Organocatalytic diastereo- and atroposelective construction of eight-membered bridged (hetero)biaryls via asymmetric intramolecular [3+2] cycloaddition

Yue Wang,^a Yue Huang,^a Xiaoze Bao,^b Xingfu Wei,^a Shiqiang Wei,^a Jingping Qu^a and Baomin Wang^{*a}

^aState Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China ^bCollege of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

Email: bmwang@dlut.edu.cn

Contents

1. General information	S1
2. General procedures for biaryl aldehydes 3 and N-Boc biaryl benzylamine 11	S1
3. General procedures for N-aryl-2-formylpyrroles 5	S9
4. Optimization of reaction conditions	S15
5. General procedures for products 4/6 and derivatizations	S16
6. References	S81
7. NMR spectra for compounds	S82
8. X-ray crystal structures	S183

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Column chromatography was performed on silica gel (200~300 mesh). Diastereoisomeric ratios (dr) were determined by ¹H NMR. Enantiomeric excesses (ee) were determined by HPLC using corresponding commercial chiral columns as stated at 30 °C with UV detector at 254 nm. Optical rotations were reported as follows: $[\alpha]_D^T$ (*c* g/100 mL, solvent). All ¹H NMR spectra were recorded on Bruker Avance II 400 MHz or Bruker Avance III 600 MHz. ¹⁹F NMR spectra were recorded on Bruker Avance II 376 MHz and Bruker Avance III 565 MHz. ¹³C NMR spectra were recorded on Bruker aver recorded on Bruker Avance II 101 MHz or Bruker Avance III 151 MHz with chemical shifts reported as ppm (in CDCl₃, TMS as internal standard). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad singlet, dd = double doublet, coupling constants in Hz, integration). HRMS (ESI) was obtained with a HRMS/MS instrument (LTQ Orbitrap XLTM).

3-Amino oxindole hydrochlorides **2** were prepared according to literature methods.^[1]

2. General procedures for biaryl aldehydes 3 and N-Boc biaryl

To a round-bottom flask with a magnetic stirring bar, carboxylic acid (1.1 equiv), phenol (1 equiv), DMAP (5 mol%) and EDC·HCl (1.1 equiv) were added, and the resulting mixture was stirred in DCM (0.2 M) overnight at room temperature. After the reaction reached completion, H₂O was added. The organic layer was then separated, and the aqueous layer was extracted with EtOAc three times. The organic layer was successively washed with brine. After drying over Na₂SO₄, the resulting solution was concentrated under reduced pressure. The crude mixture was purified by

flash chromatography on silica gel with eluent of hexane/ethyl acetate (100:1) affording the corresponding pure compound **S1**.

Pd₂(dba)₃ (0.5 mol%), [HP(*t*-Bu)₃]BF₄ (1.2 mol%), **S1** (1.0 equiv), the boronic acid (1.5 equiv) and KF·2H₂O (3.3 equiv) were added to a flask. The reaction flask was degassed three times with nitrogen and then THF (0.2 M) was added using a syringe, and the resulting solution was stirred at 70 °C for 10 h. After the reaction was completed (TLC), the mixture was diluted with Et₂O and filtered through a plug of silica gel. The crude mixture was purified by flash chromatography on silica gel with eluent of hexane/ethyl acetate (100:1) affording the corresponding pure compound **3**.

S3 were synthesized according to the literature method.^[2]

The 2-bromobenzylamine (1.0 equiv) was dissolved in 'BuOH/H₂O (v/v=1, 0.5 M). NaOH (2.0 equiv) and di-*tert*-butyl dicarbonate (1.2 equiv) were successively added. The mixture was stirred for 3 h at room temperature. The reaction was quenched with H₂O (5 mL) and extracted with EtOAc (5 mL×2). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and then concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 30/1) affording the corresponding pure compound S2.

 $PdCl_2(PPh_3)_2$ (0.5 mol%), **S2** (1.0 equiv), bis(pinacolato)diboron (1.5 equiv) and KOAc (2 equiv) were added to a flask. The reaction flask was degassed three times with nitrogen and then 1,4-dioxane (0.3 M) was added using a syringe, and the resulting solution was stirred at 90 °C for 12 h. After the reaction was completed (TLC), the mixture was diluted with DCM and filtered through a plug of silica gel. The crude mixture was purified by flash chromatography on silica gel with eluent of hexane/ethyl acetate (100:1) affording the corresponding pure compound **S3**.

Pd₂(dba)₃ (0.5 mol%), [HP(*t*-Bu)₃]BF₄ (1.2 mol%), **S1** (1.0 equiv), **S3** (1.5 equiv) and KF·2H₂O (3.3 equiv) were added to a flask. The reaction flask was degassed three times with nitrogen and then THF (0.2 M) was added using a syringe, and the resulting solution was stirred at 70 °C for 10 h. After the reaction was completed (TLC), the mixture was diluted with Et₂O and filtered through a plug of silica gel. The crude mixture was purified by flash chromatography on silica gel with eluent of hexane/ethyl acetate (100:1) affording the corresponding pure compound **11**.

2'-Formyl-[1,1'-biphenyl]-2-yl cinnamate (3a)

3a

White solid; mp 110.1 – 110.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.97 (s, 1H), 8.02 (d, J = 7.7 Hz, 1H), 7.65 – 7.53 (m, 3H), 7.53 – 7.46 (m, 3H), 7.42 (d, J = 10.3 Hz, 6H), 7.32 (d, J = 8.1 Hz, 1H), 6.32 (d, J = 16.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.3, 164.7, 148.4, 146.9,

140.7, 133.9, 133.7, 133.7, 131.6, 131.3, 131.1, 130.8, 129.9, 129.0, 128.4, 127.1, 126.3, 122.8, 116.3; HRMS (ESI) m/z Calcd. for $C_{22}H_{17}O_3^+$ ([M+H]⁺) 329.1172, Found 329.1170.

2'-Formyl-[1,1'-biphenyl]-2-yl (E)-3-(o-tolyl)acrylate (3b)

3b

White solid; mp 101.4.1 – 102.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.93 (s, 1H), 7.98 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 15.9 Hz, 1H), 7.63 – 7.58 (m, 1H), 7.54 – 7.49 (m, 1H), 7.47 – 7.43 (m, 2H), 7.42 – 7.35 (m, 3H), 7.30 (d, J = 8.5 Hz, 1H), 7.26 (d, J = 6.6 Hz, 1H), 7.19 – 7.17 (m, 2H), 6.20

(d, J = 15.9 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.1, 164.6, 148.5, 144.3, 140.7, 138.0, 133.8, 133.6, 132.9, 131.5, 131.3, 131.1, 130.9, 130.5, 129.8, 128.3, 127.0, 126.5, 126.4, 126.3, 122.8, 117.4, 19.7; HRMS (ESI) *m*/*z* Calcd. for C₂₃H₁₉O₃⁺ ([M+H]⁺) 343.1329, Found 343.1325.

2'-Formyl-[1,1'-biphenyl]-2-yl (E)-3-(2-methoxyphenyl)acrylate (3c)

White solid; mp 80.1 – 81.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.93 (s, 1H), 7.98 (d, J = 7.7 Hz, 1H), 7.85 (d, J = 16.1 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.52 – 7.46 (m, 1H), 7.45 – 7.36 (m, 5H), 7.35 – 7.30 (m, 1H), 7.26 (d, J = 11.7 Hz, 1H), 6.93 – 6.90 (m, 1H), 6.87 (d, J = 8.3 Hz, 1H), 6.40

(d, J = 16.1 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 165.2, 158.6, 148.6, 142.3, 140.9, 133.8, 133.6, 132.0, 131.6, 131.3, 131.1, 129.8, 129.4, 128.2,

127.0, 126.1, 122.9, 122.9, 120.7, 116.8, 111.2, 55.5; HRMS (ESI) *m/z* Calcd. for C₂₃H₁₈NaO₄⁺ ([M+Na]⁺) 381.1097, Found 381.1093.

2'-Formyl-[1,1'-biphenyl]-2-yl (E)-3-(m-tolyl)acrylate (3d)

White solid; mp 108.4 – 109.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.93 (s, 1H), 7.98 (dd, J = 7.8, 1.1 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.56 – 7.47 (m, 2H), 7.46 – 7.42(m, 1H), 7.41 – 7.35 (m, 3H), 7.29 – 7.24 (m, 4H), 7.19 (dd, J = 5.9, 2.7 Hz, 1H), 6.26 (d, J = 16.0 Hz,

1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 164.7, 148.5, 147.0, 140.7, 138.6, 133.9, 133.8, 133.6, 131.6, 131.6, 131.3, 131.1, 129.8, 128.9, 128.8, 128.3, 127.0, 126.3, 125.6, 122.8, 116.1, 21.3; HRMS (ESI) *m*/*z* Calcd. for C₂₃H₁₈NaO₃⁺ ([M+Na]⁺) 365.1148, Found 365.1143.

2'-Formyl-[1,1'-biphenyl]-2-yl (E)-3-(p-tolyl)acrylate (3e)

White solid; mp 88.8 – 89.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.93 (s, 1H), 7.98 (d, J = 7.7 Hz, 1H), 7.61 – 7.56 (m, 1H), 7.55 – 7.47 (m, 2H), 7.43 (dd, J = 13.0, 5.4 Hz, 1H), 7.38 – 7.33 (m, 5H), 7.28 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 7.9 Hz, 2H), 6.23 (d, J = 16.0 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ

192.3, 164.9, 148.5, 146.9, 141.4, 140.8, 133.8, 133.7, 131.6, 131.3, 131.2, 131.1, 129.8, 129.7, 128.4, 128.3, 127.0, 126.3, 122.8, 115.2, 21.5; HRMS (ESI) *m/z* Calcd. for C₂₃H₁₈NaO₃⁺ ([M+Na]⁺) 365.1148, Found 365.1143.

2'-Formyl-[1,1'-biphenyl]-2-yl (E)-3-(4-methoxyphenyl)acrylate (3f)

White solid; mp 112.1 – 112.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.01 (d, *J* = 7.7 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.57 – 7.50 (m, 2H), 7.50 – 7.39 (m, 6H), 7.30 (d, *J* = 8.1 Hz, 1H), 6.91 (d, *J* = 8.5 Hz, 2H), 6.17 (d, *J* = 15.9 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.4, 165.0, 161.8, 148.5, 146.6,

140.8, 133.7, 133.7, 131.6, 131.3, 131.1, 130.1, 129.8, 128.3, 127.0, 126.6, 126.2, 122.8, 114.4, 113.6, 55.4; HRMS (ESI) m/z Calcd. for C₂₃H₁₈NaO₄⁺ ([M+H]⁺) 381.1097, Found 381.1093.

2'-Formyl-[1,1'-biphenyl]-2-yl (E)-3-(4-fluorophenyl)acrylate (3g)

White solid; mp 86.6 – 87.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.93 (s, 1H), 7.99 (dd, J = 7.8, 0.9 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.55 – 7.49 (m, 2H), 7.48 – 7.38 (m, 6H), 7.28 (d, J = 7.9 Hz, 1H), 7.09 – 7.03 (m, 2H), 6.20 (d, J = 16.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ

192.2, 164.5, 164.2 (d, J = 252.5 Hz), 148.4, 145.5, 140.7, 133.8, 133.6, 131.6, 131.3, 131.1, 130.3, 130.2, 130.2, 129.8, 128.3, 127.0, 126.3, 122.7, 116.1 (d, J = 21.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -108.64; HRMS (ESI) m/z Calcd. for C₂₂H₁₅FNaO₃⁺ ([M+Na]⁺) 369.0897, Found 369.0891.

2'-Formyl-[1,1'-biphenyl]-2-yl (E)-3-(naphthalen-1-yl)acrylate (3h)

White solid; mp 152.1 – 152.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 8.39 (d, J = 15.8 Hz, 1H), 8.10 – 8.01 (m, 2H), 7.88 (dd, J = 10.8, 8.5 Hz, 2H), 7.69 (d, J = 7.2 Hz, 1H), 7.66 – 7.59 (m, J = 9.8, 2H), 7.58 – 7.51 (m, 2H), 7.51 – 7.41 (m, 5H), 7.37 (d, J = 8.0 Hz, 1H), 6.40

(d, J = 15.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 164.5, 148.5, 143.6, 140.8, 133.9, 133.7, 131.6, 131.4, 131.3, 131.2, 131.1, 129.9, 128.7, 128.4, 127.1, 127.1, 126.3, 125.4, 125.3, 123.3, 122.8, 118.9; HRMS (ESI) m/z Calcd. for C₂₆H₁₈NaO₃⁺ ([M+Na]⁺) 401.1148, Found 401.1142.

2'-Formyl-[1,1'-biphenyl]-2-yl (E)-3-(thiophen-2-yl)acrylate (3i)

3i

White solid; mp 112.0 – 112.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.99 (d, J = 7.7 Hz, 1H), 7.64 (d, J = 15.7 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.52 – 7.42 (m, 2H), 7.41 – 7.33 (m, 4H), 7.25 (s, 1H), 7.21 (d, J = 3.4 Hz, 1H), 7.02 (dd, J = 4.9, 3.7 Hz, 1H), 6.07 (d, J = 15.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 164.5, 148.4, 140.7,

139.1, 139.1, 133.8, 133.6, 131.7, 131.6, 131.3, 131.1, 129.8, 129.3, 128.3, 128.2, 127.1, 126.2, 122.8, 114.9; HRMS (ESI) *m*/*z* Calcd. for C₂₀H₁₄NaO₃S⁺ ([M+Na]⁺) 357.0556, Found 357.0547.

2'-Formyl-[1,1'-biphenyl]-2-yl (E)-but-2-enoate (3j)

1H), 1.80 (dd, J = 6.9, 1.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.1, 164.0, 148.4, 147.3, 140.8, 133.7, 133.6, 131.5, 131.3, 131.1, 129.8, 128.2, 126.9, 126.2, 122.7, 121.2, 18.1; HRMS (ESI) m/z Calcd. for C₁₇H₁₄NaO₃⁺ ([M+Na]⁺) 289.0835, Found 289.0832.

2'-Formyl-3-methyl-[1,1'-biphenyl]-2-yl cinnamate (3k)

White solid; mp 113.2 – 113.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.57 (dd, J = 8.3, 7.6 Hz, 2H), 7.49 – 7.40 (m, 3H), 7.39 – 7.33 (m, 5H), 7.31 – 7.24 (m, 1H), 7.21 (d, J = 7.2 Hz, 1H), 6.29 (d, J = 16.0 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.4, 164.2, 147.1, 146.8, 141.1, 133.9, 133.8, 133.6,

131.5, 131.5, 131.4, 131.1, 130.8, 129.1, 129.0, 128.3, 128.2, 126.9, 126.2, 116.0, 16.6; HRMS (ESI) *m*/*z* Calcd. for C₂₃H₁₈NaO₃⁺ ([M+Na]⁺) 365.1148, Found 365.1140.

2'-Formyl-3-methoxy-[1,1'-biphenyl]-2-yl cinnamate (3l)

White solid; mp 118.7 – 119.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 8.02 (d, J = 7.7 Hz, 1H), 7.70 – 7.56 (m, 2H), 7.53 – 7.41 (m, 4H), 7.41 – 7.27 (m, 4H), 7.12 (d, J = 8.1 Hz, 1H), 6.99 (d, J = 7.5 Hz, 1H), 6.39 (d, J = 16.0 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 164.3, 151.7, 146.8, 140.6, 137.6, 134.0, 133.8, 133.6,

132.6, 130.9, 130.7, 128.9, 128.3, 127.0, 126.6, 123.1, 116.2, 112.4, 56.2; HRMS (ESI) *m/z* Calcd. for C₂₃H₁₈NaO₄⁺ ([M+Na]⁺) 381.1097, Found 381.1091.

3-Fluoro-2'-formyl-[1,1'-biphenyl]-2-yl cinnamate (3m)

White solid; mp 88.2 – 89.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.01 (dd, J = 7.8, 0.9 Hz, 1H), 7.65 (d, J = 16.1 Hz, 1H), 7.60 (dd, J = 7.5, 1.4 Hz, 1H), 7.51 – 7.45 (m, 3H), 7.40 – 7.27 (m, 6H), 7.20 – 7.15 (m, 1H), 6.35 (d, J = 16.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 163.7, 154.7 (d, J = 251.5 Hz), 147.7, 139.4 (d, J =

3.0 Hz), 136.4 (d, J = 13.1 Hz), 133.8, 133.8, 133.7, 131.0, 131.0, 129.0, 128.8, 128.4, 127.4, 126.9, 126.8, 126.7 (d, J = 3.0 Hz), 116.9 (d, J = 19.2 Hz), 115.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -127.14; HRMS (ESI) m/z Calcd. for C₂₂H₁₅FNaO₃⁺ ([M+Na]⁺) 369.0897, Found 369.0890.

2'-Formyl-4-methoxy-[1,1'-biphenyl]-2-yl cinnamate (3n)

White solid; mp 110.1 – 110.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.99 (d, J = 7.7 Hz, 1H), 7.64 – 7.54 (m, 2H), 7.53 – 7.44 (m, 3H), 7.42 – 7.36 (m, 4H), 7.33 (d, J = 8.5 Hz, 1H), 6.97 (dd, J = 8.5, 2.4 Hz, 1H), 6.87 (d, J = 2.3 Hz, 1H), 6.31 (d, J = 16.0 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 164.6, 160.8, 149.2,

146.9, 140.7, 134.0, 133.9, 133.7, 132.1, 131.4, 130.8, 129.0, 128.4, 128.0, 127.0, 123.4, 116.2, 112.4, 108.3, 55.7; HRMS (ESI) *m/z* Calcd. for C₂₃H₁₈NaO₄⁺ ([M+Na]⁺) 381.1097, Found 381.1091.

2'-Formyl-5-methyl-[1,1'-biphenyl]-2-yl cinnamate (30)

White solid; mp 116.6 – 167.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.97 (s, 1H), 8.00 (d, J = 7.3 Hz, 1H), 7.63 – 7.58 (m, 1H), 7.56 (d, J = 12.7 Hz, 1H), 7.49 – 7.35 (m, 7H), 7.31 (dd, J = 8.2, 1.6 Hz, 1H), 7.21 (d, J = 1.5 Hz, 1H), 7.18 (d, J = 8.2 Hz, 1H), 6.29 (d, J = 16.0 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.3, 164.9, 146.7,

146.2, 140.9, 136.0, 134.0, 133.8, 133.6, 132.1, 131.1, 130.9, 130.7, 130.4, 128.9, 128.3, 128.2, 127.0, 122.4, 116.4, 20.9; HRMS (ESI) *m*/*z* Calcd. for C₂₃H₁₈NaO₃⁺ ([M+Na]⁺) 365.1148, Found 365.1144.

5-Fluoro-2'-formyl-[1,1'-biphenyl]-2-yl cinnamate (3p)

White solid; mp 130.2 – 130.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.58 (d, J = 16.0 Hz, 1H), 7.52 – 7.46 (m, 3H), 7.43 – 7.37 (m, 4H), 7.30 – 7.27 (m, 1H) , 7.25 – 7.20 (m, 1H), 7.16 (dd, J = 8.4, 2.7 Hz, 1H), 6.29 (d, J = 16.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 164.6, 160.2 (d,

J = 247.4 Hz), 147.1, 144.3 (d, J = 3.0 Hz), 139.4, 133.8, 133.7, 133.1, 133.0, 130.9, 130.9, 129.0, 128.8, 128.4, 127.4, 124.2 (d, J = 8.1 Hz), 118.1 (d, J = 24.2 Hz), 116.5 (d, J = 23.2 Hz), 116.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -115.85; HRMS (ESI) m/z Calcd. for C₂₂H₁₅FNaO₃⁺ ([M+Na]⁺) 369.0897, Found 369.0890.

1-(2-Formylphenyl)naphthalen-2-yl cinnamate (3q)

White solid; mp 150.6 – 151.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 8.13 (d, J = 7.8 Hz, 1H), 8.02 (d, J = 8.9 Hz, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.61 – 7.50 (m, 3H), 7.49 – 7.40 (m, 6H), 7.40 – 7.36 (m, 3H), 6.33 (d, J = 16.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃)

δ 192.0, 165.1, 146.8, 146.4, 138.8, 134.9, 133.9, 133.9, 133.7, 131.9, 131.7, 130.8, 130.2, 129.0, 128.7, 128.4, 127.3, 127.2, 126.6, 126.0, 125.7, 121.5, 116.3; HRMS (ESI) *m*/*z* Calcd. for C₂₆H₁₈NaO₃⁺ ([M+Na]⁺) 401.1148, Found 401.1142.

5'-Fluoro-2'-formyl-[1,1'-biphenyl]-2-yl cinnamate (3r)

White solid; mp 102.3 – 102.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 8.03 (dd, J = 8.6, 5.9 Hz, 1H), 7.60 (d, J = 16.0 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.50 – 7.45 (m, 2H), 7.44 – 7.35 (m, 5H), 7.30 (d, J = 8.1 Hz, 1H), 7.17 – 7.08 (m, 2H), 6.32 (d, J = 16.0 Hz, 1H); ¹³C NMR (101

MHz, CDCl₃) δ 190.6, 165.5 (d, J = 257.6 Hz), 164.6, 148.3, 147.1, 143.5 (d, J = 10.1 Hz), 133.8, 131.4, 130.9, 130.4 (d, J = 3.0 Hz), 130.3, 130.1, 130.0 (d, J = 10.1 Hz), 129.0, 128.4, 126.5, 122.9, 118.0 (d, J = 22.2 Hz), 116.1, 115.8 (d, J = 21.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -103.37; HRMS (ESI) m/z Calcd. for C₂₂H₁₅FNaO₃⁺ ([M+Na]⁺) 369.0897, Found 369.0890.

4'-Fluoro-2'-formyl-[1,1'-biphenyl]-2-yl cinnamate (3s)

White solid; mp 107.8.1 – 108.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.87 (d, J = 3.2 Hz, 1H), 7.66 (dd, J = 8.8, 2.8 Hz, 1H), 7.60 (d, J = 16.0 Hz, 1H), 7.55 – 7.45 (m, 3H), 7.44 – 7.35 (m, 6H), 7.34 – 7.27 (m, 2H), 6.31 (d, J = 16.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.0, 164.6, 162.5 (d, J = 251.5 Hz), 148.5, 147.1, 136.7 (d, J = 3.0 Hz), 135.5 (d,

J = 6.1 Hz), 133.8, 133.1 (d, J = 8.1 Hz), 131.7, 130.9, 130.4, 130.1, 129.0, 128.4, 126.4, 122.9, 120.9 (d, J = 22.2 Hz), 116.1, 113.3 (d, J = 23.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -112.13; HRMS (ESI) m/z Calcd. for C₂₂H₁₅FNaO₃⁺ ([M+Na]⁺) 369.0897, Found 369.0890.

2'-(((tert-Butoxycarbonyl)amino)methyl)-[1,1'-biphenyl]-2-yl cinnamate (11)

1.1 Hz, 1H), 6.32 (d, J = 16.0 Hz, 1H), 4.90 (s, 1H), 4.28 – 4.15 (m, 2H), 1.43 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 165.0, 156.0, 148.2, 146.5, 137.2, 136.2, 134.1, 133.9, 131.1, 130.6, 130.2, 129.0, 128.9, 128.3, 128.2, 128.1, 126.9, 126.1, 122.7, 116.6, 79.2, 42.3, 28.5; HRMS (ESI) m/z Calcd. for C₂₇H₂₆NO₄⁻⁻ ([M–H]⁻⁻) 428.18673, Found 428.18711.

3. General procedure for preparation of N-aryl-2-formylpyrroles 5

o-Aminophenols (1 equiv) was dissolved in 1,4-dioxane (0.25 M). To this solution was added 2,5-dimethoxytetrahydrofuran (1 equiv) and AcOH (0.5 M) sequentially. The mixture was heated to reflux (115 °C) in an oil bath and stirred for 5 h. After cooled to room temperature, most of the solvent was removed under reduced pressure. The residue was purified directly by flash silica gel chromatography with petroleum ether/EtOAc (50/1) to afford compound **S4**.^[3]

To a round-bottom flask with a magnetic stirring bar, carboxylic acid (1.1 equiv), phenol **S4** (1 equiv), DMAP (5 mol%) and EDC·HCl (1.1 equiv) were added, and the resulting mixture was stirred in DCM (0.2 M) overnight at room temperature. After the reaction reached completion, H₂O was added. The organic layer was then separated, and the aqueous layer was extracted with EtOAc three times. The organic layer was successively washed with brine. After drying over Na₂SO₄, the resulting solution was concentrated under reduced pressure. The crude mixture was purified by flash chromatography on silica gel with eluent of petroleum ether /ethyl acetate (100:1) affording the corresponding pure compound **S5**.

DMF (1.2 equiv) was placed in 100 mL round-bottom flask and cooled with ice bath below 0 °C. POCl₃ (1.2 equiv) was added dropwise and let to stir for 30 min. The solution of **S5** (1.0 equiv.) in DCE (0.5 M) was added. Cooling bath was removed and the reaction mixture was stirred at 80 °C for 3 h. After cooling to r.t., the mixture was washed with concentrated aqueous Na₂CO₃ solution and distilled water. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude mixture was purified by flash chromatography on silica gel with eluent of petroleum ether /ethyl acetate (20:1) affording the corresponding pure compound **5**.^[4]

2-(2-Formyl-1H-pyrrol-1-yl)phenyl cinnamate (5a)

131.3, 130.9, 129.8, 129.0, 128.4, 128.3, 126.6, 123.5, 116.0, 111.0; HRMS (ESI) m/z Calcd. for C₂₀H₁₅NNaO₃⁺ ([M+Na]⁺) 340.0944, Found 340.0949.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-3-(2-methoxyphenyl)acrylate (5b)

White solid. mp 89.9 – 90.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.93 (d, J = 16.1 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.45 (dd, J = 7.7, 1.4 Hz, 1H), 7.41 – 7.33 (m, 4H), 7.08 (dd, J = 4.0, 1.6 Hz, 1H), 7.00 – 6.89 (m, 3H), 6.47 (d, J = 16.1 Hz, 1H), 6.36 (dd, J = 3.9, 2.7 Hz,

1H), 3.88 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 178.9, 165.0, 158.7, 146.4, 142.8, 133.0, 132.1, 132.0, 131.3, 129.8, 129.4, 128.3, 126.4, 123.6, 122.9, 120.7, 116.4, 111.2, 110.9, 55.5; HRMS (ESI) *m*/*z* Calcd. for C₂₁H₁₇NNaO₄⁺ ([M+Na]⁺) 370.1050, Found 370.1055.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-3-(2-chlorophenyl)acrylate (5c)

White solid. mp 98.3 – 98.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.53 (s, 1H), 8.03 (d, J = 16.0 Hz, 1H), 7.58 (dd, J = 7.7, 1.2 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.43 – 7.36 (m, 4H), 7.35 – 7.31 (m, 1H), 7.30 – 7.26 (m, 1H), 7.09 (dd, J = 3.9, 1.5 Hz, 1H), 7.00 – 6.98 (m, 1H), 6.39 – 6.33 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 178.8, 163.9, 146.2, 142.8, 135.3, 132.9, 132.2, 132.0, 131.6, 131.4, 130.3, 129.8, 128.3, 127.8, 127.2, 126.6, 123.4, 118.6, 111.0; HRMS (ESI) m/z Calcd. for C₂₀H₁₄ClNNaO₃⁺ ([M+Na]⁺) 374.0554, Found 374.0558.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-3-(m-tolyl)acrylate (5d)

White solid. mp 85.4 – 86.3 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.51 (s, 1H), 7.60 (d, J = 16.0 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.43 – 7.33 (m, 3H), 7.32 – 7.27 (m, 3H), 7.22 (d, J = 6.9 Hz, 1H), 7.09 – 7.07 (m, 1H), 6.99 – 6.97 (m, 1H), 6.37 – 6.33 (m, 2H), 2.37 (s, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 178.9, 164.4, 147.4, 146.3, 138.7, 133.9, 133.0, 132.0, 131.7, 131.3, 129.8, 129.0, 128.9, 128.3, 126.5, 125.6, 123.5, 115.7, 110.9, 21.3; HRMS (ESI) *m*/*z* Calcd. for C₂₁H₁₇NNaO₃⁺ ([M+Na]⁺) 354.1101, Found 354.1102.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-3-(3-bromophenyl)acrylate (5e)

White solid. mp 102.4 – 103.2 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.51 (s, 1H), 7.61 – 7.58 (m, 1H), 7.54 – 7.46 (m, 3H), 7.42 – 7.32 (m, 4H), 7.25 – 7.20 (m, 1H), 7.08 (d, *J* = 2.5 Hz, 1H), 7.00 – 6.95 (m, 1H), 6.38 – 6.29 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 163.9, 146.1,

145.4, 135.9, 133.6, 132.9, 131.9, 131.3, 131.0, 130.5, 129.9, 128.3, 127.0, 126.7, 123.4, 123.1, 117.5, 111.0; HRMS (ESI) m/z Calcd. for C₂₀H₁₄BrNNaO₃⁺ ([M+Na]⁺) 418.0049, Found 418.0045.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-3-(3-chlorophenyl)acrylate (5f)

White solid. mp 94.2 – 94.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.58 – 7.49 (m, 2H), 7.48 – 7.45 (m, 1H), 7.44 – 7.38 (m, 2H), 7.37 – 7.29 (m, 4H), 7.09 (dd, *J* = 3.9, 1.3 Hz, 1H), 6.99 – 6.97 (m, 1H), 6.40 – 6.32 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8,

163.9, 146.2, 145.5, 135.7, 135.1, 132.9, 131.9, 131.3, 130.7, 130.2, 129.9, 128.3, 128.1, 126.7, 126.5, 123.4, 117.5, 111.0; HRMS (ESI) m/z Calcd. for C₂₀H₁₄ClNNaO₃⁺ ([M+Na]⁺) 374.0554, Found 374.0557.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-3-(p-tolyl)acrylate (5g)

5a

White solid. mp 93.7 – 94.2 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.50 (s, 1H), 7.59 (d, J = 16.0 Hz, 1H), 7.51 – 7.46 (m, 1H), 7.40 – 7.32 (m, 5H), 7.17 (d, J = 7.9 Hz, 2H), 7.07 (dd, J = 3.9, 1.5 Hz, 1H), 6.98 – 6.96 (m, 1H), 6.34 (dd, J = 3.8, 2.7 Hz, 1H), 6.30 (d, J = 16.0 Hz, 1H),

2.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 178.9, 164.5, 147.3, 146.3, 141.5, 133.0, 132.0, 131.3, 131.2, 129.8, 129.7, 128.4, 128.3, 126.5, 123.5, 114.8, 111.0, 21.6; HRMS (ESI) *m*/*z* Calcd. for C₂₁H₁₇NNaO₃⁺ ([M+Na]⁺) 354.1101, Found 354.1104.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-3-(4-methoxyphenyl)acrylate (5h)

White solid. mp 107.2 – 107.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.58 (d, *J* = 15.9 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.46 – 7.32 (m, 5H), 7.08 (dd, *J* = 3.9,

1.5 Hz, 1H), 7.01 – 6.96 (m, 1H), 6.90 (d, J = 8.7 Hz, 2H), 6.36 (dd, J = 3.8, 2.7 Hz, 1H), 6.22 (d, J = 15.9 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 164.7, 161.9, 147.0, 146.4, 132.9, 132.0, 131.3, 130.2, 129.8, 128.3, 126.6, 126.5, 123.6, 114.4, 113.3, 110.9, 55.4; HRMS (ESI) *m*/*z* Calcd. for C₂₁H₁₇NNaO₄⁺ ([M+Na]⁺) 370.1050, Found 370.1054.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-3-(4-fluorophenyl)acrylate (5i)

White solid. mp 94.2 – 94.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.58 (d, J = 16.0 Hz, 1H), 7.54 – 7.45 (m, 3H), 7.44 – 7.37 (m, 2H), 7.37 – 7.32 (m, 1H), 7.12 – 7.04 (m, 3H), 7.01 – 6.96 (m, 1H), 6.37 (dd, J = 3.9, 2.7 Hz, 1H), 6.28 (d, J = 16.0 Hz, 1H); ¹³C NMR

(151 MHz, CDCl₃) δ 178.9, 164.3 (d, J = 252.2 Hz), 164.2, 146.2, 145.9, 132.9, 132.0, 131.3, 130.4 (d, J = 9.1 Hz), 130.2 (d, J = 3.1 Hz), 129.9, 128.3, 126.6, 123.4, 116.2 (d, J = 22.7 Hz), 115.7, 111.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -108.39; HRMS (ESI) m/z Calcd. for C₂₀H₁₄FNNaO₃⁺ ([M+Na]⁺) 358.0850, Found 358.0855.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-3-(4-chlorophenyl)acrylate (5j)

5j

White solid. mp 97.8 – 98.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.56 (d, J = 16.0 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.44 – 7.38 (m, 4H), 7.37 – 7.32 (m, 3H), 7.08 (dd, J = 4.0, 1.6 Hz, 1H), 6.99 – 6.97 (m, 1H), 6.37 (dd, J = 4.0, 2.6 Hz, 1H), 6.32 (d, J = 16.0 Hz, 1H); ¹³C

NMR (101 MHz, CDCl₃) δ 178.8, 164.1, 146.2, 145.7, 136.9, 132.9, 132.4, 131.9, 131.3, 129.9, 129.5, 129.3, 128.3, 126.6, 123.4, 116.5, 111.0; HRMS (ESI) *m/z* Calcd. for C₂₀H₁₄ClNNaO₃⁺ ([M+Na]⁺) 374.0554, Found 374.0558.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-3-(4-bromophenyl)acrylate (5k)

White solid. mp 109.8 – 110.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.58 – 7.48 (m, 4H), 7.44 – 7.37 (m, 2H), 7.37 – 7.32 (m, 3H), 7.08 (dd, *J* = 4.0, 1.5 Hz, 1H), 7.00 – 6.96 (m, 1H), 6.39 – 6.31 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 178.8, 164.1, 146.2, 145.8, 132.9,

132.8, 132.3, 131.9, 131.3, 129.9, 129.7, 128.3, 126.7, 125.3, 123.4, 116.6, 111.0; HRMS (ESI) *m*/*z* Calcd. for C₂₀H₁₄BrNNaO₃⁺ ([M+Na]⁺) 418.0049, Found 418.0049.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-3-(naphthalen-1-yl)acrylate (5l)

Yellow solid. mp 136.3 – 136.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 8.46 (d, J = 15.8 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.89 (dd, J = 14.5, 8.0 Hz, 2H), 7.73 (d, J = 7.2 Hz, 1H), 7.62 – 7.57 (m, 1H), 7.56 – 7.51 (m, 2H), 7.50 – 7.47 (m, 1H), 7.46 – 7.37 (m, 3H), 7.10 (dd, J = 4.0, 1.5

Hz, 1H), 7.04 - 7.01 (m, 1H), 6.46 (d, J = 15.7 Hz, 1H), 6.39 (dd, J = 3.9, 2.7 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.9, 164.2, 146.3, 144.1, 133.7, 133.0, 132.0, 131.4, 131.2, 131.1, 129.9, 128.8, 128.3, 127.1, 126.6, 126.4, 125.4, 125.4, 123.5, 123.3, 118.5, 111.0; HRMS (ESI) m/z Calcd. for C₂₄H₁₇NNaO₃⁺ ([M+Na]⁺) 390.1101, Found 390.1104.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-3-(thiophen-2-yl)acrylate (5m)

White solid. mp 95.5 – 96.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.72 (d, J = 15.7 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.44 – 7.35 (m, 3H), 7.33 (d, J = 8.1 Hz, 1H), 7.26 – 7.24 (m, 1H), 7.09 (d, J = 3.8 Hz, 1H), 7.07 – 7.04 (m, 1H),

6.98 (s, 1H), 6.39 – 6.34 (m, 1H), 6.14 (d, J = 15.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 164.2, 146.3, 139.5, 139.0, 132.9, 132.0, 131.9, 131.3, 129.8, 129.5, 128.3, 128.3, 126.5, 123.5, 114.5, 110.9; HRMS (ESI) *m*/*z* Calcd. for C₁₈H₁₃NNaO₃S⁺ ([M+Na]⁺) 346.0508, Found 346.0504.

2-(2-Formyl-1H-pyrrol-1-yl)phenyl (E)-but-2-enoate (5n)

White solid. mp 61.8 – 62.5 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.39 (s, 1H), 7.42 – 7.37 (m, 1H), 7.32 – 7.25 (m, 2H), 7.21 – 7.18 (m, 1H), 7.01 (dd, *J* = 4.0, 1.5 Hz, 1H), 6.91 – 6.83 (m, 2H), 6.28 (dd, *J* = 3.9, 2.7 Hz, 1H), 5.70 (dd, *J* = 15.5, 1.7 Hz,

1H), 1.78 (dd, J = 6.9, 1.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 178.9, 163.7, 147.9, 146.2, 132.9, 131.9, 131.2, 129.8, 128.3, 126.5, 123.5, 120.9, 110.9, 18.2; HRMS (ESI) m/z Calcd. for C₁₅H₁₃NNaO₃⁺ ([M+Na]⁺) 278.0788, Found 278.0792.

2-(2-Formyl-1H-pyrrol-1-yl)-4-methylphenyl cinnamate (50)

White solid. mp 91.6 – 92.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.62 (d, J = 16.0 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.41 – 7.35 (m, 3H), 7.30 (dd, J = 8.4, 1.3 Hz, 1H), 7.23 – 7.19 (m, 2H), 7.07 (dd, J = 4.0, 1.6 Hz, 1H), 6.99 – 6.95 (m, 1H), 6.38 – 6.31 (m, 2H), 2.42 (s, 3H); ¹³C NMR (101 MHz,

CDCl₃) *b* 179.0, 164.6, 147.1, 143.9, 136.7, 133.9, 132.9, 131.5, 131.3, 130.9, 130.4,

129.0, 128.7, 128.4, 123.0, 116.0, 110.9, 20.9; HRMS (ESI) m/z Calcd. for C₂₁H₁₇NNaO₃⁺ ([M+Na]⁺) 354.1101, Found 354.1099.

4-Chloro-2-(2-formyl-1H-pyrrol-1-yl)phenyl cinnamate (5p)

White solid. mp 93.4 – 94.0 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.53 (s, 1H), 7.61 (d, J = 16.0 Hz, 1H), 7.49 – 7.45 (m, 3H), 7.42 – 7.37 (m, 4H), 7.29 (d, J = 8.7 Hz, 1H), 7.06 (dd, J = 3.9, 1.5 Hz, 1H), 6.99 – 6.95 (m, 1H), 6.37 (dd, J = 3.8, 2.7 Hz,

1H), 6.33 (d, J = 16.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.6, 164.1, 147.6, 145.0, 133.8, 133.1, 132.8, 131.5, 131.4, 131.1, 129.8, 129.0, 128.4, 128.3, 124.4, 115.6, 111.3; HRMS (ESI) m/z Calcd. for C₂₀H₁₄ClNNaO₃⁺ ([M+Na]⁺) 374.0554, Found 374.0551.

4-Bromo-2-(2-formyl-1H-pyrrol-1-yl)phenyl cinnamate (5q)

White solid. mp 128.7 – 129.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.62 – 7.57 (m, 2H), 7.55 – 7.52 (m, 1H), 7.49 – 7.44 (m, 2H), 7.41 – 7.34 (m, 3H), 7.22 (d, *J* = 8.7 Hz, 1H), 7.07 – 7.03 (m, 1H), 6.97 – 6.93 (m, 1H), 6.38 – 6.34 (m, 1H), 6.31 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ

178.5, 163.9, 147.6, 145.5, 133.8, 133.4, 132.8, 132.7, 131.4, 131.1, 131.0, 129.0, 128.4, 124.7, 118.9, 115.6, 111.3; HRMS (ESI) *m*/*z* Calcd. for C₂₀H₁₄BrNNaO₃⁺ ([M+Na]⁺) 418.0049, Found 418.0044.

5-Chloro-2-(2-formyl-1H-pyrrol-1-yl)phenyl cinnamate (5r)

White solid. mp 93.8 – 94.5 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.52 (s, 1H), 7.62 (d, J = 16.0 Hz, 1H), 7.50 – 7.47 (m, 2H), 7.43 – 7.37 (m, 4H), 7.37 – 7.32 (m, 2H), 7.07 (dd, J = 4.0, 1.6 Hz, 1H), 6.97 – 6.94 (m, 1H), 6.37 (dd, J = 4.0, 2.6 Hz, 1H), 6.33 (d, J = 16.0 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ

178.6, 163.9, 147.7, 146.7, 135.0, 133.7, 132.8, 131.5, 131.1, 130.9, 129.0, 128.9, 128.4, 126.7, 124.0, 115.5, 111.2; HRMS (ESI) *m*/*z* Calcd. for C₂₀H₁₄ClNNaO₃⁺ ([M+Na]⁺) 374.0554, Found 374.0549.

5-Bromo-2-(2-formyl-1H-pyrrol-1-yl)phenyl cinnamate (5s)

White solid. mp 125.6 – 126.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.62 (d, J = 16.0 Hz, 1H), 7.55 – 7.44 (m, 4H), 7.39 (d, J = 6.6 Hz, 3H), 7.27 (d, J = 8.4 Hz, 1H), 7.06 (d, J =2.5 Hz, 1H), 6.97 – 6.93 (m, 1H), 6.41 – 6.29 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.6, 163.9, 147.7, 146.8, 133.8, 132.8, 131.5, 131.4, 131.1, 129.7, 129.2, 129.0, 128.5, 126.8, 122.6, 115.5, 111.2; HRMS (ESI) *m/z* Calcd. for $C_{20}H_{14}BrNNaO_3^+$ ([M+Na]⁺) 418.0049, Found 418.0045.

4. Optimization of reaction conditions

Table 1 Optimization of reaction conditions

1b, Ar = 2-naphthyl

1g, Ar = 2,4,6-(*i*-Pr)₃-C₆H₂ **1c**, Ar = $3,5-(CF_3)_2-C_6H_3$

cat.

Na₂CO₃

3 Å MS solvent, 30 °C

6aa

Bn

1h, Ar = 9-anthryl 1i, Ar = 9-phenanthryl

1k , Ar = 9-anthr	y١
--------------------------	----

1e, Ar = 9-phenanthryl 1f, Ar = 9-anthryl						
Entry ^a	Cat.	Solvent	t [h]	Yield [%] ^b	dr ^c	ee [%] ^d
1	DPP	DCM	24	66	> 20:1	-
2	1b	DCM	48	56	> 20:1	33
3	1c	DCM	48	67	> 20:1	49
4	1e	DCM	48	70	> 20:1	61
5	1f	DCM	48	64	> 20:1	40
6	1g	DCM	48	77	> 20:1	-60
7	1h	DCM	48	78	> 20:1	77
8	1i	DCM	48	45	> 20:1	73
9	1j	DCM	48	70	> 20:1	40
10	1k	DCM	48	76	> 20:1	-31
11	1h	DCE	48	80	> 20:1	67
12	1h	toluene	60	88	> 20:1	87
13	1h	THF	48	Trace	-	-
14	1h	Et ₂ O	72	50	> 20:1	87
15	1h	xylene	72	81	> 20:1	85
16	1h	mesitylene	72	74	> 20:1	80
17	1h	bromobenzene	72	80	> 20:1	81

18	1h	Tol.:DCM=1:1	60	76	> 20:1	87
19 ^e	1h	toluene	48	81	> 20:1	90
20 ^f	1h	toluene	60	84	> 20:1	93
21 ^{<i>f, g</i>}	1h	toluene	96	80	> 20:1	88

^{*a*}The reaction was carried out on a 0.1 mmol scale with Na₂CO₃ (1.5 equiv), 3 Å MS (100 mg), **cat.** (10 mol%) in 1.0 mL solvent at 30 °C under nitrogen, and the ratio of **2a/5a** was 1.5/1. ^{*b*}Isolated yield. ^{*c*}The dr was determined by ¹H NMR of the crude reaction mixture. ^{*d*}The ee was determined by chiral HPLC. ^{*e*}In 0.5 mL toluene. ^{*f*}In 2.0 mL toluene. ^{*g*}Without base.

5. General procedure for the synthesis of products 4/6

In a Schlenk tube, 3-amino oxindole hydrochlorides **2** (0.24 mmol), Na₂CO₃ (0.3 mmol), 3 Å MS (200 mg), biaryl aldehydes **3** (0.2 mmol) and catalyst **1e** (0.02 mmol) were added into Et₂O (2 mL) under nitrogen atmosphere. The reaction solution was stirred at room temperature. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/10 to 1/5) on silica gel to give the product **4**.

In a Schlenk tube, 3-amino oxindole hydrochlorides **2** (0.24 mmol), Na₂CO₃ (0.3 mmol), 3 Å MS (200 mg), N-aryl-2-formylpyrroles **5** (0.2 mmol) and catalyst **1h** (0.02 mmol) were added into toluene (4 mL) under nitrogen atmosphere. The reaction solution was stirred at 30 °C. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/10 to 1/5) on silica gel to give the product **6**.

Gram-scale reaction

In a Schlenk tube, 3-amino oxindole hydrochloride **2a** (2.4 mmol), Na₂CO₃ (3.0 mmol), 3 Å MS (2000 mg), biaryl aldehyde **3d** (2.0 mmol) and catalyst **1e** (0.2 mmol) were added into Et₂O (20 mL) under nitrogen atmosphere. The reaction solution was stirred at room temperature. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/10 to 1/5) on silica gel to give the product **4ad** with 75% yield, > 20:1 dr and 98% ee.

The scale-up reaction

In a Schlenk tube, 3-amino oxindole hydrochloride **2a** (1.5 mmol), Na₂CO₃ (1.5 mmol), 3 Å MS (1000 mg), N-aryl-2-formylpyrrole **5m** (1.0 mmol) and catalyst **1h** (0.1 mmol) were added into toluene (20 mL) under nitrogen atmosphere. The reaction solution was stirred at 30 °C. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/10 to 1/5) on silica gel to give the product **6am** with 90% yield, > 20:1 dr and 96% ee.

In a Schlenk tube, 3-amino oxindole hydrochloride **2a** (1.5 mmol), Na₂CO₃ (1.5 mmol), 3 Å MS (1000 mg), N-aryl-2-formylpyrrole **5s** (1.0 mmol) and catalyst **1h** (0.1 mmol) were added into toluene (20 mL) under nitrogen atmosphere. The reaction solution was stirred at 30 °C. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/10 to 1/5) on silica gel to give the product **6as** with 78% yield, > 20:1 dr and 87% ee.

Synthetic transformations

A reaction tube was charged with **4ad** (1.0 equiv, 0.2 mmol) and DCM (2 mL), and then DDQ (2.0 equiv, 0.4 mmol) was added. The reaction was stirred at room temperature until it was complete (monitored by TLC). Then the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/10) on silica gel to give the product **7** as a white solid.

A reaction tube was charged with **4ad** (1.0 equiv, 0.2 mmol) and DCM (2 mL), and then DDQ (4.0 equiv, 0.8 mmol) was added. The reaction was stirred at room temperature until it was complete (monitored by TLC). Then the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/10) on silica gel to give the product **8** as a white solid.

A reaction tube was charged with **6as** (1.0 equiv, 0.1 mmol) and DMF (1 mL), and then NBS (1.1 equiv, 0.11 mmol) was added. The reaction was stirred at room temperature until it was complete (monitored by TLC). After the reaction reached completion, H₂O was added. The organic layer was then separated, and the aqueous layer was extracted with EtOAc three times. The organic layer was successively washed with brine. After drying over Na₂SO₄, the resulting solution was concentrated under reduced pressure. The crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/10) on silica gel to give the product **9** as a white solid.

To a solution of **6as** (1.0 equiv, 0.1 mmol) in 2.0 mL THF/H₂O (10:1) was added phenylboronic acid (1.5 equiv, 0.15 mmol), Pd(PPh₃)₄ (0.15 equiv, 0.015 mmol) and Cs₂CO₃ (1.5 equiv, 0.15 mmol). After that, the reaction system was degassed and filled with nitrogen for three times. The reaction mixture was then stirred under N₂ at 70 °C for 6 h. After that, the reaction mixture was washed with H₂O and extracted with EtOAc. The combined organic phase was washed with brine and dried with anhydrous Na₂SO₄. Then the solvent was removed under reduced pressure. The crude residue was purified by silica gel column chromatography to afford pure product **10** as a yellow solid in 90% yield.

(40% yield, > 20:1 dr, 75% ee)

To a solution of N-Boc biaryl benzylamine **11** (1.0 equiv, 0.2 mmol) in DCM was added TFA (10.0 equiv, 2.0 mmol) at 0 °C. The mixture was stirred for 1 h at this temperature until TLC showed complete N-Boc deprotection. Evaporation of the reaction mixture was followed by coevaporation using DCM for the removal of excess TFA. Dry Et₂O was added to the mixture followed by N-benzylisatin (1.1 equiv, 0.22 mmol), freshly activated 3 Å MS and catalyst **1e** (10 mol%). Then, the reaction mixture was stirred for 48 h until TLC showed complete conversion. The reaction mixture was concentrated in vacuo and purified using silica gel chromatography to give the pure product **4aa**.

Characterization Data

(4bR,6S,7R,7aS)-1'-Benzyl-7-phenyl-4b,5,7,7a-tetrahydro-8Hspiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4aa)

Prepared according to the procedure within 2 days as white solid (100.8 mg, 92% yield, dr > 20:1); mp 208.3 – 208.9 °C; $[\alpha]_D^{18}$ = 37.98 (*c* 0.13, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.7 Hz, 1H), 7.79 (d, *J* = 7.1 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.45 – 7.35 (m, 3H), 7.26 (d, *J* = 8.6 Hz, 2H), 7.24 – 7.02 (m, 8H), 6.96 (d, *J* = 7.6 Hz, 2H), 6.43 (d, *J* = 7.5 Hz, 2H), 6.36 (d, *J* = 7.5 Hz,

1H), 5.23 (d, J = 11.2 Hz, 1H), 4.89 (d, J = 16.0 Hz, 1H), 4.51 (t, J = 11.3 Hz, 1H), 4.38 (d, J = 11.4 Hz, 1H), 4.19 (d, J = 16.0 Hz, 1H), 2.25 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 170.8, 149.7, 143.1, 141.0, 135.3, 134.9, 134.8, 134.0, 130.2, 130.1, 129.5, 128.9, 128.8, 128.8, 128.6, 128.5, 128.0, 128.0, 127.7, 127.2, 127.0, 126.4, 125.4, 124.1, 123.2, 121.1, 109.3, 72.0, 57.4, 54.9, 50.8, 43.3; HRMS (ESI) m/z Calcd. for C₃₇H₂₉N₂O₃⁺ ([M+H]⁺) 549.2173, Found 549.2170; Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 80/20, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 19.3$ min, $t_{minor} =$ 8.0 min).

Prepared according to the procedure within 3 days as white solid (78.7 mg, 70% yield, dr > 20:1); mp 244.1 – 244.8 °C; $[\alpha]_D^{18}$ = 16.47 (*c* 0.17, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 7.7 Hz, 1H), 7.83 (dd, *J* = 5.4, 2.9 Hz, 1H), 7.59 – 7.48 (m, 2H), 7.46 – 7.38 (m, 4H), 7.29 (d, *J* = 3.3 Hz, 1H), 7.22 – 7.08 (m, 7H), 7.07 – 6.97 (m, 2H), 6.62 (d, *J* = 7.3 Hz, 2H), 6.37 (dd, *J* =

5.7, 2.7 Hz, 1H), 5.32 (d, J = 11.4 Hz, 1H), 4.99 (d, J = 16.0 Hz, 1H), 4.87 (d, J = 11.1 Hz, 1H), 4.34 (t, J = 10.8 Hz, 1H), 4.29 (d, J = 16.3 Hz, 1H), 2.30 (s, 1H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.8, 171.1, 149.7, 143.1, 141.1, 138.7, 135.3, 135.0, 134.8, 132.9, 130.7, 130.2, 130.0, 129.5, 128.9, 128.8, 128.7, 128.6, 127.9, 127.3, 126.9, 126.6, 126.3, 125.4, 124.6, 122.7, 121.1, 109.3, 72.2, 57.8, 54.1, 49.9, 43.4, 20.0; HRMS (ESI) m/z Calcd. for C₃₈H₃₁N₂O₃⁺ ([M+H]⁺) 563.2329, Found

563.2320; Enantiomeric excess was determined to be >99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 15.1 min, t_{minor} = 10.3 min).

(4bR,6S,7R,7aS)-1'-Benzyl-7-(2-methoxyphenyl)-4b,5,7,7a-tetrahydro-8H-spiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4ac)

Prepared according to the procedure within 7 days as white solid (76.4 mg, 66% yield, dr > 20:1); mp 240.8 – 245.8 °C; $[\alpha]_D^{18}$ = 11.74 (*c* 0.41, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 7.6 Hz, 1H), 7.82 (d, *J* = 7.1 Hz, 1H), 7.52 – 7.44 (m, 2H), 7.42 – 7.33 (m, 3H), 7.24 – 7.20 (m, 3H), 7.19 – 7.01 (m, 6H), 6.83 – 6.75 (m, 1H), 6.61 (d, *J* = 8.1 Hz, 1H), 6.49 (d,

J = 7.3 Hz, 2H), 6.31 (d, *J* = 7.6 Hz, 1H), 5.21 (d, *J* = 11.3 Hz, 1H), 5.13 (d, *J* = 11.6

Hz, 1H), 4.92 (d, J = 16.0 Hz, 1H), 4.47 (t, J = 11.4 Hz, 1H), 4.18 (d, J = 16.0 Hz, 1H), 3.28 (s, 3H), 2.21 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 179.3, 170.8, 158.4, 149.8, 142.8, 141.2, 135.4, 135.1, 134.8, 130.2, 130.0, 129.0, 128.9, 128.8, 128.8, 128.6, 128.5, 127.9, 127.3, 127.1, 126.9, 126.4, 125.5, 125.5, 123.0, 122.4, 121.2, 120.6, 111.0, 108.7, 71.9, 57.5, 55.1, 51.6, 46.1, 43.3; HRMS (ESI) *m/z* Calcd. for C₃₈H₃₁N₂O₄⁺ ([M+H]⁺) 579.2278, Found 579.2276; Enantiomeric excess was determined to be >99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*_{major} = 9.9 min, *t*_{minor} = 6.7 min).

(4bR,6S,7R,7aS)-1'-Benzyl-7-(m-tolyl)-4b,5,7,7a-tetrahydro-8Hspiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4ad)

Prepared according to the procedure within 2 days as white solid (90.0 mg, 80% yield, dr > 20:1); mp 212.2 – 212.8 °C; $[\alpha]_D^{18} = 40.10 (c \ 0.21, CH_2Cl_2);$ ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.7 Hz, 1H), 7.79 (d, J = 7.0 Hz, 1H), 7.53 – 7.46

(m, 2H), 7.45 – 7.35 (m, 3H), 7.26 (d, J = 8.9 Hz, 2H), 7.21 – 7.11 (m, 3H), 7.08 – 6.98 (m, 4H), 6.76 (d, J = 6.5 Hz, 1H), 6.71 (s, 1H), 6.43 (d, J = 7.5 Hz, 2H), 6.36 (d, J = 7.5 Hz, 1H), 5.22 (d, J = 10.1 Hz, 1H), 4.93 (d, J = 16.0 Hz, 1H), 4.49 (t, J = 11.3Hz, 1H), 4.34 (d, J = 11.4 Hz, 1H), 4.17 (d, J = 16.0 Hz, 1H), 2.24 (s, 1H), 2.09 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 170.8, 149.7, 143.2, 141.1, 137.9, 135.3, 134.9, 134.8, 133.9, 130.2, 130.1, 129.5, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.0, 127.2, 127.0, 126.3, 125.4, 125.0, 124.1, 123.1, 121.1, 109.2, 72.0, 57.4, 54.8, 50.8, 43.3, 21.4; HRMS (ESI) *m*/*z* Calcd. for C₃₈H₃₁N₂O₃⁺ ([M+H]⁺) 563.2329, Found 563.2322; Enantiomeric excess was determined to be >99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*_{major} = 15.7 min, *t*_{minor} = 10.6 min).

(4bR,6S,7R,7aS)-1'-Benzyl-7-(p-tolyl)-4b,5,7,7a-tetrahydro-8Hspiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4ae)

Prepared according to the procedure within 3 days as white solid (78.8 mg, 70% yield, dr > 20:1); mp 212.6 – 213.5 °C; $[\alpha]_D^{18}$ = 58.97 (*c* 0.15, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.7 Hz, 1H), 7.78 (d, *J* = 6.4 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.44 – 7.32 (m, 3H), 7.25 – 7.22 (m, 2H), 7.20 – 7.11 (m, 3H), 7.08 – 7.02 (m, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 6.84 (d, *J* = 8.1 Hz, 2H), 6.48 (d, *J* = 7.4 Hz, 2H), 6.36 (d, *J* =

7.3 Hz, 1H), 5.22 (d, J = 11.2 Hz, 1H), 4.93 (d, J = 16.0 Hz, 1H), 4.47 (t, J = 11.3 Hz, 1H), 4.34 (d, J = 11.4 Hz, 1H), 4.18 (d, J = 16.0 Hz, 1H), 2.28 (s, 3H), 2.24 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 179.0, 170.8, 149.7, 143.1, 141.0, 137.2, 135.3, 134.9, 134.8, 131.0, 130.2, 130.1, 129.4, 129.2, 128.9, 128.9, 128.8, 128.5, 127.9, 127.2, 126.9, 126.5, 125.4, 124.1, 123.1, 121.1, 109.2, 72.0, 57.4, 54.6, 51.0, 43.3, 21.2; HRMS (ESI) m/z Calcd. for C₃₈H₃₁N₂O₃⁺ ([M+H]⁺) 563.2329, Found 563.2320; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} =$ 13.4 min, $t_{minor} = 5.9$ min).

S25

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	5.921	MM	0.3552	137.08684	6.43182	0.3962
2	13.381	VB	0.6690	3.44610e4	766.07513	99.6038

(4bR,6S,7R,7aS)-1'-Benzyl-7-(4-methoxyphenyl)-4b,5,7,7a-tetrahydro-8H-spiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4af)

Prepared according to the procedure within 4 days as white solid (106.47 mg, 92% yield, dr > 20:1); mp 238.7 – 239.5 °C; $[\alpha]_D^{18} = 75.42$ (*c* 0.18, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.7 Hz, 1H), 7.78 (d, J = 7.1 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.44 – 7.35 (m, 3H), 7.25 – 7.23 (m, 2H), 7.21 – 7.11 (m, 3H), 7.09 – 7.04 (m, 2H), 6.87 (d, J = 8.6 Hz, 2H), 6.63 (d, J = 8.6 Hz, 2H), 6.45 (d, J = 7.5 Hz,

2H), 6.38 (d, J = 7.3 Hz, 1H), 5.21 (d, J = 11.2 Hz, 1H), 4.93 (d, J = 16.0 Hz, 1H), 4.45 (t, J = 11.3 Hz, 1H), 4.33 (d, J = 11.4 Hz, 1H), 4.19 (d, J = 16.0 Hz, 1H), 3.72 (s, 3H), 2.24 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 179.0, 170.8, 159.2, 149.7, 143.1, 141.0, 135.3, 134.9, 134.8, 130.2, 130.1, 129.5, 129.0, 128.9, 128.9, 128.8, 128.5, 127.9, 127.3, 126.9, 126.4, 126.0, 125.4, 124.1, 123.2, 121.1, 113.9, 109.2, 72.0, 57.4, 55.1, 54.3, 51.0, 43.3; HRMS (ESI) *m*/*z* Calcd. for C₃₈H₃₁N₂O₄⁺ ([M+H]⁺) 579.2278, Found 579.2271; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 19.4 min, *t*_{minor} = 32.9 min).

(4bR,6S,7R,7aS)-1'-Benzyl-7-(4-fluorophenyl)-4b,5,7,7a-tetrahydro-8Hspiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4ag)

Prepared according to the procedure within 6 days as white solid (70.26 mg, 62% yield, dr > 20:1); mp 188.1 – 189.0 °C; $[\alpha]_D^{18} = 22.96$ (*c* 0.10, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.7 Hz, 1H), 7.81 – 7.76 (m, 1H), 7.55 – 7.47 (m, 2H), 7.46 – 7.37 (m, 3H), 7.29 – 7.27 (m, 2H), 7.23 – 7.09 (m, 5H), 6.95 – 6.90 (m, 2H), 6.81 – 6.75 (m, 2H), 6.51 (d, J = 7.1 Hz, 2H), 6.43 (dd, J = 6.5, 2.0 Hz, 1H), 5.22 (d, J = 11.0 Hz,

1H), 4.89 (d, J = 15.9 Hz, 1H), 4.44 (t, J = 11.2 Hz, 1H), 4.35 (d, J = 11.4 Hz, 1H), 4.23 (d, J = 16.0 Hz, 1H), 2.27 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.7, 170.7, 162.5 (d, J = 198.0 Hz), 149.6, 143.1, 140.8, 135.3, 134.8, 134.7, 130.2, 130.1, 129.9 (d, J = 3.0 Hz), 129.7, 129.6, 128.9, 128.8, 128.6, 128.6, 128.0, 127.4, 127.0, 126.4, 125.4, 124.1, 123.3, 121.1, 115.4 (d, J = 17.2 Hz), 109.3, 71.9, 57.3, 54.2, 51.1, 43.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.55; HRMS (ESI) *m/z* Calcd. for C₃₇H₂₈FN₂O₃⁺ ([M+H]⁺) 567.2078, Found 567.2069; Enantiomeric excess was determined to be >99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 25.9 min, *t*_{minor} = 7.2 min).

(4bR,6S,7R,7aS)-1'-Benzyl-7-(naphthalen-1-yl)-4b,5,7,7a-tetrahydro-8H-spiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4ah)

Prepared according to the procedure within 4 days as white solid (101.78 mg, 85% yield, dr > 20:1); mp 258.4 – 259.0 °C; $[\alpha]_D^{18}$ = -109.70 (*c* 0.69, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.7 Hz, 1H), 8.02 (d, *J* = 8.5 Hz, 1H), 7.93 (d, *J* = 7.3 Hz, 1H), 7.68 (d, *J* = 7.9 Hz, 2H), 7.58 (d, *J* = 7.3 Hz, 1H), 7.54 – 7.44 (m, 2H), 7.44 – 7.34 (m, 3H), 7.30 – 7.21 (m, 4H),

7.17 (d, J = 7.8 Hz, 1H), 7.11 – 7.05 (m, 2H), 7.01 – 6.96 (m, 2H), 6.94 – 6.88 (m, 1H), 6.37 (d, J = 7.5 Hz, 2H), 6.10 (d, J = 7.8 Hz, 1H), 5.45 (d, J = 11.0 Hz, 1H), 5.36 (d, J = 11.3 Hz, 1H), 4.82 (d, J = 16.0 Hz, 1H), 4.56 (t, J = 11.2 Hz, 1H), 4.14 (d, J = 16.0 Hz, 1H), 2.33 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 179.5, 171.0, 149.8, 142.9, 141.1, 135.4, 134.9, 134.8, 133.8, 132.7, 131.0, 130.3, 130.1, 129.5, 129.0, 128.9, 128.6, 128.3, 128.2, 128.0, 127.2, 127.0, 126.4, 125.6, 125.5, 125.5, 125.2, 124.5,

124.5, 123.8, 122.8, 121.2, 109.2, 72.5, 57.8, 53.8, 48.4, 43.3; HRMS (ESI) *m/z* Calcd. for C₄₁H₃₁N₂O_{3⁺} ([M+H]⁺) 599.2329, Found 599.2321; Enantiomeric excess was determined to be >99% (determined by HPLC using chiral AD-H column, hexane/2propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 12.0 min, *t*_{minor} = 8.6 min).

Prepared according to the procedure within 4 days as white solid (66.56 mg, 60% yield, dr > 20:1); mp 222.3 – 222.1 °C; $[\alpha]_D^{18}$ = 55.77 (*c* 0.52, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.7 Hz, 1H), 7.77 – 7.68 (m, 1H), 7.53 – 7.43 (m, 2H), 7.42 – 7.33 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.24 – 7.17 (m, 3H), 7.17 – 7.08 (m, 3H), 7.02 (d, *J* = 5.0 Hz, 1H), 6.84 – 6.76 (m, 1H), 6.62 – 6.57 (m, 3H), 6.51 – 6.44 (m, 1H), 5.19 (dd, *J* = 11.1, 3.5

Hz, 1H), 4.92 (d, J = 15.9 Hz, 1H), 4.58 (d, J = 11.1 Hz, 1H), 4.41 (t, J = 11.2 Hz,

1H), 4.25 (d, J = 15.9 Hz, 1H), 2.18 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.4, 170.6, 149.6, 143.6, 140.7, 137.4, 135.3, 135.0, 134.7, 130.2, 129.9, 128.9, 128.9, 128.7, 128.3, 128.1, 127.3, 127.1, 126.9, 126.6, 125.4, 125.3, 124.5, 124.2, 123.3, 121.2, 109.3, 71.5, 57.3, 52.9, 50.5, 43.4; HRMS (ESI) m/z Calcd. for C₃₅H₂₇N₂O₃S⁺ ([M+H]⁺) 555.1737, Found 555.1728; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 19.8 min, t_{minor} = 10.0 min).

(4bR,6S,7S,7aS)-1'-Benzyl-7-methyl-4b,5,7,7a-tetrahydro-8Hspiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4aj)

Prepared according to the procedure within 3 days as white solid (89.53 mg, 92% yield, dr > 20:1); mp 140.5 – 141.3 °C; $[\alpha]_D^{18}$ = -127.07 (*c* 0.53, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.7 Hz, 1H), 7.56 (d, *J* = 7.1 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.37 – 7.30 (m, 3H), 7.25 – 7.18 (m, 8H), 7.15 – 7.09 (m, 1H), 6.72 (d, *J* = 7.7 Hz, 1H), 4.97 (d, *J* = 3.0 Hz, 1H), 4.93 (d, *J* = 7.5 Hz, 1H), 4.62 (d, *J* = 15.6 Hz, 1H), 3.64 (t, *J* = 11.1 Hz, 1H), 3.19 – 3.08

(m, 1H), 2.02 (s, 1H), 0.82 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.5, 171.4, 149.6, 143.4, 141.2, 135.8, 135.3, 134.7, 130.0, 129.9, 129.4, 129.1, 128.9, 128.8, 128.7, 127.9, 127.8, 127.3, 126.9, 125.5, 124.1, 123.3, 121.3, 109.1, 70.8, 57.5, 53.7, 44.9, 43.7, 12.4; HRMS (ESI) *m/z* Calcd. for C₃₂H₂₇N₂O₃⁺ ([M+H]⁺) 487.2016, Found 487.2013; Enantiomeric excess was determined to be 92% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 18.3 min, *t*_{minor} =12.4 min).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	12.429	MM	0.3845	949.1459	94 41.13959	3.9019
2	18.339	VB	0.6148	2.33760e4	4 552.14771	96.0981

(4bR,6S,7R,7aS)-1'-Benzyl-10-methyl-7-phenyl-4b,5,7,7a-tetrahydro-8H-spiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4ak)

2

9.605 MM

Prepared according to the procedure within 4 days as white solid (105.78 mg, 94% yield, dr > 20:1); mp 262.3 – 263.3 °C; $[\alpha]_D^{18}$ = -7.12 (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 6.9 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.38 – 7.28 (m, 3H), 7.24 – 7.17 (m, 4H), 7.14 – 7.01 (m, 6H), 6.96 (d, *J* = 7.5 Hz, 2H), 6.41 (d, *J* = 7.3 Hz, 2H), 6.35 (d, *J* = 7.5 Hz, 1H),

5.25 – 5.10 (m, 1H), 4.88 (d, J = 16.0 Hz, 1H), 4.37 (d, J = 4.6 Hz, 2H), 4.17 (d, J = 16.0 Hz, 1H), 2.26 (s, 3H), 2.18 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 171.1, 148.0, 143.1, 141.0, 135.8, 134.9, 134.7, 134.1, 131.4, 130.1, 129.6, 128.8, 128.7, 128.7, 128.6, 127.9, 127.9, 127.8, 127.6, 127.2, 126.7, 126.3, 125.4, 124.2, 123.2, 109.3, 72.1, 57.3, 54.7, 51.1, 43.3, 16.8; HRMS (ESI) *m/z* Calcd. for C₃₈H₃₁N₂O_{3⁺} ([M+H]⁺) 563.2329, Found 563.2319; Enantiomeric excess was determined to be 85% (determined by HPLC using chiral AD-H column, hexane/2propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*_{major} = 14.6 min, *t*_{minor} = 5.7 min).

0.5712 7742.13867

225.89011

50.4955

Prepared according to the procedure within 4 days as white solid (63.65 mg, 55% yield, dr > 20:1); mp 286.5 – 287.3 °C; $[\alpha]_D^{18}$ = -2.68 (*c* 0.11, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.5 Hz, 1H), 7.80 (d, *J* = 6.7 Hz, 1H), 7.52 – 7.46 (m, 1H), 7.42 – 7.32 (m, 2H), 7.29 (d, *J* = 7.1 Hz, 1H), 7.23 – 7.14 (m, 3H), 7.14 – 7.02 (m, 6H), 7.00 – 6.93 (m, 3H), 6.42 (d, *J* = 7.0 Hz, 2H), 6.37

4al (d, *J* = 7.2 Hz, 1H), 5.19 (d, *J* = 10.1 Hz, 1H), 4.89 (d, *J* = 16.0 Hz, 1H), 4.49 – 4.34 (m, 2H), 4.18 (d, *J* = 15.9 Hz, 1H), 3.91 (s, 3H), 2.23 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 171.1, 151.2, 143.1, 140.9, 138.4, 136.2, 135.4, 134.8, 134.1, 129.5, 128.9, 128.7, 128.6, 128.4, 127.9, 127.6, 127.3, 127.2, 126.3, 125.6, 124.2, 123.2, 121.1, 112.4, 109.3, 71.9, 57.1, 56.1, 54.4, 50.4, 43.3; HRMS (ESI) *m*/*z* Calcd. for C₃₈H₃₁N₂O₄⁺ ([M+H]⁺) 579.2278, Found 579.2276; Enantiomeric excess was determined to be 49% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 15.0 min, *t*_{minor} = 7.5 min).

(4bR,6S,7R,7aS)-1'-Benzyl-10-fluoro-7-phenyl-4b,5,7,7a-tetrahydro-8Hspiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4am)

4am

Prepared according to the procedure within 3 days as white solid (99.73 mg, 88% yield, dr > 20:1); mp 282.0 – 282.8 °C; $[\alpha]_D^{18}$ = 53.61 (*c* 0.66, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 7.7 Hz, 1H), 7.81 (d, *J* = 6.8 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.43 – 7.28 (m, 4H), 7.25 – 7.06 (m, 9H), 7.00 (d, *J* = 7.5 Hz, 2H), 6.47 (d, *J* = 7.3 Hz, 2H), 6.40 (d, *J* = 7.4 Hz, 1H), 5.22 (d, *J* = 11.2 Hz, 1H), 4.93 (d, *J* = 16.0 Hz, 1H), 4.55 (t, *J* = 11.4 Hz, 1H), 4.39 (d, *J*

= 11.4 Hz, 1H), 4.21 (d, *J* = 16.0 Hz, 1H), 2.20 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 170.0, 153.8 (d, *J* = 252.5 Hz), 143.2, 141.0, 137.3, 137.3 (d, *J* = 12.1 Hz), 134.8, 134.3, 134.3, 133.7, 129.7, 129.3, 128.7, 128.6, 128.6, 128.2, 127.9, 127.6, 127.5, 127.3, 126.4, 125.8, 125.0 (d, *J* = 3.0 Hz), 124.1, 123.3, 116.9 (d, *J* = 21.2 Hz), 109.4, 71.9, 57.1, 54.6, 50.7, 43.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -128.72; HRMS (ESI) *m*/*z* Calcd. for C₃₇H₂₈FN₂O₃⁺ ([M+H]⁺) 567.2078, Found 567.2071; Enantiomeric excess was determined to be >99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 18.5 min, *t*_{minor} = 6.8 min).

(4bR,6S,7R,7aS)-1'-Benzyl-11-methoxy-7-phenyl-4b,5,7,7a-tetrahydro-8H-spiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4an)

Prepared according to the procedure within 4 days as white solid (81.01 mg, 70% yield, dr > 20:1); mp 172.6 – 173.8 °C; $[\alpha]_D^{18}$ = 19.21 (*c* 0.33, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.7 Hz, 1H), 7.79 (d, *J* = 7.2 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.38 – 7.33 (m, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 7.23 – 7.16 (m, 3H), 7.16 – 7.03 (m, 6H), 6.99 – 6.93 (m, 3H), 6.79 (d, *J* = 2.4 Hz, 1H), 6.45 (d, *J* = 7.3 Hz, 2H), 6.36 (d, *J* = 7.4 Hz, 1H), 5.26 (d, *J* = 11.2 Hz,

1H), 4.89 (d, J = 16.0 Hz, 1H), 4.54 (t, J = 11.3 Hz, 1H), 4.37 (d, J = 11.3 Hz, 1H), 4.20 (d, J = 16.0 Hz, 1H), 3.89 (s, 3H), 2.23 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 170.7, 160.9, 150.4, 143.1, 141.2, 135.2, 134.9, 134.1, 130.7, 129.5, 129.3,
128.8, 128.6, 128.6, 128.5, 128.1, 127.9, 127.8, 127.2, 126.8, 126.4, 125.4, 124.1, 123.2, 112.5, 109.3, 106.9, 72.0, 57.5, 55.7, 55.0, 50.7, 43.3; HRMS (ESI) m/z Calcd. for C₃₈H₃₁N₂O₄⁺ ([M+H]⁺) 579.2278, Found 579.2270; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 28.9 min, t_{minor} = 6.7 min).

(4bR,6S,7R,7aS)-1'-Benzyl-12-methyl-7-phenyl-4b,5,7,7a-tetrahydro-8H-spiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4ao)

Prepared according to the procedure within 3 days as white solid (110.28 mg, 98% yield, dr > 20:1); mp 205.8 – 106.7 °C; $[\alpha]_D^{18} = 51.86$ (*c* 0.80, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.7 Hz, 1H), 7.81 (d, J = 7.2 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.42 – 7.37 (m, 1H), 7.33 – 7.27 (m, 2H), 7.25 – 7.18

(m, 3H), 7.18 – 7.05 (m, 7H), 6.98 (d, J = 7.6 Hz, 2H), 6.47 (d, J = 7.4 Hz, 2H), 6.38 (d, J = 7.4 Hz, 1H), 5.28 (d, J = 11.2 Hz, 1H), 4.90 (d, J = 16.0 Hz, 1H), 4.53 (t, J = 11.3 Hz, 1H), 4.40 (d, J = 11.4 Hz, 1H), 4.22 (d, J = 16.0 Hz, 1H), 2.47 (s, 3H), 2.28 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 171.1, 147.5, 143.1, 140.9, 136.7, 135.5, 134.9, 134.4, 134.1, 130.6, 129.5, 128.9, 128.8, 128.7, 128.6, 128.5, 128.1, 127.9, 127.7, 127.2, 126.4, 125.4, 124.1, 123.2, 120.8, 109.3, 72.1, 57.5, 55.0, 50.7, 43.3, 21.0; HRMS (ESI) *m*/*z* Calcd. for C₃₈H₃₁N₂O₃⁺ ([M+H]⁺) 563.2329, Found 563.2322; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*major = 12.4 min, *t*minor = 6.1 min).

(4bR,6S,7R,7aS)-1'-Benzyl-12-fluoro-7-phenyl-4b,5,7,7a-tetrahydro-8H-spiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4ap)

Prepared according to the procedure within 3 days as white solid (104.26 mg, 92% yield, dr > 20:1); mp 252.9 – 254.0 °C; $[\alpha]_D^{18}$ = 41.91 (*c* 0.42, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.5 Hz, 1H), 7.77 (d, *J* = 6.7 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.40 – 7.34 (m, 1H), 7.24 – 7.03 (m, 12H), 6.96 (d, *J* = 7.1 Hz, 2H), 6.45 (d, *J* = 7.0 Hz, 2H), 6.36 (d, *J* = 7.2 Hz, 1H), 5.23 (d, *J*

= 10.9 Hz, 1H), 4.89 (d, *J* = 16.0 Hz, 1H), 4.49 (t, *J* = 11.2 Hz, 1H), 4.35 (d, *J* = 11.2 Hz, 1H), 4.19 (d, *J* = 15.9 Hz, 1H), 2.22 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 170.7, 160.5 (d, *J* = 248.5 Hz), 145.8, 145.7, 143.1, 140.8, 136.5 (d, *J* = 8.1 Hz), 134.8, 134.3, 133.9, 129.6, 129.3, 128.7, 128.6, 128.6, 128.1, 128.0, 127.8, 127.2, 126.4, 125.7, 124.1, 123.2, 122.7 (d, *J* = 9.1 Hz), 116.9 (d, *J* = 12.1Hz), 116.7 (d, *J* = 11.1 Hz), 109.4, 72.0, 57.3, 54.9, 50.8, 43.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.68; HRMS (ESI) *m*/*z* Calcd. for C₃₇H₂₈FN₂O₃⁺ ([M+H]⁺) 567.2078, Found 567.2073; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 12.4 min, *t*_{minor} = 7.1 min).

S38

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	7.135	MM	0.2311	16.	.56470	1.1	19450	0.2380
2	12.467	BB	1.2099	6942.	.31006	85.0	06021	99.7620

(8aS,9R,10S,11aR)-1'-Benzyl-9-phenyl-8a,9,11,11a-tetrahydro-8Hspiro[benzo[5,6]naphtho[1',2':7,8]oxocino[4,3-b]pyrrole-10,3'-indoline]-2',8dione (4aq)

solid (86.21 mg, 72% yield, dr > 20.1); mp 214.3 – 214.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 7.4 Hz, 1H), 8.02 (dd, J = 16.2, 8.4 Hz, 2H), 7.83 (d, J = 6.9 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.53 – 7.47 (m, 2H), 7.43 (d, J = 8.7 Hz, 1H), 7.37 (d, J = 7.0 Hz, 1H), 7.25 – 7.05 (m, 8H), 6.97 (d, J = 7.1 Hz, 2H), 6.45 (d, J = 6.8 Hz, 2H), 6.37 (d, J =

7.2 Hz, 1H), 5.13 (d, J = 9.6 Hz, 1H), 4.81 (d, J = 15.9 Hz, 1H), 4.51 – 4.34 (m, 2H), 4.18 (d, J = 16.1 Hz, 1H), 2.28 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 170.7, 146.9, 143.1, 142.2, 134.9, 134.0, 132.5, 132.5, 132.3, 130.7, 130.2, 129.7, 129.5, 129.0, 128.8, 128.6, 128.5, 128.1, 127.8, 127.7, 127.3, 127.2, 126.4, 126.2, 125.8, 124.1, 123.2, 119.9, 109.2, 72.1, 57.7, 54.9, 51.7, 43.3; HRMS (ESI) m/z Calcd. for C₄₁H₃₁N₂O₃⁺ ([M+H]⁺) 599.2329, Found 599.2323; Enantiomeric excess was determined to be 0% (determined by HPLC using chiral AD-H column, hexane/2propanol = 70/35, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 7.7 min, t_{minor} = 6.5 min).

#	[min]		[min]	mAU	*s	[mAU		00
· 1 2	 6.527 7 752	VV VB	0.2693	6514	 .49902 02637	365.	 12204 08643	49.9903

Prepared according to the procedure within 3 days as white solid (104.25 mg, 92% yield, dr > 20:1); mp 175.6 – 176.4 °C; $[\alpha]_D^{18} = 42.87$ (*c* 0.49, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 8.4, 5.8 Hz, 1H), 7.83 – 7.74 (m, 1H), 7.58 – 7.52 (m, 1H), 7.48 – 7.38 (m, 2H), 7.29 (d, J = 8.0 Hz, 1H), 7.24 – 7.05 (m, 9H), 7.03 – 6.95 (m, 3H), 6.47 (d, J = 7.4 Hz, 2H),

6.39 (d, J = 7.3 Hz, 1H), 5.20 (d, J = 11.1 Hz, 1H), 4.90 (d, J = 16.0 Hz, 1H), 4.51 (t, J = 11.3 Hz, 1H), 4.38 (d, J = 11.4 Hz, 1H), 4.21 (d, J = 16.0 Hz, 1H), 2.25 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 170.7, 162.3 (d, J = 248.5 Hz), 149.5, 143.1, 137.0 (d, J = 9.1 Hz), 136.8 (d, J = 3.0 Hz), 134.8, 133.9, 133.6, 130.6, 130.0, 129.6, 128.7, 128.6, 128.6, 128.0, 127.8, 127.5 (d, J = 9.1 Hz), 127.2, 127.2, 126.4, 124.1, 123.2, 121.4, 116.1 (d, J = 22.2 Hz), 115.1 (d, J = 21.2 Hz), 109.1, 72.0, 56.9, 54.8, 50.7, 43.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.66; HRMS (ESI) *m*/*z* Calcd. for C₃₇H₂₈FN₂O₃⁺ ([M+H]⁺) 567.2078, Found 567.2072; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 9.5$ min, $t_{minor} = 6.6$ min).

(4bR,6S,7R,7aS)-1'-Benzyl-3-fluoro-7-phenyl-4b,5,7,7a-tetrahydro-8Hspiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4as)

Prepared according to the procedure within 4 days as white solid (56.67 mg, 50% yield, dr > 20:1); mp 200.4 – 201.4 °C; $[\alpha]_D^{18}$ = 29.38 (*c* 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 6.5 Hz, 2H), 7.55 – 7.50 (m, 1H), 7.45 – 7.35 (m, 2H), 7.25 – 7.19 (m, 4H), 7.18 – 7.03 (m, 7H), 6.95 (d, *J* = 7.6 Hz, 2H), 6.45 (d, *J* = 7.3 Hz, 2H), 6.37 (d, *J* = 7.5 Hz, 1H), 5.19 (d, *J* = 10.4 Hz, 1H), 4.87 (d, *J* = 16.0 Hz, 1H), 4.50 (t, *J* = 11.3 Hz, 1H), 4.36 (d, *J* =

11.4 Hz, 1H), 4.20 (d, J = 16.0 Hz, 1H), 2.29 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 170.5, 163.5 (d, J = 247.4 Hz), 149.8, 143.9 (d, J = 8.1 Hz), 143.1, 134.8, 133.8, 133.7, 131.0 (d, J = 3.0 Hz), 130.7, 130.6, 130.4, 129.6, 128.6, 128.5, 128.5, 128.0, 127.8, 127.2, 127.1, 126.4, 124.2, 123.3, 121.2, 114.8 (d, J = 22.2 Hz), 113.1 (d, J = 24.2 Hz), 109.3, 72.0, 57.1, 54.8, 50.7, 43.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -

112.19; HRMS (ESI) m/z Calcd. for C₃₇H₂₈FN₂O₃⁺ ([M+H]⁺) 567.2078, Found 567.2073; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 12.3 min, t_{minor} = 6.5 min).

(4bR,6S,7R,7aS)-1'-Methyl-7-phenyl-4b,5,7,7a-tetrahydro-8Hspiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4ba)

Prepared according to the procedure within 4 days as white solid (83.17 mg, 88% yield, dr > 20:1); mp 278.2 – 279.0 °C; $[\alpha]_D^{18}$ = - 25.58 (*c* 0.09, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.7 Hz, 1H), 7.74 (d, *J* = 7.2 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.45 – 7.36 (m, 3H), 7.29 – 7.26 (m, 1H), 7.25 – 7.17 (m, 3H), 7.13 – 7.02 (m, 3H), 6.90 (d, *J* = 7.3 Hz, 2H), 6.54 (d, *J* = 7.6 Hz, 1H),

5.21 (d, J = 11.2 Hz, 1H), 4.38 (t, J = 11.3 Hz, 1H), 4.25 (d, J = 11.4 Hz, 1H), 2.75 (s, 3H), 2.19 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 170.8, 149.7, 143.7, 141.1, 135.3, 134.7, 134.0, 130.1, 130.1, 129.4, 128.8, 128.8, 128.8, 128.0, 127.9, 127.8, 127.6, 126.9, 125.4, 123.8, 123.1, 121.1, 108.0, 72.2, 57.6, 55.5, 51.0, 25.4; HRMS (ESI) m/z Calcd. for C₃₁H₂₅N₂O₃⁺ ([M+H]⁺) 473.1860, Found 473.1858; Enantiomeric excess was determined to be 59% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 27.7 min, t_{minor} = 9.5 min).

#	[111]		[111]	IIIAO "S	[IIIAO]	0
					-	
1	9.573	VB	0.2913	2777.5017	1 136.50038	20.5662
2	27.764	MM	1.4196	1.07277e4	125.94410	79.4338

(4bR,6S,7R,7aS)-1'-Benzyl-5'-methyl-7-phenyl-4b,5,7,7a-tetrahydro-8H-spiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4ca)

Prepared according to the procedure within 7 days as white solid (78.77 mg, 70% yield, dr > 20:1); mp 187.8 – 188.5 °C; $[\alpha]_D^{18}$ = 52.47 (*c* 0.32, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.6 Hz, 1H), 7.60 (s, 1H), 7.54 – 7.47 (m, 2H), 7.44 – 7.35 (m, 3H), 7.25 – 7.18 (m, 3H), 7.14 – 7.02 (m, 5H), 7.00 – 6.91 (m, 3H), 6.43 (d, *J* = 7.3 Hz, 2H), 6.24 (d, *J* = 7.9 Hz, 1H), 5.23 (d, *J* = 11.2 Hz, 1H), 4.86 (d, *J* = 16.0 Hz, 1H), 4.49 (t, *J* = 11.3 Hz,

1H), 4.36 (d, J = 11.3 Hz, 1H), 4.16 (d, J = 16.0 Hz, 1H), 2.43 (s, 3H), 2.22 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 171.0, 149.7, 141.0, 140.7, 135.3, 135.0, 134.8, 134.2, 132.9, 130.2, 130.1, 129.8, 128.9, 128.8, 128.8, 128.6, 128.5, 128.1, 128.0, 127.7, 127.1, 127.0, 126.4, 125.5, 124.8, 121.1, 109.0, 72.1, 57.5, 54.9, 50.9, 43.3, 21.2; HRMS (ESI) *m*/*z* Calcd. for C₃₈H₃₁N₂O₃⁺ ([M+H]⁺) 563.2329, Found 563.2323; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 11.6 min, *t*_{minor} = 9.8 min).

S44

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	9.811	VV	0.6477	421.23514	9.93094	1.5083
2	11.610	VB	0.8112	2.75066e4	504.15973	98.4917

(4bR,6S,7R,7aS)-1'-Benzyl-5'-fluoro-7-phenyl-4b,5,7,7a-tetrahydro-8Hspiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (4da)

Prepared according to the procedure within 7 days as white solid (58.93 mg, 52% yield, dr > 20:1); mp 196.4 – 197.5 °C; $[\alpha]_D^{18}$ = 30.06 (*c* 0.17, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.7 Hz, 1H), 7.54 – 7.49 (m, 3H), 7.44 – 7.31 (m, 3H), 7.26 – 7.20 (m, 3H), 7.16 – 7.04 (m, 5H), 6.98 (d, *J* = 7.5 Hz, 2H), 6.87 – 6.80 (m, 1H), 6.43 (d, *J* = 7.4 Hz, 2H), 6.26 (dd, *J* = 8.4, 3.9 Hz, 1H),

4da 5.22 (d, J = 11.2 Hz, 1H), 4.87 (d, J = 16.0 Hz, 1H), 4.48 (t, J = 11.3 Hz, 1H), 4.33 (d, J = 11.4 Hz, 1H), 4.17 (d, J = 16.0 Hz, 1H), 2.27 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.7, 170.6, 159.7 (d, J = 243.4 Hz), 149.7, 140.7, 138.9, 135.3, 134.7, 134.5, 133.7, 130.8, 130.7, 130.2, 130.1, 128.9, 128.9, 128.7, 128.6, 128.1, 127.9, 127.3, 127.0, 126.4, 125.4, 121.2, 115.9 (d, J = 24.2 Hz), 112.1 (d, J = 25.3 Hz), 110.0 (d, J = 7.1 Hz), 72.3, 57.5, 55.2, 50.8, 43.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -119.20; HRMS (ESI) m/z Calcd. for C₃₇H₂₈FN₂O_{3⁺} ([M+H]⁺) 567.2078, Found 567.2074; Enantiomeric excess was determined to be >99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 12.1$ min, $t_{minor} = 6.0$ min).

Prepared according to the procedure within 2.5 days as white solid (90.3 mg, 84% yield, dr > 20:1). mp 173.2 - 174.0 °C; $[\alpha]_D^{18}$ = 67.67 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 - 7.70 (m, 1H), 7.55 - 7.48 (m, 2H), 7.46 - 7.39 (m, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.23 - 7.03 (m, 8H), 6.97 (d, *J* = 7.6 Hz, 2H), 6.79 - 6.75 (m, 1H), 6.45 (d, *J* = 7.4 Hz, 3H), 6.36 (d, *J* = 7.0 Hz, 1H), 6.34 - 6.29 (m, 1H), 5.35 (d, *J* = 10.6 Hz, 1H), 4.88 (d, *J* = 16.0 Hz, 1H),

4.47 (d, J = 10.4 Hz, 1H), 4.28 (t, J = 10.5 Hz, 1H), 4.19 (d, J = 16.0 Hz, 1H), 2.53 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.3, 169.8, 147.5, 143.1, 134.9, 134.6, 134.2, 133.0, 130.3, 129.6, 128.6, 128.5, 128.2, 128.2, 128.1, 127.7, 127.4, 127.2, 126.4, 123.9, 123.2, 122.5, 122.0, 109.8, 109.3, 107.0, 72.1, 55.8, 54.6, 50.0, 43.3; HRMS (ESI) m/z Calcd. for C₃₅H₂₈N₃O₃⁺ ([M+H]⁺) 538.2125, Found 538.2125; Enantiomeric excess was determined to be 93% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 14.7 min, t_{minor} = 7.8 min).

(3bR,5S,6R,6aS)-1'-Benzyl-6-(2-methoxyphenyl)-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ab)

Prepared according to the procedure within 3 days as white solid (96.5 mg, 85% yield, dr > 20:1). mp 173.9 – 174.8 °C; $[\alpha]_D^{18}$ = 50.59 (*c* 0.34, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 6.9 Hz, 1H), 7.54 – 7.46 (m, 2H), 7.45 – 7.38 (m, 1H), 7.29 – 7.21 (m, 2H), 7.19 – 7.03 (m, 6H), 6.82 – 6.74 (m, 2H), 6.62 (d, *J* = 8.1 Hz, 1H), 6.50 (d, *J* = 7.3 Hz, 2H), 6.45 (d, *J* = 1.3 Hz, 1H), 6.35 – 6.28 (m, 2H), 5.35 (d, *J* = 10.5 Hz, 1H), 5.23 (d, *J* =

10.3 Hz, 1H), 4.93 (d, J = 16.0 Hz, 1H), 4.27 – 4.13 (m, 2H), 3.28 (s, 3H), 2.43 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 170.0, 158.3, 147.6, 142.8, 135.1, 134.7, 133.0, 130.2, 129.0, 128.6, 128.5, 128.4, 128.1, 127.8, 127.3, 127.1, 126.5, 125.1,

123.3, 122.5, 122.4, 121.9, 120.6, 111.0, 109.7, 108.8, 106.9, 72.0, 55.1, 55.0, 50.9, 47.1, 43.2; HRMS (ESI) *m*/*z* Calcd. for C₃₆H₃₀N₃O_{4⁺} ([M+H]⁺) 568.2231, Found 568.2224; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 12.4 min, *t*_{minor} = 8.8 min).

(3bR,5S,6R,6aS)-1'-Benzyl-6-(2-chlorophenyl)-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ac)

Prepared according to the procedure within 4 days as white solid (91.5 mg, 80% yield, dr > 20:1). mp 181.8 – 182.4 °C; $[\alpha]_D^{18}$ = 23.76 (*c* 0.36, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.82 – 7.76 (m, 1H), 7.52 – 7.46 (m, 2H), 7.45 – 7.38 (m, 2H), 7.24 – 7.22 (m, 1H), 7.18 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.16 – 7.02 (m, 7H), 6.79 –

6.74 (m, 1H), 6.62 (d, J = 7.5 Hz, 2H), 6.49 – 6.44 (m, 1H), 6.39 (dd, J = 6.1, 2.4 Hz, 1H), 6.34 – 6.30 (m, 1H), 5.38 (d, J = 10.6 Hz, 1H), 5.31 (d, J = 10.2 Hz, 1H), 4.92 (d, J = 15.9 Hz, 1H), 4.28 (d, J = 15.9 Hz, 1H), 4.11 (t, J = 10.4 Hz, 1H), 2.45 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.4, 169.6, 147.4, 142.8, 136.0, 135.0, 134.3, 133.0, 132.6, 130.3, 130.0, 129.7, 129.0, 128.6, 128.6, 128.1, 127.4, 127.3, 127.0, 126.9, 126.6, 125.7, 122.9, 122.4, 122.1, 109.8, 109.0, 107.1, 72.2, 55.0, 52.7, 50.1, 43.3; HRMS (ESI) *m*/*z* Calcd. for C₃₅H₂₇ClN₃O₃⁺ ([M+H]⁺) 572.1735, Found 572.1739; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*_{major} = 13.4 min, *t*_{minor} = 9.1 min).

S49

(3bR,5S,6R,6aS)-1'-Benzyl-6-(m-tolyl)-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ad)

Prepared according to the procedure within 3 days as white solid (93.8 mg, 85% yield, dr > 20:1). mp 169.5 – 170.0 °C; $[\alpha]_D^{18} = 84.79$ (*c* 0.26, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.71 (dd, J = 7.2, 1.0 Hz, 1H), 7.54 – 7.48 (m, 2H), 7.45 – 7.40 (m, 1H), 7.30 (dd, J = 8.0, 1.1 Hz, 1H), 7.18 – 7.11 (m, 3H), 7.08 – 7.03 (m, 2H), 7.03 – 6.97 (m, 2H), 6.79 – 6.72 (m, 3H), 6.47 – 6.43 (m, 3H), 6.36 (d, J = 7.3 Hz, 1H), 6.32 – 6.29 (m,

1H), 5.33 (d, J = 10.7 Hz, 1H), 4.93 (d, J = 16.0 Hz, 1H), 4.43 (d, J = 10.4 Hz, 1H), 4.26 (t, J = 10.5 Hz, 1H), 4.18 (d, J = 16.0 Hz, 1H), 2.43 (s, 1H), 2.09 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 178.4, 169.9, 147.5, 143.1, 138.0, 135.0, 134.7, 134.1, 133.0, 130.3, 129.6, 128.9, 128.6, 128.5, 128.4, 128.3, 128.0, 127.4, 127.2, 126.3, 125.2, 123.9, 123.2, 122.5, 121.9, 109.7, 109.2, 106.9, 72.1, 55.7, 54.6, 49.9, 43.3, 21.4; HRMS (ESI) *m*/*z* Calcd. for C₃₆H₃₀N₃O₃⁺ ([M+H]⁺) 552.2282, Found 552.2284; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*_{major} = 9.9 min, *t*_{minor} = 7.1 min).

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	00
1	7.080	PB	0.2682	427.4	45135	23.	74780	4.1983
2	9.911	VB	0.3687	9753.	98047	386.	48398	95.8017

(3bR,5S,6R,6aS)-1'-Benzyl-6-(3-chlorophenyl)-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ae)

Prepared according to the procedure within 4 days as white solid (91.5 mg, 80% yield, dr > 20:1). mp 178.1 – 179.0 °C; $[\alpha]_D^{18}$ = 78.16 (*c* 0.59, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.73 – 7.69 (m, 1H), 7.58 – 7.49 (m, 2H), 7.48 – 7.42 (m, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.22 – 7.09 (m, 6H), 7.03 – 6.98 (m, 2H), 6.86 (d, *J* = 7.7 Hz, 1H), 6.81 – 6.76 (m, 1H), 6.61 (d, *J* = 7.4 Hz, 2H), 6.48 – 6.42 (m, 2H), 6.36 – 6.30 (m, 1H), 5.32 (d,

J = 10.6 Hz, 1H), 4.91 (d, J = 15.9 Hz, 1H), 4.42 (d, J = 10.5 Hz, 1H), 4.30 – 4.20 (m, 2H), 2.48 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.1, 169.6, 147.3, 143.1, 136.4, 134.9, 134.5, 134.3, 132.9, 130.4, 129.9, 129.7, 128.7, 128.2, 128.0, 127.7, 127.5, 127.4, 126.6, 126.5, 123.9, 123.4, 122.5, 122.0, 109.8, 109.4, 107.1, 71.8, 55.2, 54.4, 50.0, 43.4; HRMS (ESI) *m*/*z* Calcd. for C₃₅H₂₇ClN₃O₃⁺ ([M+H]⁺) 572.1735, Found 572.1736; Enantiomeric excess was determined to be 87% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*_{major} = 11.2 min, *t*_{minor} = 7.7 min).

(3bR,5S,6R,6aS)-1'-Benzyl-6-(3-bromophenyl)-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6af)

Prepared according to the procedure within 3 days as white solid (106.0 mg, 86% yield, dr > 20:1). mp 177.7 – 178.5 °C; $[\alpha]_D^{18}$ = 77.03 (*c* 0.21, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.66 (m, 1H), 7.59 – 7.40 (m, 3H), 7.38 – 7.28 (m, 2H), 7.23 – 7.07 (m, 6H), 7.00 – 6.85 (m, 2H), 6.82 – 6.75 (m, 1H), 6.65 – 6.49 (m, 2H), 6.48 – 6.28 (m, 3H), 5.32 (d, *J* = 10.5 Hz, 1H), 4.89 (d, *J* = 15.8 Hz, 1H), 4.40 (d, *J* = 10.2 Hz, 1H), 4.32

- 4.14 (m, 2H), 2.11 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.1, 169.6, 147.3, 143.1, 136.7, 134.9, 134.4, 132.9, 131.1, 131.0, 130.4, 130.0, 129.9, 128.7, 128.0, 127.5, 127.4, 127.0, 126.5, 123.9, 123.4, 122.6, 122.5, 122.0, 109.8, 109.4, 107.1, 71.9, 55.2, 54.4, 50.0, 43.4; HRMS (ESI) *m*/*z* Calcd. for C₃₅H₂₇BrN₃O₃⁺ ([M+H]⁺) 616.1230, Found 616.1232; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 80/20, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 16.2 min, *t*_{minor} = 10.5 min).

(3bR,5S,6R,6aS)-1'-Benzyl-6-(p-tolyl)-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ag)

Prepared according to the procedure within 3 days as white solid (104.8 mg, 95% yield, dr > 20:1). mp 181.3 – 184.0 °C; $[\alpha]_D^{18}$ = 90.06 (*c* 0.32, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.68 (m, 1H), 7.53 – 7.47 (m, 2H), 7.45 – 7.38 (m, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.18 – 7.10 (m, 3H), 7.08 – 7.01 (m, 2H), 6.93 – 6.82 (m, 4H), 6.78 – 6.74 (m, 1H), 6.49 (d, *J* = 7.5

Hz, 2H), 6.43 (d, J = 1.2 Hz, 1H), 6.36 (d, J = 6.8 Hz, 1H), 6.33 – 6.28 (m, 1H), 5.33 (d, J = 10.6 Hz, 1H), 4.92 (d, J = 16.0 Hz, 1H), 4.43 (d, J = 10.4 Hz, 1H), 4.30 – 4.10 (m, 2H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.4, 169.8, 147.5, 143.1, 137.3, 135.0, 134.7, 133.0, 131.2, 130.3, 129.5, 129.2, 128.5, 128.3, 128.1, 128.0, 127.4, 127.2, 126.6, 123.9, 123.2, 122.5, 121.9, 109.7, 109.3, 106.9, 72.1, 55.5, 54.6, 50.2, 43.3, 21.1; HRMS (ESI) *m*/*z* Calcd. for C₃₆H₃₀N₃O₃⁺ ([M+H]⁺) 552.2282, Found 552.2270; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*_{major} = 13.8 min, *t*_{minor} = 7.0 min).

(3bR,5S,6R,6aS)-1'-Benzyl-6-(4-methoxyphenyl)-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ah)

Prepared according to the procedure within 3 days as white solid (90.8 mg, 80% yield, dr > 20:1). mp 182.4 – 183.1 °C; $[\alpha]_D^{18} = 102.81$ (*c* 0.39, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, J = 7.5 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.46 – 7.41 (m, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.19 – 7.12 (m, 3H), 7.10 – 7.04 (m, 2H), 6.89 (d, J = 7.5 Hz, 2H), 6.80 – 6.75 (m, 1H),

6.64 (d, J = 8.4 Hz, 2H), 6.48 (d, J = 7.6 Hz, 2H), 6.45 (d, J = 1.5 Hz, 1H), 6.39 (d, J = 7.3 Hz, 1H), 6.34 – 6.29 (m, 1H), 5.33 (d, J = 10.7 Hz, 1H), 4.94 (d, J = 16.0 Hz, 1H), 4.43 (d, J = 10.4 Hz, 1H), 4.27 – 4.15 (m, 2H), 3.72 (s, 3H), 2.43 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.5, 169.9, 159.2, 147.5, 143.1, 134.9, 134.7, 133.0,

130.3, 129.6, 129.3, 128.5, 128.3, 128.1, 127.4, 127.3, 126.5, 126.2, 123.9, 123.2, 122.4, 121.9, 113.9, 109.7, 109.3, 106.9, 72.1, 55.1, 55.1, 54.5, 50.2, 43.2; HRMS (ESI) m/z Calcd. for C₃₆H₃₀N₃O₄⁺ ([M+H]⁺) 568.2231, Found 568.2232; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 18.7 min, t_{minor} = 15.9 min).

⁽³bR,5S,6R,6aS)-1'-Benzyl-6-(4-fluorophenyl)-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ai)

Prepared according to the procedure within 4 days as white solid (91.1 mg, 82% yield, dr > 20:1). mp 179.1 – 180.5 °C; $[\alpha]_D^{18} = 60.75$ (*c* 0.56, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.69 (m, 1H), 7.57 – 7.49 (m, 2H), 7.48 – 7.41 (m, 1H),

7.31 (d, J = 8.0 Hz, 1H), 7.22 – 7.08 (m, 5H), 6.99 – 6.89 (m, 2H), 6.84 – 6.73 (m, 3H), 6.54 (d, J = 7.2 Hz, 2H), 6.50 – 6.41 (m, 2H), 6.36 – 6.29 (m, 1H), 5.33 (d, J = 10.6 Hz, 1H), 4.89 (d, J = 15.9 Hz, 1H), 4.44 (d, J = 10.5 Hz, 1H), 4.30 – 4.08 (m, 2H), 2.37 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.2, 169.7, 162.5 (d, J = 247.5 Hz), 147.4, 143.1, 134.9, 134.6, 133.0, 130.3, 130.0 (d, J = 4.0 Hz), 129.9 (d, J = 8.1 Hz), 129.7, 128.6, 128.1, 128.0, 127.5, 127.4, 126.5, 123.9, 123.3, 122.4, 122.0, 115.4 (d, J = 21.2 Hz), 109.8, 109.3, 107.0, 72.0, 55.0, 54.5, 50.2, 43.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.50; HRMS (ESI) *m/z* Calcd. for C₃₅H₂₇FN₃O₃⁺ ([M+H]⁺) 556.2031, Found 556.2030; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*_{major} = 15.8 min, *t*_{minor} = 7.7 min).

(3bR,5S,6R,6aS)-1'-Benzyl-6-(4-chlorophenyl)-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6aj)

Prepared according to the procedure within 3 days as white solid (85.8 mg, 75% yield, dr > 20:1). mp 183.8 – 184.3 °C; $[\alpha]_D^{18} = 106.31$ (*c* 0.71, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.73 – 7.70 (m, 1H), 7.57 – 7.49 (m, 2H), 7.47 – 7.42 (m, 1H), 7.33 – 7.29 (m, 1H), 7.22 – 7.13 (m, 5H), 7.07 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.80 – 6.76 (m, 1H), 6.52 (d, *J* = 7.0 Hz, 2H), 6.47 – 6.41 (m, 2H), 6.35 – 6.30 (m, 1H), 5.33 (d,

J = 10.6 Hz, 1H), 4.93 (d, J = 15.9 Hz, 1H), 4.43 (d, J = 10.4 Hz, 1H), 4.33 – 4.10 (m, 2H), 2.48 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.1, 169.6, 147.4, 143.1, 134.8, 134.5, 133.8, 132.9, 132.8, 130.4, 129.8, 129.6, 128.7, 128.7, 128.1, 127.9, 127.5, 127.5, 126.4, 123.9, 123.4, 122.4, 122.0, 109.8, 109.4, 107.0, 71.9, 55.1, 54.5, 50.1, 43.4; HRMS (ESI) m/z Calcd. for C₃₅H₂₇ClN₃O₃⁺ ([M+H]⁺) 572.1735, Found 572.1741; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, $t_{major} = 16.3$ min, $t_{minor} = 7.8$ min).

S57

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	00
1	7.809	VB	0.3748	571.	24188	21.2	25062	1.6287
2	16.266	PB	0.6551	3.450	30e4	761.	81549	98.3713

(3bR,5S,6R,6aS)-1'-Benzyl-6-(4-bromophenyl)-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ak)

Prepared according to the procedure within 3 days as white solid (101.1 mg, 82% yield, dr > 20:1). mp 185.1 – 186.0 °C; $[\alpha]_D^{18}$ = 89.80 (*c* 1.00, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.73 – 7.69 (m, 1H), 7.56 – 7.50 (m, 2H), 7.47 – 7.42 (m, 1H), 7.30 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.22 (d, *J* = 8.5 Hz, 2H), 7.20 – 7.15 (m, 5H), 6.85 (d, *J* = 8.5 Hz, 2H), 6.80 – 6.76 (m, 1H), 6.55 – 6.51 (m, 2H), 6.47 – 6.41 (m, 2H), 6.35 – 6.30 (m, 1H),

5.32 (d, J = 10.6 Hz, 1H), 4.93 (d, J = 15.9 Hz, 1H), 4.41 (d, J = 10.4 Hz, 1H), 4.32 – 4.11 (m, 2H), 2.49 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.1, 169.6, 147.4, 143.1, 134.8, 134.5, 133.4, 132.9, 131.7, 130.4, 130.0, 129.8, 128.7, 128.1, 127.8, 127.5, 127.5, 126.5, 123.9, 123.4, 122.4, 122.0, 122.0, 109.8, 109.4, 107.1, 71.9, 55.2, 54.5, 50.1, 43.4; HRMS (ESI) *m*/*z* Calcd. for C₃₅H₂₇BrN₃O₃⁺ ([M+H]⁺) 616.1230, Found 616.1231; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*_{major} = 16.8 min, *t*_{minor} = 8.0 min).

Prepared according to the procedure within 3 days as white solid (105.8 mg, 90% yield, dr > 20:1). mp 228.2 – 229.1 °C; $[\alpha]_D^{18}$ = 65.17 (*c* 0.71, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.7 Hz, 1H), 7.87 (d, *J* = 7.3 Hz, 1H), 7.71 – 7.66 (m, 2H), 7.56 (d, *J* = 7.3 Hz, 1H), 7.52 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.49 – 7.45 (m, 1H), 7.44 – 7.39 (m, 1H), 7.30 – 7.24 (m, 2H), 7.24 –

7.17 (m, 2H), 7.11 – 7.04 (m, 2H), 6.99 – 6.91 (m, 3H), 6.76 (s, 1H), 6.51 (d, J = 1.6 Hz, 1H), 6.37 – 6.29 (m, 3H), 6.11 (d, J = 7.8 Hz, 1H), 5.56 (d, J = 9.6 Hz, 1H), 5.51 (d, J = 10.5 Hz, 1H), 4.83 (d, J = 16.0 Hz, 1H), 4.31 (t, J = 10.1 Hz, 1H), 4.12 (d, J = 16.0 Hz, 1H), 2.67 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.8, 170.3, 147.5, 142.9, 134.8, 134.6, 133.7, 133.1, 132.5, 131.3, 130.3, 129.6, 128.5, 128.3, 128.3, 128.1, 127.5, 127.2, 126.3, 125.8, 125.6, 125.2, 125.1, 124.3, 123.7, 122.9, 122.5, 122.2, 109.8, 109.2, 107.2, 72.7, 55.4, 53.1, 49.5, 43.2; HRMS (ESI) *m*/*z* Calcd. for C₃₉H₃₀N₃O₃⁺ ([M+H]⁺) 588.2282, Found 588.2286; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 80/20, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 16.2$ min, $t_{minor} = 10.4$ min).

Prepared according to the procedure within 3 days as white solid (103.3 mg, 95% yield, dr > 20:1). mp 176.8 – 177.4 °C; $[\alpha]_D^{18}$ = 54.40 (*c* 0.77, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.69 (dd, *J* = 7.1, 1.3 Hz, 1H), 7.56 – 7.49 (m, 2H), 7.46 – 7.42 (m, 1H), 7.35 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.24 – 7.12 (m, 5H), 7.04 (dd, *J* = 5.1, 1.0 Hz, 1H), 6.82 (dd, *J* = 5.0, 3.6 Hz, 1H), 6.79 – 6.77 (m, 1H),

6.64 (dd, J = 10.9, 5.2 Hz, 3H), 6.54 – 6.48 (m, 1H), 6.45 – 6.42 (m, 1H), 6.34 – 6.28 (m, 1H), 5.32 (d, J = 10.7 Hz, 1H), 4.93 (d, J = 15.9 Hz, 1H), 4.69 (d, J = 10.3 Hz, 1H), 4.30 (d, J = 15.9 Hz, 1H), 4.24 (t, J = 10.5 Hz, 1H), 2.44 (s, 1H); ¹³C NMR (151

MHz, CDCl₃) δ 178.0, 169.5, 147.4, 143.6, 137.4, 135.0, 134.3, 132.9, 130.4, 129.9, 128.7, 128.1, 127.7, 127.5, 127.3, 126.9, 126.7, 125.4, 124.5, 124.0, 123.3, 122.5, 122.0, 109.8, 109.3, 107.0, 71.5, 54.3, 51.9, 51.0, 43.4; HRMS (ESI) *m*/*z* Calcd. For C₃₃H₂₆N₃O₃S⁺ ([M+H]⁺) 544.1689, Found 544.1694; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 80/20, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 18.5 min, *t*_{minor} = 9.8 min).

(3bR,5S,6S,6aS)-1'-Benzyl-6-methyl-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6an)

Prepared according to the procedure within 3 days as white solid (66.6 mg, 70% yield, dr > 20:1). mp 136.8 – 137.4 °C; $[\alpha]_D^{18}$ = 87.11 (*c* 0.57, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.54 – 7.43 (m, 3H), 7.40 – 7.35 (m, 1H), 7.34 – 7.27 (m, 3H) , 7.27 – 7.19 (m,

4H), 7.15 – 7.09 (m, 1H), 6.78 – 6.67 (m, 2H), 6.33 (d, J = 59.8 Hz, 2H), 5.07 (d, J = 10.7 Hz, 1H), 4.93 (d, J = 15.5 Hz, 1H), 4.64 (d, J = 15.6 Hz, 1H), 3.48 (t, J = 10.1 Hz, 1H), 3.32 – 3.07 (m, 1H), 2.16 (s, 1H), 0.83 (d, J = 6.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 179.0, 170.4, 147.4, 143.3, 135.8, 135.0, 132.9, 130.1, 129.5, 128.9, 128.5, 127.9, 127.8, 127.3, 124.0, 123.3, 122.6, 121.6, 109.7, 109.1, 106.8, 70.7, 54.3, 52.4, 45.3, 43.6, 12.7; HRMS (ESI) *m*/*z* Calcd. for C₃₀H₂₆N₃O_{3⁺} ([M+H]⁺) 476.1969, Found 476.1975; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*_{major} = 11.0 min, *t*_{minor} = 7.9 min).

(3bR,5S,6R,6aS)-1'-Benzyl-11-methyl-6-phenyl-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ao)

Prepared according to the procedure within 3 days as white solid (88.3 mg, 80% yield, dr > 20:1). mp 173.8 – 174.4 °C; $[\alpha]_D^{18} = 81.25$ (*c* 0.32, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.73 (dd, J = 7.2, 1.1 Hz, 1H), 7.32 – 7.29 (m, 2H), 7.22 – 7.05 (m, 9H), 6.98 (d, J = 7.5 Hz, 2H), 6.78 – 6.75 (m, 1H), 6.47 (d, J = 7.5 Hz, 2H), 6.45 – 6.42 (m, 1H), 6.37 (d, J = 7.3 Hz, 1H), 6.32 – 6.30 (m, 1H), 5.37 (d, J = 10.7 Hz, 1H), 4.90 (d, J = 16.0

Hz, 1H), 4.47 (d, J = 10.3 Hz, 1H), 4.29 (t, J = 10.5 Hz, 1H), 4.21 (d, J = 16.0 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 178.3, 170.2, 145.1, 143.1, 137.6, 134.9, 134.5, 134.3, 132.6, 130.8, 129.6, 128.6, 128.5, 128.4, 128.2, 128.2, 127.7, 127.2, 126.4, 123.9, 123.2, 122.0, 121.9, 109.6, 109.3, 106.8, 72.2, 55.9, 54.7, 49.9, 43.3, 20.9; HRMS (ESI) *m*/*z* Calcd. for C₃₆H₃₀N₃O₃⁺ ([M+H]⁺) 552.2282, Found 552.2280; Enantiomeric excess was determined to be 87% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 14.0 min, *t*_{minor} = 7.7 min).

S63

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU *	S	[mAU]	8
1	7.748	VB	0.2805	921.54	401	49.3	34382	6.4358
2	13.975	BB	0.6013	1.33975	e4	329.3	34894	93.5642

(3bR,5S,6R,6aS)-1'-Benzyl-11-chloro-6-phenyl-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ap)

Prepared according to the procedure within 3 days as white solid (93.8 mg, 82% yield, dr > 20:1). mp 178.4 – 179.3 °C; $[\alpha]_D^{18} = 87.71$ (*c* 0.48, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 1H), 7.53 – 7.45 (m, 2H), 7.25 – 7.03 (m, 9H), 6.97 (d, *J* = 7.5 Hz, 2H), 6.78 – 6.73 (m, 1H), 6.52 – 6.43 (m, 3H), 6.40 – 6.35 (m, 1H), 6.34 – 6.30 (m, 1H), 5.37 (d, *J* = 10.6

^{6ap} Hz, 1H), 4.88 (d, J = 15.9 Hz, 1H), 4.44 (d, J = 10.4 Hz, 1H), 4.32 – 4.14 (m, 2H), 2.10 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.3, 169.3, 146.1, 143.1, 134.9, 134.5, 134.0, 133.9, 132.5, 130.3, 129.7, 128.6, 128.5, 128.2, 128.2, 128.0, 127.8, 127.2, 126.5, 123.9, 123.5, 123.2, 121.9, 110.3, 109.3, 107.5, 72.1, 55.7, 54.4, 50.0, 43.3; HRMS (ESI) *m*/*z* Calcd. for C₃₅H₂₇ClN₃O₃⁺ ([M+H]⁺) 572.1735, Found 572.1740; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*_{major} = 14.7 min, *t*_{minor} = 8.4 min).

Prepared according to the procedure within 3 days as white solid (91.5 mg, 80% yield, dr > 20:1). mp 186.4 – 187.4 °C; $[\alpha]_D^{18}$ = 122.67 (*c* 0.32, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, *J* = 6.8 Hz, 1H), 7.68 – 7.60 (m, 2H), 7.22 – 7.05 (m, 9H), 6.97 (d, *J* = 7.6 Hz, 2H), 6.76 (s, 1H), 6.51 – 6.43 (m, 3H), 6.39 – 6.30 (m, 2H), 5.36 (d, *J* = 10.7 Hz, 1H), 4.89 (d, *J* = 16.0

^{6aq} Hz, 1H), 4.44 (d, J = 10.4 Hz, 1H), 4.32 – 4.13 (m, 2H), 2.31 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.3, 169.3, 146.6, 143.1, 134.8, 134.6, 134.2, 134.0, 133.3, 131.1, 129.7, 128.6, 128.5, 128.2, 128.0, 127.8, 127.2, 126.5, 123.9, 123.9, 123.2, 121.9, 119.8, 110.3, 109.3, 107.5, 72.1, 55.7, 54.4, 50.0, 43.3; HRMS (ESI) m/z Calcd. for C₃₅H₂₇BrN₃O₃⁺ ([M+H]⁺) 616.1230, Found 616.1221; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 14.5$ min, $t_{minor} = 8.2$ min).

(3bR,5S,6R,6aS)-1'-Benzyl-10-chloro-6-phenyl-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ar)

Bn

Ή

6ar

Prepared according to the procedure within 3 days as white solid (91.5 mg, 80% yield, dr > 20:1). mp 186.3 – 187.2 °C; $[\alpha]_D^{18} =$ 53.63 (*c* 0.29, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 6.4 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.32 (s, 1H), 7.22 – 7.03 (m, 8H), 6.98 (d, *J* = 7.6 Hz, 2H), 6.73 (s, 1H), 6.53 – 6.43 (m, 3H), 6.37 (d, *J* = 7.0 Hz, 1H), 6.33 – 6.29 (m, 1H), 5.34 (d, *J* = 10.6 Hz, 1H), 4.89 (d, *J* = 15.9 Hz, 1H), 4.44 (d, *J* = 10.4 Hz, 1H), 4.34 – 4.15 (m,

2H), 2.48 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.3, 169.0, 147.8, 143.1, 135.5, 134.8, 134.6, 133.9, 131.6, 129.7, 128.8, 128.6, 128.6, 128.2, 128.0, 127.8, 127.7, 127.3, 126.5, 123.9, 123.2, 122.9, 122.0, 110.1, 109.3, 107.3, 72.1, 55.7, 54.4, 50.1, 43.3; HRMS (ESI) *m*/*z* Calcd. for C₃₅H₂₇ClN₃O₃⁺ ([M+H]⁺) 572.1735, Found 572.1737; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 16.4 min, *t*_{minor} = 7.4 min).

(3bR,5S,6R,6aS)-1'-Benzyl-10-bromo-6-phenyl-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6as)

Prepared according to the procedure within 3 days as white solid (91.0 mg, 74% yield, dr > 20:1). mp 176.2 – 177.0 °C; $[\alpha]_D^{18}$ = 54.32 (*c* 0.67, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.72 (dd, *J* = 7.1, 1.2 Hz, 1H), 7.57 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.48 (d, *J* = 2.1 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.19 – 7.12 (m, 5H), 7.10 – 7.06 (m, 2H), 7.00 (d, *J* = 7.7 Hz, 2H), 6.76 – 6.72

(m, 1H), 6.52 - 6.45 (m, 3H), 6.39 (d, J = 7.2 Hz, 1H), 6.34 - 6.30 (m, 1H), 5.35 (d, J = 10.6 Hz, 1H), 4.91 (d, J = 16.0 Hz, 1H), 4.45 (d, J = 10.5 Hz, 1H), 4.30 (t, J = 10.5 Hz, 1H), 4.23 (d, J = 16.0 Hz, 1H), 2.40 (s, 1H); 13 C NMR (151 MHz, CDCl₃) δ 178.3,

169.0, 147.9, 143.1, 134.8, 134.6, 133.9, 132.1, 130.6, 129.7, 129.1, 128.7, 128.6, 128.2, 128.0, 127.8, 127.3, 126.5, 125.8, 123.9, 123.2, 123.1, 121.9, 110.1, 109.4, 107.4, 72.1, 55.7, 54.4, 50.0, 43.3; HRMS (ESI) *m*/*z* Calcd. for C₃₅H₂₇BrN₃O₃⁺ ([M+H]⁺) 616.1230, Found 616.1234; Enantiomeric excess was determined to be 89% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*major = 17.3 min, *t*minor = 7.5 min).

(3bR,5S,6R,6aS)-1'-Benzyl-5'-methyl-6-phenyl-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ba)

Prepared according to the procedure within 3 days as white solid (77.2 mg, 70% yield, dr > 20:1). mp 175.2 – 176.0 °C; $[\alpha]_D^{18}$ = 71.15 (*c* 0.26, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.56 – 7.49 (m, 3H), 7.45 – 7.41 (m, 1H), 7.32 – 7.28 (m, 1H), 7.23 – 7.18 (m, 1H), 7.14 – 7.09 (m, 3H), 7.08 – 7.03 (m, 2H), 6.98 (d, *J* = 7.6 Hz, 2H), 6.93 (d, *J* = 7.9 Hz, 1H), 6.80 – 6.76 (m, 1H), 6.48 – 6.43 (m,

3H), 6.34 – 6.30 (m, 1H), 6.25 (d, J = 7.9 Hz, 1H), 5.35 (d, J = 10.6 Hz, 1H), 4.86 (d, J = 16.0 Hz, 1H), 4.45 (d, J = 10.3 Hz, 1H), 4.27 (t, J = 10.5 Hz, 1H), 4.18 (d, J = 16.0 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 178.2, 170.0, 147.5, 140.7, 135.0, 134.6, 134.3, 133.0, 132.9, 130.3, 129.9, 128.6, 128.5, 128.2, 128.2, 128.1, 127.7, 127.4, 127.1, 126.4, 124.6, 122.4, 122.0, 109.7, 109.0, 106.9, 72.2, 55.8, 54.7, 50.1, 43.3, 21.2; HRMS (ESI) *m*/*z* Calcd. for C₃₆H₃₀N₃O₃⁺ ([M+H]⁺) 552.2282, Found 552.2282; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*_{major} = 14.3 min, *t*_{minor} = 6.2 min).

(3bR,5S,6R,6aS)-1'-Benzyl-5'-fluoro-6-phenyl-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (6ca)

Prepared according to the procedure within 3 days as white solid (97.8 mg, 88% yield, dr > 20:1). mp 180.4 – 181.3 °C; $[\alpha]_D^{18}$ = 60.07 (*c* 0.62, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.48 (dd, *J* = 7.6, 2.6 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.31 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.16 – 7.11 (m, 3H), 7.10 – 7.06 (m, 2H), 7.01 (d, *J* = 7.6 Hz, 2H), 6.85 – 6.80 (m, 1H),

6.79 – 6.75 (m, 1H), 6.49 – 6.41 (m, 3H), 6.36 – 6.30 (m, 1H), 6.27 (dd, J = 8.5, 4.0 Hz, 1H), 5.34 (d, J = 10.7 Hz, 1H), 4.89 (d, J = 16.0 Hz, 1H), 4.43 (d, J = 10.4 Hz, 1H), 4.28 (t, J = 10.6 Hz, 1H), 4.18 (d, J = 16.0 Hz, 1H), 2.48 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.2, 169.6, 159.7 (d, J = 243.1 Hz), 158.1, 147.4, 138.9, 134.5 (d, J = 3.0 Hz), 133.9, 132.9, 130.3, 130.2 (d, J = 7.6 Hz), 128.7, 128.6, 128.3, 128.0, 127.9, 127.5, 127.4, 126.4, 122.5, 122.0, 115.9 (d, J = 22.7 Hz), 112.0 (d, J = 25.7 Hz), 110.0 (d, J = 7.6 Hz), 109.8, 107.1, 72.2, 55.9, 54.5, 49.8, 43.4; ¹⁹F NMR (565 MHz, CDCl₃) δ -119.09; HRMS (ESI) *m*/*z* Calcd. for C₃₅H₂₇FN₃O₃⁺ ([M+H]⁺) 556.2031, Found 556.2032; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, *t*major = 13.3 min, *t*minor = 6.8 min).

Prepared according to the procedure within 2.5 days as white solid (81.2 mg, 88% yield, dr > 20:1). mp 166.3 – 167.2 °C; $[\alpha]_D^{18}$ = 16.32 (*c* 0.24, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, *J* = 7.1 Hz, 1H), 7.54 – 7.48 (m, 2H), 7.45 – 7.40 (m, 1H), 7.30 – 7.24 (m, 2H), 7.20 – 7.15 (m, 1H), 7.12 – 7.03 (m, 3H), 6.92 (d, *J* = 7.3 Hz, 2H), 6.78 – 6.73 (m, 1H), 6.55 (d, *J* = 7.7 Hz, 1H), 6.46 – 6.40 (m, 1H), 6.34 – 6.29 (m, 1H), 5.31 (d, *J* = 10.7 Hz, 1H), 4.34 (d, *J*

= 10.5 Hz, 1H), 4.17 (t, *J* = 10.6 Hz, 1H), 2.75 (s, 3H), 2.16 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.4, 169.8, 147.5, 143.7, 134.8, 134.1, 132.9, 130.3, 129.6, 128.2, 128.1, 128.0, 128.0, 127.6, 127.4, 123.7, 123.1, 122.5, 121.9, 109.7, 108.0, 106.9, 72.2, 56.2, 54.7, 50.1, 25.4; HRMS (ESI) *m*/*z* Calcd. for C₂₉H₂₄N₃O₃⁺ ([M+H]⁺) 462.1812, Found 462.1812; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 14.8 min, *t*_{minor} = 7.7 min).

Gram scale synthesis of compound 4ad

Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 8.2 min, t_{minor} = 5.6 min)

15.694 VV0.2682225.4431811.420750.991028.208 MM0.43172.25243e4869.6043799.0090

The scale-up synthesis of compound 6am

Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 16.7 min, t_{minor} = 9.2 min).

Peak	RetTime	Туре	Width	Area		Height		Area	1
#	[min]		[min]	mAU *	S	[mAU]	00	
1	9.160	MM	0.9763	1375.37	964	23.	47963	1.94	187
2	16.691	MM	0.8631	6.92038	le4	1336.	29236	98.05	513

The scale-up synthesis of compound 6as

Enantiomeric excess was determined to be 87% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 17.2 min, t_{minor} = 7.5 min).

(6S,7R,7aS)-1'-Benzyl-7-(m-tolyl)-7,7a-dihydro-8Hspiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'-indoline]-2',8-dione (7)

Prepared according to the procedure within 10 h as white solid (100.92 mg, 90% yield, dr > 20:1); mp 220.2 – 220 9 °C; $[\alpha]_D^{18}$ = 148.74 (*c* 0.28, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.5 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.62 – 7.54 (m, 2H), 7.51 – 7.48 (m, 2H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.29 – 7.27 (m, 1H), 7.22 (dd, *J* = 5.5, 3.2 Hz, 2H), 7.15 – 7.01 (m,

6H), 6.67 (d, *J* = 7.2 Hz, 1H), 6.61 (s, 1H), 6.52 – 6.45 (m, 1H), 6.41 (d, *J* = 7.5 Hz, 2H), 5.38 (d, *J* = 11.2 Hz, 1H), 4.97 (d, *J* = 16.0 Hz, 1H), 4.78 (d, *J* = 11.2 Hz, 1H), 4.17 (d, *J* = 16.0 Hz, 1H), 2.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 173.3, 168.6, 148.9, 143.5, 138.2, 136.3, 134.8, 134.0, 133.6, 133.0, 132.6, 131.9, 131.6, 130.6, 129.9, 129.6, 129.3, 128.9, 128.7, 128.6, 128.5, 127.8, 127.2, 126.3, 124.5, 124.4, 123.5, 120.5, 109.4, 83.6, 57.7, 56.3, 43.7, 21.4; HRMS (ESI) *m/z* Calcd. for C₃₈H₂₉N₂O₃⁺ ([M+H]⁺) 561.2173, Found 561.2173; Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 m L/min, *t*_{major} = 8.9 min, *t*_{minor} = 6.3 min).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	00
1	6.344	MM	0.2131	257.09460	20.10881	0.9778
2	8.994	MM	0.4277	2.60369e4	1014.50995	99.0222

(S)-1'-Benzyl-7-(m-tolyl)-8H-spiro[dibenzo[5,6:7,8]oxocino[4,3-b]pyrrole-6,3'indoline]-2',8-dione (8)

8

Prepared according to the procedure within 10 h as white solid (106.14 mg, 95% yield, dr = 1.6:1); mp 224.6 – 225.7 °C; $[\alpha]_D^{18}$ = 14.56 (*c* 0.47, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.73 (m, 1H), 7.64 – 7.60 (m, 1H), 7.55 – 7.33 (m, 5H), 7.32 – 7.26 (m, 1H), 7.24 – 7.21 (m, 2H), 7.19 – 7.03 (m, 6H), 6.96 (s, 1H), 6.89 – 6.81 (m, 1H), 6.80 – 6.64 (m, 2H), 5.59 (d, J = 7.3 Hz, 1H), 5.17 (d, J = 15.7 Hz, 1H), 4.70 (d, J = 15.7

Hz, 1H), 2.16 (s, 3H); ¹¹³C NMR (101 MHz, CDCl₃) δ 175.1, 169.3, 165.3, 163.2, 148.7, 144.0, 138.6, 136.0, 135.0, 133.7, 133.4, 133.1, 132.5, 131.3, 131.2, 131.2, 130.0, 129.9, 129.1, 128.9, 128.7, 128.5, 128.2, 127.8, 127.4, 127.3, 124.7, 123.3, 123.0, 122.8, 122.0, 110.1, 89.3, 44.6, 21.5; HRMS (ESI) *m/z* Calcd. for C₃₈H₂₇N₂O₃⁺ ([M+H]⁺) 559.2016, Found 559.2009; Enantiomeric excess was determined to be 99%, 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 m L/min, *t*_{major} = 11.8 min, *t*_{minor} = 7.6 min, *t*_{major} = 17.9 min, *t*_{minor} = 21.1 min).

(3bR,5S,6R,6aS)-1'-Benzyl-2,10-dibromo-6-phenyl-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (9)

Prepared according to the procedure within 12 h as white solid (62.6 mg, 90% yield, dr > 20:1). mp 228.2 – 229.3 °C; $[\alpha]_D^{18}$ = 42.80 (*c* 0.26, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.69 (dd, *J* = 7.1, 1.3 Hz, 1H), 7.61 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.51 (d, *J* = 2.1 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.24 – 7.20 (m, 1H), 7.18 – 7.10 (m, 5H), 7.09 – 7.05 (m, 2H), 6.97 (d, *J* = 7.4 Hz, 2H), 6.50 – 6.44 (m, 3H), 6.38 – 6.36 (m, 1H), 6.34 (d, *J* = 3.7 Hz,

1H), 5.26 (d, J = 10.3 Hz, 1H), 4.88 (d, J = 16.0 Hz, 1H), 4.40 (d, J = 10.6 Hz, 1H), 4.28 – 4.18 (m, 2H), 2.43 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.4, 168.7, 148.3, 143.1, 136.2, 134.7, 133.6, 131.2, 130.5, 129.7, 128.7, 128.6, 128.2, 127.9, 127.8,

127.3, 126.4, 126.0, 124.0, 124.0, 123.3, 112.4, 109.4, 108.0, 102.2, 71.9, 55.3, 54.7, 50.2, 43.3; HRMS (ESI) *m*/*z* Calcd. for C₃₅H₂₆Br₂N₃O₃⁺ ([M+H]⁺) 694.0335, Found 694.0339; Enantiomeric excess was determined to be 87% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, *t*_{major} = 10.7 min, *t*_{minor} = 7.6 min).

(3bR,5S,6R,6aS)-1'-Benzyl-6,10-diphenyl-3b,4,6,6a-tetrahydro-7Hspiro[benzo[b]dipyrrolo[1,2-d:2',3'-f][1,4]oxazocine-5,3'-indoline]-2',7-dione (10)

Prepared according to the procedure within 8 h as white solid (55.2 mg, 90% yield, dr > 20:1). mp 245.4 – 246.2 °C; $[\alpha]_D^{18}$ = 50.88 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, *J* = 7.1, 1.4 Hz, 1H), 7.71 – 7.65 (m, 3H), 7.62 – 7.51 (m, 4H), 7.50 – 7.44 (m, 1H), 7.26 – 7.06 (m, 8H), 7.02 (d, *J* = 7.4 Hz, 2H), 6.86 – 6.80 (m,

1H), 6.53 – 6.46 (m, 3H), 6.42 – 6.34 (m, 2H), 5.46 (d, J = 10.5 Hz, 1H), 4.92 (d, J = 16.0 Hz, 1H), 4.53 (d, J = 10.4 Hz, 1H), 4.39 (t, J = 10.5 Hz, 1H), 4.23 (d, J = 16.0 Hz, 1H), 2.52 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.4, 169.8, 147.6, 143.7, 143.1, 138.9, 134.9, 134.7, 134.2, 131.7, 129.6, 129.1, 128.6, 128.5, 128.4, 128.2, 128.2, 127.7, 127.3, 127.2, 126.5, 125.9, 123.9, 123.2, 122.1, 120.8, 109.8, 109.3, 107.1, 72.1, 55.9, 54.7, 50.0, 43.3; HRMS (ESI) m/z Calcd. for C₄₁H₃₂N₃O_{3⁺} ([M+H]⁺) 614.2438, Found 614.2437; Enantiomeric excess was determined to be 87% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 8.9$ min, $t_{minor} = 27.4$ min).

Compound 11 to 4aa

Enantiomeric excess was determined to be 75% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 80/20, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} =

19.3 min, $t_{\text{minor}} = 8.0$ min).

6. References

[1] The synthesis of 3-amino oxindole hydrochloride, see: W.-B. Chen, Z.-J. Wu, J. Hu, L.-F. Cun, X.-M. Zhang, W.-C. Yuan, *Org. Lett.* **2011**, *13*, 2472.

[2] T. Yang, X.-C. Guo, Q. Yin, X.-M. Zhang. Chem. Sci. 2019, 10, 2473-2477.

[3] L. Fu, S. Li, Z. Cai, Y. Ding, X.-Q. Guo, L.-P. Zhou, D. Yuan, Q.-F. Sun, G. Li, *Nat. Catal.* **2018**, *1*, 469-478.

[4] K. Grudzień, B. Trzaskowski, M. Smoleń, R. Gajda, K. Woźniak, K. Grela, *Dalton Trans.* **2017**, *46*, 11790-11799.

7. ¹H NMR and ¹³C NMR spectra

3b

3c

3f

S88

3h

3i

S92

31

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

___-127.14

S97

S99

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

3s

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 11 (ppm)

OHC (N) (1220) (

5a

5f

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

5m

Me

5n

5q

5s

4ae

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

4ah

0

4ai

4ak

4am

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

f1 (ppm)

10 0

190 180

4ao

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

4ar

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 11 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

6a0

6ap

6ba

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

8. X-ray crystal structure

4am

X-ray crystal structure of 4am

CCDC: 2234268

Table 1 Crystal data and structure refinement for 1.

Identification code	1
Empirical formula	C ₄₁ H ₃₅ FN ₂ O ₅
Formula weight	654.71
Temperature/K	302.0
Crystal system	triclinic
Space group	P1
a/Å	9.0844(3)
b/Å	10.3859(4)
c/Å	18.7463(6)
α/°	75.426(2)
β/°	89.765(2)
γ/°	88.695(2)
Volume/Å ³	1711.35(10)
Z	2
ρ _{calc} g/cm ³	1.271
µ/mm⁻ ¹	0.710
F(000)	688.0
Crystal size/mm ³	0.27 × 0.24 × 0.22
Radiation	CuKα (λ = 1.54178)
20 range for data collection/	² 4.87 to 125.132
Index ranges	$-10 \leq h \leq 10, -11 \leq k \leq 11, -21 \leq l \leq 21$
Reflections collected	15849
Independent reflections	9711 [R _{int} = 0.0423, R _{sigma} = 0.0589]
Data/restraints/parameters	9711/90/898
Goodness-of-fit on F ²	1.094
Final R indexes $[I > = 2\sigma (I)]$	$R_1 = 0.0635, wR_2 = 0.1510$
Final R indexes [all data]	$R_1 = 0.0800, wR_2 = 0.1708$
Largest diff. peak/hole / e $Å^{-3}$	0.18/-0.20
Flack parameter	0.02(10)

6ac (4 d, 80% yield > 20:1 dr, 91% ee)

X-ray crystal structure of **6ac** CCDC: 2321325

Table 1 Crystal data and structure refinement for 123.

Identification code	123
Empirical formula	C ₃₆ H ₂₈ Cl ₃ N ₃ O ₃
Formula weight	656.96
Temperature/K	120.0
Crystal system	monoclinic
Space group	P2 ₁
a/Å	10.2162(3)
b/Å	16.7001(4)
c/Å	19.1032(5)
α/°	90
β/°	105.0240(10)
γ/°	90
Volume/Å ³	3147.82(15)
Z	4
ρ _{calc} g/cm ³	1.386
µ/mm⁻ ¹	0.333
F(000)	1360.0
Crystal size/mm ³	0.33 × 0.3 × 0.23
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	°4.796 to 54.942
Index ranges	-13 ≤ h ≤ 13, -21 ≤ k ≤ 21, -24 ≤ l ≤ 23
Reflections collected	25485
Independent reflections	13422 [R _{int} = 0.0218, R _{sigma} = 0.0365]
Data/restraints/parameters	13422/1/819
Goodness-of-fit on F ²	1.001
Final R indexes [I>=2σ (I)]	$R_1 = 0.0359, wR_2 = 0.0850$
Final R indexes [all data]	$R_1 = 0.0399, wR_2 = 0.0876$
Largest diff. peak/hole / e $Å^{-3}$	0.32/-0.38
Flack parameter	0.011(13)