Supporting Information

Electronically and geometrically complementary perylene diimides for kinetically controlled supramolecular copolymersAlfonso J. Schwalb,a Fátima García, and Luis Sáncheza* ${ }^{\text {a }}$a Departamento de Química Orgánica, Facultad de Ciencias Químicas, UniversidadComplutense de Madrid, E-28040 Madrid, Spain.
Contents:

1. Experimental section S-2
2. Synthetic details and characterization S-3
3. Collection of spectra S-5
4. Supplementary Figures and Tables S-7
VT-1H NMR spectra of BQQDI 1 S-7
UV-Vis spectra of BQQDI 1 in different solvents S-7
Cooling curves of 1 and fit to the one-component EQ model S-8
UV-Vis of 1 in Tol upon heating at $1^{\circ} \mathrm{C} / \mathrm{min}$ S-8
Denaturation experiment in $\mathrm{MCH} / \mathrm{CHCl}_{3}$ mixtures S-8
Self-assembling features of $\mathbf{2 b}$ in MCH/DCE $7 / 3$ S-9
Cooling and heating curves of 1, 2a and 2 b in MCH/DCE 7/3 S-9
UV-Vis spectra of the seeded heteropolymerization experiments S-10
AFM images of the investigated supramolecular block copolymers S-11
UV-Vis and CD spectra of poly-1-co-2b and poly-2b-1-co-1 S-12
5. References S-13

1. Experimental section

General. All solvents were dried according to standard procedures. Reagents were used as purchased. All air-sensitive reactions were carried out under argon atmosphere. Flash chromatography was performed using silica gel (Merck, Kieselgel 60, 230-240 mesh or Scharlau 60, 230-240 mesh). Analytical thin-layer chromatography (TLC) was performed using aluminium-coated Merck Kieselgel 60 F254 plates. NMR spectra were recorded on a Bruker Avance $300 \mathrm{MHz}\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 75 \mathrm{MHz}\right)$ spectrometer at $25^{\circ} \mathrm{C}$ using partially deuterated solvents as internal standards. Coupling constants (\mathcal{J}) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin = quintuplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. FTIR spectra were recorded on a Bruker Tensor 27 (ATR device) spectrometer. FTIR spectra in film were recorded on a Jasco FTIR4600 spectrometer using a CaF_{2} cell with a path length of 0.1 nm . UV-Vis spectra were registered on a Jasco-V630 spectrophotometer equipped with a Peltier thermoelectric temperature controller. All the heating and cooling cycles were performed at $1^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$. The freshly prepared solutions were measured and, after that, the samples were heated up to $90^{\circ} \mathrm{C}$. The samples at $90^{\circ} \mathrm{C}$ were registered and cooled to $10^{\circ} \mathrm{C}$. Emission spectra were recorded on a Perkin-Elmer LS55 spectrophotometer. Atomic force microscopy (AFM) images were taken on a SPM Nanoscope Illa multimode microscope working on tapping mode with a TESPSS tip (Veeco) at a working frequency of $\sim 235 \mathrm{kHz}$. High-resolution mass spectra (HRMS) were recorded on a MALDI Bruker daltonics Ultraflex TOF/TOF spectrometer.

2. Synthetic details and characterization

Scheme S1. Synthesis of the BQQDI 1.
Compounds 3-10 were prepared according to previously reported synthetic procedures and showed identical spectroscopic properties to those reported therein. ${ }^{\text {S1,S2 }}$

N, N^{\prime}-((1,3,8,10-tetraoxo-1,3,8,10-tetrahydroanthra[9,1,2-cde:10,5,6-c'd'e']bis([2,7]

naphthyridine)-2,9-diyl)bis(ethane-2,1-diyl))bis(3,4,5-tris(dodecyloxy)benzamide) (1)

Dianhydride 9 ($0.05 \mathrm{~g}, 0.13 \mathrm{mmol}, 1 \mathrm{eq}$.) and benzamide 11 ($0.23 \mathrm{~g}, 0.32 \mathrm{mmol}, 2.5$ eq.) were purged with argon in a microwave sealed tube. Then, propionic acid (1.5 mL) and $o-\mathrm{DCB}(3 \mathrm{~mL})$
were added, and the mixture was reacted in a microwave for 40 minutes at $150^{\circ} \mathrm{C}$. The obtained crude was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and all the volatile liquids were evaporated in vacuo. The crude was purified by column chromatography (silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF} 99 / 1$) to obtain an orange solid. The product was further purified by centrifugation in methanol ($3 \times 8 \mathrm{~mL}$) yielding 47.7 mg of 1 . Yield: 21\%. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 9.23\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{3}, J=7.7\right.$), $8.84\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{2}, J\right.$ $=7.7), 6.93\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{1}\right), 6.84\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{m}}, J=5.1\right), 4.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{n}}\right), 4.00\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{I}}\right), 3.95(\mathrm{~m}, 4 \mathrm{H}$, $\left.H_{p^{\prime}}\right), 3.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{n}}\right), 1.81\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{k}}\right), 1.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{k}^{\prime}}\right), 1.47\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{j}}\right)$, 1.37-1.19(m,96H, $\left.\mathrm{H}_{\mathrm{b}-\mathrm{i}}\right), 0.86\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{\mathrm{a}}, \mathrm{J}=6.3\right) .{ }^{13} \mathrm{C} \mathrm{RMN}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 167.8,163.9,163.4,153.1,152.9$, $148.8,140.9,135.7,135.3,131.9,129.2,127.4,124.1,122.0,116.6,105.4,77.2,73.7,69.3,40.1$, $39.9,32.1,32.1,30.5,29.9,29.9,29.8,29.8,29.7,29.6,29.6,29.5,29.5,26.3,26.2,22.9,22.8$, 14.3. HRMS-MALDI-TOF m/z calculated $\mathrm{C}_{112} \mathrm{H}_{170} \mathrm{~N}_{6} \mathrm{O}_{12}[\mathrm{M}+2]+1793.3033$, found 1793.2935.

3. Collection of spectra

4. Supplementary Figures and Tables

Figure S1. Partial ${ }^{1 \mathrm{H}}$ NMR spectra of 1 recorded at different temperatures showing the aromatic and some of the aliphatic protons ($c_{T}=4 \mathrm{mM} ; \mathrm{CDCl}_{3} ; 300 \mathrm{MHz}$).

Figure S2. UV-Vis spectra of $\mathbf{1}$ in MCH at different temperatures and in CHCl_{3}; (a) and in Tol at different temperatures (b).

Figure S3. Plot of the variation of the absorbance of 1 at $\lambda=520 \mathrm{~nm}$ versus temperature at different concentrations. The red lines depict the fit to the one-component EQ model.

Figure S4. UV-Vis spectra of 1 at different temperatures upon heating a solution of $\mathbf{1}$ in Tol at $1^{\circ} \mathrm{C} / \mathrm{min}\left(c_{T}=270 \mu \mathrm{M}\right)$. Arrows indicate the changes in the absorption pattern upon heating.

Figure S5. (a) UV-Vis spectra of 1 in $\mathrm{MCH}, \mathrm{CHCl}_{3}$ or in mixtures of these solvents ($c_{T}=$ $30 \mu \mathrm{M})$; b) plot of the variation of α versus the molar fraction of CHCl_{3}; the red line in panel (b) depicts the fitting to the SD model. Arrows in panel (a) indicate the spectral changes upon increasing the fraction of MCH .

Figure S6. UV-Vis spectra (a) and CD spectrum (b) of $\mathbf{2 b}$ in MCH/DCE 7/3 ($c_{T}=10 \mu \mathrm{M}$); (c) plot of the variation of the absorbance of $\mathbf{2 b}$ at $\lambda=635 \mathrm{~nm}$ versus temperature in $\mathrm{MCH} / \mathrm{DCE} 7 / 3\left(c_{T}=10 \mu \mathrm{M}\right)$

Figure S7. Cooling (blue squares and blue arrow) and heating (purple squares and purple arrows) curves obtained by plotting the variation of absorbance versus temperature for $\mathbf{2 a}(\mathrm{a}), \mathbf{1}(\mathrm{b})$ and $\mathbf{2 a}$ (c) in MCH/DCE $7 / 3$ and at $c_{T}=10 \mu \mathrm{M}$.

Figure S8. (a) UV-Vis spectra of the seeded heteropolymerization to achieve poly-1-co2a, poly-2a-co-1, poly-1-co-2b and poly-2b-co-1 in MCH/DCE 7/3 at $c_{T}=10 \mu \mathrm{M}$ (bk = before kinetics; ak = after kinetics)

Figure S9. Height (a, d, g, j) and phase (b, e, h, k) AFM images of the heteropolymers poly-1-co-2a (a, b), poly-2a-co-1 (d, e), poly-1-co-2b (g, h) and poly-2b-co-1 (j, k) onto HOPG. Panels ($c, f, I, I)$ show the height profiles of the heteropolymers along the coloured lines in panels ($\mathrm{a}, \mathrm{d}, \mathrm{g}, \mathrm{j}$) (experimental conditions: MCH/DCE $7 / 3$ as solvent, $c_{T}=10 \mu \mathrm{M}$.

Figure S10. CD (upper panel) and UV-Vis (bottom panel) spectra of poly-1-co-2a (experimental conditions: $\mathrm{MCH} / \mathrm{DCE} 7 / 3$ as solvent, $c_{T}=10 \mu \mathrm{M}$).

Figure S11. CD (upper panel) and UV-Vis (bottom panel) spectra of poly-2b and poly-2b-co-1 (experimental conditions: MCH/DCE 7/3 as solvent, $c_{T}=10 \mu \mathrm{M}$).

6. References

(S1) T. Okamoto, S. Kumagai, E. Fukuzaki, H. Ishii, G. Watanabe, N. Niitsu, T. Annaka, M. Yamagishi, Y. Tani, H. Sugiura, T. Watanabe, S. Watanabe, J. Takeya, Sci. Adv. 2020, 6, eaaz0632
(S2) S. Ghosh, X.-Q. Li, V. Stepanenko and F. Würthner, Chem. Eur. J., 2008, 14, 11343.

