \pm \Delta E_0 (Ni) = 1.41 \pm \Delta E_0 (P) = 3.67 \pm \Delta E_0 (W) = -14.0 \pm 14.27$ | 2.01 R factor =<br>31.24<br>17.58<br>09 ± | 2.02%                   | Fit k <sup>2</sup> with bg |  |

Table S15. EXAFS Fitting Parameters for Cs<sub>4</sub>KH-2.

Table S16. EXAFS Fitting Parameters for PW9Ni3/MIL-101(Cr) composite.

| Path                   | Fitted C.N.                                                                                                          | <b>R</b> (Å)                           | σ <sup>2</sup> /10 <sup>-3</sup> |
|------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|
| Ni-O                   | $6.30\pm1.03$                                                                                                        | $2.03\pm0.01$                          | $7.0\pm2.0$                      |
| Ni-Ni                  | 2.00 (Fixed)                                                                                                         | $3.15\pm0.09$                          | $8.5\pm4.5$                      |
| Ni-P                   | 1.00 (Fixed)                                                                                                         | $3.14\pm0.29$                          | $8.5\pm4.5$                      |
| Ni-W                   | 2.00 (Fixed)                                                                                                         | $3.61\pm0.13$                          | $8.5\pm4.5$                      |
| $S_0^2$ fixed at 0.935 | $\Delta E_0(O) = -4.64 \pm \Delta E_0 (Ni) = 1.51 \pm \Delta E_0 (P) = 6.73 \pm 2 \Delta E_0 (W) = -10.29 \pm 18.57$ | 1.67 R factor =<br>9.34<br>0.44<br>9 ± | 2.23% Fit k <sup>2</sup> with bg |

Table S17. Calculated pore volume and surface area of MIL-101(Cr) and the composite.

| Compound                                     | Specific surface area<br>(m²/g) | Pore volume<br>(cm <sup>3</sup> /g) |
|----------------------------------------------|---------------------------------|-------------------------------------|
| MIL-101(Cr)                                  | 2010                            | 1.18                                |
| PW <sub>9</sub> Ni <sub>3</sub> /MIL-101(Cr) | 1365                            | 0.74                                |

| Compound                                                                                                                          | Onset overpotential (V) | Reference |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|--|--|
| K <sub>2</sub> [Cr <sub>3</sub> O(O <sub>2</sub> CCH <sub>2</sub> CN) <sub>6</sub> (H <sub>2</sub> O) <sub>3</sub> ] <sub>4</sub> | 0.66                    | 1         |  |  |
| $[\alpha - Co^{II}W_{12}O_{40}] \cdot 32H_2O$                                                                                     | 0.00                    | 1         |  |  |
| [α-Co <sup>II</sup> W <sub>12</sub> O <sub>40</sub> ] <sup>6-</sup>                                                               | 0.90                    | 1         |  |  |
| $[Mn^{II}Mn^{III}SiW_{10}O_{37}(OH)(H_2O)]^{6-}$                                                                                  | 0.66                    | 2         |  |  |
| $[Mn^{II}_{3}Mn^{III}(H_2O)_2(PW_9O_{34})_2]^{9-1}$                                                                               | 0.64                    | 2         |  |  |
| $[Mn^{II}_4Mn^{III}_2Ge_3W_{24}O_{94}(H_2O)_2]^{18-}$                                                                             | 0.60                    | 2         |  |  |
| $[\mathrm{Mn^{II}_{19}}(\mathrm{OH})_{12}(\mathrm{SiW_{10}O_{37}})_{6}]^{34-}$                                                    | 0.42                    | 2         |  |  |
| $\{Fe_{10}P_4W_{32}\}^a$                                                                                                          | ≥0.68                   | 3         |  |  |
| $[Co_9(H_2O)_6(OH)_3(HPO_4)_2(PW_9O_{34})_30]^{16-}$                                                                              | 0.48                    | 4         |  |  |
| Cs <sub>4</sub> K-1                                                                                                               | 0.64                    | This work |  |  |
| PW <sub>9</sub> Ni <sub>3</sub> /MIL-101(Cr) composite                                                                            | 0.64                    | This work |  |  |
| <sup>a</sup> Formulated as $[Na(H_2O)Fe^{II}(H_2O)_2(DAPSC)]_2 \{ [Fe^{II}(H_2O)(DAPSC)]_2 [Fe^{II}(H_2O)_4]_2 \}$                |                         |           |  |  |
|                                                                                                                                   |                         |           |  |  |

Table S18. Comparison of onset overpotentials of different POM-based WOCs under neutral pH.

[Na<sub>2</sub>Fe<sup>III</sup><sub>4</sub>P<sub>4</sub>W<sub>32</sub>O<sub>120</sub>] $\cdot$ 25H<sub>2</sub>O, where DAPSC represents 2,6-diacetylpyridine bis(semicarbazone).

### References

- 1. Yuto Shimoyama, Naoki Ogiwara, Z. Weng and S. Uchida, *Journal of the American Chemical Society*, 2022, **144**, 2980–2986.
- 2. Y. Wu, J. Pei, X. Yu and L. Bi, Catalysts, 2022, 12, 160.
- 3. W. Jiang, X.-M. Liu, J. Liu, J. Shi, J.-P. Cao, X.-M. Luo, W.-S. You and Y. Xu, *Chemical Communications*, 2019, **55**, 9299–9302.
- 4. M. Blasco-Ahicart, J. Soriano-López, J. J. Carbó, J. M. Poblet and J. R. Galan-Mascaros, *Nature Chemistry*, 2017, **10**, 24–30.