# **Electronic Supporting information for**

# A single hydrogen bond that tunes flavin redox reactivity and activates it for modification

Debarati Das and Anne-Frances Miller

Emails: dda283@uky.edu, afmill3r2@gmail.com

### **Table of contents**

| 1. | Experimental Details  | 1 |
|----|-----------------------|---|
| 2. | Supplementary Tables  | 1 |
| 3. | Supplementary Figures | 3 |
| 4. | References for ESI    | 4 |

# 1. Experimental Details

#### Buffers

Lysis Buffer: 50 mM HEPES pH 7.5 + 10 mM imidazole + 1mM (4-(2-aminoethyl) benzenesulfonyl fluoride)hydrochloride protease inhibitor (Chem Impex Intl Cat. Number 21250) + 2 mM benzamidine + 2 mM sodium fluoride (NaF) + 1  $\mu$ L each of lysozyme (Millipore 71110-1200KU) and DNase (Millipore 71205-25KUN). Column Wash Buffer: 50 mM HEPES pH 7.5 + 15 mM imidazole. Elution Buffer: 50 mM HEPES pH 7.5 + 150 mM imidazole.

Default (Working) Buffer: 50mM KPO<sub>4</sub> pH 7.0

# 2. Supplementary Tables

Table S1 Primers for the H290 variants.<sup>a</sup>

| Variant | Forward Primer                          | Reverse Primer           |
|---------|-----------------------------------------|--------------------------|
| H290A   | TTCTGTACAG <b><u>GCG</u>AAAGCCGGCAT</b> | CCGGAAATACCGCAGGCGAAGTAG |
| H290E   | TTCTGTACAG <b>GAA</b> AAAGCCGGCATG      | CCGGAAATACCGCAGGCGAAGTAG |
| H290N   | TTCTGTACAG <b>AAC</b> AAAGCCGGCATG      | CCGGAAATACCGCAGGCGAAGTAG |
| Н290К   | TTCTGTACAG <b>AAA</b> AAAGCCGGCATGAG    | CCGGAAATACCGCAGGCGAAGTAG |
| H290T   | TTCTGTACAG <b>ACC</b> AAAGCCGGCATGAG    | CCGGAAATACCGCAGGCGAAGTAG |
| H290F   | TTCTGTACAG <b>TTT</b> AAAGCCGGCATGAG    | CCGGAAATACCGCAGGCGAAGTAG |
| Y279I   | CCCGAAGATC <u>ATT</u> TTCGCCTGCGG       | GTAACGGTTTTACCGGACTGACCA |
|         |                                         |                          |

<sup>a</sup> Codons comprising the designed mutation are underlined and in bold.

#### Table S2 Slopes from linear fits of respective phases and the resulting E°s determined at pH 7.5.

|                          | Slope <sup>a</sup> , Phase 1 | lope, Phase 2 | Slope, Phase 3 | E <sup>°</sup> <sub>Ox/ASQ</sub> <sup>b</sup> | E <sup>°</sup> ASQ/AHQ | Е ° <sub>Ox/HQ</sub> |
|--------------------------|------------------------------|---------------|----------------|-----------------------------------------------|------------------------|----------------------|
|                          |                              |               |                | (mV)                                          | (mV)                   | (mV)                 |
| H290F <sub>Y2791</sub> - | 0.51                         | 0.56          | 1.01           | -23                                           | -138                   | -302                 |

<sup>a</sup> Slopes from plots of  $\ln \frac{[FAD_{OX}]}{[FAD_{RED}]}$  vs  $\ln \frac{[Dye_{OX}]}{[Dye_{RED}]}$  are expected to have values of 0.5 for 1e<sup>-</sup> events or 1.0 for 2e<sup>-</sup> events because n<sub>Dye</sub> = 2 in all cases used.

<sup>b</sup> All values vs. NHE.

Table S3 Quantification of FAD:ETF ratio before and after titration with Ti citrate. <sup>a</sup>

| Trial 1                                                                             | ETF concentration<br>(µM) | FAD concentration<br>(uM) | FAD:ETF ratio<br>(Ideal =2) |
|-------------------------------------------------------------------------------------|---------------------------|---------------------------|-----------------------------|
| H290F <sub>Y279I</sub> before titration with $Ti^{2+}$ citrate                      | 10.7                      | 21.4                      | 2                           |
| H290F <sub>Y2791</sub><br>After titration with Ti <sup>2+</sup> citrate             | 10.7                      | 10.8                      | 1                           |
| Trial 2<br>H290F <sub>Y279I</sub><br>before titration with Ti <sup>2+</sup> citrate | 45                        | 90.0                      | 2                           |
| H290F <sub>Y2791</sub><br>After titration with Ti <sup>2+</sup> citrate             | 18.3                      | 29.0                      | 1.6                         |

<sup>a</sup> Samples titrated as in Figure 8B were separated from released flavins and the flavin content that remained bound was quantified.

# 3. Supplementary Figures



**Fig. S1** Co-reduction of H290FY279I ETF in 50mM KPO<sub>4</sub> at pH 7.0 using Xanthine/Xanthine oxidase in equilibrium with A, New Methylene blue for phase 1; B, Nile blue for phase 2; C, Safranin O using Xanthine/Xanthine oxidase for phase 3 and D; linear fits of plots  $ln(D_{ox}/D_{Red})$  vs  $ln(F_{ox}/F_{Red})$  for individual phases to calculate the midpoint potential.<sup>1,2,3</sup>



Fig. S2 Identification of 8-formyl flavin in the flavin released from WT AfeETF but not the H290FY79I variant. WT- or H290FY79I -ETF were allowed to incubate anaerobically in darkness at 4 °C for two weeks (Figure 9), and then were denatured to release their non-covalently bound flavins. These were analysed by mass spectrometry (MS), and the data shown above reveal the presence of 8-formyl flavin (8fF, 800.148 Da) in the WT-ETF but not in H290FY79I -ETF.

Released flavins were first resolved by XID chromatography and the peak eluting from 4.3-4.7 minutes was seen to include both natural FAD and 8fF, for ET-ETF. This fraction was therefore analysed by MS, which reveals an additional m/z of 800.148 in the WT in addition to the m/z of 786.160 expected for FAD. FAD is seen in flavins released from both samples but the m/z of 800.148 is unique to WT. This m/z value of 800.148 has been assigned to 8fF.<sup>4,5</sup>

#### 4. References for ESI

- 1. A. F. Miller, H. D. Duan, T. A. Varner and N. Mohamed Raseek, Reduction midpoint potentials of bifurcating electron transfer flavoproteins, Methods Enzymol, 2019, 620, 365-398.
- 2. N. Mohamed-Raseek and A.-F. Miller, Contrasting roles for two conserved arginines: Stabilizing flavin semiquinone or quaternary structure, in bifurcating electron transfer flavoproteins, Journal of Biological Chemistry, 2022, 298, 101733.
- H. D. Duan, C. E. Lubner, M. Tokmina-Lukaszewska, G. H. Gauss, B. Bothner, P. W. King, J. W. Peters and A. F. Miller, Distinct properties underlie flavin-based electron bifurcation in a novel electron transfer flavoprotein FixAB from Rhodopseudomonas palustris, J Biol Chem, 2018, 293, 4688-4701.
- 4. P. Augustin, M. Toplak, K. Fuchs, E. C. Gerstmann, R. Prassl, A. Winkler and P. Macheroux, Oxidation of the FAD cofactor to the 8-formyl-derivative in human electron-transferring flavoprotein, J Biol Chem, 2018, 293, 2829-2840.
- 5. N. Mohamed-Raseek, C. van Galen, R. Stanley and A. F. Miller, Unusual reactivity of a flavin in a bifurcating electrontransferring flavoprotein leads to flavin modification and a charge-transfer complex, J. Biol. Chem., 2022, 298, 102606.