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Collecting training data and building Reaxys 38k model 

The data used to construct the more general model is all available via Reaxys, a proprietary 

chemical database. To access these data and build a model with the same performance as the one 

discussed in the main text, requires a Reaxys license. The comma separated value (csv) file 

“reaxys_registry_numbers.csv” contains all of the Reaxys registry numbers required to query these 

data and the python file “extract_logE_from_xml.py” can be used to extract the chemical 

structures and appropriate data fields used to train the chemprop model. To query the data, navigate 

to the Reaxys “Query builder” tab, select the “Identification” drop down menu on the right, and 

add “Reaxys Registry Number” (near the bottom of the list) to the query. For the query, copy-paste 

the Reaxys registry numbers from the csv into the “<> Reaxys Registry Number =” search bar. 

The query should consist of a list of numbers separated by semicolons (the final entry should not 

be followed by a semicolon, this will cause query errors). We found that Reaxys occasionally 

failed on queries of more than 1,000 Reaxys registry numbers, and therefore have broken the input 

file into 999 molecule chunks, so that you can copy-paste a single column of the csv at a time. It 

may take several minutes for Reaxys to search the registry numbers, especially if searching more 

than 1,000 at a time.  

After the results are found, export the data as an XML file. To do this, click the “Export” button 

above the list of results, from the “Choose a format” dropdown select “XML”, for the “Range” 

select “All results”, for “Export” select “Choose specific data” then “+ Add datapoints”. This will 

launch a new panel from which you should select the “Spectra” dropdown, then check “UV/VIS 

Spectroscopy”, and then click “Add datapoints >”. Now back at the export substances window, 

make sure that “Include structures” is checked and click “Export”. Download the exported data 

into a common folder, repeating this process for all of the registry numbers in the csv. 
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The python script “extract_logE_from_xml.py” should now be used to extract the relevant data 

from the XML files into a new csv file that can be directly used to train chemprop. In addition to 

some common dependencies, the python script requires RDKit be installed to do some initial 

screening, formatting, and cleaning of the data (chemprop also requires RDKit, and this script 

should run cleanly in a chemprop environment). From the terminal, run:  

python extract_logE_from_xml.py <folder_of_xml_files> <output.csv> 

The generated output.csv is ready to be used to train the chemprop model. The next section 

details training the chemprop model, with the “test_set.csv” file corresponding to “output.csv”, 

but with 10% of the data removed to form a validation set. From these data, the breakdown of 

solvents is 50.7% acetonitrile, 30.7% dichloromethane, 14.5% ethanol, and 4.1% water. 

Model training details and hyperparameter optimization 

All models were trained using Chemprop version 1.5. The models were trained using the MIT 

SuperCloud, a Linux environment with Intel Xeon Gold 6248 CPU (40 cores) and a Nvidia Tesla 

V100 GPU. For reproducibility, the training command line argument was: 

Chemprop_train --data_path train_set.csv --save_dir model_x\ 
 --num_folds 10 --dataset_type regression --config_path\ hyperopts.json --

epochs 200 --number_of_molecules 2 

 

The train_set.csv file consists of four columns of data, the solute and solvent (each encoded as a 

SMILES), the log10 of the molar extinction coefficient, and the wavelength of maximum 

absorption (in nm). The configuration file was generated using the built in chemprop_hyperopt 

command on a subset of 1,000 randomly selected molecules from the training set. Using a subset 

of the training data significantly decreased the time required for hyperparameter optimization. We 
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observed that the best validation error occurred at approximately epoch 150, so 200 epochs were 

chosen to ensure learning completed. The optimized parameters are in the following table. 

Table S1. Summary of hyperparameter optimization results 

Hyperparameter Value Parameter description 
depth 3 Number of message passing steps 

dropout 0.15 Dropout probability 
ffn_num_layers 3 Number of layers in feed forward neural network after message passing 

hidden_size 2300 Hidden dimension in feed forward neural network 
 

 

Yield calculation 

The yield is directly proportional to the integral of the absorbance over the specified peak and 

maximum wavelength (∫𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚). The proportionality constant depends on instrument parameters, 

such as the path length of the detector (ℓ), flow rate of the eluent (𝑓𝑓̇), and injection volume (𝑣𝑣𝑖𝑖𝑖𝑖), 

internal standard true peak area (𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖) and measured peak area (∫𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖257), which for 4,4’-di-tert-

butylbiphenyl is taken at 257 nm, the initial concentration of the reactant (𝑐𝑐0), and the molar 

extinction coefficient (𝜀𝜀).  

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓̇ ∫ 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐0𝜀𝜀ℓ𝑣𝑣𝑖𝑖𝑖𝑖 ∫ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖257
× 100% 

For the method developed in this study, the internal standard (4,4’-di-tert-butylbiphenyl) had a 

standard concentration of 1.25 mM, resulting in a standard peak area of 0.21 A.U. s/µL 

(absorbance unit seconds per microliter injected). The flow rate was set to 0.5 mL/min, the 

injection volume varied depending on the concentration of the reaction, and the initial 

concentration varied depending on what step in each multistep synthesis was being performed. In 

general, for each step in the retrosynthesis the concentration of reactants is doubled, starting from 

15 µmol per reaction, to account for incomplete yield in early reaction steps. Error bars are 
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calculated by propagating the uncertainty in the predicted extinction coefficient, calculated as the 

variance in predictions among the ensemble of models. 

Liquid handling error analysis 

The uncertainty associated with pipetting via the Tecan Evo LiHa 350 µL pipette tips was 

measured following the procedure in Bessemans et al.1 A specified amount of DMSO was pipetted 

into a single well in a 96-well plate, and then the actual amount of DMSO dispensed was measured 

gravimetrically. This was repeated several times at different volumes to develop a relationship 

between specified volume and relative pipetting error, shown in figure S1. A power-law was found 

to best fit the error data, showing that the error increases exponentially at smaller specified 

volumes, however the power-law is not a perfect fit for the performance of the Tecan Evo LiHa. 

 

Figure S1. Relative pipetting error versus the specified pipetting volume, plotted on semi-logarithmic axes, over a range of 2 to 
200 µL. The dashed curve is a power-law regressed curve. 

Simulated reactions details 

The data shown in Figure 3, as well as the molecules those data correspond to, are provided in 

tabular form below.  
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Table 2. Details of the simulated reactions shown in Figure 3. The molecules are represented as SMILES, with the measured peak 
area (Figure 3 x-axis), predicted area (Figure 3 y-axis), and accompanying uncertainties. 

SMILES Measured Peak Area 
(A.U. x sec.) 

Predicted Peak Area 
(A.U. x sec.) 

Measurement 
uncertainty 

Predic�on 
uncertainty 

O=C(O)c1cccc(O)c1C(=O)O 2.040 3.504 0.285 0.795 
COc1ccc(C(=O)O)c(C)c1 2.127 2.818 0.225 0.318 
COc1ccc(C(=O)O)cc1OC 4.163 3.928 0.416 0.382 
Cc1ccc(C)c(C(=O)O)c1 0.420 1.221 0.042 0.178 
O=c1cccc[nH]1 1.792 2.850 0.103 0.415 
COC(=O)c1sccc1N 2.870 2.464 0.128 0.244 
N#Cc1ccc(Br)cc1N 3.981 3.527 0.132 0.100 
CCOC(=O)c1ccc(Br)cc1 1.943 2.590 0.166 0.678 
O=CCCc1ccccc1 0.718 0.603 0.090 0.056 
COc1cc(Br)c(C(=O)O)cc1O 1.510 3.013 0.067 0.285 
Cc1cccc(C=O)c1 3.223 2.483 0.465 0.140 
Nc1ccc(C(=O)O)c(C(F)(F)F)c1 2.788 2.630 0.133 0.352 
COc1ccc(C(=O)O)cc1C(F)(F)F 4.112 3.385 0.318 0.292 
O=C1C=C(Cl)C(=O)c2ccccc21 3.226 2.486 0.113 0.190 
Nc1ccc(Cl)cn1 3.943 3.540 0.335 0.386 
Oc1ccc2ccccc2c1 0.953 2.537 0.047 0.845 
N#Cc1cc(Cl)ccc1[N+](=O)[O-] 1.616 1.723 0.410 0.158 
Nc1ccc(Br)cn1 5.588 5.376 0.316 0.396 
CCCCOC(=O)C(=C)C 1.151 1.987 0.251 0.331 
CCc1ccccc1C(=O)O 2.071 2.257 0.290 0.178 
O=Cc1ccc(-c2ccncc2)cc1 4.855 5.356 0.207 0.638 
Cc1cc(N)ccc1C(=O)O 3.566 3.480 0.289 0.377 
Cc1ccc(Cl)cc1C(=O)O 0.582 0.960 0.087 0.135 
Clc1cc(Br)ccn1 0.862 0.823 0.209 0.260 
N#Cc1cc2ccccc2oc1=O 4.379 2.734 0.109 0.558 
COc1ccc(B(O)O)c(OC)c1 4.370 3.835 0.172 0.464 
Nn1c(-c2ccncc2)n[nH]c1=S 5.895 4.855 0.249 0.637 
Nc1ccc(Cl)cn1 3.255 3.032 0.277 0.386 
COc1c(C)cc(C(=O)O)cc1C 1.758 1.299 0.212 0.130 
CCOC(=O)c1cc(OC)ccc1C 0.433 0.902 0.065 0.093 
Clc1ccnc(Cl)c1 0.641 0.948 0.082 0.347 
Brc1ccc2[nH]ccc2c1 1.500 0.765 0.086 0.108 
O=C(Cl)Cc1ccccc1 0.494 0.393 0.019 0.072 
C=Cc1ccc(OC(C)=O)cc1 2.101 2.116 0.195 0.584 
Oc1cccc(Br)c1 0.789 0.867 0.046 0.178 
O=Cc1ccccc1S(=O)(=O)O 3.086 1.937 0.096 0.463 
COc1cc(N)c(C(=O)O)cc1OC 2.156 2.336 0.093 0.415 
N#Cc1cccc2[nH]ccc12 1.623 1.673 0.076 0.269 
N#Cc1cnc(Cl)cc1Cl 1.480 1.314 0.106 0.249 
NC(N)=NS(=O)(=O)c1ccc(N)cc1 5.305 4.282 0.293 0.611 
O=[N+]([O-])c1ccccc1Br 0.601 1.409 0.021 0.284 
OCc1ccc(B(O)O)cc1 3.940 2.572 0.182 0.503 
O=Cc1ccccc1F 0.623 0.686 0.088 0.186 
CC(=O)c1ccccc1C(=O)O 1.658 1.444 0.236 0.219 
CC(=O)Oc1cccc(C(=O)O)c1C 3.593 2.014 0.423 0.228 
O=C(O)c1ccc(F)cc1C(F)(F)F 0.625 0.937 0.052 0.158 
Nc1ccc(C(=O)O)c(Cl)c1 1.814 2.314 0.204 0.476 
O=[N+]([O-])c1ccc(Cl)cc1 1.333 1.578 0.074 0.561 
N#Cc1ccc(Br)cc1 2.622 2.372 0.101 0.303 
O=CC=Cc1ccccc1 5.203 4.555 0.263 1.382 
Cc1c(N)cccc1C(=O)O 1.007 1.502 0.063 0.268 
O=Cc1ccc(-n2ccnc2)cc1 5.205 3.710 0.473 0.420 
Nc1cccnc1Cl 1.046 0.996 0.132 0.145 
CN(C)c1ccc(C(=O)O)cc1 3.037 5.758 0.253 0.934 
N#Cc1ccc(O)cc1 3.821 3.200 0.698 0.343 
COc1cccc(C(=O)O)c1 2.418 2.226 0.108 0.384 
N#Cc1ccc(B(O)O)cc1 4.243 4.061 0.440 0.738 
CC(=O)Nc1ccc(B(O)O)cc1 4.574 4.642 0.175 0.645 
Nc1ccncc1N 1.157 1.229 0.084 0.211 
COc1cc(Br)c(C(=O)O)cc1OC 0.849 1.647 0.069 0.198 
Cc1c(Br)cccc1C(=O)O 1.728 1.880 0.111 0.253 
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COC(=O)C=CC(=O)OC 2.054 2.270 0.042 0.591 
O=C1CCc2cc(Cl)ccc21 0.458 0.533 0.022 0.095 
O=Cc1ccccc1Br 0.664 0.658 0.083 0.122 
C1CCC(=CC1)C2=CC=CC=C2 0.210 0.725 0.018 0.205 
COC(=O)c1ccc([N+](=O)[O-])cc1C 3.938 3.450 0.848 0.281 
O=Cc1c(Cl)ncnc1Cl 0.820 1.524 0.034 0.330 
COc1ccc(C(=O)O)c(Br)c1 0.902 1.422 0.051 0.250 

 

Prediction error as a function of ensemble variance 

 

Figure S2. The error in the prediction of the log10 of the molar extinction coefficient versus the standard deviation of the 
prediction value, both normalized by the log10 of the molar extinction coefficient 

The use of ensemble variance of a prediction as a means of determining the confidence in the value 

of that prediction is supported by the correlation between the variance (reported in figure S2 as 

standard error) and prediction error (reported as relative error). However, the correlation is not 

strong, making it difficult to quantify the confidence in the value. 

Model scope and outliers 

The outliers in this dataset are highlighted in figure S3. 4-(Dimethylamino)benzoic acid was 

severely overpredicted. Chemprop indicates that the overprediction is from the dimethylamino-

benzene part of the molecule (purple), as this moiety is very common in dye molecules. 
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Indocyanine green also caused issues with the prediction of extinction coefficient, likely because 

it is very strongly absorbing and has a positive charge that can be delocalized over a large, 

conjugated substructure. Chemprop does not calculate partial charges on atoms, instead placing all 

the charge on the nitrogen atom indicated in the SMILES (and in figure S3), which leads to poor 

predictive power as the delocalization of charge is one of the keys to the molecule’s optical 

properties. Luckily, structures like this are not very common in drug molecules (despite 

indocyanine green being used as a diagnostic stain for measuring blood flow). 

               

Figure S3. The structures of 4-(dimethylamino)benzoic acid (left) and indocyanine green (right). The part of the 4-
(dimethylamino)benzoic acid molecule interpreted by chemprop as being important to its predicted extinction coefficient is 
highlighted in purple.  

The prediction of insulin was also quite poor, as the training data excluded molecules with a 

molecular weight above 800 g/mol. Macromolecules such as proteins can have a huge range of 

molar extinction coefficients depending on the number of light-absorbing side chains present in 

the structure and folding of the macromolecular structure. 

Analysis of test reactions 

The peak associated with camostat, shown in Figure S4, is very broad compared to typical peaks. 

Figure S4 (top) shows the MS chromatogram at m/z = +399 (top) and the absorption chromatogram 

at 279 nm (bottom). The point in the top plot indicates the start of the MS peak with the correct 

mass to represent the target product. The closest lagging PDA peak is then integrated, the 
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integrated area is highlighted in orange. Compared to the other automatically extracted peaks (all 

marked with points), the camostat peak is very broad. The other peaks, from left to right, are 

guanidinobenzoic acid (low absorption at 279 nm), DMSO solvent, coupling agent byproduct, 

dimethylacetamide hydroxyphenylacetic acid ester, camostat, and internal standard. 

 

Figure S4. Chromatograms for the synthesis of camostat. MS chromatogram (top) at +399 m/z and PDA chromatogram (bottom) 
at 279 nm. Points indicated automatically extracted peaks. The orange area represents the area integrated of the camostat peak. 

The synthesis of enalapril was found to result in a substantial amount of overreacted product 

under some reaction conditions (namely using EDC as coupling reagent as opposed to HATU). 

The over reacted product (shown in orange in Figure S5) has a nearly identical absorption 

spectrum as enalapril (in blue), causing a lower confidence in the resolution of their respective 

peaks by MCR. In the future, sensor fusion techniques2 could enable use of MS data with the 

PDA data and curve resolution to better separate all compounds 
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Figure S5. Reaction scheme (top) and MS chromatograms (bottom) from the synthesis of enalapril showing the target product 
(blue) and overreacted impurity (orange). The products overlap substantially, but not so much that they could not be resolved by 
MCR. The performance of MCR was not as robust as for other compounds because the product and impurity have nearly 
identical absorption spectra. 

Reproducing figures 3 and 4 with provided data and HPLC_analysis.py 

The discussed method was designed as an integrated part of the automated molecular discovery 

platform detailed in Koscher et al.3 As part of the platform, the data generated by the HPLC were 

automatically analyzed in real time, that is, a reaction was analyzed as soon as the HPLC finished 

running that sample. To achieve this level of integration, the method as implemented within the 

platform makes use of a proprietary API provided by Shimadzu to control the HPLC instrument. 

Since access to this API is restricted, we have provided a version of the code that performs the 

same analysis, but on preexisting data. This code, contained in HPLC_analysis.py, can be used to 

recreate figures 3 and 4 with the chemprop model built using Reaxys data. We provided the data 

plotted in figures 3 and 4 in Figure3_data.xlsx and Figure4_data.xlsx, respectively. Using a 
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different chemprop model, such as the Deep4Chem model, will produce slightly different scatter 

plots on account of differences in predicted extinction coefficients. 
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