## **Supporting Information**

# Cross-linked K<sub>0.5</sub>MnO<sub>2</sub> Nanoflower Composites for High

### Rate and Low Overpotential Li–CO<sub>2</sub> Batteries

Jiawei Wu,<sup>a,c</sup><sup>‡</sup> Jian Chen,<sup>b‡</sup> Xiaoyang Chen,<sup>b</sup> Yang Liu,<sup>a,b</sup> \* Zhe Hu,<sup>d</sup> Feijian Lou,<sup>a\*</sup> Shulei Chou<sup>e</sup> and Yun Qiao<sup>a,b\*</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang,

Henan 453007, China. E-mail address: liuy986@htu.edu.cn; loufeijian@htu.edu.cn;

<sup>b</sup> School of Environment and Chemical Engineering, Shanghai University, Shanghai 200444, China. E-mail address: yunqiao@shu.edu.cn

<sup>c</sup> Sinopec Petroleum Engineering Zhongyuan Co. Ltd., Natural Gas Technology Center, Zhengzhou, Henan 450000, China

<sup>d</sup> College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China

<sup>e</sup> Institute for Carbon Neutralization, College of Chemistry and Materials Engineering,
 Wenzhou University, Wenzhou, Zhejiang 325035, China.

<sup>‡</sup>J. Wu and. J. Chen. contributed equally to this work.

#### **Experimental**

#### Materials

Potassium permanganate (KMnO<sub>4</sub>), lithium bis(trifluoromethane sulfonimide) (LiTFSI), tetraethylene glycol dimethyl ether (TEGDME) and N-methyl-2-pyrrolidone (NMP) were purchased from Aladdin Ltd. Sulfuric acid (H<sub>2</sub>SO<sub>4</sub>, 98%), nitric acid (HNO<sub>3</sub>, 60%) were purchased from Guoyao Chemical Reagent Co., Ltd. multi-wall carbon nanotubes (CNT) were brought from XFNANO Co., Ltd.

#### Preparation of $K_{0.5}MnO_2/CNT$ .

First, CNT were functionalized via acid treatment to enhance their hydrophilicity. The CNT were treated at 80 °C for 8 h in a mixed acid solution of  $H_2SO_4$  and  $HNO_3$  with the volume ratio of 3:1. Thereafter, 20 mg of the functionalized CNT were dispersed into 8 mmol L<sup>-1</sup> potassium permanganate solution, ultrasonicated and stirred for 1 h. And then, the mixed solution was transferred into a 100 mL polytetrafluoroethylene stainless steel autoclave and kept at 140 °C for 2 h. At last, the product was washed several times with deionized water and ethanol and dried under vacuum at 60 °C, the as-obtained sample was labeled as  $K_{0.5}MnO_2/CNT$  composite. *Materials Characterization*.

The morphology and the energy-dispersive X-ray spectroscopy (EDS) spectrum of the samples were characterized by scanning electron microscopy (FE-SEM) (Hitachi SU8010). TEM and high-resolution transmission electron microscopy (HRTEM) were recorded on a JEM-ARM300F. The high-angle-annular dark-field scanning transmission electron microscopy (HAADF-STEM) and the corresponding EDS elemental mapping were performed on FEI Themis Z. X-ray diffraction (XRD) patterns were measured on a X' Pert3 Powder diffractometer with Cu K $\alpha$  radiation ( $\lambda$ =1.54 Å). Inductively coupled plasma (ICP) analysis was carried out by using Prodigy 7. X-ray photoelectron spectroscopy (XPS) was conducted on an ESCALAB 250Xi X-ray Photoelectron Spectrometer. Raman spectra were token on a Horiba LabRAM HR Evolution using a 532 nm laser.

#### Battery Assemble and Electrochemical Tests.

First, for the cathode preparation, 90 wt% K<sub>0.5</sub>MnO<sub>2</sub>/CNT and 10 wt%

polyvinylidene fluoride (PVDF) were dispersed in the NMP solution. Then, the slurry was uniformly coated on carbon paper and dried under vacuum at 80 °C overnight. The Li–CO<sub>2</sub> batteries were assembled in a glove box filled with pure argon. The  $K_{0.5}MnO_2/CNT$  cathode and the lithium anode were separated by a glass fiber separator impregnated with 50 µL electrolyte (1.0 M LiTFSI/TEGDME), and sealed into a CR2032-type coin cell. Then, the battery was transferred into a glove box filled with pure CO<sub>2</sub>. Finally, the galvanostatic discharge/charge measurements were performed on the LAND-CTA2001A test system. The cyclic voltammetry curves were obtained on the CHI760E electrochemical workstation.

#### Theoretical calculation.

DFT calculations were conducted using Vienna ab initio Simulation Package (VASP). <sup>1,2</sup> The projector-augmented wave method was used for the electron-ion interactions with a cut-off energy of 520 eV. <sup>3</sup> Generalized gradient approximation with the Perdew–Burke–Ernzerhof function was used to approximate exchange correlation energy. <sup>4</sup> The k-point grid was set as  $3 \times 3 \times 1$ . Atomic positions and cell vectors were fully optimized until all force components were less than 0.02 eV Å<sup>-1</sup>.



Fig. S1. SEM image of the pristine CNT.



Fig. S2. (a) XRD patterns of the  $K_{0.5}MnO_2/CNT$  and pure CNT.



Fig. S3. Thermogravimetric analysis for the proportion of CNT in the  $K_{0.5}MnO_2/CNT$  composite.



Fig. S4. The XPS survey spectrum of  $K_{0.5}MnO_2/CNT$ .



**Fig. S5.** High-resolution XPS spectra of (a) C 1s, (b) Mn 2p, (c) Mn 3s and (d) O 1s for the  $K_{0.5}MnO_2/CNT$  sample.



Fig. S6. Discharge/charge curves of Li-CO<sub>2</sub> battery based on  $K_{0.5}MnO_2/CNT$  and CNT cathodes at 100 mA g<sup>-1</sup>.



Fig. S7. The charge/discharge profiles of the CNT electrode at various current densities.



Fig. S8. EIS spectra for  $K_{0.5}MnO_2/CNT$  and CNT cathodes after the first discharge and charge processes.

| Elements | K (wt%) | Mn (wt%) |
|----------|---------|----------|
| Content  | 15.15   | 40.95    |

Table S1. The element content of K and Mn in the  $K_{0.5}MnO_2/CNT$  from ICP results.

| Cathode<br>catalyst                    | Electrolyte           | Discharge/C<br>harge<br>plateau (V)                                                                                  | Cycle<br>capacity/<br>Current<br>(mA h g <sup>-1</sup><br>mA g <sup>-1</sup> ) | Cycle<br>number<br>/(n) | Capacity<br>(mA h g <sup>-1</sup> ) | Energy<br>efficiency<br>(%) | Reference                  |
|----------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------|-------------------------------------|-----------------------------|----------------------------|
| K <sub>0.5</sub> MnO <sub>2</sub> /CNT | LiTFSI in<br>TEGDME   | 2.86/3.91                                                                                                            | 1000/100                                                                       | 100                     | 14267                               | 87.95                       | this work                  |
| CNT                                    | LiTFSI in<br>TEGDME   | 2.7/4.3                                                                                                              | 1000/50                                                                        | 29                      | 8379                                | 63.5                        | Zhang et al. <sup>5</sup>  |
| Graphene                               | LiTFSI in<br>TEGDME   | 2.75/4.2                                                                                                             | 1000/100                                                                       | 10                      | 14722                               | N/A                         | Zhang et al. <sup>6</sup>  |
| BN-hG                                  | LiTFSI in<br>TEGDME   | 2.92/4.0                                                                                                             | 1000/100                                                                       | 200                     | 16033                               | N/A                         | Qie et al. <sup>7</sup>    |
| Ni/NG                                  | LiTFSI in<br>TEGDME   | 2.5 <v<4.2< td=""><td>1000/100</td><td>101</td><td>17625</td><td>67.5</td><td>Zhang et al.<sup>8</sup></td></v<4.2<> | 1000/100                                                                       | 101                     | 17625                               | 67.5                        | Zhang et al. <sup>8</sup>  |
| Cu/NG                                  | LiTFSI in<br>TEGDME   | 2.85/3.62                                                                                                            | 1000/200                                                                       | 50                      | 13590                               | N/A                         | Zhang et al.9              |
| Ni/r-GO                                | LiTFSI in<br>TEGDME   | 2.7/4.0                                                                                                              | 1000/100                                                                       | 100                     | 14.6 mA ł<br>cm <sup>-2</sup>       | N/A                         | Qiao et al. <sup>10</sup>  |
| Ir/CNFs                                | LiTFSI in<br>TEGDME   | 2.76/4.14                                                                                                            | 1000/50                                                                        | 45                      | 21528                               | N/A                         | Wang et al. <sup>11</sup>  |
| Ir/N-CNFs                              | LiTFSI in<br>TEGDME   | 2.75/3.8                                                                                                             | 1000/500                                                                       | 400                     | 7667                                | N/A                         | Xing et al. <sup>12</sup>  |
| NiO/CNT                                | LiTFSI in<br>TEGDME   | 2.7/4.1                                                                                                              | 1000/50                                                                        | 42                      | 9000                                | 66                          | Zhang et al. <sup>13</sup> |
| P-Mn <sub>2</sub> O <sub>3</sub> /KB   | LiClO <sub>4</sub> in | 2.5/4.3                                                                                                              | 1000/50                                                                        | 45                      | 9434                                | N/A                         | Ma et al. <sup>14</sup>    |

**Table S2.** The electrochemical performance summary and comparison of various Li-CO<sub>2</sub> batteries.

#### TEGDME

| Mn-MOF                           | LiTFSI in<br>TEGDME                              | 2.6/4.46  | 1000/200                         | 50             | 18022    | N/A   | Li et al. <sup>15</sup>    |
|----------------------------------|--------------------------------------------------|-----------|----------------------------------|----------------|----------|-------|----------------------------|
| Mo <sub>2</sub> C/CNT            | LiCF <sub>3</sub> SO <sub>3</sub> in TEGDME      | 2.5/3.45  | 100μAh<br>cm <sup>-2</sup> /20μA | 40             | 287.5    | 77    | Hou et al. <sup>16</sup>   |
| CQD/hg                           | LiTFSI in<br>DMSO with<br>0.3M LiNO <sub>3</sub> | 3.0/4.0   | 500/1000                         | 235            | 12300    | 74.3  | Jin et al. <sup>17</sup>   |
| Ru/Ni foam                       | LiTFSI in<br>TEGDME                              | 2.8/4.0   | 1000/200                         | 100            | 9502     | N/A   | Zhao et al. <sup>18</sup>  |
| Ru/N-doped<br>CNT                | LiTFSI in<br>TEGDME                              | 2.35/4.1  | 500/100                          | 150            | 9300     | N/A   | Zhang et al. <sup>19</sup> |
| Ru/ACNF                          | LiTFSI in<br>TEGDME                              | 2.8/4.15  | 1000/100                         | 50             | 11495    | N/A   | Qiao et al. <sup>20</sup>  |
| RuP <sub>2</sub> /NPCF           | LiTFSI in<br>TEGDME                              | 2.7/4.0   | 1000/200                         | 200            | 11951    | N/A   | Guo et al. <sup>21</sup>   |
| CNT@RuO <sub>2</sub>             | LiTFSI in<br>TEGDME                              | 2.46/3.97 | 500/50<br>500/100<br>500/150     | 55<br>30<br>20 | 2187     | N/A   | Bie et al. <sup>22</sup>   |
| RuO <sub>2</sub> /LDO/Ni<br>foam | LiTFSI in<br>TEGDME                              | 2.52/3.25 | 1000/166                         | 60             | 5455     | N/A   | Xu et al. <sup>23</sup>    |
| ZnS QDs/N-<br>rGO                | -LiTFSI in<br>TEGDME                             | 2.75/4.13 | 1000/400                         | 190            | 10310    | N/A   | Wang et al. <sup>24</sup>  |
| N-CNTs@Ti                        | LiTFSI in<br>TEGDME                              | 2.73/4.24 | 1000/250                         | 45             | 9292.3   | 65    | Li et al. <sup>25</sup>    |
| Pt-based LCB                     | LiTFSI in<br>TEGDME                              | 2.56/2.91 | 1000/100                         | 100            | 41470    | 89.5  | Wang et al. <sup>26</sup>  |
| Porous Pt @                      | LiTFSI in                                        | 2.55/3.0  | 100µAh                           | >200           | 5.81 mAl | n87.6 | Chen et al. <sup>27</sup>  |

| carbon cloth                                     | TEGDME                               |           | $cm^{-2}/20\mu A$        |      | cm <sup>-2</sup> |            |                           |
|--------------------------------------------------|--------------------------------------|-----------|--------------------------|------|------------------|------------|---------------------------|
| IrRu/N-CNT                                       | LiTFSI in                            | 2.6/3.8   | 500/100                  | 600  | 6628             | 68.4*      | Wang et al. <sup>28</sup> |
|                                                  | TEGDME                               |           |                          |      |                  |            |                           |
|                                                  | LiTFSI in                            |           |                          |      |                  |            |                           |
| Cd SAs/NC                                        | DMSO+0.3 M                           | 2.91/4.22 | 500/1000                 | 1685 | 160045           | 70.4*      | Zhu et al. <sup>29</sup>  |
|                                                  | LiNO <sub>3</sub>                    |           |                          |      |                  |            |                           |
| SnCu <sub>1.5</sub> O <sub>3.5</sub> @MLiTFSI in |                                      | 2 24/4 02 | 1000/100                 | 100  | 22000            | 50.0*      | <b>Thu at al</b> $30$     |
| FI                                               | TEGDME                               | 2.34/4.02 | 1000/100                 | 100  | 23000            | 30.2       |                           |
| TiVC/rGO                                         | LiCF <sub>3</sub> SO <sub>3</sub> in | 2 77/4 10 | 1000/20 0                | 91   | 27880            | 66.3*      | Zhao et al. <sup>31</sup> |
| aerogels                                         | TEGDME                               | 2.77/4.18 | 1000/20                  |      |                  |            |                           |
| MOC@NCNF                                         | NI/A                                 | 2 58/4 02 | 100µAh                   | 171  | 10.31 mAł        | 1<br>64 04 | Liu et al. <sup>32</sup>  |
|                                                  | N/A                                  | 2.30/4.03 | $cm^{\text{-}2/20}\mu A$ |      | cm <sup>-2</sup> | 07.77      |                           |
| S <sub>V</sub> -CoS                              | LiTFSI in                            | 3.07/3.5* | 100µAh                   | 40   | 7790.6           | 89.1       | Mao et al. <sup>33</sup>  |
|                                                  | TEGDME                               |           | $cm^{-2}/20\mu A$        |      | $\mu Ah~cm^{-2}$ |            |                           |

Note: \* denotes the energy efficiency value calculated from performance data reported in the literature.

#### REFERENCES

- [1] Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251–14269.
- [2] Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15–50.
- [3] Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979.
- [4] Perdew, J. P.; Yue, W. Phys. Rev. B 1986, 33, 8800–8802.
- [5] Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y.; Xie, Z.; Wei, J.; Zhou, Z., Chem.Commun. 2015, 51, 14636-14639.
- [6] Zhang, Z.; Zhang, Q.; Chen, Y.; Bao, J.; Zhou, X.; Xie, Z.; Wei, J.; Zhou, Z., *Angew. Chem. Int. Ed.* **2015**, *54*, 6550-6553.
- [7] Qie, L.; Lin, Y.; Connell, J. W.; Xu, J.; Dai, L., Angew. Chem. Int. Ed. 2017, 56, 6970-6974.
- [8] Zhang, Z.; Wang, X. G.; Zhang, X.; Xie, Z.; Chen, Y. N.; Ma, L.; Peng, Z.; Zhou,
   Z., Adv. Sci. 2018, 5, 1700567.
- [9] Zhang, Z.; Zhang, Z. W.; Liu, P. F.; Xie, Y. P.; Cao, K. Z.; Zhou, Z., J. Mater. Chem. A 2018, 6, 3218-3223.
- [10]Qiao, Y.; Liu, Y.; Chen, C.; Xie, H.; Yao, Y.; He, S.; Ping, W.; Liu, B.; Hu, L.,Adv. Funct. Mater. 2018, 28, 1805899.
- [11] Wang, C.; Zhang, Q.; Zhang, X.; Wang, X. G.; Xie, Z.; Zhou, Z., Small 2018, 14, 1800641.
- [12]Xing, Y.; Yang, Y.; Li, D.; Luo, M.; Chen, N.; Ye, Y.; Qian, J.; Li, L.; Yang, D.;
  Wu, F.; Chen, R.; Guo, S., Adv. Mater. 2018, 30, 1803124.
- [13]Zhang, X.; Wang, C. Y.; Li, H. H.; Wang, X. G.; Chen, Y. N.; Xie, Z. J.; Zhou, Z.,
  J. Mater. Chem. A 2018, *6*, 2792-2796.
- [14]Ma, W.; Lu, S.; Lei, X.; Liu, X.; Ding, Y., Porous Mn<sub>2</sub>O<sub>3</sub> cathode for highly durable Li–CO<sub>2</sub> batteries. J. Mater. Chem. A **2018**, *6*, 20829-20835.
- [15]Li, S. W.; Dong, Y.; Zhou, J. W.; Liu, Y.; Wang, J. M.; Gao, X.; Han, Y. Z.; Qi,
  P. F.; Wang, B., Energy Environ. Sci 2018, 11, 1318-1325.
- [16]Hou, Y.; Wang, J.; Liu, L.; Liu, Y.; Chou, S.; Shi, D.; Liu, H.; Wu, Y.; Zhang, W.; Chen, J., Adv. Funct. Mater. 2017, 27, 1700564.
- [17] Jin, Y.; Hu, C.; Dai, Q.; Xiao, Y.; Lin, Y.; Connell, J. W.; Chen, F.; Dai, L., Adv.

Funct. Mater. 2018, 28, 1804630.

[18]Zhao, H. M.; Li, D. D.; Li, H. D.; Tamirat, A. G.; Song, X. Y.; Zhang, Z. X.; Wang, Y. G.; Guo, Z. Y.; Wang, L.; Feng, S. H., Electrochim. Acta **2019**, *299*, 592-599.

[19]Zhang, P.-F.; Lu, Y.-Q.; Wu, Y.-J.; Yin, Z.-W.; Li, J.-T.; Zhou, Y.; Hong, Y.-H.;

Li, Y.-Y.; Huang, L.; Sun, S.-G., Chem. Eng. J 2019, 363, 224-233.

[20]Qiao, Y.; Xu, S.; Liu, Y.; Dai, J.; Xie, H.; Yao, Y.; Mu, X.; Chen, C.; Kline, D. J.;

Hitz, E. M.; Liu, B.; Song, J.; He, P.; Zachariah, M. R.; Hu, L., Energy Environ. Sci. **2019**, *12*, 1100-1107.

[21]Guo, Z.; Li, J.; Qi, H.; Sun, X.; Li, H.; Tamirat, A. G.; Liu, J.; Wang, Y.; Wang,
L., Small 2019, 15, 1803246.

[22]Bie, S.; Du, M.; He, W.; Zhang, H.; Yu, Z.; Liu, J.; Liu, M.; Yan, W.; Zhou, L.;Zou, Z., ACS Appl. Mater. Interfaces 2019, 11, 5146-5151.

[23]Xu, S.-M.; Ren, Z.-C.; Liu, X.; Liang, X.; Wang, K.-X.; Chen, J.-S., Energy Storage Mater. **2018**, *15*, 291-298.

[24] Wang, H.; Xie, K.; You, Y.; Hou, Q.; Zhang, K.; Li, N.; Yu, W.; Loh, K. P.; Shen,C.; Wei, B., Adv. Energy Mater. 2019, 9, 1901806.

[25]Li, Y.; Zhou, J.; Zhang, T.; Wang, T.; Li, X.; Jia, Y.; Cheng, J.; Guan, Q.; Liu, E.;Peng, H.; Wang, B., Adv. Funct. Mater. 2019, 29, 1808117.

[26] Wang, M.; Yang, K.; Ji, Y.; Liao, X.; Zhang, G.; Masteghin, M. G.; Peng, N.;
Richheimer, F.; Li, H.; Wang, J.; Liu, X.; Yang, S.; Petrucco, E.; Shearing, P.; Castro,
F. A.; Silva, S. R. P.; Zhao, Y.; Pan, F.; Zhao, Y. Energy Environ. Sci. 2023, 16, 3960– 3967.

[27] Chen, S.; Yang, K.; Zhu, H.; Wang, J.; Gong, Y.; Li, H.; Wang, M.; Zhao, W.; Ji,

Y.; Pan, F.; Silva, S. R. P.; Zhao, Y.; Yang, L. Nano Energy 2023, 117, 108872.

[28] Wang, Z.; Liu, B.; Yang, X.; Zhao, C.; Dong, P.; Li, X.; Zhang, Y.; Doyle-Davis,

K.; Zeng, X.; Zhang, Y.; Sun, X. Adv. Funct. Mater. 2023, 33, 2213931.

[29]Zhu, K.; Li, X.; Choi, J.; Choi, C.; Hong, S.; Tan, X.; Wu, T.-S.; Soo, Y.-L.; Hao,

L.; Robertson, A. W.; Jung, Y.; Sun, Z. Adv. Funct. Mater. 2023, 33, 2213841.

[30] Zhu, Y.; Li, P.; Yang, X.; Wang, M.; Zhang, Y.; Gao, P.; Huang, Q.; Wei, Y.;

Yang, X.; Wang, D.; Shen, Y.; Wang, M. Adv. Energy Mater. 2023, 13, 2204143.

[31]Zhao, W.; Yang, Y.; Deng, Q.; Dai, Q.; Fang, Z.; Fu, X.; Yan, W.; Wu, L.; Zhou,Y. Adv. Funct. Mater. 2023, 33, 2210037.

[32]Liu, L.; Shen, S.; Zhao, N.; Zhao, H.; Wang, K.; Cui, X.; Wen, B.; Wang, J.;
Xiao, C.; Hu, X.; Su, Y.; Ding, S. Adv. Mater. 2024, 2403229. DOI: 10.1002/adma.202403229.

[33]Mao, R.; Liu, Y.; Shu, P.; Lu, B.; Chen, B.; Chen, Y.; Song, Y.; Jia, Y.; Zheng,Z.; Peng, Q.; Zhou, G. EcoMat 2024, e12449. DOI: 10.1002/eom2.12449.