Supporting Information

Unprecedented roll-off ratio in high-performing red TADF OLED emitters featuring 2,3-Indole-annulated naphthalene imide and auxiliary donors.

Magdalena Grzelak, ${ }^{\ddagger},[a, d]$ Dharmendra Kumar, ${ }^{\ddagger},[b]$ Michał Andrzej Kochman, ${ }^{\ddagger}{ }^{[b]}$ Maja Morawiak, ${ }^{[a]}$ Gabriela Wiosna-Sałyga, ${ }^{[b]}$ Adam Kubas,* ${ }^{[c]}$ Przemysław Data,*[b] and Marcin Lindner*[a]

Content:

S1 Materials and methods 2
S2 Synthetic procedures 3
S3 NMR, HRMS and IR spectra of synthesized compounds 12
S4 Crystallography 34
S5. Electrochemistry 42
S6 Computational Methods 44

S1 Materials and methods

All reagents and solvents were purchased from commercial sources and were used as received unless otherwise noted, i.e. 4-bromo-1,8-naphthalic anhydride, and 3,6-di-tert-butylcarbazole (Ambeed), 2-nitrophenylboronic acid, 9,9-dimethyl-9,10-dihydroacridine, phenoxazine from Angene, N -bromosuccinimide (Chemat), tetra-N-butylammonium bromide (Fluka), phenothiazine (Fluorochem), 1-bromobutane, 9-anthraceneboronic acid, 4-cyanophenylboronic acid, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Pd}\left(\mathrm{P}_{\mathrm{B}} \mathrm{Bu}_{3}\right)_{2}, \mathrm{NaOtBu}, 2,4,6$-trimethylaniline, triphenylphosphine, $o-\mathrm{DCB}$, and DMF from Aldrich, $\mathrm{KOH}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{DCM}$, toluene, ethanol, acetone, hexane, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ from POCH. Reagent-grade solvents ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, hexane) were distilled prior to use. For water-sensitive reactions, solvents were dried using Mbraun Solvent Purification System. Transformations with moisture and oxygen-sensitive compounds were performed under argon using the Schlenk line.
The reaction progress was monitored by thin layer chromatography (TLC), performed on aluminium foil plates covered with Silica gel 60 F254 (Merck). Products purification was done utilizing column chromatography with Kieselgel 60 (Merck). The identity and purity of prepared compounds were confirmed by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopy as well as by MS spectrometry (via EI-MS) and IR spectroscopy. NMR spectra were measured on Bruker 400 MHz , Bruker 500 MHz , Bruker 600 MHz or Varian 600 MHz instruments with the TMS as the internal standard. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR are expressed in parts per million (ppm) relative to tetramethylsilane ($\delta 0.00 \mathrm{ppm}$), $\mathrm{CDCl}_{3}(\delta 7.26 \mathrm{ppm})$ or DMSO- $\mathrm{d}_{6}(\delta 2.50 \mathrm{ppm})$. Chemical shifts for ${ }^{13} \mathrm{C}$ NMR are expressed in ppm relative to $\mathrm{CDCl}_{3}(\delta 77.16 \mathrm{ppm})$ or DMSO- $\mathrm{d}_{6}(\delta 39.52 \mathrm{ppm})$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{t}=$ triplet, $m=$ multiplet), coupling constant (Hz), and integration. EI mass spectra were obtained on Waters AutoSpec Premier Spectrometer. IR spectra were recorded on JASCO FTIR 6200 and Shimadzu IRTracer-100 FTIR spectrometers.

Scheme S1. The synthetic path towards "dyes 6a-d and and 7a-7b
a)

Figure 1. Compounds 6a-6d a) under visible light, b) under UV light, $\lambda 254 \mathrm{~nm}$.
b)

6-bromo-2-mesityl-benzo[de]isoquinoline-1,3-dione (1):

4-Bromo-1,8-naphthalic anhydride ($3 \mathrm{~g}, 10.83 \mathrm{mmol}$) was added to a pressure tube equipped with a magnetic stir bar and dissolved in $\mathrm{CH}_{3} \mathrm{COOH}$ (40 mL) under argon. To this solution, 2,4,6-trimethylaniline (3eq.; 4.56 mL , 32.49 mmol) was added, and the mixture was vigorously purged by Ar for 10 minutes and closed. The reaction mixture was stirred overnight at $140^{\circ} \mathrm{C}$. After this time, the solution was cooled and poured into ice water to form a precipitate, followed by filtration. The crude product was purified by column chromatography separation on silica gel (DCM/hexane $5: 1$) to form a white solid product ($3.6 \mathrm{~g}, 84 \%$). Purification is also possible without column chromatography through crystallization from hot acetic acid (3.24 g, 76\%).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.72$ (dd, $J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.66 (dd, $J=8.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.48 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.09 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.90 (dd, $J=8.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03 (s, 2H), 2.36 (s, 3H), 2.09 (s, 6H).
${ }^{13}$ C NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 163.19,163.16,138.81,135.19,133.78,132.64,131.80,131.33$, $131.05,130.82,129.82,129.56,128.31,123.36,122.47,21.33,17.91$.
HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrNO}_{2} 393.0364$, found 393.0359.
IR (KBr) v (cm^{-1}): 3361, 3081, 3027, 2973, 2950, 2916, 2857, 1192, 1892, 1876, 1708, 1688, 1668, $1606,1588,1567,1505,1482,1459,1402,1394,1360,1343,1327,1304,1241,1191,1132,1118$, $1039,967,950,902,880,847,814,783,746,732,704,563,553,497,472,436,422$.

2-mesityl-6-(2-nitrophenyl)-1H-benzo[de]isoquinoline-1,3-dione (2):

Compound (1) ($2.5 \mathrm{~g}, 6.34 \mathrm{mmol}$) and 2-nitrophenylboronic acid (1.2 eq.; $1.26 \mathrm{~g}, 7.61 \mathrm{mmol})$ were placed in a two-neck round-bottom flask equipped with a magnetic stirring bar and a reflux condenser and degassed. Under argon, toluene (37.5 mL) and ethanol (26 mL) were added, and the solution was purged with argon for 10 minutes. Next,
 0.63 mmol) were added. The reactor was placed in an oil bath and stirred for 20 h at $90^{\circ} \mathrm{C}$. After cooling, the mixture was extracted three times with DCM, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After evaporation of solvents, the crude mixture was purified by column chromatography separation on silica gel (DCM/hexane 2:1), affording (2) (2.58 g, 93\%) as a beige solid. Purification is also possible without column chromatography, by filtration of the mixture after dryness over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ through the pad (silica gel, celite), evaporation of the solvent, precipitation in cold hexane and filtration of the obtained product ($1.99 \mathrm{~g}, 72 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72$ - $8.66(\mathrm{~m}, 2 \mathrm{H}), 8.24(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (ddd, $J=13.6$, $8.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 163.62,163.39,149.17,142.93,138.70,135.45,135.14,133.83$, $133.45,132.73,131.93,131.55,131.25,131.21,130.42,130.03,129.61,129.47,129.04,127.63$, 127.11, 125.05, 123.36, 122.97, 21.34, 18.09, 17.95.

HRMS (EI) calcd $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} 436.1423$, found 436.1411.

IR (KBr) v (cm^{-1}): 3066, 3026, 2918, 2858, 1707, 1663, 1590, 1527, 14,83, 1462, 1437, 1402, $1360,1306,1238,1191,1131,1092,1030,967,908,888,851,817,786,756,706,685,649,563$, $542,519,495,473,418$.

5-mesitylisoquinolino[4,5-bc]carbazole-4,6-dione (3):

Compound (2) ($2.6 \mathrm{~g}, 5.96 \mathrm{mmol}$) and PPh_{3} (3eq.; $4.69 \mathrm{~g}, 17.87 \mathrm{mmol}$) were placed in a pressure tube equipped with a magnetic stir bar and degassed. 1,2-Dichlorobenzene (40 mL) was added, and the mixture was purged with argon for 10 minutes. The reaction was placed in an oil bath and heated for 72 h at $180^{\circ} \mathrm{C}$. After the solution was cooled to room temperature, the solvent was evaporated, and the crude mixture was purified by column chromatography on silica gel (DCM/acetone 98:2) to afford (3) as a yellow solid (1.82 g, 76\%).
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- $\boldsymbol{d}_{\mathbf{6}}$) $\delta 12.36$ ($\mathrm{s}, 1 \mathrm{H}$), 9.37 (dd, $J=8.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{dd}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ $(\mathrm{t}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 163.42,163.24,140.53,137.44,136.58$, $135.03,131.84,129.97,128.76,127.70,127.62,127.12,126.93,123.64,122.83,122.58,121.79$, 120.76, 119.42, 119.12, 118.97, 112.56, 20.61, 17.35.

HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} 404.1525$, found 404.1511.
IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3333,3053,2950,2912,2912,1695,1651,1618,1589,1574,1540,1493,1463$, $1448,1400,1381,1365,1346,1323,1303,1274,1240,1206,1183,1164,1121,1093,1078,1033$, $976,893,870,856,813,780,739,692,623,564,554,523,484,464,417$.

8-butyl-5-mesitylisoquinolino[4,5-bc]carbazole-4,6-dione (4):

Compound (3) ($1.25 \mathrm{~g}, 3.09 \mathrm{mmol}$) was placed in a glass reactor equipped with a magnetic stir bar and reflux condenser and dissolved with acetone (30 mL) under Ar. Then KOH (3eq.; 0.52 g , $9.27 \mathrm{mmol})$, TBAB ($10 \%, 100 \mathrm{mg}, 0.309 \mathrm{mmol}$, and bromobutane (1.2eq.; $0.4 \mathrm{~mL}, 3.7 \mathrm{mmol}$) were added. The reactor was placed in an oil bath and refluxed for 18 h . After completion of the reaction, the reaction mixture was cooled to room temperature, the solvent was evaporated, and the residue was extracted with DCM, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was evaporated. The crude mixture was purified by column chromatography on silica gel (DCM as eluent) to get ($1.4 \mathrm{~g}, 98 \%$) of (4) as a yellow solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.20$ (dd, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.91 (s , $1 \mathrm{H}), 8.66(\mathrm{t}, 2 \mathrm{H}), 7.97(\mathrm{t}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}$, $1 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.41$ (m, 2H), $0.98(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$) $\delta 164.41,164.32,141.28,138.50,137.46,135.32,131.68,129.64$, $129.49,128.49,128.00,127.46,127.04,124.61,123.51,123.18,122.56,121.04,120.34,120.15$, $116.90,110.40,43.53,31.84,21.36,20.67,18.01,13.95$.
HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} 460.2151$, found 460.2131 .

IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3052,2955,2927,2869,1703,1663,1613,1584,1531,1485,1462,1440,1405$, $1347,1334,1306,1279,1244,1207,1188,1166,1153,1091,1041,977,889,849,832,810,779$, $746,690,672,598,564,526,495,467,421$.

11-bromo-8-butyl-5-mesitylisoquinolino[4,5-bc]carbazole-4,6-dione (5):

Compound (4) ($500 \mathrm{mg}, 1.09 \mathrm{mmol}$) was placed in a glass reactor equipped with a magnetic stir bar, then degassed and dissolved with DMF (10 mL) under Ar. The solution was placed in a cooling bath at $0^{\circ} \mathrm{C}$, and then a solution of NBS $(193.2 \mathrm{mg}$, 1.09 mmol) in DMF (6 mL) was slowly added dropwise. The mixture was kept at $0^{\circ} \mathrm{C}$ for an hour, then allowed to warm to room temperature and stirred overnight (additional 13h). After completion of the reaction, the solvent was evaporated, the residue was extracted with DCM, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through the pad (silica gel and celite), and the solvent was evaporated to get (5) ($574 \mathrm{mg}, 98 \%$) as a yellow solid.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.08(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.88$
$(\mathrm{s}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{dd}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00$ (dd, $J=8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.72 (dd, $J=8.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (d, $J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.47$ $-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 164.20,164.14,139.80,138.58,137.88,135.29,131.56,129.76$, $129.51,129.34,128.36,128.27,127.86,125.63,124.67,124.05,123.61,120.96,119.19,116.88$, 114.03, 111.76, 43.71, 31.80, 21.36, 20.63, 18.00, 13.92.

HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{2}$ 538.1256, found 538.1281.
IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2953,2926,2869,1703,1663,1612,1581,1531,1485,1463,1437,1404,1347$, $1301,1244,1207,1184,1150,1090,1065,1040,947,889,843,822,799,776,752,699,679,665$, 566, 526, 498, 423.

General procedure of Buchwald-Hartwig coupling (6a-6d):

Compound (5) ($120 \mathrm{mg}, 0.22 \mathrm{mmol}$) and amine ($1.2 \mathrm{eq}$. ; 0.264 mmol) (for ($\mathbf{6 a}$) 73,8 mg of 3,6-di-tert-butylcarbazole; for (6b) 55.3 mg of 9,9-dimethyl-9,10-dihydroacridine; for ($\mathbf{6 c}$) 48.4 mg of phenoxazine; for (6d) 52.6 mg of phenothiazine) were placed in a pressure tube equipped with a magnetic stir bar and degassed. The mixture was dissolved in 3 mL of anhydrous toluene and purged with argon for 10 minutes, and $\mathrm{NaOtBu}(1.2 \mathrm{eq} . ; 25.4 \mathrm{mg}, 0.264 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}$ $(10 \%, 11.3 \mathrm{mg}, 0.022 \mathrm{mmol})$ were added. After overnight heating at $120^{\circ} \mathrm{C}$, the solution was cooled to room temperature, and the solvent was evaporated. The crude mixture was extracted with DCM, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated and purified by column chromatography (silica gel, DCM as eluent) to afford (6a-6d) with various yields.

8-butyl-11-(3,6-di-tert-butyl-9H-carbazol-9-yl)-5-mesitylisoquinolino[4,5-bc]carbazole-4,6-dione (6a):

Orange solid ($121 \mathrm{mg}, 74 \%$).
${ }^{1}{ }^{1}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.02$ (dd, $J=8.5$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.63 (dd, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $8.23(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.89$ (dd, $J=8.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.85 (d, $J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (dd, $J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (dd, $J=8.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (dd, $J=8.7,0.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.39$ (s, 3H), $2.16(\mathrm{~s}, 6 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.59-$ $1.54(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 18 \mathrm{H}), 1.05(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3H).
${ }^{13}$ C NMR ($126 \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 164.32,164.20$, 142.99, 140.41, 140.14, 138.58, 138.24, 135.31, 131.61, 131.49, 129.52, 129.44, 128.44, 128.22, 127.83, 126.62, 124.67, 123.85, 123.56, 123.39, 123.27, 121.90, 120.79, 120.03, 116.98, 116.55, 111.41, 109.15, 43.88, 34.95, 32.22, 31.98, 27.07, 21.37, 20.75, 18.01, 13.99.

HRMS (EI) calcd for $\mathrm{C}_{51} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{2} 737.3981$, found 737.3950.
IR (KBr) v (cm- ${ }^{-1}$: 3046, 2954, 2952, 2863, 1707, 1655, 1613, 1585, 1532, 1487, 1441, 1405, 1346, 1315, 1294, 1206, 1182, 1147, 1089, 1034, 1011, 940, 919, 895, 876, 849, 839,
$807,778,743,695,681,656,613,578,563,528,499,469,424$.

8-butyl-11-(9,9-dimethylacridin-10(9H)-yl)-5-mesitylisoquinolino[4,5-bc]carbazole-4,6dione (6b):

Yellow solid, ($77 \mathrm{mg}, 52 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.03(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}$, 1H), 8.96 (s, 1H), $8.65-8.61$ (m, 2H), $7.92-7.86$ (m, $2 \mathrm{H}), 7.58(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H})$, 7.07 (s, 2H), $6.99-6.92(\mathrm{~m}, 4 \mathrm{H}), 6.37-6.32(\mathrm{~m}, 2 \mathrm{H})$, $4.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 2.10$ - 2.03 (m, 2H), 1.80 ($\mathrm{s}, 6 \mathrm{H}$), $1.60-1.55$ (m, 2H), 1.06 ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.34,164.18$, 141.65, 140.49, 138.58, 138.12, 135.31, 134.33, 131.60, 130.16, 130.04, 129.69, 129.52, 128.36, 128.30, 127.75, 126.57, 125.94, 125.68, 124.68, 124.23, 123.50, 120.76, 120.14, 116.97, 114.33, 112.64, 43.91, 36.22, 31.97, 31.94, 21.36, 20.77, 17.99, 14.00 .

HRMS (EI) calcd for $\mathrm{C}_{46} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{2} 667.3199$, found 667.2118 .

IR (KBr) v (cm $^{-1}$): 3059, 3030, 2952, 2925, 2867, 2726, 1992, 1794, 1703, 1664, 1614, 1583, 1531, 1498, 1470, 1442, 1405, 1379, 1345, 1322,1292, 1269, 1246, 1208, 1183, 1164, 1149, 1112, 1089, 1043, 1011, 954, 926, 887, 849, 833, 780, 745, 695, $683,652,612,595,566,545,528,497,440,426,416,405$.

8-butyl-5-mesityl-11-(10H-phenoxazin-10-yl)isoquinolino[4,5-bc]carbazole-4,6-dione (6c):

Yellow solid, ($115 \mathrm{mg}, 81 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.07$ (dd, $J=8.4,1.1 \mathrm{~Hz}$, 1H), 8.94 (s, 1H), $8.67-8.63$ (m, 2H), 7.94 (dd, $J=$ $8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=$ $8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}$, 2 H), 6.68 ($\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.59 (td, $J=8.0,7.4$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 2.06-2.00(\mathrm{~m}$, $2 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl3}_{3}$) $\delta 164.28,164.15$, 144.20, 140.55, 138.61, 138.14, 135.29, 135.24, 131.93, 131.56, 129.63, 129.53, 129.36, 128.37, 128.32, 127.86, 125.74, 124.68, 124.29, 123.53, 123.44, 121.53, 120.90, 119.99, 116.95, 115.64, 113.53, 112.90, 43.88, 31.93, 21.36, 20.74, 17.99, 13.98.

HRMS (EI) calcd for $\mathrm{C}_{43} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3} 641.2678$, found 641.2649.

IR (KBr) v (cm- ${ }^{-1}$: 2952, 2918, 2872, 1708, 1669, 1616, 1585, 1531, 1486, 1462, 1438, 1404, 1370, 1341, 1295, 1270, 1246, 1205, 1183, 1144, 1091, 1041, 917, 889, 854, 809, 779, 738, 681, 639, 616, 595, 562, 499.

8-butyl-5-mesityl-11-(10H-phenothiazin-10-yl)isoquinolino[4,5-bc]carbazole-4,6-dione (6d):

Orange solid, ($96 \mathrm{mg}, 66 \%$).
${ }^{1}{ }^{1}$ NMR (600 MHz, CDCl $_{3}$) $\delta 9.09$ (dd, $J=8.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dd}, J$ $=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.94(\mathrm{dd}, J=8.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (dd, $J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.09 - 7.06 (m, 4H), 6.85-6.81 (m, 4H), 6.28-6.24 (m, $2 \mathrm{H}), 4.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H})$, $2.09-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.30,164.15$, 145.10, 140.46, 138.59, 138.15, 135.30, 133.87, 131.58, 130.17, 129.68, 129.52, 128.37, 128.33, 127.84, 127.02, 126.90, 125.84, 124.69, 124.23, 123.53, 122.60, 120.88, 120.15, 119.87, 116.94, 115.96, 112.28, 43.91, 31.96, 21.36, 20.76, 17.99, 13.99.

HRMS (EI) calcd for $\mathrm{C}_{43} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S} 657.2450$, found 657.2422.

IR (KBr) v (cm ${ }^{-1}$): 3060, 2952, 2921, 2858, 1705, 1664, 1614, 1583, 1531, 1460, 1441, 1405, 1370, $1346,1303,1244,1207,1188,1148,1126,1090$, 1041, 949, 920, 889, 849, 809, 779, 744, 695, 682, 641, 628, 697, 564, 529, 498, 473, 437.

General procedure of Suzuki-Miyaura coupling (7a-7b):

Compound (5) ($65 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $9-\mathrm{anthraceneboronic} \mathrm{acid} \mathrm{(} 32 \mathrm{mg}, 0.144 \mathrm{mmol}$) or 4 cyanophenylboronic acid ($22 \mathrm{mg}, 0.144 \mathrm{mmol}$) were placed in a two-neck round-bottom flask equipped with a magnetic stirring bar and a reflux condenser and degassed. Under argon, toluene $(2 \mathrm{~mL})$ and ethanol (1 mL) were added, and the solution was purged with argon for 10 minutes. Next, $\mathrm{K}_{2} \mathrm{CO}_{3}\left(0.4 \mathrm{~mL}\right.$ of 2 M aq. base solution) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13.9 \mathrm{mg}, 0.012 \mathrm{mmol})$ were added. The reactor was placed in an oil bath and stirred for 20 h at $90^{\circ} \mathrm{C}$. After cooling, the mixture was extracted three times with DCM, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After evaporation of solvents, the crude mixture was purified by column chromatography separation on silica gel (eluent: DCM for 7a, and DCM/hexane 9:1 for 7b).

11-(anthracen-9-yl)-8-butyl-5-mesitylisoquinolino[4,5-bc]carbazole-4,6-dione (7a):

Yellow solid, ($73 \mathrm{mg}, 95 \%$).
${ }^{\mathbf{1}} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.99(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.13$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.87 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.79 (dd, J $=15.7,8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}$, $2 \mathrm{H}), 7.36(\mathrm{t}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.38(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.64-$ $1.55(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=6.7 \mathrm{~Hz}$, 2H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 164.45,164.28,140.73$, 138.53, 137.96, 137.27, 135.32, 131.67, 131.63, 131.53, 131.08, 130.39, 129.80, 129.51, 128.64, 128.49, 128.08, 127.50, 127.11, 126.95, 125.68, 125.61, 125.34, 124.66, 123.44, 122.76, 120.36, 120.29, 116.96, 110.26, 43.82, 32.02, 21.36, 20.81, 18.00, 14.04.

HRMS (EI) calcd for $\mathrm{C}_{45} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} 636.2777$, found 636.2770.

IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3046,2955,2924,2860,1704$, 1663, 1612, 1584, 1531, 1482, 1460, 1349, 1404, 1349, 1320, 1204, 1246, 1208, 1186, 1156, 1112, $1090,1039,935,890,849,809,757,698,651,608$, 570, 528, 499, 466, 434.
4-(8-butyl-5-mesityl-4,6-dioxo-4,5,6,8-tetrahydroisoquinolino[4,5-bc]carbazol-11yl)benzonitrile (7b):

Yellow solid, ($28 \mathrm{mg}, 41 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.93(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 0 \mathrm{H}), 8.68(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ $(\mathrm{t}, 1 \mathrm{H}), 7.92-7.80(\mathrm{~m}, 5 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ $(\mathrm{s}, 2 \mathrm{H}), 4.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H})$, $2.06-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 164.23,164.15,146.40$, 141.25, 138.59, 138.15, 135.28, 132.93, 132.51, 131.56, 129.51, 129.44, 128.48, 128.28, 128.24, 127.79, 126.45, 124.77, 123.67, 123.23, 121.95, $120.80,120.26,119.19,116.93,111.02,110.70,43.75$, 31.88, 21.35, 20.67, 18.00, 13.94 .

HRMS (EI) calcd for $\mathrm{C}_{38} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2} 561.2416$, found 561.2421.

IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2961,2926,2860,2223,1888$, 1763, 1707, 1664, 1604, 1582, 1530, 1464, 1441, 1405, 1365, 1347, 1319, 1285, 1262, 1240, 1205, $1159,1090,1027,950,919,901,889,845,834,800$, $775,744,730,698,646,609,576,552,528,511,491$, 467, 424.

S3 NMR, HRMS and IR spectra of synthesized compounds

Figure 2. ${ }^{1} \mathrm{H}$ NMR spectrum of $(\mathbf{1})\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 3. ${ }^{13} \mathrm{C}$ NMR spectrum of $(1)\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Single Mass Analysis

Tolerance $=20.0$ PPM / DBE: $\min =-1.5, \max =80.0$
Selected filters: None
Monoisotopic Mass, Odd and Even Electron Ions
22 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\mathrm{C}: 0-100 & \mathrm{H}: 0-200 & \mathrm{~N}: 0-2 & \mathrm{O}: 2-2 & \mathrm{Br}: 1-2\end{array}$
M. Grzelak
MMG0140Mcs-10

Figure 4. HRMS (EI) spectrum of (1).

Figure 5. IR spectrum of (1) in KBr.

Figure 6. ${ }^{1} \mathrm{H}$ NMR spectrum of (2) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 7. ${ }^{13} \mathrm{C}$ NMR spectrum of (2) ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Single Mass Analysis
Tolerance $=20.0$ PPM / DBE: $\min =-1.5, \max =80.0$
Selected filters: None
Monoisotopic Mass, Odd and Even Electron Ions
17 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
$\begin{array}{llll}\text { C: 0-100 } & \text { H: 0-200 } & \text { N: 2-2 } & \text { O: 2-4 }\end{array}$
M. Grzelak
MGr0103-10b AUTOSPEC

MGr0103-10b
z10B_mg0406h 70 (2.670) Cm (70:80)

Figure 8. HRMS (EI) spectrum of (2).

Figure 9. IR spectrum of (2) in KBr .

Figure 10. ${ }^{1} \mathrm{H}$ NMR spectrum of (3) (400 MHz , DMSO- d_{6}).

Figure 11. ${ }^{13} \mathrm{C}$ NMR spectrum of (3) (126 MHz , DMSO ${ }_{-\mathrm{d} 6}$).

Single Mass Analysis

Tolerance $=20.0$ PPM / DBE: $\min =-1.5, \max =80.0$
Selected filters: None

Monoisotopic Mass, Odd and Even Electron Ions
10 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
$\begin{array}{llll}\text { C: 0-100 } & \text { H: 0-200 } & \text { N: 2-2 } & \text { O: 2-3 }\end{array}$

```
M. Grzelak
MGr0107-10b
MGr0107-10b
z10B_mg0404h 112 (4.272) Cm (100:120)
```


[^0]Maximum:
Mass Calc. Mass mDa PPM DBE i-FIT Formula

| 404.1511 | 404.1525 | -1.4 | -3.5 | 19.0 | 7.8 | C27 | H2O | N2 | 02 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 12. HRMS (EI) spectrum of (3).

Figure 13. IR spectrum of (3) in KBr .

Figure 14. ${ }^{1} \mathrm{H}$ NMR spectrum of (4) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 15. ${ }^{13} \mathrm{C}$ NMR spectrum of (4) ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Single Mass Analysis
Tolerance $=20.0$ PPM / DBE: $\min =-1.5, \max =80.0$
Selected filters: None
Monoisotopic Mass, Odd and Even Electron Ions
18 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:

Figure 16. HRMS (EI) spectrum of (4).

Figure 17. IR spectrum of (4) in KBr .

Figure 18. ${ }^{1} \mathrm{H}$ NMR spectrum of (5) ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 19. ${ }^{13} \mathrm{C}$ NMR spectrum of $(5)\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Single Mass Analysis
Tolerance $=20.0$ PPM / DBE: $\min =-1.5, \max =80.0$
Selected filters: None
Monoisotopic Mass, Odd and Even Electron Ions
6 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: 0-100 } & \mathrm{H}: 0-200 & \mathrm{~N}: 2-2 & \mathrm{O}: 2-2 & \mathrm{Br}: 1-1\end{array}$

Figure 20. HRMS (EI) spectrum of (5).

Figure 21. IR spectrum of (5) in KBr .

Figure 22. ${ }^{1} \mathrm{H}$ NMR spectrum of (6a) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 23. ${ }^{13} \mathrm{C}$ NMR spectrum of ($\mathbf{6 a}$) ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

```
Single Mass Analysis
Tolerance =20.0 PPM / DBE: }\operatorname{min}=-1.5,\operatorname{max}=80.
Selected filters: None
Monoisotopic Mass, Odd and Even Electron Ions
9 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
\(\begin{array}{llll}\text { C: 0-100 } & \mathrm{H}: ~ 0-200 & \mathrm{~N}: 3-3 & \mathrm{O}: 2-2\end{array}\)
M. Grzelak
MMG0152 2-10b
MMG0152_2-10b AUTOSPEC
```



```
Minimum:
Maximum:
Mass Calc. Mass mDa PPM DBE i-FIT Formula
```

Figure 24. HRMS (EI) spectrum of (6a).

Figure 25. IR spectrum of (6a) in KBr .

Figure 26. ${ }^{1} \mathrm{H}$ NMR spectrum of (6b) ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 27. ${ }^{13} \mathrm{C}$ NMR spectrum of $(\mathbf{6 b})\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

```
Single Mass Analysis
Tolerance = 20.0 PPM / DBE: min =-1.5, max =80.0
Selected filters: None
Monoisotopic Mass, Odd and Even Electron Ions
8 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
\(\begin{array}{llll}\text { C: } 0-100 & \text { H: 0-200 } & \text { N: 3-3 } & \text { O: 2-2 }\end{array}\)
M. Grzelak AUTOSPEC
MMG0153-10b
```



```
Minimum:
Maximum:
```


Figure 28. HRMS (EI) spectrum of (6b).

Figure 29. IR spectrum of (6b) in KBr .

Figure 30. ${ }^{1} \mathrm{H}$ NMR spectrum of $(\mathbf{6 c})\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 31. ${ }^{13} \mathrm{C}$ NMR spectrum of $(\mathbf{6 c})\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.
Single Mass Analysis
Tolerance $=20.0$ PPM / DBE: $\min =-1.5, \max =80.0$
Selected filters:

Selected filters: None
Monoisotopic Mass, Odd and Even Electron Ions
32 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-100 $\quad \mathrm{H}: 0-200 \quad \mathrm{~N}: 0-3 \quad \mathrm{O}: 3$
M. Grzelak AUTOSPEC

MMG0156-10b

Figure 32. HRMS (EI) spectrum of (6c).

Figure 33. IR spectrum of ($\mathbf{6 c}$) in KBr .

Figure 34. ${ }^{1} \mathrm{H}$ NMR spectrum of $(\mathbf{6 d})\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 35. ${ }^{13} \mathrm{C}$ NMR spectrum of $(\mathbf{6 d})\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Single Mass Analysis
Tolerance $=20.0$ PPM / DBE: $\min =-1.5, \max =80.0$
Selected filters: None

Figure 36. HRMS (EI) spectrum of (6d).

Figure 37. IR spectrum of ($\mathbf{6 d}$) in KBr .

Figure 38. ${ }^{1} \mathrm{H}$ NMR spectrum of (7a) ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 39. ${ }^{13} \mathrm{C}$ NMR spectrum of (7a) ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Single Mass Analysis
Tolerance $=20.0$ PPM / DBE: $\min =-1.5, \max =150.0$
Selected filters: None
Monoisotopic Mass, Odd and Even Electron Ions
73 formula(e) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-100 \quad H: 0-200 \quad N: 0-2 $\quad 0: 0-2$

Minimum:				-1.5				
Maximum:		5.0	20.0	150.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
636.2770	636.2777	-0.7	-1.1	29.0	0.1	C45 H36	N2	02

Figure 40. HRMS (EI) spectrum of (7a).

Figure 41. IR spectrum of (7a) in KBr.

Single Mass Analysis

Tolerance $=20.0$ PPM / DBE: $\min =-1.5, \max =150.0$
Selected filters: None
Monoisotopic Mass, Odd and Even Electron Ions
49 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
$\begin{array}{llll}\text { C: 0-100 } & \text { H: 0-200 } & \text { N: 3-3 } & \text { O: 0-6 }\end{array}$

Figure 44. HRMS (EI) spectrum of (7b).

Figure 45. IR spectrum of (7b) in KBr.

S4 Crystallography

Table 1. Data collection and structure refinement parameters for6b, 5, 6c, 7a and 7b.

Compound number	6b NMI-Ind-DMAc	5	6c NMI-Ind-PXZ	7a NMI-Ind-ANT	7b NMI-Ind-PhCN
CCDC Number					
Chemical formula	$\mathrm{C}_{50} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{4}$	$\mathrm{C}_{63} \mathrm{H}_{60} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$	$\mathrm{C}_{44} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$	$\mathrm{C}_{45} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{4}$
Formula weight	$755.92 \mathrm{~g} / \mathrm{mol}$	$1144.97 \mathrm{~g} / \mathrm{mol}$	$726.66 \mathrm{~g} / \mathrm{mol}$	$636.76 \mathrm{~g} / \mathrm{mol}$	$652.78 \mathrm{~g} / \mathrm{mol}$
Temperature	296(2) K	296(2) K	100.01(10)	296(2) K	296(2) K
Wavelength	1.54178 A	1.54178 Å	1.54184	1.54178 Å	1.54178 Å
Crystal size	$\begin{aligned} & 0.212 \times 0.298 \times 0.641 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0.164 \times 0.165 \times 0.393 \\ & \mathrm{~mm} \end{aligned}$	$0.15 \times 0.14 \times 0.06 \mathrm{~mm}$	$\begin{aligned} & 0.156 \times 0.204 \times 0.316 \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.220 \times 0.224 \times 0.378 \\ & \mathrm{~mm} \end{aligned}$
Crystal habit	orange plate	yellow needle	light orange block	yellow prism	fluorescent yellow plate
Crystal system	monoclinic	triclinic	monoclinic	orthorhombic	triclinic
Space group	P1 21/c 1	P-1	P21/c	Pbca	P-1
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=16.6094(6) \AA \\ & \alpha=90^{\circ} \\ & \mathrm{b}=9.5173(3) \AA \\ & \beta=104.757(2)^{\circ} \\ & c=27.5112(9) \AA \\ & \gamma=90^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{a}=12.1492(17)^{\circ} \AA \\ & \alpha=84.599(11)^{\circ} \\ & \mathrm{b}=15.494(2) \AA \\ & \beta=75.061(10)^{\circ} \\ & \mathrm{c}=15.744(3) \AA \\ & \gamma=88.635(10)^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{a}=23.9323(4) \AA \\ & \alpha=90^{\circ} \\ & \mathrm{b}=11.41330(17) \AA \\ & \beta=97.5023(15)^{\circ} \\ & \mathrm{c}=13.3857(2) \AA \\ & \gamma=90^{\circ} \end{aligned}$	$\begin{aligned} & \hline \mathrm{a}=11.4231(4) \AA \\ & \alpha=90^{\circ} \\ & \mathrm{b}=13.6228(4) \AA \\ & \beta=90^{\circ} \\ & \mathrm{c}=44.3130(18) \AA \\ & \gamma=90^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{a}=11.2686(3) \AA \\ & \alpha=113.3290(10)^{\circ} \\ & \mathrm{b}=12.7274(3) \AA \\ & \beta=94.2160(10)^{\circ} \\ & \mathrm{c}=13.7006(3) \AA \\ & \gamma=104.5440(10)^{\circ} \\ & \hline \end{aligned}$
Volume	4205.4(2) \AA^{3}	2850.8(7) \AA^{3}	3624.94(10) \AA^{3}	6895.8(4) \AA^{3}	1713.09(7) \AA^{3}
Z	4	2	4	8	2
Density (calculated)	$1.194 \mathrm{~g} / \mathrm{cm}^{3}$	$1.334 \mathrm{~g} / \mathrm{cm}^{3}$	1.332	$1.227 \mathrm{~g} / \mathrm{cm}^{3}$	$1.266 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.596 \mathrm{~mm}^{-1}$	$2.254 \mathrm{~mm}^{-1}$	$1.974 \mathrm{~mm}^{-1}$	$0.583 \mathrm{~mm}^{-1}$	$0.647 \mathrm{~mm}^{-1}$

F(000)	1608	1184	1520	2688	694
Theta range for data collection	2.75 to 68.73°	2.87 to 62.11°	3.726 to 73.201	1.99 to 52.14°	3.58 to 68.35°
Index ranges	$\begin{aligned} & -18<=\mathrm{h}<=20, \\ & 10<=\mathrm{k}<=11, \\ & 30<=\mathrm{l}<=33 \end{aligned}$	$\begin{aligned} & -12<=\mathrm{h}<=12, \\ & 17<=\mathrm{k}<=16, \\ & 17<=\mathrm{l}<=15 \end{aligned}$		$\begin{aligned} & -10<=\mathrm{h}<=9, \\ & 12<=\mathrm{k}<=11, \\ & 44<=\mathrm{l}<=40 \end{aligned}$	$\begin{aligned} & -11<=\mathrm{h}<=12, \\ & 15<=\mathrm{k}<=15, \\ & 16<=\mathrm{l}<=16 \end{aligned}$
Reflections collected	32567	50181	21995	90340	50392
Independent reflections	$7120[\mathrm{R}(\mathrm{int})=0.0717]$	$7096[\mathrm{R}(\mathrm{int})=0.1396]$	$7095[\mathrm{R}(\mathrm{int})=0.0366]$	3357 [$\mathrm{R}(\mathrm{int}$) $=0.1769]$	$6059[\mathrm{R}(\mathrm{int})=0.0708]$
Goodness-offit on \mathbf{F}^{2}	1.055	1.201	1.032	0.975	0.997
Final R indices	$\begin{aligned} & 4320 \text { data; } \mathrm{I}>2 \sigma(\mathrm{I}) \\ & \mathrm{R} 1=0.0698, \mathrm{wR} 2= \\ & 0.1741 \\ & \text { all data } \\ & \mathrm{R} 1=0.1167, \mathrm{wR} 2= \\ & 0.2002 \end{aligned}$	$\begin{aligned} & 2963 \text { data; } \mathrm{I}>2 \sigma(\mathrm{I}) \\ & \mathrm{R} 1=0.1315, \mathrm{wR} 2= \\ & 0.3471 \\ & \text { all data } \\ & \mathrm{R} 1=0.2850, \mathrm{wR} 2= \\ & 0.4063 \end{aligned}$	$\begin{aligned} & 5724 \text { data; } \mathrm{I}>2 \sigma(\mathrm{I}) \\ & \mathrm{R} 1=0.0423, \mathrm{wR} 2= \\ & 0.1097 \\ & \text { all data } \\ & \mathrm{R} 1=0.0547, \quad \mathrm{wR} 2= \\ & 0.1179 \end{aligned}$	$\begin{aligned} & 1373 \text { data; } \mathrm{I}>2 \sigma(\mathrm{I}) \\ & \mathrm{R} 1=0.0731, \mathrm{wR} 2= \\ & 0.1410 \\ & \text { all data } \\ & \mathrm{R} 1=0.2581, \mathrm{wR} 2= \\ & 0.2068 \end{aligned}$	$\begin{array}{ll} 3205 \quad \text { data; } & \mathrm{I}>2 \sigma(\mathrm{I}) \\ \mathrm{R} 1=0.0679, & \mathrm{wR} 2= \\ 0.1836 \\ \text { all data } \\ \mathrm{R} 1=0.1371, & \\ 0.2253 \end{array}$
Largest diff. peak and hole	0.794 and -0.347 e \AA^{-3}	1.048 and -0.834 e \AA^{-3}	0.305 and -0.645 e \AA^{-3}	0.261 and $-0.279 \mathrm{e}^{-3}$	0.536 and $-0.260 \mathrm{e}^{-3}$

Figure 46. Crystallographic structure of 6b NMI-Ind-DMAc, a) Front view, b) side view, c) torsion angle, d) and e) space arrangement. Hydrogen atoms are omitted for the sake of clarity.

Figure 47. Closer view and all distances between atoms in 6 b and plane (relative to $\mathrm{N} 3, \mathrm{C} 19,02$).

b)

c)

d)

Figure 48. Crystallographic structure of 5, a) Front view, b) side view, c) and d) space arrangement. Hydrogen atoms are omitted for the sake of clarity.

Figure 49. Crystallographic structure of 6c NMI-Ind-PXZ, a) Front view, b) side view, c) torsion angle, d) and e) space arrangement. Hydrogen atoms are omitted for the sake of clarity.
a)

Figure 50. Crystallographic structure of 7a NMI-Ind-ANT, a) Front view, b) side view, c) torsion angle, d) and e) space arrangement. Hydrogen atoms are omitted for the sake of clarity.

b)

d)

Figure 51. Crystallographic structure of $\mathbf{6 b}$ NMI-Ind-PhCN, a) Front view, b) side view, c) torsion angle, d) and e) space arrangement. Hydrogen atoms are omitted for the sake of clarity.

Table 2. Performance summary of OLEDs with emission peaks from 570 nm to 650 nm .

Emitter	Emmiter concentration [wt \%]	$\begin{gathered} \lambda \\ {[\mathrm{nm}]} \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{V}_{\text {on }}{ }^{[\mathrm{a}} \\ 1 \\ {[\mathrm{~V}]} \\ \hline \end{array}$	$\begin{gathered} \text { EQE }_{\text {max }}{ }^{[b]} \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{EQE}_{100}{ }^{[\mathrm{c}]} \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \text { EQE }_{1000}{ }^{[d]} \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \text { EQE }_{10000^{[\mathrm{e}]}} \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{L}_{\text {max }} \\ {\left[\mathrm{cd} / \mathrm{m}^{2}\right]} \\ \hline \end{gathered}$
BFDMAc-PhNAI ${ }^{[1]}$	1.5	590	3	19.8	10.6	$10.4{ }^{[f]}$	$4[f]$	2671
BTDPAc-PhNAI ${ }^{[1]}$	3	601	3	18.7	10.5	$10.5{ }^{[f]}$	$4{ }^{[f]}$	2537
BTDMAc-PhNA ${ }^{[1]}$	1.5	642	4	10.1	6.4	$5.5{ }^{\text {[f] }}$	-[g]	680
$\begin{gathered} \hline \text { T-DMAC-PPyM- } \\ 1 \%^{[2]} \end{gathered}$	1	578	3.3	18.6	14.7	9.3	$5[f]$	14265
$\begin{gathered} \text { T-DMAC-PPyM- } \\ 3 \%{ }^{[2]} \end{gathered}$	3	586	3.3	14.4	12.6	8.4	$4\left[{ }^{[f]}\right.$	13553
$\begin{gathered} \hline \text { P-DMAC-BPyM- } \\ 1 \%^{[2]} \\ \hline \end{gathered}$	1	579	3.2	26	21.7	18.3	$3{ }^{[f]}$	15754
$\begin{gathered} \hline P \text {-DMAC-BPyM- } \\ 3 \%{ }^{[2]} \end{gathered}$	3	593	3.3	21.2	20	16.2	$2{ }^{[f]}$	15505
PXZ-NA ${ }^{[3]}$	10	624	3.2	13	$10.3{ }^{[f]}$	$9.4{ }^{[f]}$	-[g]	-[g]
PTZ-NAI[${ }^{3}$]	10	632	3.4	11.4	$10.1{ }^{\text {[f] }}$	$6[f]$	-[g]	-[g]
NAI-DMAC ${ }^{44]}$	1.5	597	3	23.4	13.6	4.59	-[g]	-[g]
NAI-DPAC ${ }^{[4]}$	6	584	3	29.2	13	2.2	-[g]	-[g]
BTDMAc-NAI ${ }^{[5]}$	1.5	641	4	9.2	$5[f]$	-[g]	-[g]	773
BFDMAc-NAI ${ }^{[5]}$	1.5	590	3	20.3	$10^{[f]}$	$3.5{ }^{\text {[f] }}$	-[g]	2350
6,7-DCNQx-DICz ${ }^{[6]}$	1	578	-[g]	23.9	23 ${ }^{\text {f] }}$	22[f]	15[f]	10000 [f]
5,8-DCNQx-DICz ${ }^{[6]}$	1	603	-[g]	12.5	$12.4{ }^{[f]}$	$10.2{ }^{\text {[f] }}$	$6[f]$	$9000{ }^{[f]}$
PXZ-PQM ${ }^{[7]}$	5	592	3.4	20.4	17.5	11.3	4.9	21900
DPXZ-PQM ${ }^{[7]}$	5	590	2.8	26	20.1	13.7	5	14140
DPXZ-DPPM ${ }^{[7]}$	5	630	3.6	11.5	10.5	6.8	-[g]	6017
$\begin{gathered} \hline \text { poly(DOPAcNICz- } \\ \text { TMP)[8] } \\ \hline \end{gathered}$	9	624	3.4	4.1	2	1.9	-[g]	1800
NMI-Ind-PXZ ${ }^{\text {9] }}$	1	604	2.8	19.63	19.48	18.95	17.22	35221
NMI-Ind-PTZ ${ }^{[9]}$	1	613	2.8	23.62	23.60	23.15	21.61	38319
[a] Turn-on voltage [b] Maximum external quantum efficiency. [c] Maximum EQE at $100 \mathrm{~cd} / \mathrm{m}^{2}$ [d] Maximum EQE at $1000 \mathrm{~cd} / \mathrm{m}^{2}$ [e] Maximum EQE at $10000 \mathrm{~cd} / \mathrm{m}^{2}$ [f] Efficiency estimated from the chart given by the authors in the paper/ESI [g] Data not given								

[1] T. Chen, C.-H. Lu, Z. Chen, X. Gong, C.-C. Wu, C. Yang, Chem. Eur. J. 2021, 27, 3151.
[2] Y. Hu, Y. Zhang, W. Han, J. Li, X. Pu, D. Wu, Z. Bin, J. You, Chem. Eng. J. 2022, 428, 131186.
[3] B. Wang, Y. Zheng, T. Wang, D. Ma, Q. Wang, Org. Electron. 2021, 88, 106012.
[4] W. Zeng, H.-Y. Lai, W.-K. Lee, M. Jiao, Y.-J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K.-T. Wong, C.-C. Wu, C. Yang, Adv. Mater. 2018, 30, 1704961.
[5] T. Chen, C.-H. Lu, C.-W. Huang, X. Zeng, J. Gao, Z. Chen, Y. Xiang, W. Zeng, Z. Huang, S. Gong, C.-C. Wu, C. Yang, J. Mater. Chem. C, 2019, 7, 9087-9094.
[6] S. Kothavale, W. J. Chunga, J. Y. Lee, J. Mater. Chem. C, 2021, 9, 528-536.
[7] J. Liang, C. Li, Y. Cui, Z. Li, J. Wang, Y. Wang, J. Mater. Chem. C, 2020, 8, 1614-1622.
[8] S. Liu, Y. Tian, L. Yan, S. Wang, L. Zhao, H. Tian, J. Ding, L. Wang, Macromolecules, 2023, 56, 3, 876-882.
[9] This work

S5. Electrochemistry

Figure 52. CV of 1 mM of compounds in $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ in DCM electrolyte at a scan rate of 50 mV / s.
Cyclic voltammograms (CV) of all compounds were recorded in $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ electrolyte solution of dichloromethane three electrodes arrangement being a working electrode (platinum disc), a reference electrode (silver wire) and a counter electrode (platinum wire). CV of all compounds were calibrated with ferrocene/ferrocenium ion ($\mathrm{Fc} / \mathrm{Fc}^{+}$) redox couple as the internal standard.

Figure 53 The non-logarithmic chart of the current density-bias characteristics.

S6 Computational Methods

S6. 1 For the purpose of the calculations, compound $\mathbf{4}$ and each compound in the series $\mathbf{6 a - 6 d}$ were represented by truncated model compounds in which the n-butyl groups were replaced with methyl groups, while the mesityl (2,4,6-trimethylphenyl) groups were replaced with hydrogen atoms. Lastly, the two tert-butyl groups of compounds $\mathbf{6 a}$ were also replaced with hydrogen atoms. The deletion of the above-mentioned substituents is justified by the fact that they are not expected to play a significant role in the photophysics of compounds $\mathbf{4}$ and $\mathbf{6 a - 6 d}$ as isolated molecules; their purpose is to reduce the tendency towards π-stacking in the condensed phase.

All calculations were performed for isolated molecules, which is to say, in vacuum. Except when noted otherwise, molecular symmetry was not used in the calculations.

S6.1.1 Conformation search

As a preliminary, the conformational preference of each model compound was investigated via geometry optimizations at the density functional theory (DFT) level of theory. The DFT calculations were performed in the computational chemistry software package Gaussian 16, Revision A.03.[1] The B3LYP exchange-correlation functional[2,3] was employed in combination with the def2-SVP basis set.[4] In the course of the geometry optimizations, the energies and gradients were corrected for dispersion effects via the ‘D3BJ' semiempirical correction scheme of Grimme and coworkers with Becke-Johnson damping.[5] All optimized geometries were confirmed to correspond to energy minima via the analytical calculation of vibrational modes.

S6. 1. 2 Optical properties

Having determined the conformational preference of the compounds under study, we proceeded to calculate their optical properties. At this stage, the ground electronic states of each compound was described with the use of the Møller-Plesset perturbation method of second order (MP2), while its excited electronic states were calculated with the use of the second-order algebraic diagrammatic construction (ADC(2)) method.[6, 7] The spin-opposite scaling [8, 9] (SOS) procedure was imposed at all times in both the MP2 and $\operatorname{ADC}(2)$ calculations. In order to avoid confusion with the conventional implementations of the MP2 and ADC(2) methods (i.e., without a rescaling of the same- and opposite-spin contributions to the correlation energy), these calculations are referred to by the acronyms SOS-MP2 and SOS-ADC(2).

The SOS-MP2 and SOS-ADC(2) calculations were performed with the program Turbomole, version 6.3.1,,[10] taking advantage of the frozen core and resolution of the identity[11-14] approximations. A restricted Hartree--Fock (RHF) reference determinant was used. The cc-pVDZ basis set [15] was employed in combination with the default auxiliary basis set. [16]

Before calculating the vertical excitation spectra of the compounds under study at the SOS-ADC(2)/cc-pVDZ level of theory, the ground-state equilibrium geometry of each conformer was reoptimized at the SOS-MP2/cc-pVDZ level of theory. This was done to ensure consistency between the method used for the optimization of the ground-state geometry, and the one employed in the subsequent calculation of the electronic excitation spectrum.

The structures of the excited electronic states were characterized by plotting electron density difference maps (EDDMs). An EDDM is defined simply as difference of the electron density of the excited state and that of the ground state at the same nuclear geometry. Thus, the EDDM shows the redistribution of electron density due to a vertical transition.

S6. 2. Results and Discussion

S6. 2.1. Conformational preference

We begin the discussion of the simulation results with the DFT-based conformation search. In compound $\mathbf{4}$ as well as in compounds $\mathbf{6 a - 6 d}$, the fused 1,8 -naphthalimide-indole moiety is roughly planar. Compound 4 lacks an electron-donating group, and hence it exits in only a single conformation. As for the other four compounds, their conformers can be broadly classified into axial ($a x$) and equatorial (eq) geometries according to the internal conformation of the pendant electron-donating moiety (D).

The Gibbs free energies and mole fractions of the various conformers are listed in Table 3. Accompanying this data, their DFT-optimized equilibrium geometries are shown in Figure 53. The conformers of each compound are labeled with Roman numerals in order of increasing Gibbs free energy. The suffix -ax or -eq denotes the internal conformation of the D moiety.

Compound 6a only has a single conformer, which is equatorial. Compounds $\mathbf{6 b}$ and $\mathbf{6 d}$ each have two equatorial conformers and a single axial conformer. For either compound, the equatorial conformers lie substantially lower energy than the axial conformer. This finding is consistent with the fact that in the molecular crystal phase, compound $\mathbf{6 b}$ exists in an equatorial conformation.

Lastly, compound 6c only has a single, equatorial, conformer. Again, this result is consistent with the crystallographic geometry of this compound. We have explicitly verified that, in the case of compound $\mathbf{6 c}$, an axial conformation does not correspond to a minimum on the ground-state potential energy surface (PES). An attempt to optimize an axial conformation leads to a first-order saddle point on the ground-state PES, as opposed to a minimum.

Table 3: Conformational preference of compounds 4 and 6a-6d - calculated energies (E, including zero-point vibrational corrections), Gibbs free energies (G), and mole fractions (x) of the various conformers, as calculated at the B3LYP-D3BJ/def2-SVP level of theory. For each compound, the energy and the Gibbs energy of the most stable conformer (denoted conformer 1) are set to zero.

Compound	Conformer	$E, \mathrm{~kJ} / \mathrm{mol}$	$G, \mathrm{~kJ} / \mathrm{mol}$	x
$\mathbf{4}$	1	0	0	1
$\mathbf{6 a}$	$1-e q$	0	0	1
$\mathbf{6 b}$	$1-e q$	0	0	0.53
	$2-e q$	0.0	0.3	0.47
	$3-a x$	18.7	21.2	$1 \times 10-4$
$\mathbf{6 c}$	$1-e q$	0	0	1

6d	$1-e q$	0	0	0.51
	2-eq	0.1	0.1	0.48
	$3-a x$	9.2	10.1	0.01

(a) compound 4

(d) compound 6b,
conformer 2-eq

(g) compound 6d,
conformer 1-eq

(b) compound 6a, conformer 1-eq

(e) compound 6b, conformer 3-ax

(h) compound 6d, conformer 2-eq

(c) compound 6b, conformer 1-eq

(f) compound 6c, conformer 1-eq

(i) compound 6d, conformer 3-ax

Figure 54: Ground-state equilibrium geometries of compounds $\mathbf{4}$ and $\mathbf{6 a - 6 d}$ as optimized at the B3LYP-D3BJ/def2-SVP level of theory.

S6 2.2. Optical Properties

The detailed discussion of the optical properties of the compounds under study can be found in the main body of the present paper. Accompanying this analysis, Table 4 provides an overview of the vertical excitation spectra of the predominant conformers.

Note that in the case of compound $\mathbf{6 c}$, there is a very slight inconsistency between the results of DFT and SOS-MP2 geometry optimizations - the former method predicts that the phenoxazine based electron-donating moiety is near-planar, whereas according to the latter method, it is somewhat non-planar with a visible butterfly-like deformation. As a consequence, at the SOS-MP2 level of theory, compound $\mathbf{6 c}$ possesses two inequivalent equatorial conformers, which are denoted 1-eq and 2-eq in Table 4. The two conformers lie very close in energy, and their electronic excitation spectra are very similar.

Table 4: Electronic excitation spectra of compounds 4 and $\mathbf{6 a - 6 d}$ as calculated at the SOS-ADC(2)/cc-pVDZ level of theory - vertical excitation energies (ΔE) and associated oscillator strengths (f). μ is the orbital-unrelaxed electric dipole moment of the given state.

Compound	Conformer	State	$\Delta E, \mathrm{eV}$	f	μ, D
4		So			5.9
		S_{1} (dark NI $\pi \pi^{*}$)	3.489	0.080	10.3
		S_{2} (bright NI $\pi \pi^{*}$)	3.849	0.455	11.5
		$\mathrm{S}_{3}\left(\mathrm{NI} \pi \pi^{*}\right)$	4.471	0.014	8.5
		$\mathrm{T}_{1}\left(\mathrm{NI} \pi \pi^{*}\right)$	2.759	0	7.7
		$\mathrm{T}_{2}\left(\mathrm{NI} \pi \pi^{*}\right)$	3.269	0	9.8
		T_{3} (NI $\pi \pi^{*}$)	3.731	0	7.0
6a	1-eq	S_{0}			4.7
		$\mathrm{S}_{1}\left(\text { dark NI } \pi \pi^{*}\right)^{\text {a }}$	3.455	0.061	10.3
		S_{2} (bright NI $\pi \pi^{*}$)	3.768	0.527	11.3
		$\mathrm{S}_{3}\left(\mathrm{D} \pi \pi^{*}\right)$	4.092	0.034	4.4
		T_{1} ($\mathrm{NI} \pi \pi^{*}$)	2.773	0	5.9
		$\mathrm{T}_{2}\left(\mathrm{NI} \pi \pi^{*}\right)$	3.211	0	9.7
		$\mathrm{T}_{3}\left(\mathrm{D} \pi \pi^{*}\right)$	3.670	0	4.7
6b	1-eq	S_{0}			5.1
		$S_{1}\left(\right.$ dark NI $\left.\pi \pi^{*}\right)$	3.478	0.085	9.3
		S_{2} (bright NI $\pi \pi^{*}$)	3.846	0.521	10.2
		$\mathrm{S}_{3}(\mathrm{D} \rightarrow \mathrm{NI}$ ICT)	3.936	7×10^{-4}	28.8
		T_{1} (NI $\pi \pi^{*}$)	2.759	0	6.6
		$\mathrm{T}_{2}\left(\mathrm{NI} \pi \pi^{*}\right)$	3.260	0	8.9
		$\mathrm{T}_{3}\left(\mathrm{NI} \pi \pi^{*}\right.$)	3.727	0	6.3
6b	$2-e q$	So_{0}			5.0
		$\mathrm{S}_{1}\left(\right.$ dark NI $\pi \pi^{*}$)	3.512	0.079	9.1
		S_{2} (bright NI $\pi \pi^{*}$)	3.831	0.565	10.4

		$\mathrm{S}_{3}(\mathrm{D} \rightarrow \mathrm{NI}$ ICT)	4.016	1×10^{-4}	30.1
		$\mathrm{T}_{1}\left(\mathrm{NI} \pi \pi^{*}\right)$	2.776	0	6.4
		$\mathrm{T}_{2}\left(\mathrm{NI} \pi \pi^{*}\right)$	3.281	0	9.0
		$\mathrm{T}_{3}\left(\mathrm{NI} \pi \pi^{*}\right.$)	3.740	0	6.1
6b	$3-a x$	So_{0}			6.8
		S_{1} (dark NI $\pi \pi^{*}$)	3.160	0.094	17.4
		S_{2} (bright NI $\pi \pi^{*}$)	3.629	0.443	12.2
		$\mathrm{S}_{3}\left(\mathrm{NI} \pi \pi^{*}\right)$	4.189	0.097	10.9
		$\mathrm{T}_{1}\left(\mathrm{NI} \pi \pi^{*}\right)$	2.734	0	9.3
		$\mathrm{T}_{2}\left(\mathrm{NI} \pi \pi^{*}\right)$	2.893	0	14.6
		$\mathrm{T}_{3}\left(\mathrm{NI} \pi \pi^{*}\right.$)	3.671	0	8.5
6c	1-eq	S_{0}			5.0
		S1 (bright NI $\pi \pi^{*}$)	3.520	0.080	8.6
		$\mathrm{S}_{2}(\mathrm{D} \rightarrow \mathrm{NI}$ ICT)	3.802	0.001	28.4
		S_{3} (bright NI $\pi \pi^{*}$)	3.848	0.558	10.0
		T_{1} (NI $\pi \pi^{*}$)	2.779	0	6.0
		$\mathrm{T}_{2}\left(\mathrm{NI} \pi \pi^{*}\right)$	3.289	0	8.7
		$\mathrm{T}_{3}\left(\mathrm{D} \pi \pi^{*}\right)$	3.548	0	6.7
6c	$2-e q$	S_{0}			4.0
		$\mathrm{S}_{1}\left(\text { dark NI } \pi \pi^{*}\right)$	3.492	0.083	7.9
		$\mathrm{S}_{2}(\mathrm{D} \rightarrow \mathrm{NI}$ ICT)	3.724	0.001	26.9
		S_{3} (bright NI $\pi \pi^{*}$)	3.857	0.511	8.7
		T_{1} (NI $\pi \pi^{*}$)	2.764	0	5.2
		$\mathrm{T}_{2}\left(\mathrm{NI} \pi \pi^{*}\right)$	3.272	0	7.6
		$\mathrm{T}_{3}\left(\mathrm{D} \pi \pi^{*}\right)$	3.543	0	6.8
6d	1-eq	S_{0}			3.5
		S_{1} (dark NI $\pi \pi^{*}$)	3.487	0.084	7.5
		$S_{2} \text { (bright NI } \pi \pi^{*} \text {) }$	3.847	0.520	8.4
		$\mathrm{S}_{3}(\mathrm{D} \rightarrow \mathrm{NI}$ ICT)	3.954	5×10^{-6}	25.0
		$\mathrm{T}_{1}\left(\mathrm{NI} \pi \pi^{*}\right)$	2.765	0	4.8
		$\mathrm{T}_{2}\left(\mathrm{NI} \pi \pi^{*}\right)$	3.264	0	7.2
		$\mathrm{T}_{3}\left(\mathrm{NI} \pi \pi^{*}\right)$	3.731	0	5.3
6d	$2-e q$	S_{0}			5.5
		$\mathrm{S}_{1}\left(\text { dark NI } \pi \pi^{*}\right)$	3.515	0.081	9.1
		S_{2} (bright NI $\pi \pi^{*}$)	3.857	0.550	10.4
		$\mathrm{S}_{3}(\mathrm{D} \rightarrow \mathrm{NI} \mathrm{ICT})$	4.053	2×10^{-4}	26.8
		$\mathrm{T}_{1}\left(\mathrm{NI} \pi \pi^{*}\right)$	2.781	0	6.6
		$\mathrm{T}_{2}\left(\mathrm{NI} \pi \pi^{*}\right)$	3.289	0	9.1
		$\mathrm{T}_{3}\left(\mathrm{NI} \pi \pi^{*}\right.$)	3.743	0	5.1
6d	$3-a x$	S_{0}			7.2

$\mathrm{S}_{1}\left(\right.$ dark NI $\left.\pi \pi^{*}\right)$	3.275	0.084	6.1
$\mathrm{~S}_{2}\left(\right.$ bright NI $\left.\pi \pi^{*}\right)$	3.664	0.483	5.1
$\mathrm{~S}_{3}\left(\mathrm{NI} \pi \pi^{*}\right)$	4.253	0.050	4.2
$\mathrm{~T}_{1}\left(\mathrm{NI} \pi \pi^{*}\right)$	2.741	0	8.7
$\mathrm{~T}_{2}\left(\mathrm{NI} \pi \pi^{*}\right)$	2.999	0	14.2
$\mathrm{~T}_{3}\left(\mathrm{NI} \pi \pi^{*}\right)$	3.699	0	8.2

${ }^{\text {a }}$ In state labels, the fused 1,8-naphthalimide-indole moiety is denoted NI , and the donor moiety is denoted D.

Figure 55 Canonical Hartree-Fock orbitals of conformers of compounds in the series $\mathbf{6 a - 6 b}$, plotted in the form of isosurfaces with isovalues of $\pm 0.025 a_{0} 0^{-3 / 2}$. The orbitals were calculated at ground-state equilibrium geometries as optimized at the SOS-MP2/cc-pVDZ level of theory.
(a) compound 6a, conformer 1-eq

номо
LUMO
(b) compound 6b, conformer 1-eq

HOMO
LUMO
(c) compound 6b, conformer 2-eq

HOMO
(d) compound 6b, conformer 3-ax

HOMO
LUMO
(e) compound $\mathbf{6 c}$, conformer 1-eq

HOMO
(f) compound 6c, conformer 2-eq

(g) compound 6d, conformer 1-eq

HOMO
LUMO
(h) compound 6d, conformer 2-eq

HOMO
(i) compound 6d, conformer 3-ax

LUMO

HOMO

LUMO

References

[1] Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
[2] Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652. DOI: 10.1063/1.464913
[3] Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 1162311627. DOI: 10.1021/j100096a001
[4] Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305. DOI: 10.1039/b508541a
[5] Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011, 32, 1456-1465. DOI: 10.1002/jcc. 21759
[6] Trofimov, A. B.; Schirmer, J. An Efficient Polarization Propagator Approach to Valence Electron Excitation Spectra. J. Phys. B: At., Mol. Opt. Phys. 1995, 28, 2299-2324. DOI:
10.1088/0953-4075/28/12/003
[7] Hättig, C. Structure Optimizations for Excited States with Correlated Second-Order Methods: CC2 and ADC(2). In Advances in Quantum Chemistry; Jensen, H. J. Å., Ed.; Academic Press: New York, 2005; Vol. 50, pp 37-60.
[8] Jung, Y.; Lochan, R. C.; Dutoi, A. D.; Head-Gordon, M. Scaled Opposite-Spin Second Order Møller-Plesset Correlation Energy: An Economical Electronic Structure Method. J. Chem. Phys. 2004, 121, 9793-9802. DOI: 10.1063/1.1809602
[9] Winter, N. O. C.; Hättig, C. Scaled Opposite-Spin CC2 for Ground and Excited States with Fourth Order Scaling Computational Costs. J. Chem. Phys. 2011, 134, No. 184101. DOI: 10.1063/1.3584177
[10] TURBOMOLE V6.3.1 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH (1989-2007), and TURBOMOLE GmbH (since 2007). Available from: http://www.turbomole.com
[11] Haase, F.; Ahlrichs, R. Semi-direct MP2 Gradient Evaluation on Workstation Computers: The MPGRAD Program. J. Comput. Chem. 1993, 14, 907-912. DOI: 10.1002/jcc.540140805
[12] Weigend, F.; Häser, M. RI-MP2: First Derivatives and Global Consistency. Theor. Chem. Acc. 1997, 97, 331-340. DOI: 10.1007/s002140050269
[13] Hättig, C.; Weigend, F. CC2 Excitation Energy Calculations on Large Molecules Using the Resolution of the Identity Approximation. J. Chem. Phys. 2000, 113, 5154-5161. DOI:
10.1063/1.1290013
[14] Köhn, A.; Hättig, C. Analytic Gradients for Excited States in the Coupled-Cluster Model CC2 Employing the Resolution-of-the-Identity Approximation. J. Chem. Phys. 2003, 119, 5021-5036. DOI: 10.1063/1.1597635
[15] Dunning, T. H., Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007-1023. DOI: 10.1063/1.456153
[16] Weigend, F.; Köhn, A.; Hättig, C. Efficient Use of the Correlation Consistent Basis Sets in Resolution of the Identity MP2 Calculations. J. Chem. Phys. 2002, 116, 3175-3183. DOI: 10.1063/1.1445115

[^0]: Minimum:

