Electronic Supplementary Information (ESI)

Structural elucidation of HIV-1 G-quadruplexes in cellular environment and their ligand binding using responsive ¹⁹F-labeled nucleoside probes

Sarupa Roy,^a Priyasha Majee,^b Sruthi Sudhakar,^b Satyajit Mishra,^c Jeet Kalia,^{c,d} P. I. Pradeepkumar^{b*} and Seergazhi G. Srivatsan^{a*}

^aDepartment of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India. E-mail: srivatsan@iiserpune.ac.in

^bDepartment of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India. E-mail: pradeep@chem.iitb.ac.in

^cDepartment of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, India.

^dDepartment of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, India.

Content	Page
1. Materials	S3
2. Instruments	S3
3. Solid phase DNA synthesis.	S4
Scheme S1. Synthesis of modified phosphoramidites (1a) and (2a).	S4
Fig. S1. RP-HPLC of modified ONs 4–6, 9, 10 and 13–16.	S5
4. ESI-MS analysis.	S5
Fig. S2 ESI-MS of modified ONs 4–6, 9, 10 and 13–16.	S10
Table S1. Molar absorptivity and mass of modified DNA ONs 4–6, 9, 10 and 13–16.	S10
5. Circular dichroism (CD) analysis.	S10
6. Thermal melting analysis.	S11
Fig. S3 CD spectra and UV-thermal melting analysis of control ONs 3, 8 and respective	S11
modified ONs 4–6, 9 and 10 .	
Table S2. <i>T_m</i> values of modified and control unmodified ONs 4–6, 9, 10 and 13–16.	S12
7. Steady-state fluorescence of modified ONs.	S12
8. NMR of control and modified LTR ONs.	S12
Fig. S4 Partial ¹ H NMR spectra of control and modified ONs 3–6.	S13
Fig. S5 ¹⁹ F and ¹ H NMR spectra of ON 4 and its duplex 4•7.	S13
Fig. S6 Partial ¹ H NMR spectra of control ON 8 and modified ON 9 under different	S14
conditions.	
Fig. S7 ¹⁹ F and ¹ H NMR spectra of ONs 9 and 10.	S14
Fig. S8 CD spectra and UV-thermal melting analysis of control ONs 12, and modified	S15
ONs 13–16 .	
9. Preparation of ON 16 for ¹⁹ F NMR analysis in intraoocyte buffer, lysate and egg	S15
extract.	
Fig S9 ¹⁹ F NMR of ON 16 in IO buffer with and without EDTA	S16
Fig. S10 CD spectrum of ONs 12 and 16 in intraoocyte (IO) buffer.	S17
Fig. S11 Comparison of HPLC chromatogram for ON 16 in lysate, 16 in lysate after the	S17
NMR experiment lysate (control) and nucleoside FBFdU 1.	
Fig. S12 ESI-MS spectra of modified ON 16 extracted from lysate sample after NMR	S18
analysis.	
Table S3. Absorbance and emission wavelengths of nucleoside FBFdU (1) in different	S18
solvents	
Table S4. ¹⁹ F NMR chemical shift (ppm) of FBFdU (1) and FdU (2) in different solvents	S18
10. Computational analysis	S18
Fig. S13 Cartesian coordinates and RESP charges calculated for the FdU adduct	S20
Fig. S14 Cartesian coordinates and RESP charges calculated for the FBFdU adduct	S22
Fig. S15 RMSD plot of (A) LTR-III ON 3 and ON 4 (B) LTR-IV ON 8, ON 9 and ON 10.	S23

Fig. S16 Superimposed images of the major clusters of LTR-III native ON 3 and modified ON 4.	S23							
Fig. S17 RMSF plots of (A) LTR-III ON 3 and ON 4 (B) LTR-IV ON 8 and ON 9 (C) LTR-IV ON 8 and ON 10								
Fig. S18 Population distribution of the (A) COM distance between G_{28} and FBFdU (B) Angle between the normal to G_{28} and FBFdU.	S25							
Fig. S19 Representative images of the major clusters of LTR-IV ON 9.	S25							
Fig. S20 Representative images of the major clusters of LTR-IV ON 10.	S25							
Fig. S21 Superimposed images of the major clusters of LTR-IV native ON 8 and modified ON 9 .	S26							
Fig. S22 Superimposed images of the major clusters of LTR-IV native ON 8 and modified ON 10 .	S26							
11. Ligand binding studies of modified LTR ONs	S27							
Fig. S23 TMPyP4 and BRACO19 binding with ON 4 and ON 9	S28							
Fig. S24 Emission spectra for the ligand titration of labeled LTR-III ON 4 (A) TMPyP4 (B) BRACO19 (C) ¹⁹ F NMR of BRACO19 titration.	S29							
Fig. S25 Emission spectra for the ligand titration of labeled LTR-IV ON 9 (A) TMPyP4 (B) BRACO19 (C) ¹⁹ F NMR of BRACO19 titration.								
Fig. S26 (A) Schematic representation of the doubly-labeled LTR ON 16 showing the preferred site of ligand interaction. (B) Curve fits for the binding of TMPyP4 and DOX to ON 16 and ON 12 , respectively.	S30							
Fig. S27 (A) Emission spectra for the ligand titration of labeled LTR-(III+IV) ON 16 with increasing concentrations of TMPyP4 (B) Emission spectra for the titration of DOX (2 μ M) with increasing concentrations of control ON 12 .	S30							
12. Taq polymerase assay	S30							
Table S5. Sequence of templates and primer used in Taq DNA polymerase stop assay.	S31							
Fig. S28 Gel image of primer extension reactions using native LTR G-rich ON T1 and mutated LTR template T2.	S31							
Fig. S29 Gel image of primer extension reactions using native LTR G-rich ON T1 in the presence of TMPyP4/DOX and TMPyP4+DOX.	S32							
Fig. S30 Proposal for tailor-made bimodal ligand scaffolds composed of GQ and duplex binders.	S32							
13. ³¹ P NMR of modified phosphoramidites	S33							
14. References	S34							

1. Materials: 5-Flurobenzofuran-2'-deoxyuridine (1) and phosphoramidite substrates (1a) and (2a) were synthesised following a reported procedure.⁵¹⁻⁵³ 5-fluoro-2'-deoxyuridine (2) was purchased from Carbosynth. Monomers for solid-phase oligonucleotide (ON) synthesis such as *N*-benzoyl-protected dA, *N*-acetyl-protected dC, *N*,*N*-dimethylformamide-protected dG, and dT phosphoramidite substrates were purchased from ChemGenes, Glen Research and Innovassynth. Solid supports for DNA synthesis were procured from Glen Research. All other reagents needed for solid-phase ON synthesis were availed from Sigma-Aldrich. Control DNA ONs **3**, **7**, **8**, **11** and **12** were purchased from Integrated DNA Technology, purified by denaturing polyacrylamide gel electrophoresis (PAGE) and desalted using Sep-Pak Classic C18 cartridges (Waters Corporation). BRACO19 hydrochloride and all reagents (Bio-Ultra grade) used in the preparation of buffers were purchased from Sigma-Aldrich. TMPyP4 and Doxorubicin hydrochloride (DOX) were procured from Merck-Millipore. Millipore water after autoclaving was used for the preparation of all buffer solutions and in all biophysical studies.

2. Instruments: NMR spectra of small molecules were acquired in Bruker AVANCE III HD ASCEND 400 MHz spectrometer and processed using Mnova software from Mestrelab Research. Mass data was obtained using ESI-MS Waters Synapt G2-Si Mass Spectrometry instrument. Modified DNA ONs were synthesized on a K&A DNA/RNA synthesizer H6. RP-HPLC analysis was performed using Agilent Technologies 1260 Infinity HPLC. Absorption spectra were recorded on a UV-2600 Shimadzu spectrophotometer. Fluorescence of the ONs samples were recorded using a Fluoromax-4 spectrophotometer (Horiba Scientific). UV-thermal melting analysis of the ONs was carried out on Cary 300 Bio UV-Vis spectrophotometer and Cary 3500 multicell UV-Vis spectrophotometer. CD measurements were done on a JASCO J-815 CD spectrometer. NMR spectra of the ONs were acquired on a Bruker AVANCE III HD ASCEND 600 MHz spectrometer equipped with Cryo-Probe (CP2.1 QCI 600S3 H/F-C/N-D-05 Z XT) and processed using Bruker TopSpin Software.

3. Solid-phase DNA synthesis: FBFdU (1) and or FdU (2) modified DNA ONs 4–6, 9, 10 and 13–16 were synthesized on a 1 µmole scale (1000 Å CPG solid support) with K&A H-6 synthesizer using phosphoramidite substrates. For modified phosphoramidites FBFdU (1a) and FdU (2a), double coupling of 3 min each was set (total 6 min). After the synthesis, the ONs were cleaved from the solid support using 30% aqueous ammonia and deprotected at 65 °C for 20 h. ONs were purified by denaturing PAGE (18 % or 20% gel) and the product bands were visualized by UV-shadowing. Product bands were excised and ONs were extracted with 4 mL of 0.5 M ammonium acetate buffer in a poly-prep column (Bio-Rad) for 12 h. Desalting was performed using a Waters C-18 cartridge. The purity of ONs was monitored by RP-HPLC (Figure S1). The integrity was verified by ESI-MS (Figure S2).

Scheme S1. FBFdU phosphoramidite (**1a**) and FdU phosphoramidite (**2a**) were synthesized following reported procedures.^{[S1-S3] 31}P NMR spectra of phosphoramidites (**1a**) and (**2a**) are enclosed at the end of the ESI.

Fig. S1. The purity of PAGE purified ONs containing the modification was analysed by RP-HPLC at 260 nm using Luna C18 column (250 x 4.6 mm, 5 micron). Mobile phase A= 0.5 mM triethylammonium acetate (pH=7.3) and B= acetonitrile. Gradient: 0–100 % B in 30 min with a flow rate of 1 mL/min was used for ONs **4–6**. Gradient: 0–30 % B in 40 min and 30–100% in 10 min with a flow rate of 1 mL/min was used for ONs **9, 10, 13–16**.

4. ESI-MS analysis: Negative mode ESI-MS analysis was performed by injecting DNA ONs (~800 pmol) dissolved in 50% acetonitrile in an aqueous solution of 10 mM triethylamine and 100 mM 1,1,1,3,3,3-hexafluoro-2-propanol. See Figure S2 for mass spectra and Table S1 for details.

LS, PORT C, 20ul/min

Fig. S2 ESI-MS of purified LTR ONs containing FBFdU and or FdU. See Table S1 for details.

Table S1. ε_{260} and mass	data of modified LTR ONs
--	--------------------------

ON sequence	<i>€</i> 260 [M ⁻¹ cm ⁻¹] ^a	calculated	found	
		(g/mol)	(g/mol)	
4	258418	8972.76	8972.75	
5	268710	8968.79	8968.25	
6	6 266087		8852.75	
9	212810	7048.58	7048.37	
10	212810	7048.58	7048.25	
13	342910	11191.23	11190.75	
14	342910	11191.23	11190.75	
15	348117	11075.11	11074.50	
16	341896	11195.19	11194.75	

^aMolar absorption coefficient (ε) of modified ONs was determined by using OligoAnalyzer 3.1. The molar absorptivity of modified nucleosides FBFdU (ε_{260} = 10310 M⁻¹ cm⁻¹) and FdU (ε_{260} = 7687 M⁻¹ cm⁻¹) was used in place of dT.

5. Circular dichroism (CD) analysis: ONs 3–6, 8–10 and 12–16 were annealed in 20 mM potassium phosphate buffer (pH 7) containing 70 mM KCl at 95 °C for 5 min and slowly cooled to RT. CD spectra were recorded from 320–200 nm at 25 °C using 1 nm bandwidth and sample volume of 200 μ L using a quartz cuvette (Sterna Scientific, path length 2 mm) on a Jasco J-815 CD spectrometer. Each spectrum was recorded in duplicate with averaging three accumulations at scanning speed of 100 nm/min and baseline corrected for buffer contribution. Each spectrum was smoothened using the software provided by the manufacturer present in the system.

CD analysis in intraoocyte (IO) buffer: Control ON **12** (5 μ M) and modified ON **16** (5 μ M) were annealed in intraoocyte (IO) buffer (25 mM HEPES (pH 7.5), 10.5 mM NaCl, 110 mM KCl, 130 nM CaCl₂, 1 mM MgCl₂, 0.1 mM EDTA) at 95 °C for 5 minutes and allowed to cool at RT. CD spectra were recorded as mentioned above.

6. Thermal melting analysis: ONs **3–6**, **8–10** and **12–16** were annealed in 20 mM potassium phosphate buffer (pH 7) containing 70 mM KCl as mentioned above. The spectra were recorded in Cary 300 Bio UV–Vis spectrophotometer for ONs **3–6** and ONs **12–16**. Cary 3500 multicell UV-Vis spectrophotometer was used for recording the spectra for ONs **8–10** with a temperature interval of 1 °C. Absorbance was recorded at 295 nm with a data interval of 1 °C for ONs **3–6**, ONs **12–16** and 0.5 °C for ONs **8–10**.

Fig. S3 (**A**) CD spectra of control LTR-III ON **3** (5 μ M), modified LTR-III ONs **4–6** (5 μ M). (**B**) UV-thermal melting profiles for the same at 295 nm (2 μ M). (**C**) CD spectra of control LTR-IV ON **8** (8 μ M), modified LTR-IV ONs **9** and **10** (8 μ M). (**D**) UV-thermal melting profiles for the same at 295 nm (5 μ M). See Table S2 for T_m values.

	LTR-III ONs	<i>T_m</i> (°C)	LTR-IV ONs	<i>T_m</i> (°C)	LTR-III + IV ONs	<i>T_m</i> (°C)
control unmodified ONs	3	65.0 ± 0.7	8	51.6 ± 0.3	12	55.6 ± 0.2
modified ONs	4	69.4 ± 1.6	9	52.2 ± 0.7	13	60.6 ± 0.3
mounieu oriș	5	69.0 ± 1.7	10	51.6 ± 1.2	14	55.6 ± 0.4
	6	64.8 ± 0.7			15	56.5 ± 0.3
					16	55.2 ± 0.4

Table S2. T_m values of modified and control unmodified ONs.^[a]

[a] Standard deviation reported from triplicate measurements.

7. Steady-state fluorescence of modified LTR ONs: LTR GQ structures of ONs **4** (0.5 μ M), **9** (1 μ M) and **10** (1 μ M) were formed by heating the samples at 95 °C for 5 min in 20 mM potassium phosphate buffer (pH 7) containing 70 mM KCl. The corresponding duplexes **4-7**, **9-11** and **10-11** were prepared by heating a 1:1.1 mixture of LTR ONs **4**, **9** and **10** with complementary ONs **7** and **11** at 95 °C for 5 min in the same ionic conditions as mentioned above. All the samples were cooled slowly to RT. Experiments were done in triplicate in a micro-fluorescence cuvette (Hellma, path length 1.0 cm) on a Fluoromax-4 spectrofluorometer (Horiba Scientific) at 25 °C.

8. NMR of LTR ONs: LTR GQ structures of ONs **3**–**6** (45 μ M), **8** (75 μ M), **9** (10 μ M or 75 μ M), **10** (75 μ M), **13–16** (45 μ M) were formed by heating the samples at 95 °C for 5 min in 20 mM potassium phosphate buffer (pH 7) containing 70 mM KCl in 20% D₂O. The corresponding duplexes **4•7** and **9•11** were prepared by heating a 1:1.1 mixture of LTR ONs **4** and **9** with complementary ONs **7** and **11** respectively at 95 °C for 5 min in the same ionic conditions as mentioned above. ¹⁹F and ¹H NMR spectra were acquired at a frequency of 564.9 MHz and 600 MHz, respectively, on a Bruker AVANCE III HD ASCEND 600 MHz spectrometer equipped with CryoProbe (CP2.1 QCl 600S3 H/F-C/N-D-05 Z XT). All ¹⁹F NMR spectrum were calibrated relative to an external standard, trifluorotoluene (TFT = -63.72 ppm). Spectral parameters for ¹⁹F NMR: excitation pulse: 12 μ s; spectral width: 90.32 ppm; transmitter frequency offset: -145 ppm; acquisition time: 0.33 s; relaxation delay: 1.0 s; number of scans: 5000–6000. Using these parameters, spectra were obtained in 2–2.5 h. Each spectrum was processed with an exponential window function using Ib = 20 Hz. ¹H NMR spectra were obtained with water suppression using excitation sculpting with gradients. Number of scans was 1200.

Fig. S4 Partial ¹H NMR spectra (45 µM) of control ON 3 and modified ONs 4–6. For details see Section 8.

Fig. S5 ¹⁹F and ¹H NMR spectra (45 μM) of ON **4** and its duplex **4**•**7**. For details see Section 8.

Fig. S6 Partial ¹H NMR spectra of control ON **8** (75 μM) and FBFdU-modified ON **9** under different conditions. For details see Section 8.

Fig. S7 ¹⁹F and ¹H NMR spectra of ONs 9 and 10. For details see Section 8.

Fig. S8 (**A**) CD spectra of control LTR-(III+IV) ON **12** (5 μ M), modified LTR-(III+IV) ONs **13–16** (5 μ M). (**B**) UV-thermal melting profiles for the same at 295 nm (2 μ M). See Section 5 and 6 for experimental details

9. Preparation of ON 16 for ¹⁹F NMR analysis in intraoocyte buffer, lysate and egg extract.

An adult female *Xenopus laevis* was anesthetized and its oocytes were surgically removed following the protocol approved by the Institutional Animal Ethics Committee (IAEC), Indian Institute of Science Education and Research (IISER) Bhopal. All experiments that employed *Xenopus laevis* oocytes were performed in accordance with a protocol approved by the Institutional Animal Ethics Committee (IAEC) (proposal application number 2023-IISERB-01-IEAC), IISER Bhopal following the guidelines prescribed by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India.

In IO buffer: ¹H NMR and ¹⁹F NMR spectra of ON **16** (100 μ M) annealed in IO buffer containing 20% D₂O were recorded at a frequency of 564.9 MHz and 600 MHz (25 °C), respectively. Spectral parameters are the same as mentioned in Section 8. ¹⁹F NMR (number of scans = 6000) and ¹H NMR (number of scans = 1500). ¹⁹F NMR spectra were processed with an exponential window function using lb = 20 Hz.

In egg lysate: Near 280 healthy *Xenopus laevis* oocytes (stage V/VI) were selected and kept in an ice-cold petridish containing 15 mL of Ori-Ca²⁺ buffer (5 mM HEPES (pH 7.5), 110 mM NaCl, 5 mM KCl, 2 mM CaCl₂, and 1 mM MgCl₂) for 15 min. Oocytes were washed with ice-cold Ori-Ca²⁺ buffer (15 mL). The buffer was removed and oocytes were resuspended in IO buffer (15 mL, 15 min). This step was repeated two more times. Oocytes were transferred to a centrifuge tube and allowed to settle down. The excess buffer was removed carefully without disturbing the settled oocytes. Oocytes were again washed with 200 µL of IO buffer containing 20% D₂O (repeated two times). Eggs were finally resuspended in 200 µL of IO buffer containing 20% D₂O and mechanically crushed. The suspension was centrifuged at 20000g (at 4 °C) for 10 min. The interphase layer was transferred to another centrifuge tube and heat denatured at 95 °C for 10 min. The sample was centrifuged at 20000g (4 °C, 10 min) and the clear lysate (300 µL) was transferred to another centrifuge tube and stored at 4 °C. ON **16** (1 mM, 30 µL) annealed in IO buffer containing 20% D₂O was added to the clear lysate (270 µL) and mixed well. The final sample volume was 300 µL containing 100 µM of the ON. The sample was incubated for 30 min at 4 °C and then brought to 25 °C before recording the NMR using following parameters. ¹⁹F NMR (number of scans = 6000) and ¹H NMR (number of scans = 1500) spectra were acquired at a frequency of 564.9 MHz and 600 MHz (25 °C), respectively. Spectral parameters are the same as mentioned in Section 8. ¹⁹F NMR spectra were processed with an exponential window function using lb = 20 Hz. After the analysis, the sample was stored at - 20 °C and analyzed by RP-HPLC to study the integrity of the ON in cell lysate during the NMR acquisition time. Sample was filtered using a centrifuge spin filter. The centrifuge tube was washed with 50 µL of water. The combined solution was analyzed by RP-HPLC and the fraction corresponding to ON **16** was further analyzed by ESI-MS (Figure S11 and S12).

In egg extract: 850–900 healthy oocytes were transferred into a petri-dish containing cold Ori-Ca²⁺ buffer (15 mL) and kept for 15–20 min. The eggs were then shifted to another petri-dish containing ice-cold IO buffer and incubated for 15 min. The oocytes were washed with ice-cold IO buffer (2 x 15 mL) and transferred to a centrifuge tube. Buffer above the oocytes was removed carefully after they settled down. Oocytes were washed with IO buffer (400 μ L) containing 20% D₂O (repeated two times). After the centrifugation of the oocytes at 400g for 1 min at 4 °C, the supernatant buffer was removed carefully. The oocytes were again supplemented with intraoocyte buffer (100 μ L) containing 20% D₂O and centrifuged at 12000g for 5 min at 4 °C. The eggs were crushed mechanically and the suspension was centrifuged at 12000g for 30 min at 4 °C to obtain the interphase layer. This crude interphase layer was directly used for the NMR analysis. 2 mM of the preannealed ON **16** (15 μ L) in IO buffer containing 20% D₂O was added to the above crude egg extract (285 μ L) and incubated for 30 min at 4 °C. The final sample volume was 300 μ L containing 100 μ M of the ON. The ¹⁹F (number of scans = 6000) and ¹H NMR (number of scans = 4000) spectra were recorded at a frequency of 564.9 MHz and 600 MHz at 25 °C, respectively. Spectral parameters are the same as mentioned above. The ¹⁹F NMR spectrum was processed with an exponential window function using Ib = 20 Hz.

Fig. S9¹⁹F NMR of ON **16** (100 μ M) in IO buffer without EDTA (black line) and IO buffer with EDTA (blue line). We obtained peaks with almost the same chemical shifts in the absence and presence of EDTA. In NMR experiments with frog egg lysate and extract we used a small amount of EDTA as it is usually used in intracellular and lysis buffers to reduce the degradation of DNA from nucleases.^[S4,S5] It is to be noted that the presence or absence of EDTA did not affect the NMR analysis.

Fig. S10 CD spectra of ONs 12 and 16 each at 5 μ M in intraoocyte (IO) buffer. See Section 5 for details.

Fig. S11 Comparison of RP-HPLC chromatogram of ON **16**, **16** in lysate after the NMR experiments, lysate (control) and nucleoside FBFdU **1** at 260 nm and 330 nm. ON **16** is stable in the lysate and no detectable degradation of ON **16** was observed (see the peak within the dashed line). Peaks between 5–8 min are from metabolites of the clear lysate.

Fig. S12 ESI-MS spectra of modified ON **16** extracted from lysate sample after NMR analysis (calculated mass = 11194.75, observed mass = 11195.50).

Table S3. Absorbance and emission wavelengths of nucleoside FBFdU (1) in different solvents. Data reported from J. Am. Chem. Soc. 2018, 140, 12622–12633.^[S1]

solvent	λ _{max} (nm)	λ _{em} (nm)	Φ
water	322	437	0.11
methanol	322	418	0.04
dioxane	324	400	0.03
ethylene glycol	325	420	0.20
glycerol	326	424	0.52

Table S4. ¹⁹F NMR chemical shift (ppm) of FBFdU (**1**) and FdU (**2**) in different solvents.^[S1, S2] Although ¹⁹F label exhibits distinct chemical shifts in different solvents, the trend based on polarity and viscosity order is complex.

solvent	FBFdU	FdU
water	-121.78	-166.49
methanol	-123.70	-169.39
dioxane	-123.01	-169.06
ethylene glycol	-122.35	-168.05

10. Computational analysis: Molecular dynamics (MD) simulations were carried out using the templates HIV LTR-III (PDB ID: 6H1K)^[S6] LTR-IV (PDB ID:2N4Y)^[S7]. Force field parameters were generated for FdU and FBFdU to prepare the ON structures with the probes. Both structures were prepared using GaussView 6.0 with phosphate capping at both 3' and 5' ends. FBFdU has a rotatable bond between the fluorophore and the base. A dihedral scan was performed for FBFdU with 36 rotations of 10 degrees each in Gaussian 16 version B.01^[S8] at theory

level HF/6-31G* to find the most stable conformer. The stable conformer showing the lowest potential energy was then optimized in Gaussian 16 at the same theory level. FdU was also optimized using a similar strategy. ESP charges were calculated using Gaussian 16, and RESP fitting was done in the antechamber^[59] module of AmberTools 19. The parmchk2 program generated an initial set of force field parameters. However, some were missing parameters, and others had high penalty scores. The capping was then removed, and after fixing the overall charges, the GAFF^[S10] library was used to fill in the missing parameters. Finally, prepin files were generated for complex preparation.

These modifications were incorporated into their respective templates in tleap. Central K⁺ of the GQ core was also added using manual coordinate calculations. The complex was solvated with a rectangular water box using TIP3PBOX force field having an edge length of 10 Å. ~27 K⁺ were added to neutralize the system. OL15^[S11] was used to define the DNA. MD simulations were carried out using our previously reported protocol.^[S10] Briefly, all the complexes were subjected to 10,000 steps of restrained minimization by the steepest descent method with a restraint of 2.0 kcal/mol. Å² followed by 100 ps of heating and 100 ps of density equilibration. Further, 800 ps of NPT equilibration and 500 ns of production run were carried out in GPU accelerated version of PMEMD^[S13-S15] in AMBER 18.^[S16] A total of ~2.5 µs (5*500 ns) simulations were carried out. The SHAKE algorithm was applied to subject the hydrogens to bond length constraints. All the MD analyses were carried out using the CPPTRAJ^[S17] module of AmberTools 19. The hierarchical agglomerative algorithm was used for clustering the trajectories. The cut-offs for stacking were a COM distance of 5 Å and a vector angle of 45 degrees. The trajectories were visualized using VMD,^[S16] and images were rendered using PyMOL(Schrodinger LLC.)

				08 27 P1		C6 C4 N1 O4 C3 H8 C9 I3 C8 H7 O7 H7 O7 F110				
0	0	2								
This is a rem	ark line	2								
molecule res										
FDU	INT	0								
	OMIT		BEG							
0 0000		00	DLG							
0.0000			54	0	1	n	0	0	0	0
1		DU		0	-1	-2	0	0	0	0
2	DOMM	DU	M	1	0	-1	1.449	U	U	0
3		ווס	N/L	2	1	Ο	1 5 7 3	111 21	Δ	0

5 02 02 E 4 3 2 1.469 81.307 -120.503 0.909793 7 03 05 M 4 3 2 1.472 46.311 76.177 -0.909733 8 C1 CT M 7 4 3 1.398 120.517 -120.842 0.144315 9 H1 H1 E 8 7 4 1.083 110.027 63.971 0.038448 10 H2 H1 E 8 7 4 1.081 10.9506 -175.355 0.1031 12 H3 H1 E 11 8 7 1.426 109.53 -2744 -0.471067 14 C3 CT 3 13 11 8 1.392 111.377 121.413 0.280157 15 H4 H2 E 14 13 11 1.075 11.6454 103.214 0.08924 16 N1 N* S 14 13 11 1.476 3.022	4	P1	Р	М	3	2	1	1.54	111.208	-180	1.294462
6 08 02 E 4 3 2 1.472 46.311 76.917 -0.909793 7 03 05 M 4 3 2 1.646 110.787 -13.801 -0.640503 8 C1 CT M 7 4 3 1.398 120.517 -12.0842 0.144315 9 H1 H1 E 8 7 4 1.083 110.027 63.971 0.038448 10 H2 H1 E 8 7 4 1.086 110.799 -55.331 0.038448 11 C2 CT M 8 7 1.083 108.884 179.331 0.068969 13 04 OS S 11 8 7 1.426 109.55 -7.7355 0.0031 15 H4 H2 E 14 13 11 1.474 108.136 -141.827 -0.85978 16 N1 N* S 14 13 11 1.474 108.136 -141.827<	5	02	02	E	4	3	2	1.469	81.307	-120.503	-0.909793
7 03 05 M 4 3 2 1.646 110.787 -13.801 0.640503 8 C1 CT M 7 4 3 1.398 120.517 -120.842 0.14315 9 H1 H1 E 8 7 4 1.086 110.759 -55.331 0.038448 10 H2 H1 E 8 7 4 1.516 109.506 -175.355 0.10031 12 H3 H1 E 11 8 7 1.426 109.53 -62.744 0.471067 14 C3 CT 3 13 11 8 1.392 111.377 121.413 0.280157 15 H4 H2 E 14 13 113 1.1474 108.136 -141.827 0.38348 16 N1 N* S 14 13 1.1383 119.469 52.773 0.047923 16 N1 107 16 14 1.328 121.991 176.80 0.047926	6	08	02	E	4	3	2	1.472	46.311	76.917	-0.909793
8 C1 CT M 7 4 3 1.398 120.517 -120.842 0.144315 9 H1 H1 E 8 7 4 1.083 110.072 63.971 0.038448 10 H2 H1 E 8 7 4 1.066 110.759 55.331 0.038448 11 C2 CT M 8 7 4 1.516 109.53 -62.744 -0.471067 12 H3 H1 E 11 8 7 1.426 109.53 -62.744 -0.471067 14 C3 CT 3 13 11 8 1.392 11.137 121.413 0.280157 15 H4 H2 E 14 13 11 1.075 110.654 103.214 0.08924 16 H3 13 11 1.37 114.63 1.323 119.469 52.773 0.038478 17 C4 CM B 16 14 1.37 1.383 114.82 <	7	O3	OS	М	4	3	2	1.646	110.787	-13.801	-0.640503
9 H1 H1 E 8 7 4 1.083 110.027 63.971 0.038448 110 H2 H1 E 8 7 4 1.086 11.0759 -55.331 0.038448 111 C2 CT M 8 7 1.083 108.884 179.331 0.068969 13 O4 O5 S 11 8 7 1.426 109.53 -62.744 -0.47067 15 H4 H2 E 14 13 11 1.075 110.454 103.214 0.038924 16 N1 N* S 14 13 11 1.474 108.136 -141.827 -0.385478 17 C4 CM B 16 14 13 1.13 1.16.54 3.002 0.23236 18 H5 H4 E 17 16 1.45 121.91 -0.46224 0.64203 10 O5 O E 20 19 17 1.2 127.066 179.4861	8	C1	СТ	М	7	4	3	1.398	120.517	-120.842	0.144315
10 H2 H1 E 8 7 4 1.086 110.759 -55.31 0.038448 11 C2 CT M 8 7 4 1.516 10.905 -175.355 0.1001 12 H3 H1 E 11 8 7 1.426 109.53 -62.744 -0.471067 14 C3 CT 3 13 11 8 1.392 111.377 121.413 0.28057 15 H4 H2 E 14 13 11 1.075 110.643 103.214 0.08924 16 N1 N* S 14 13 11 1.075 110.643 0.04923 17 C4 CM B 16 14 132 1.383 119.469 52.773 0.04923 18 H5 H4 E 17 16 1.44 1.32 121.991 -176.865 -0.09409 20 C5 C0 E 20 19 1.77 1.2 12.091 -0.0	9	H1	H1	E	8	7	4	1.083	110.027	63.971	0.038448
11 C2 CT M 8 7 4 1.516 109.506 -175.355 0.10031 12 H3 H1 E 11 8 7 1.083 108.884 179.331 0.068969 13 O4 O5 S 11 8 7 1.426 109.53 -62.744 -0.471067 14 C3 CT 3 13 11 8 1.392 111.377 121.413 0.280157 15 H4 H2 E 14 13 11 1.075 110.454 103.214 0.089924 16 N1 N* S 14 13 13 11 1.474 108136 -141.827 0.049233 17 C4 CM B 17 16 14 1.328 121.91 -176.865 0.049409 20 C6 C B 17 16 1.45 121.491 0.057 0.646274 21 D5 O E 20 19 17 1.38 111	10	H2	H1	E	8	7	4	1.086	110.759	-55.331	0.038448
12 H3 H1 E 11 8 7 1.083 108.884 179.331 0.068969 13 O4 OS S 11 8 7 1.426 109.53 -62.744 0.471067 14 C3 CT 3 11 8 1.392 111.1377 121.413 0.280157 15 H4 H2 E 14 13 11 1.075 110.454 103.214 0.08994 16 N1 N* S 14 13 11 1.474 108.136 -141.827 -0.385478 17 C4 CM B 17 16 14 1.328 121.991 -176.855 -0.044092 18 H5 H4 E 20 19 17 1.2 124.91 0.422 0.642038 21 O5 O E 20 19 17 1.2 127.916 179.48 -0.707254 22 N2 NA B 220 19 0.37 124.910 0.55	11	C2	СТ	М	8	7	4	1.516	109.506	-175.355	0.10031
13 04 0S S 11 8 7 1.426 109.53 .62.744 .0.471067 14 C3 CT 3 13 11 8 1.392 111.377 121.413 0.280157 15 H4 H2 E 14 13 11 1.075 110.454 103.214 0.08924 16 N1 N* S 14 13 11 1.474 108.156 -141.827 -0.385478 17 C4 CM B 16 14 13 1.383 119.469 52.773 0.047923 18 H5 H4 E 17 16 14 1.328 121.991 -176.656 -0.094409 20 C5 O E 20 19 17 1.2 12.491 0.42055 0.64024 21 05 O E 20 19 17 1.38 111.743 0.027 -0.64024 22 N2 N4 13 1.37 128.863 0.55 0.7005 <td>12</td> <td>Н3</td> <td>H1</td> <td>E</td> <td>11</td> <td>8</td> <td>7</td> <td>1.083</td> <td>108.884</td> <td>179.331</td> <td>0.068969</td>	12	Н3	H1	E	11	8	7	1.083	108.884	179.331	0.068969
14 C3 CT 3 13 11 8 1.392 111.377 121.413 0.280157 15 H4 H2 E 14 13 11 1.075 110.454 103.214 0.08924 16 N1 N* S 14 13 11 1.474 108.136 -141.827 -0.385478 17 C4 CM B 16 14 1.333 119.495 5.7.73 0.047923 18 H5 H4 E 17 16 14 1.328 121.991 -176.865 -0.04409 20 C6 C B 19 17 16 1.45 121.491 0.422 0.642038 21 O5 O E 20 19 17 1.38 111.743 0.057 -0.646274 22 N2 NA B 20 19 1.379 128.863 0.555 0.73023 23 H6 H E 22 20 1.2 19.961 178.871 -0.72494 <td>13</td> <td>04</td> <td>OS</td> <td>S</td> <td>11</td> <td>8</td> <td>7</td> <td>1.426</td> <td>109.53</td> <td>-62.744</td> <td>-0.471067</td>	13	04	OS	S	11	8	7	1.426	109.53	-62.744	-0.471067
15 H4 H2 E 14 13 11 1.075 110.454 103.214 0.089924 16 N1 N* S 14 13 11 1.474 108.136 -141.827 -0.385478 17 C4 CM B 16 14 13 1.383 119.469 52.773 0.047923 18 H5 H4 E 17 16 14 1.328 121.91 -17.6865 -0.094409 20 C6 C B 19 17 16 1.45 121.491 0.422 0.642038 21 O5 O E 20 19 17 1.38 111.47 179.661 0.304756 22 NA B 20 19 1.77 1.38 116.47 179.661 0.304756 24 C7 C S 22 20 1.997 116.47 179.661 0.304756 25 O6 O E 24 22 20 1.2 119.961 178.871	14	C3	СТ	3	13	11	8	1.392	111.377	121.413	0.280157
16 N1 N* S 14 13 11 1.474 108.136 -141.827 -0.385478 17 C4 CM B 16 14 13 1.383 119.469 52.773 0.047923 18 H5 H4 E 17 16 14 1.075 116.654 3.02 0.23236 19 C5 CM B 17 16 1.4 1.075 10.6565 0.094409 20 C6 C B 19 17 16 1.45 121.491 0.422 0.642038 21 O5 O E 20 19 1.7 1.38 111.743 0.057 -0.646274 22 N2 NA B 20 19 1.379 128.863 0.555 0.73023 24 C7 C S 22 20 1.2 119.61 178.871 -0.72743 25 O6 O E 27 14 13 1.08 13.265 1.524 0.63958	15	H4	H2	E	14	13	11	1.075	110.454	103.214	0.089924
17 C4 CM B 16 14 13 1.383 119.469 52.773 0.047923 18 H5 H4 E 17 16 14 1.075 116.654 3.002 0.23236 19 C5 CM B 17 16 14 1.328 121.991 .76.865 -0.040409 20 C6 C B 19 17 16 1.45 121.491 0.422 0.642038 21 O5 O E 20 19 17 1.38 111.743 0.057 -0.646274 23 H6 H E 22 20 19 0.997 116.47 179.661 0.304756 24 C7 C S 22 20 19 1.379 128.863 0.555 0.73023 25 O6 O E 24 22 20 1.2 119.61 1.377 116.47 179.61 0.304756 26 F1 F E 19 17 16	16	N1	N*	S	14	13	11	1.474	108.136	-141.827	-0.385478
18 H5 H4 E 17 16 14 1.075 116.654 3.002 0.233236 19 C5 CM B 17 16 14 1.328 121.991 -176.865 0.094409 20 C6 C B 19 17 16 1.45 121.491 0.422 0.642038 21 O5 O E 20 19 17 1.2 127.066 179.948 0.707254 22 N2 NA B 20 19 177 1.38 111.743 0.057 -0.64274 23 H6 H E 22 20 19 0.997 116.47 179.661 0.304756 24 C7 C S 22 20 19 1.379 128.863 0.555 0.73023 25 O6 O E 14 13 11 15.24 106.529 18.129 -0.132195 26 F1 F E 19 11 8 1.081 110.83 </td <td>17</td> <td>C4</td> <td>CM</td> <td>В</td> <td>16</td> <td>14</td> <td>13</td> <td>1.383</td> <td>119.469</td> <td>52.773</td> <td>0.047923</td>	17	C4	CM	В	16	14	13	1.383	119.469	52.773	0.047923
19 C5 CM B 17 16 14 1.328 121.991 -176.865 -0.094409 20 C6 C B 19 17 16 1.45 121.491 0.422 0.642038 21 O5 O E 20 19 17 1.2 127.066 179.948 -0.707254 22 N2 NA B 20 19 1.77 1.38 111.743 0.057 -0.646274 23 H6 H E 22 20 19 0.397 116.47 179.661 0.304756 24 C7 C S 22 20 19 1.379 128.863 0.555 0.73023 25 O6 O E 24 22 20 1.2 119.961 178.871 -0.727943 26 F1 F E 19 17 16 1.327 122.327 179.93 -0.148638 27 C9 CT B 14 13 1.082 110.583 <	18	H5	H4	E	17	16	14	1.075	116.654	3.002	0.233236
20 C6 C B 19 17 16 1.45 121.491 0.422 0.642038 21 05 O E 20 19 17 1.2 127.066 179.948 -0.707254 22 N2 NA B 20 19 17 1.38 111.743 0.057 -0.646274 23 H6 H E 22 20 19 0.997 116.47 179.661 0.304756 24 C7 C S 22 20 19 0.997 116.47 179.61 0.304756 24 C7 C S 22 20 1.2 119.961 178.871 -0.72793 25 O6 O E 24 22 20 1.2 19.961 178.871 -0.72794 26 F1 F E 19 17 16 1.327 122.37 179.93 -0.148638 27 C9 CT B 14 13 1.082 110.583 -84.598 0	19	C5	CM	В	17	16	14	1.328	121.991	-176.865	-0.094409
21 05 0 E 20 19 17 1.2 127.066 179.948 -0.707254 22 N2 NA B 20 19 17 1.38 111.743 0.057 -0.646274 23 H6 H E 22 20 19 0.997 116.47 179.661 0.304756 24 C7 C S 22 20 19 1.379 128.863 0.555 0.73023 25 06 O E 24 22 20 1.2 119.61 178.871 -0.72793 26 F1 F E 19 17 16 1.327 122.327 179.93 -0.148638 27 C9 CT B 14 13 1.082 110.533 -84.598 0.063958 29 H9 HC E 27 14 13 1.08 113.265 151.624 0.063958 30 C8 CT M 11 8 1.081 111.369 22.658 <	20	C6	С	В	19	17	16	1.45	121.491	0.422	0.642038
22 N2 NA B 20 19 17 1.38 111.743 0.057 -0.646274 23 H6 H E 22 20 19 0.997 116.47 179.661 0.304756 24 C7 C S 22 20 19 1.379 128.863 0.555 0.73023 25 O6 O E 24 22 20 1.2 119.961 178.871 -0.727943 26 F1 F E 19 17 16 1.327 122.327 179.93 -0.148638 27 C9 CT B 14 13 1.18 10.682 110.583 *84.598 0.063958 28 H8 HC E 27 14 13 1.082 110.583 *84.598 0.063958 30 C8 CT M 11 8 7 1.537 115.49 56.62 0.179574 31 H7 H1 E 30 11 8 1.402 107	21	05	0	E	20	19	17	1.2	127.066	179.948	-0.707254
23 H6 H E 22 20 19 0.997 116.47 179.661 0.304756 24 C7 C S 22 20 19 1.379 128.863 0.555 0.73023 25 06 O E 24 22 20 1.2 119.961 178.871 -0.727943 26 F1 F E 19 17 16 1.327 122.327 179.93 -0.148638 27 C9 CT B 14 13 11 1.524 106.529 -18.129 -0.132195 28 H8 HC E 27 14 13 1.082 110.583 -84.598 0.063958 29 H9 HC E 27 14 13 1.081 113.265 151.624 0.063958 30 C8 CT M 11 8 7 1.537 115.49 0.626347 LOOP C7 N1 E 30 11 8 1.402 107.933 <td< td=""><td>22</td><td>N2</td><td>NA</td><td>В</td><td>20</td><td>19</td><td>17</td><td>1.38</td><td>111.743</td><td>0.057</td><td>-0.646274</td></td<>	22	N2	NA	В	20	19	17	1.38	111.743	0.057	-0.646274
24 C7 C S 22 20 19 1.379 128.863 0.555 0.73023 25 O6 O E 24 22 20 1.2 119.961 178.871 -0.727943 26 F1 F E 19 17 16 1.327 122.327 179.93 -0.148638 27 C9 CT B 14 13 11 1.524 106.529 -18.129 -0.132195 28 H8 HC E 27 14 13 1.082 110.583 -84.598 0.063958 29 H9 HC E 27 14 13 1.082 110.583 -84.598 0.063958 30 C8 CT M 11 8 7 1.537 115.49 56.62 0.179574 31 H7 H1 E 30 11 8 1.402 107.933 144.829 -0.626347 LOOP	23	H6	Н	E	22	20	19	0.997	116.47	179.661	0.304756
25 06 0 E 24 22 20 1.2 119.961 178.871 -0.727943 26 F1 F E 19 17 16 1.327 122.327 179.93 -0.148638 27 C9 CT B 14 13 11 1.524 106.529 -18.129 -0.132195 28 H8 HC E 27 14 13 1.082 110.583 -84.598 0.063958 29 H9 HC E 27 14 13 1.08 113.265 151.624 0.063958 30 C8 CT M 11 8 7 1.537 115.49 56.62 0.179574 31 H7 H1 E 30 11 8 1.402 107.933 144.829 -0.626347 LOOP	24	C7	С	S	22	20	19	1.379	128.863	0.555	0.73023
26 F1 F E 19 17 16 1.327 122.327 179.93 -0.148638 27 C9 CT B 14 13 11 1.524 106.529 -18.129 -0.132195 28 H8 HC E 27 14 13 1.082 110.583 -84.598 0.063958 29 H9 HC E 27 14 13 1.08 113.265 151.624 0.063958 30 C8 CT M 11 8 7 1.537 115.49 56.62 0.179574 31 H7 H1 E 30 11 8 1.402 107.933 144.829 -0.626347 LOOP	25	O6	0	E	24	22	20	1.2	119.961	178.871	-0.727943
27 C9 CT B 14 13 11 1.524 106.529 -18.129 -0.132195 28 H8 HC E 27 14 13 1.082 110.583 -84.598 0.063958 29 H9 HC E 27 14 13 1.082 113.265 151.624 0.063958 30 C8 CT M 11 8 7 1.537 115.49 56.62 0.179574 31 H7 H1 E 30 11 8 1.081 111.369 22.658 0.078991 32 O7 OS M 30 11 8 1.402 107.933 144.829 -0.626347 LOOP	26	F1	F	E	19	17	16	1.327	122.327	179.93	-0.148638
28 H8 HC E 27 14 13 1.082 110.583 -84.598 0.063958 29 H9 HC E 27 14 13 1.08 113.265 151.624 0.063958 30 C8 CT M 11 8 7 1.537 115.49 56.62 0.179574 31 H7 H1 E 30 11 8 1.081 111.369 22.658 0.078991 32 O7 OS M 30 11 8 1.402 107.933 144.829 -0.626347 LOOP	27	C9	СТ	В	14	13	11	1.524	106.529	-18.129	-0.132195
29 H9 HC E 27 14 13 1.08 113.265 151.624 0.063958 30 C8 CT M 11 8 7 1.537 115.49 56.62 0.179574 31 H7 H1 E 30 11 8 1.081 111.369 22.658 0.078991 32 O7 OS M 30 11 8 1.402 107.933 144.829 -0.626347 LOOP	28	H8	HC	E	27	14	13	1.082	110.583	-84.598	0.063958
30 C8 CT M 11 8 7 1.537 115.49 56.62 0.179574 31 H7 H1 E 30 11 8 1.081 111.369 22.658 0.078991 32 O7 OS M 30 11 8 1.402 107.933 144.829 -0.626347 LOOP	29	Н9	HC	E	27	14	13	1.08	113.265	151.624	0.063958
31 H7 H1 E 30 11 8 1.081 111.369 22.658 0.078991 32 07 OS M 30 11 8 1.402 107.933 144.829 -0.626347 LOOP C7 N1 S	30	C8	СТ	М	11	8	7	1.537	115.49	56.62	0.179574
32 07 05 M 30 11 8 1.402 107.933 144.829 -0.626347 LOOP C7 N1 C N1 N1 C N1 N2 C C N1 N2 C C N1 N2 C C N1 N1 N2 N1 <t< td=""><td>31</td><td>H7</td><td>H1</td><td>E</td><td>30</td><td>11</td><td>8</td><td>1.081</td><td>111.369</td><td>22.658</td><td>0.078991</td></t<>	31	H7	H1	E	30	11	8	1.081	111.369	22.658	0.078991
LOOP IN1 C7 N1 C8 C9 IMPROPER V C7 C4 N1 C3 C5 H5 C4 N1 C6 C4 C5 F1 C5 N2 C6 O5 C6 C7 N2 H6 N1 N2 C7 O6 DONE V V V STOP V V V	32	07	OS	М	30	11	8	1.402	107.933	144.829	-0.626347
C7 N1 C8 C9 IMPROPER	LOOP										
C8 C9 IMPROPER C4 N1 C3 C5 H5 C4 N1 C6 C4 C5 F1 C5 N2 C6 O5 C6 C7 N2 H6 N1 N2 C7 O6 DONE STOP STOP STOP	C7	N1									
IMPROPER C7 C4 N1 C3 C5 H5 C4 N1 C6 C4 C5 F1 C5 N2 C6 O5 C6 C7 N2 H6 N1 N2 C7 O6 DONE STOP V V	C8	C9									
C7 C4 N1 C3 C5 H5 C4 N1 C6 C4 C5 F1 C5 N2 C6 O5 C6 C7 N2 H6 N1 N2 C7 O6 DONE STOP V V	IMPROPER										
C5 H5 C4 N1 C6 C4 C5 F1 C5 N2 C6 O5 C6 C7 N2 H6 N1 N2 C7 O6 DONE	C7	C4	N1	C3							
C6 C4 C5 F1 C5 N2 C6 O5 C6 C7 N2 H6 N1 N2 C7 O6 DONE	C5	H5	C4	N1							
C5 N2 C6 O5 C6 C7 N2 H6 N1 N2 C7 O6 DONE	C6	C4	C5	F1							
C6 C7 N2 H6 N1 N2 C7 O6 DONE	C5	N2	C6	05							
N1 N2 C7 O6 DONE STOP	C6	C7	N2	H6							
DONE STOP	N1	N2	C7	06							
STOP	DONE										
	STOP										

Fig. S13 Cartesian coordinates and RESP charges calculated for the FdU adduct generated using Gaussian 16. Carbons atoms are represented by green, nitrogen atoms by blue, oxygen atoms by red, fluorine by cyan and hydrogen atoms by white respectively.

0	0	2								
This is a remarl	< line									
molecule.res										
FBFDU	INT	0								
CORRECT	OMIT	DU	BFG							
0 0000	•	20								
1	DUMM	DU	М	0	-1	-2	0	0	0	0
- 2	DUMM	DU	M	1	0	-1	1.449	0	0	0
- 3	DUMM	DU	M	2	1	0	1.523	111.21	0	0
4	P1	P	M	3	2	1	1.54	111.208	-180	1.329951
5	02	02	E	4	3	2	1.469	102.542	-69.037	-0.907294
6	08	02	Е	4	3	2	1.477	133.025	105.246	-0.907294
7	03	OS	М	4	3	2	1.644	57.297	-173.44	-0.629415
8	C1	СТ	М	7	4	3	1.402	118.04	54.604	0.143944
9	H1	H1	Е	8	7	4	1.084	109.87	71.765	0.042331
10	H2	H1	Е	8	7	4	1.086	110.559	-47.174	0.042331
11	C2	СТ	М	8	7	4	1.514	110.845	-167.033	0.101983
12	H3	H1	Е	11	8	7	1.083	108.375	176.116	0.071046
13	04	OS	S	11	8	7	1.429	109.832	-66.203	-0.463418
14	C3	СТ	3	13	11	8	1.391	110.667	128.117	0.279273
15	H4	H2	Е	14	13	11	1.077	111.028	96.849	0.094203
16	N1	N*	S	14	13	11	1.475	107.506	-147.989	-0.379024
17	C4	CM	В	16	14	13	1.364	119.403	52.105	0.123751
18	H5	H4	Е	17	16	14	1.075	114.89	2.014	0.233422
19	C5	CM	В	17	16	14	1.35	123.996	-177.596	-0.298709
20	C6	С	В	19	17	16	1.455	118.481	1.281	0.680537
21	05	0	Е	20	19	17	1.202	127.194	179.279	-0.708119
22	N2	NA	В	20	19	17	1.381	113.242	-0.56	-0.638327
23	H6	Н	E	22	20	19	0.997	116.23	179.821	0.311693
24	C7	С	S	22	20	19	1.373	128.831	0.532	0.743339
25	06	0	E	24	22	20	1.197	120.755	179.188	-0.707045
26	C10	C*	S	19	17	16	1.461	121.17	-178.289	0.120509
27	C11	C*	В	26	19	17	1.347	133.367	-175.809	-0.216033
28	C12	CB	S	27	26	19	1.446	105.519	-179.349	-0.092125
29	C13	CB	В	28	27	26	1.389	105.35	0.092	0.052891
30	C15	CA	В	29	28	27	1.38	124.347	179.52	-0.068718
31	C17	CA	В	30	29	28	1.38	116.104	0.291	-0.19327
32	C16	CA	В	31	30	29	1.39	119.966	-0.033	0.074936
33	C14	CA	S	32	31	30	1.372	123.833	-0.186	-0.165353

34	H13	HA	Е	33	32	31	1.075	120.429	-179.75	0.122269
35	F1	F	Е	32	31	30	1.346	117.813	-179.963	-0.18672
36	H15	HA	Е	31	30	29	1.074	121.136	179.921	0.1269
37	H14	HA	E	30	29	28	1.078	119.977	-179.04	0.228791
38	012	OS	E	29	28	27	1.35	109.737	-0.162	-0.17201
39	H12	HA	E	27	26	19	1.066	125.988	0.284	0.160246
40	C9	СТ	В	14	13	11	1.522	105.968	-24.509	-0.132497
41	H8	HC	E	40	14	13	1.083	110.505	-79.957	0.065488
42	H9	HC	E	40	14	13	1.079	113.784	155.703	0.065488
43	C8	СТ	Μ	11	8	7	1.538	115.921	53.869	0.183496
44	H7	H1	E	43	11	8	1.081	111.413	19.034	0.083087
45	07	OS	Μ	43	11	8	1.401	107.861	141.357	-0.616531
LOOP										
C7	N1									
012	C10									
C14	C12									
C8	C9									
IMPROPER										
C7	C4	N1	C3							
C5	H5	C4	N1							
C10	C6	C5	C4							
C5	N2	C6	05							
C6	C7	N2	H6							
N1	N2	C7	06							
C11	C5	C10	012							
C10	C12	C11	H12							
C11	C14	C12	C13							
C15	C12	C13	012							
C17	C13	C15	H14							
C15	C16	C17	H15							
C17	C14	C16	F1							
C16	C12	C14	H13							
DONE										
STOP										

Fig. S14 Cartesian coordinates and RESP charges calculated for the FBFdU adduct generated using Gaussian 16. Carbons atoms are represented by green, nitrogen atoms by blue, oxygen atoms by red, fluorine by cyan and hydrogen atoms by white respectively.

Fig. S15 RMSD plot of (A) LTR-III ON 3 and ON 4 (B) LTR-IV ON 8, ON 9 and ON 10. RMSD values were calculated from the 500 ns MD simulations.

Fig. S16 Superimposed images of the major clusters of LTR-III native ON **3** and modified ON **4**. ON **3** and **4** are represented in green and maroon, respectively. The bases, which show maximum changes in the orientation are labeled in the Figure. The clusters have been obtained from the 500 ns MD simulation. The incorporation of FdU results in the partial stacking of FdU with G_8 and alters the orientation slightly from the native form while FBFdU remains the same. Model for ON **4** is available with the private link and access code (password): https://www.modelarchive.org/doi/10.5452/ma-okc7y

Code: QwwKvEyOwE

Fig. S17 RMSF plots of (**A**) LTR-III ON **3** and ON **4** with variation in the G_8 and FdU (**B**) LTR-IV ON **8** and ON **9** (**C**) LTR-IV ON **8** and ON **10** with variation in the probe. The nucleotides are represented from 5' to 3'. The position of the probe has been indicated by a dashed box around the nucleotide RMSF values were calculated from the 500 ns MD simulations.

Fig. S18 Population distribution of the (**A**) centre of mass distance (COM) distance between G_{28} and FBFdU in ON **4**, (**B**) angle between the normal to G_{28} and FBFdU. The values were calculated from the 500 ns MD simulations.

Fig. S19 Representative images of three major clusters of LTR-IV ON **9**. (**A**) Cluster **1**, (**B**) cluster **2** and (**C**) cluster **3**. GQ bases are represented in maroon and FBFdU in blue. K⁺ ions are represented as orange spheres. Clusters have been obtained from the 500 ns MD simulation.

Model for ON **9** is available with the private link and access code (password): <u>https://www.modelarchive.org/doi/10.5452/ma-6pmie</u> Code: DG4iRTmwIz

Fig. S20 Representative images of two major clusters of LTR-IV ON **10**. (**A**) Cluster 1 and (**B**) cluster 2. GQ bases are represented in maroon and FBFdU in blue. K⁺ ions are represented as orange spheres. Clusters have been obtained from the 500 ns MD simulation. Model for ON **10** is available with the private link and access code (password): <u>https://www.modelarchive.org/doi/10.5452/ma-otuxm</u> Code: INRqkxQXSJ

Fig. S21 Superimposed images of the major clusters of LTR-IV native ON **8** and modified ON **9**. ON **8** and **9** are represented in green and maroon, respectively. The bases, which show maximum changes in the orientation are labeled in the Figure. The clusters have been obtained from the 500 ns MD simulation.

Fig. S22 Superimposed images of the major clusters of LTR-IV native ON **8** and modified ON **10**. ON **8** and **10** are represented in green and maroon, respectively. The bases, which show maximum changes in the orientation are labeled in the Figure. The clusters have been obtained from the 500 ns MD simulation.

11. Ligand binding studies of modified LTR ONs

Fluorescence: LTR GQ structures (0.5 μ M) of ONs **4**, **9** and **16** were formed by heating the samples at 95 °C for 5 min in 20 mM potassium phosphate buffer (pH 7) containing 70 mM KCl. The samples were incubated with increasing concentrations of the ligands (TMPyP4 and BRACO19) at 25 °C for 1 h. Samples were excited at 330 nm with an excitation and emission wavelength slit widths of 7 nm and 9 nm, respectively. For DOX titration, increasing concentrations of annealed GQ formed by ON **12** in the same ionic conditions as mentioned above was incubated with DOX (2 μ M) at 25 °C for 1 h. The final volume of each sample solution was kept at 200 μ L. Samples were excited at 480 nm, with an excitation and emission slit widths of 7 nm and 9 nm respectively. Fluorescence experiments were performed in triplicate in a micro-fluorescence cuvette at 25 °C. For titration with TMPyP4 and BRACO19, an appropriate blank containing ligand in a buffer was subtracted from each reading for the corresponding ligand concentration. Normalized fluorescence intensity (*F*_N) against ligand concentration. Normalized fluorescence intensity (*F*_N) against ligand concentration was plotted and fitted to a Hill equation (see below) to determine the apparent *K*_d values. Fitted graphs were prepared using OriginPro 8.5 software.^[519]

$$F_N = \frac{F_i - F_s}{F_0 - F_s}$$

 F_i is the fluorescence intensity at each titration point. F_o and F_s are the fluorescence intensity in the absence of ligand (L) and at saturation, respectively. n is the Hill coefficient or degree of cooperativity associated with the binding.

$$F_{N} = F_{0} + \left(F_{s} - F_{0}\right) \left(\frac{\left[L\right]^{t}}{\left[K_{d}\right]^{t} + \left[L\right]^{t}}\right)$$

¹⁹**F NMR**: LTR GQ structures of ONs **4** (45 μ M), **9** (75 μ M), **16** (45 μ M) were formed by heating the samples at 95 °C for 5 min in 20 mM potassium phosphate buffer (pH 7) containing 70 mM KCl in 20% D₂O. The samples were allowed to cool at RT and then they were transferred to a Shigemi tube (5 mm advance NMR micro-tube) for NMR analysis. ¹⁹F NMR spectra were recorded at a frequency 564.9 MHz on a Bruker AVANCE III HD ASCEND 600 MHz spectrometer equipped with Cryo-Probe (CP2.1 QCl 600S3 H/F-C/N-D-05 Z XT). After each experiment, increasing concentrations of ligands were added and incubated at RT for 1 h prior to the experiment. All ¹⁹F NMR spectra were referenced relative to an external standard, trifluorotoluene (TFT = -63.72 ppm). Spectral parameters for ¹⁹F NMR are same as mentioned in section 8. ¹⁹F NMR spectra were obtained in 2–2.5 h with 5000–6000 scans. Spectra were processed with an exponential window function using lb = 20 Hz.

Fig. S23 (**A**) Chemical structures of GQ-binding ligands. Curve fits for the binding of TMPyP4 and BRACO19 to (**B**) LTR-III ON **4** and (**C**) LTR-IV ON **9**. Normalized fluorescence intensity at the emission maximum is plotted against ligand concentration. Values are denoted as mean \pm s.d for 3 independent experiments. (**D** and **E**) ¹⁹F NMR spectra of ONs **4** and **9** as a function of increasing TMPyP4 concentration. GQ-L represents peak corresponding to GQ-ligand complex.

Fig. S24 Emission spectra for the titration of labeled LTR-III ON **4** (0.5 μ M) with increasing concentration of (**A**) TMPyP4 (12.5 nM–2.5 μ M) and (**B**) BRACO19 (10 nM–2.5 μ M). Samples were excited at 330 nm with an excitation and emission slit widths of 7 nm and 9 nm, respectively. The dashed line represents the spectrum of ON **4** without any ligand. (**C**) ¹⁹F NMR spectra of ON **4** (45 μ M) with increasing BRACO19 concentration. GQ-L represents peak corresponding to GQ-ligand complex. See Section 11 for experimental details.

Fig. S25 Emission spectra for the titration of labeled LTR-IV ON **9** (0.5 μ M) with increasing concentrations of (**A**) TMPyP4 (12.5 nM–2.5 μ M) and (**B**) BRACO19 (36 nM–2.8 μ M). Samples were excited at 330 nm with an excitation and emission slit widths of 7 nm and 9 nm, respectively. The dashed line represents the spectrum of ON **9** without any ligand. (**C**) ¹⁹F NMR spectra of ON **9** (75 μ M) with increasing BRACO19 concentration. GQ-L represents peak corresponding to GQ-ligand complex. See Section 11 for experimental details.

Fig. S26 FBFdU and FdU report structure-specific ligand binding to LTR GQ-hairpin structure. (A) Schematic representation of the doubly-labeled LTR ON **16** showing the preferred site of ligand (TMPyP4 to GQ and DOX to hairpin) interaction. (B) Curve fits for the binding of TMPyP4 and DOX to ON **16** (λ_{em} = 421 nm) and ON **12** (λ_{em} = 590 nm). Normalized fluorescence intensity at the emission maximum is plotted against ligand concentration. Values are denoted as mean ± s.d for 3 independent experiments. See Section 11 for experimental details.

Fig. S27 (A) Emission spectra for the ligand titration of labeled LTR-(III+IV) ON **16** (0.5 μ M) with increasing concentration of TMPyP4 (30 nM–2.5 μ M). Samples were excited at 330 nm with an excitation and emission slit widths of 7 nm and 9 nm, respectively. The dashed line represents the spectrum of ON **16** without any ligand. (B) Emission spectra for the titration of DOX (2 μ M) with increasing concentration of control ON **12** (2.5 nM–2.0 μ M). Samples were excitation and emission slit widths of 7 nm and 9 nm, respectively. The dashed line represents the spectrum of ON **12** (2.5 nM–2.0 μ M). Samples were excited at 480 nm with an excitation and emission slit widths of 7 nm and 9 nm, respectively. The dashed line represents the spectrum of DOX without any ON **12**.

12. *Taq* polymerase assay: 5'-FAM labeled primer P1 (5 μ M) and template DNA ONs T1 and T2 (5 μ M) were annealed in 10 mM Tris-HCl (pH 7.8) containing 100 mM KCl at 95 °C for 5 minutes and slowly cooled to RT (Table S5). The primer-template duplexes were further diluted to 1 μ M in 10 mM Tris-HCl buffer containing 100 mM KCl. Primer extension reactions were performed with primer-template duplex (100 nM), KCl (100 mM), 1× DNA polymerase buffer (10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl₂) at 37 °C. Reactions were initiated by adding dNTPs (500 μ M) and 0.5 μ L of *Taq* DNA polymerase (5 U/ μ L, New England Biolabs, Catlog. M0273S) in a total reaction volume of 20 μ L. Reactions were stopped at different time intervals by adding 10 μ L of denaturing

loading buffer (8.3 M urea in 10 mM Tris-HCl, 100 mM EDTA, 0.05% bromophenol blue, pH 8) further flash cooled on a dry-ice bath. The reaction mixture was then concentrated in a speedvac concentrator. The extension products were resolved by 15% denaturing PAGE containing 8.3 M urea and was electrophoresed at a constant power of 35 W for 2.5–3 h. The gel was scanned using an Amersham Typhon 600 (GE Healthcare) at the FAM wavelength and quantified with the help of the ImageJ software. Impact of ligands on the polymerase activity was studied by adding different concentrations of TMPyP4 and or DOX. The ligands were first added to the reaction mixture and incubated for 1 h at RT and then initiated by adding dNTPs and enzyme as above. The reaction products were analyzed as described above.

Table S5. Sequence of templates and	primer used in Taq	DNA polymerase stop assay.
-------------------------------------	--------------------	----------------------------

ON	5′3′
P1	FAM-GGCAAAAAGCAGCTGCTTATATGCAG
T1	TTTTTGGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGTTTTTCTGCATATAAGCAGCTGCTTTTTGCC
T2ª	TTTTTGGGAGGCGTGGCCTGTGCGTGACTGGGGAGTGGTTTTTCTGCATATAAGCAGCTGCTTTTTGCC

^aT represents G-T mutation. This mutation does not support GQ formation.^[S20]

Fig. S28 Gel image of primer extension reactions using native LTR G-rich ON template **T1** and mutated LTR template **T2**. See Section 12 for details.

Fig. S29 Gel image of primer extension reactions using native LTR G-rich ON template **T1** in the presence of different ligands namely, TMPyP4/DOX and TMPyP4+DOX. See Section 12 for details.

Fig. S30 Tailor-made bimodal ligand scaffolds composed of GQ and duplex binders could selectively interact with respective domains of LTR G-rich motif. The design of clamping linker (length and interaction partners) will be crucial in adding to the selectivity and location of binding within the GQ, hairpin and GQ-hairpin junction domains. Here, a representative mode of binding of the ligand scaffold is shown.

13. ³¹P NMR of modified phosphoramidites

³¹P NMR of **1a** (162 MHz, CDCl₃)

14. References

- [S1] S. Manna, D. Sarkar, S. G. Srivatsan, J. Am. Chem. Soc. 2018, 140, 12622–12633.
- [S2] L. Sacre, C. J. Wilds, Eur. J. Org. Chem. 2017, 3003–3008.
- [S3] A. Pandey, S. Roy, S. G. Srivatsan, Chem. Asian J. 2023, 18, e20230051.
- [S4] P. Selenko, Z. Serber, B. Gadea, J. Ruderman, G. Wagner, Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11904– 11909,
- [S5] N. Yagi, K. Satonaka, M. Horio, H. Shimogaki, Y. Tokuda, S. Maeda, Biotech Histochem. 1996, 71, 123–129.
- [S6] E. Butovskaya, B. Heddi, B. Bakalar, S. N. Richter, A. T. Phan, J. Am. Chem. Soc. 2018, 140, 13654–3662.
- [S7] B. De Nicola, C. J. Lech, B. Heddi, S. Regmi, I. Frasson, R. Perrone, S. N. Richter, A.T. Phan, Nucleic Acids Res. 2016, 44, 6442–6451.
- [S8] Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [S9] J. Wang, W. Wang, P. A. Kollman, D. A. Case, J. Mol. Graph. Model. 2006, 25, 247–260.
- [S10] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157–1174.
- [S11] R. Galindo-Murillo, J. C. Robertson, M. Zgarbová, J. Šponer, M. Otyepka, P. Jurečka, T. E., Cheatham, III, J. Chem. Theory Comput. **2016**, *12*, 4114–4127.
- [S12] S. Kumar, S. P. Pany, S. Sudhakar, S. B. Singh, C. S. Todankar, Pradeepkumar, P.I. Biochemistry 2022, 61, 2546–2549.
- [S13] R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand, R. C. Walker, J. Chem. Theory Comput. 2013, 9, 3878–3888.
- [S14] A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand, R. C. Walker, J. Chem. Theory Comput. 2012, 8, 1542–1555.
- [S15] S. Le Grand, A. W. Götz, R. C. Walker, Comput. Phys. Commun. 2013, 184, 374–380.
- [S16] D. A. Case, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E., Cheatham, III, V. W. D. Cruzeiro, T. A. Darden, R. E. Duke, D. Ghoreishi, M. K. Gilson, AMBER 2018; Univ. California: San Fr, 2018; Vol. 2018.
- [S17] D. R. Roe, T. E. Cheatham, J. Chem. Theory Comput. 2013, 9, 3084–3095.
- [S18] W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics 1996, 14, 33–38.
- [S19] A. A. Tanpure, S. G. Srivatsan, Nucleic Acids Res. 2015, 43, e149.
- [S20] M. Scalabrin, I. Frasson, E. Ruggiero, R. Perrone, E. Tosoni, S. Lago, M. Tassinari, G. Palù, S. N. Richter, Sci. Rep. 2017, 7, 45244.