Highly Acidic *N*-Triflylphosphoramides as Chiral Brønsted Acid Catalysts: The Effect of Weak Hydrogen Bonds and Multiple Acceptors on Complex Structures and Aggregation

Markus Hecht,^a Philipp Dullinger^b, Wagner Silva^a, Dominik Horinek^b and Ruth M. Gschwind^{*a}

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Table of Contents

EXPERIMENTAL DATA	<u>5</u>
	_
NMR-SPECTROSCOPY	5
PULSE SEQUENCES AND ACQUISITION PARAMETERS	5
MASS SPECTROMETRY	6
CHEMISTRY	7
SYNTHESIS OF IMINE SUBSTRATES	7
NMR SAMPLE PREPARATION	
STEINER-LIMBACH CORRELATION	
ТНЕОВУ	
EXPERIMENTAL ¹ H AND ¹⁵ N CHEMICAL SHIFTS	
REFERENCING OF THE ¹⁵ N CHEMICAL SHIFT	
CHEMICAL SHIFT MEASUREMENT	
COMPLETE SET OF SPECTRA	
NMR MEASUREMENTS AT 273 K	
¹⁵ N-LABELING OF NTPA 1	
Synthesis	33
COMPARISON OF ¹⁵ N-LABELED AND NOT LABELED NTPA 1	
QUALITATIVE DETECTION OF ^{2H} J _{PH} SCALAR COUPLING	
CHEMICAL EXCHANGE	
ASSIGNMENTS OF THE CHEMICAL SHIFTS	
STRUCTURE IDENTIFICATION OF THE BINARY COMPLEX	
BINARY NTPA 1/IMINE 2 COMPLEX	
CHARACTERISTIC ¹ H, ¹ H-NOESY CROSS SIGNALS	
CHARACTERISTIC ¹ H, ¹⁹ F-HOESY CROSS SIGNALS	
ASYMMETRIC MUKAIYAMA-MANNICH REACTION	
REACTION	
HPLC CONDITIONS	
HPLC CHROMATOGRAMS	

MOLECULAR DYNAMICS	(MD) SIMULATIONS	5

Methods	56
MAYER BOND ORDERS: AN INITIAL CHECK FOR VALIDITY	59
COMPARISON OF WEIGHTED DISTANCES WITH NOE-CONTACTS	61
MULTIPLE CONFORMERS OF INTEREST CORRESPOND TO STRUCTURE MOTIF I	95
THE H-BOND ORIENTATION TOWARDS THE NTPA OXYGEN ATOM	96
POTENTIALS OF MEAN FORCE (PMFS) FROM UMBRELLA SAMPLING ALONG THE NTPA N ⁻ E-IMINIUM H ⁺ DIST.	ANCE
SUGGESTS THE "NTPA OXYGEN-BASED" H-BOND AS THE PREFERRED POSITION	100
FORCEFIELD PARAMETERS USED FOR THE MD-SIMULATIONS	105

DFT STRUCTURE OPTIMIZATION RESULTS BASED ON THE MD-STRUCTURE MOTIF, WHICH WAS IDENTIFIED WITH POSSIBLE NOE-CONTACTS......143

(FFKFNLFN 15	• /
	_

Experimental data

NMR-Spectroscopy

All NMR spectroscopic investigations on model systems were performed on a Bruker Avance DRX 600 MHz spectrometer with TBI (Triple resonance broadband inverse) 5 mm CPPBBO 1H/19F-BB probe head with Z-gradient and BVT unit. Temperature was controlled in the VT-experiments by a BVT 3000 and BVT 3900 unit and liquid nitrogen. Further NMR experiments were performed on Bruker Avance III HD 400 MHz spectrometer equipped with 5 mm BBO BB-1H/D probe head with Z-Gradients. Spectrometer control and spectra processing was performed with Bruker Software TopSpin (Version 3.2 PL 1). Further data procession, data preparation and data presentation was performed with Microsoft Excel, Origin 2021, Corel Draw X7 and ChemDraw Professional. ¹H and ¹³C chemical shifts were referenced to TMS or the respective solvent signals. The heteronuclei ¹⁵N,¹⁹F and ³¹P were referenced, employing $v(X) = v(TMS) \cdot \text{Ereference} / 100 \%$ according to Harris et al.¹ The following frequency ratios and reference compounds were used: $\Xi(^{15}N) = 10.132912$ (lq. NH₃), $\Xi(^{19}F) = 94.094011$ (CCl₃F) and $\Xi(^{31}P) = 40.480742$ (H₃PO₄). To optimize the mixing times for the NOESY and HOESY experiments, we utilized the AU popt feature in Topspin to prevent spin diffusion. For all NMR measurements, 5 mm NMR tubes were used.

Pulse Sequences and Acquisition Parameters

Standard pulse sequences from the Bruker pulse sequence catalogue (zg, zg30, etc.) have been used. The respective pulse programs are not listed within the experimental part. Special pulse programs (qualitative detection of scalar coupling with modified ¹H ³¹P HMBC measurements) are listed in Chapter "Qualitative Detection of ^{2hJPH} scalar coupling". The following acquisition parameter have been used:

<u>1H-NMR</u>: Pulse program zg30, Relaxation delay = 2.00 s, Acquisition time = 2.54 s, SW = 22 - 24 ppm, TD = 66 K, ns = 1 - 256;

<u>13C NMR</u>: Pulse program: zgpg30, Relaxation delay = 2.00 s, Acquisition time = 0.80 s, TD = 66 K; SW = 270.0 ppm, TD = 64k, NS = 1k - 4k;

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

<u>¹⁵N NMR</u>: Pulse program: zg30; Relaxation delay = 3.00 s, Acquisition time = 1.06 s; SW = 507.5 ppm, TD = 66 K; NS = 1K - 4K;

<u>¹⁹F-NMR</u>: Pulse program: zg30; Relaxation delay = 2.00 s, Acquisition time = 5.79 s, SW = 20.0 ppm, TD = 131k, NS = 64;

<u>³¹P-NMR</u>: Pulse program: zgpg30; Relaxation delay = 1.00 s, Acquisition time = 2.25 s, SW = 60.0 ppm, TD = 65k, NS = 256 - 512;

<u>2D-1H 1H NOESY</u>: Pulse program: noesygpph; Relaxation delay = 5.00 s, NS = 8 - 16, mixing time (D8) = 100.00 ms; TD F2 = 4096; increments (TD F1) = 512 - 1k;

<u>2D-1H 1H COSY</u>: Pulse program: cosygpqf; Relaxation delay = 5.00 s, NS = 4 - 16, TD F2 = 4096; increments (TD F1) = 512;

<u>2D-1H 13C HSQC</u>: Pulse program: hsqcedetgpsisp2.3; Relaxation delay = 4 - 8 s, NS = 8 - 32, ¹J_{XH} = 145 Hz; TD F2 = 4096; increments (TD F1) = 512 - 1k;

<u>2D-1H 13C HMBC</u>: Pulse program: hmbcgplpndqf; Relaxation delay = 4.00 s, NS = 8 - 16, ${}^{1}J_{XH}$ = 145 Hz, J_{XH} (long range) = 10 Hz; TD F2 = 4096; increments (TD F1) = 512 - 1k;

<u>2D-1H 31P HMBC</u>: Pulse program: inv4gplrndqf; Relaxation delay = 6.00 s, NS = 4 - 32, TD F2 = 4096; increments (TD F1) = 256 - 512;

<u>2D-1H 15N HMBC</u>: Pulse program: inv4gplrndqf; Relaxation delay = 4.00 s, NS = 4 - 16, delay for evolution of long range couplings (D6) = 20.00 ms; TD F2 = 4096; increments (TD F1) = 256;

<u>2D-1H 19F HOESY</u>: Pulse program: hoesyph; Relaxation delay = 5.00 s, NS = 8, mixing time (D8) = 350.00 ms; TD F2 = 4096; increments (TD F1) = 850 - 1250;

1D <u> ^{1}H ^{31}P HMBC</u>: Pulse program²: Relaxation delay = 4.00 s, Acquisition time = 1.23 s, SW = 22 ppm, TD F2 = 33 K NS = 256, CNST 3 = 22.

Mass Spectrometry

High resolution mass spectra were measured by the central analytics division in the Institute of Organic Chemistry. Gas chromatography coupled with a mass selective detector was performed on an Agilent 6890N Network GC-System.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Chemistry

Deuterated solvents were purchased from Deutero or Sigma Aldrich. Where dry solvents were essential, CD₂Cl₂ was refluxed over CaH₂ for at least 5 h under Argon atmosphere and freshly distilled prior use. Toluene was refluxed over Na/Benzophenone under Argon atmosphere or purchased by Sigma Aldrich (dry, stored over molecular sieve). *(R)*-NTPA **1** was purchased by BLDpharm. All commercially available chemicals were purchased by Sigma Aldrich and used without further purification.

Synthesis of Imine Substrates

All imines were synthesized according to modified literature.³⁻⁸ Characterization was performed on Bruker Avance III HD 400 MHz spectrometer equipped with 5 mm BBO BB-¹H/D probe head with Z-Gradients.

General procedure for the synthesis of imines (GP I):

Molecular sieves 4 Å (4 g) were weighed in to a 50 ml Schlenk flask equipped with a stopper. The setup was connected to a vacuum line and was evacuated and dried with a heat gun at 350 °C. Under Argon flow, Aniline or ¹⁵N-Aniline (98 % ¹⁵N) (10.5 mmol, 1.1 equiv.) and the respective ketone (10 mmol, 1.0 equiv.) were added to the Schlenk flask under argon atmosphere and were dissolved in 20 ml toluene. The stop cock was exchanged with a reflux

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

condenser and a drying tube filled with CaCl2 and the solution was heated to reflux for 18 hours. The orange solution was filtered off from the molecular sieves and was concentrated under reduced pressure. The remaining solid was recrystallized from methanol. The product was obtained as yellow solid.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

(E)-1-(4-methoxyphenyl)-N-phenylethane-1-imine (98% ¹⁵N)

¹⁵N-labeled imine was synthesized following GP I and obtained as light-yellow needles (40%) predominantly as *E* isomer (>99% via ¹H-NMR). ¹H and ¹³C NMR data were in accordance with literature.⁹

¹**H-NMR** (400.1 MHz, CD₂Cl₂) δ H = 7.95 (m, 2H), 7.34 (m, 2H), 7.07 (m, 1H), 6.96 (m, 2H), 6.76 (m, 2H), 3.86 (s, 3H), 2.18 ppm (d, ³*J*_{HN} =1.85 Hz, 3H).

¹³**C-NMR** (100.6 MHz, CD₂Cl₂): δC = 164.5, 161.9, 152.5, 132.5, 129.3, 129.2, 123.2, 119.9, 113.9, 55.8, 17.2 ppm.

(E)-1-(4-methylphenyl)-N-phenylethane-1-imine (98% ¹⁵N)

3

¹⁵N-labeled imine was synthesized following GP I and obtained as light-yellow needles (25 %) predominantly as *E* isomer (>99 % via ¹H-NMR). ¹H and ¹³C NMR data were in accordance with literature.⁹

¹**H-NMR** (400.1 MHz, CD₂Cl₂) δ H = 7.86 (m, 2H), 7.34 (m, 2H), 7.25 (m, 2H), 7.06 (m, 1H), 6.76 (m, 2H), 2.40 (s, 3H) 2.18 ppm (d, ³*J*_{HN} = 1.76 Hz, 3H).

¹³**C-NMR** (100.6 MHz, CD₂Cl₂): δC = 165.3, 152.4, 141.2, 137.3, 129.5, 129.3, 127.5, 123.3, 119.7, 21.5, 17.4 ppm.

a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

(E)-N-phenyl-1-(4-(trifluoromethyl)phenyl)ethane-1-imine (98% ¹⁵N)

¹⁵N-labeled imine was synthesized following GP I and obtained as light-yellow needles (55 %) predominantly as *E* isomer (>99 % via ¹H-NMR). ¹H and ¹³C NMR data were in accordance with literature.³

¹**H-NMR** (400.1 MHz, CD₂Cl₂) δ H = 8.11 (m, 2H), 7.73 (m, 2H), 7.38 (m, 2H), 7.12 (m, 1H), 6.80 (m, 2H), 2.25 ppm (d, ³*J*_{NH} = 1.8 Hz, 3H).

¹³**C-NMR** (100.6 MHz, CD₂Cl₂): δC = 164.5, 151.7, 143.2, 132.1, 129.4, 128.0, 125.6, 124.6, 123.9, 119.5, 17.5 ppm.

(E)-1-(3,5-bis(trifluoromethyl)phenyl)-N-phenylethan-1-imine (98% ¹⁵N)

¹⁵N-labeled imine was synthesized following GP I and obtained as a yellow oil (18 %) predominantly as *E* isomer (>99 % via ¹H-NMR). ¹H and ¹³C NMR data were in accordance with literature.³

¹**H-NMR** (400.1 MHz, CD₂Cl₂) δ H = 8.47 (m, 2H), 8.01 (m, 1H), 7.39 (m, 2H), 7.14 (m, 1H), 6.81 (m, 2H), 2.29 ppm (d, 3H, ³*J*_{NH} = 1.8 Hz).

¹³**C-NMR** (100.6 MHz, CD₂Cl₂): δC = 163.0, 151.1, 141.9, 131.9, 129.5, 127.8, 125.2, 124.3, 124.1, 123.8, 119. 4, 17.4 ppm.

a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

(E)-1-(naphthalen-2-yl)-N-phenylethan-1-imine (98% ¹⁵N)

¹⁵N-labeled imine was synthesized following GP I and obtained as light-yellow needles (60 %) predominantly as *E* isomer (>99 % via ¹H-NMR). ¹H and ¹³C NMR data were in accordance with literature.⁹

¹**H-NMR** (400.1 MHz, CD₂Cl₂) δ H = 8.37 (s, 1H), 8.24 (m, 1H) 7.99 – 7.94 (m, 1H), 7.94 – 7.87 (m, 2H), 7.60 – 7.52 (m, 2H), 7.42 – 7.35 (m, 2H), 7.11 (m, 1H), 6.83 (m, 2H), 2.34 ppm (d, ³*J*_{HN} = 1.76 Hz, 3H).

¹³**C-NMR** (100.6 MHz, CD₂Cl₂): δC = 165.3, 152.3, 137.3, 134.8, 133.3, 129.3, 129.2, 128.2, 128.1, 128.0, 127.6, 126.7, 124.6, 123.5, 119.7, 17.4 ppm.

(E)-N-phenyl-1-(4-(tert-butyl)phenyl)ethan-1-imine (98% ¹⁵N)

¹⁵N-labeled imine was synthesized following GP I and obtained as light-yellow needles (28 %) predominantly as *E* isomer (>99 % via ¹H-NMR). ¹H and ¹³C NMR data were in accordance with literature.⁷

¹**H-NMR** (400.1 MHz, CD₂Cl₂) δH = 7.91 (m, 2H), 7.48 (m, 2H), 7.35 (m, 2H), 7.07 (m, 1H), 6.76 (m, 2H), 2.20 (d, ³*J*_{HN} =1.83 Hz, 3H), 1.34 ppm (s, 9H).

¹³**C-NMR** (100.6 MHz, CD₂Cl₂): δC = 165.9, 154.9, 153.1, 137.9,129.6, 128.0, 126.3, 124.0, 120.4, 35.7, 32.0, 18.1 ppm.

a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

(E)-1-(naphthalen-1-yl)-N-phenylethan-1-imine (98% ¹⁵N)

¹⁵N-labeled imine was synthesized following GP I and obtained as yellow needles (42 %). The ratio between *E* and *Z* in solution was determined by ¹H-NMR to be 1.7 to 1. ¹H and ¹³C NMR data were in accordance with literature.³ Due to the presence of two isomers the ¹H and ¹³C spectra are quite crowded in the aromatic region and therefore only representative signals are listed.

¹**H-NMR** (400.1 MHz, CD₂Cl₂) δ H = 2.61 (*Z*, s, 3H), 2.33 ppm (*E*, s, 3H) ¹³**C-NMR** (100.6 MHz, CD₂Cl₂): δ C = 170.4 (*Z*), 169.2 (*E*), 29.9 (*Z*), 22.0 (*E*)

(E)-1-(4-nitrophenyl)-N-phenylethan-1-imine (98% ¹⁵N)

9

¹⁵N-labeled imine was synthesized following GP I and obtained as light-yellow needles (28 %) predominantly as *E* isomer (>99 % via ¹H-NMR). ¹H and ¹³C NMR data were in accordance with literature.¹⁰

¹**H-NMR** (400.1 MHz, CD₂Cl₂) δH = 8.29 (m, 2H), 8.15 (m, 2H), 7.39 (m, 2H), 7.13 (m, 1H), 6.80 (m, 2H), 2.27 ppm (d, ${}^{3}J_{HN}$ =1.73 Hz, 3H).

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

(E)-1-(4-fluorophenyl)-N-phenylethan-1-imine (98% ¹⁵N)

10

¹⁵N-labeled imine was synthesized following GP I and obtained as light-yellow needles (28 %) predominantly as *E* isomer (>99 % via ¹H-NMR). ¹H and ¹³C NMR data were in accordance with literature.³

¹**H-NMR** (400.1 MHz, CD₂Cl₂) δ H = 8.00 (m, 2H), 7.35 (m, 2H), 7.14 (m, 2H), 7.09 (m, 1H), 6.77 (m, 2H), 2.20 ppm (d, 3H, ³*J*_{NH} = 1.8 Hz).

¹³**C-NMR** (100.6 MHz, CD₂Cl₂): δC = 164.6, 164.3, 152.1, 136.2, 129.7, 129.3, 123.5, 119.6, 115.5, 17.4 ppm.

(E)-1-(4-bromophenyl)-N-phenylethan-1-imine (98% ¹⁵N)

¹⁵N-labeled imine was synthesized following GP I and obtained as light-yellow needles (36 %) predominantly as *E* isomer (>99 % via ¹H-NMR). ¹H and ¹³C NMR data were in accordance with literature.³

¹**H-NMR** (400.1 MHz, CD₂Cl₂) δH = 7.87 (m, 2H), 7.59 (m, 2H), 7.36 (m, 2H), 7.09 (m, 1H), 6.77 (m, 2H), 2.20 ppm (d, 3H, ³*J*_{NH} = 1.8 Hz).

¹³**C-NMR** (100.6 MHz, CD₂Cl₂): δC = 164.5, 151.9, 138.9, 131.8, 129.3, 129.2, 125.2, 123.6, 119.6, 17.3 ppm.

(E)-1-(perfluorophenyl)-N-phenylethan-1-imine

Imine was synthesized according to literature.¹¹ Molecular sieves 4 Å (4 g) were weighed in to a 50 ml Schlenk flask equipped with a reflux condenser and a stopper. The setup was connected to a vacuum line and was evacuated and dried with a heat gun at 350 °C. Under Argon flow, Aniline (10.5 mmol, 1.1 equiv.) and the respective ketone (10 mmol, 1.0 equiv.) were added to the Schlenk flask under argon atmosphere and were dissolved in 20 ml toluene. The stop cock was exchanged with a drying tube filled with CaCl₂ and the solution was stirred at room temperature for 18 hours. The orange solution was filtered through celite, concentrated under reduced pressure und purified by bulb-to-bulb distillation. The imine was obtained as an orange oil (25 %) as a mixture of *E* isomer and *Z* isomer (*E*/*Z* = 54/46 % via ¹H-NMR). ¹H and ¹⁹F NMR data were in accordance with literature.¹¹

¹**H-NMR** (400.1 MHz, CD₂Cl₂) δH = 7.22-7.13 (m, 3H), 6.67 (d, 2H, ²*J*_{HH} = 7.48 Hz), 2.50 ppm (s, 3H).

¹⁹**F-NMR** (376 MHz, CD₂Cl₂) δF = -139.4, -153.6, -161.5 ppm.

Z-isomer

¹**H-NMR** (400.1 MHz, CD₂Cl₂) δ H = 7.40 (t, 2H, ²*J*_{HH} = 7.89 Hz), 7.00 (t, 1H, ²*J*_{HH} = 7.49 Hz), 6.34 (d, 2H, ²*J*_{HH} = 8.29 Hz), 2.18 ppm (s, 3H).

¹⁹**F-NMR** (376 MHz, CD₂Cl₂) δF = -143.6, - 154.7, -162.3 ppm.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

NMR Sample Preparation

General procedure for the preparation of binary NTPA•*E*/*Z*-imine complexes (GP II):

The NTPA catalyst was weighted into a 5 mm NMR tube and dried for 30 min at 130 °C under reduced pressure. After cooling the tube to room temperature, ¹⁵N labelled imine was weighted directly into the NMR tube. The tube was evacuated and flushed with Argon three times. Deuterated and dry CD₂Cl₂ was added under Argon atmosphere, TMS was added, and the tube was closed and sealed with a parafilm. The sample was stored in a -80 °C freezer. For all samples a 1:1 ratio of catalyst/imine was used. Even after careful sample preparation, partial hydrolysis of the imine took place. Therefore, the catalyst/imine-ratios were slightly different from 1:1. The concentration of 25 mmol L⁻¹ or 40 mmol L⁻¹ was used for all samples.

^a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Steiner-Limbach correlation

Theory

All the investigations regarding the hydrogen bond analysis were done in accordance with our previous work on CPA/imine complexes and DSI/imine complexes.^{3,12,13}

Experimental ¹H and ¹⁵N chemical shifts

Table S1: Observed $\delta({}^{1}H)$ and $\delta({}^{15}N)$ chemical shifts and ${}^{1}J_{NH}$ coupling constants of NTPA/imine complexes at 180 K and 600 MHz in CD₂Cl₂. (- = not determined)

	δ(1H) [ppm]	δ(¹⁵ N) [ppm]	¹ <i>J</i> _{NH} [Hz]
E-2	13.61	188.7	90.50
Z-2	13.92	197.7	89.62
E-3	14.01	196.9	-
Z-3	14.25	202.9	-
E- 4	14.68	207.3	89.01
Z-4	14.85	211.1	
E- 5	15.2	215.2	87.12
Z-5	15.28	-	86.90
E- 6	14.18	197.1	90.55
Z-6	14.47	204.9	89.17
E- 7	14.04	196.8	-
Z-7	14.24	202.5	-
E- 8	-	-	-

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Z-8	14.92	215	89.91
E- 9	14.85	-	-
Z-9	15.04	213.9	88.55
E-10	14.26	198.6	-
Z-10	14.46	205.6	89.18
E- 11	14.38	201.6	-
Z-11	14.57	207.3	89.04
E-12	15.86	229.6	-
Z-12	16.04	228.45	

Referencing of the ¹⁵N chemical shift

The ¹⁵N chemical shifts are referenced by $\delta(OHN)$ ref = $\delta(OHN)_{obs}$ – 340.8 ppm. 340.8 ppm is the chemical shift of the free imine showing the strongest hydrogen bond in the previous work. Data points of phenols/carboxylic acids, tetrafluoroboric acid, TRIP, TiPSY and DSI were collected by K. Rothermel, N. Sorgenfrei, T. Hausler and M. Melikian, respectively.^{3,12,13}

Chemical Shift Measurement

The ¹H and ¹⁵N chemical shifts of all binary NTPA/imine complexes were determined using ¹H and ¹⁵N NMR or ¹H,¹⁵N-HMBC spectroscopy.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

The ${}^{1}H,{}^{15}N$ -HMBC spectra allowed for the detection of the ${}^{15}N$ chemical shift with respect to the hydrogen bond, the methyl group, or the aromatic proton.

Complete Set of Spectra

NTPA 1/imine-2 complex

Figure S1: Low field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **2** at 180 K and 600 MHz in CD_2Cl_2 . ¹H ¹⁵N HMBC section for the of NTPA **1**/imine **2** complex at 180 K and 600 MHz in CD_2Cl_2 . The section shows characteristic ¹H ¹⁵N HMBC cross signals for E- and Z-complex.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

NTPA 1/imine-3 complex

Figure S2: Low field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **3** at 180 K and 600 MHz in CD_2Cl_2 . ¹H ¹⁵N HMBC section for the of NTPA **1**/imine **3** complex at 180 K and 600 MHz in CD_2Cl_2 . The section shows characteristic ¹H ¹⁵N HMBC cross signals for E- and Z-complex.

a[.] Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S3: Low field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **4** at 180 K and 600 MHz in CD_2Cl_2 . ¹H ¹⁵N HMBC section for the of NTPA **1**/imine **4** complex at 180 K and 600 MHz in CD_2Cl_2 . The section shows characteristic ¹H ¹⁵N HMBC cross signals for E- and Z-complex.

a[.] Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

NTPA 1/imine-5 complex

Figure S4: Low field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **5** at 180 K and 600 MHz in CD_2Cl_2 . ¹H ¹⁵N HMBC section for the of NTPA **1**/imine **5** complex at 180 K and 600 MHz in CD_2Cl_2 . The section shows characteristic ¹H ¹⁵N HMBC cross signals for E- and Z-complex.

a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

NTPA 1/imine-6 complex

Figure S5: Low field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **6** at 180 K and 600 MHz in CD₂Cl₂. ¹⁵N spectrum of NTPA **1**/imine **6** complex at 180 K and 600 MHz in CD₂Cl₂.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S6: Low field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **7** at 180 K and 600 MHz in CD_2Cl_2 . ¹H ¹⁵N HMBC section for the of NTPA **1**/imine **7** complex at 180 K and 600 MHz in CD_2Cl_2 . The section shows characteristic ¹H ¹⁵N HMBC cross signals for E- and Z-complex.

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Figure S7: Low field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **8** at 180 K and 600 MHz in CD_2Cl_2 . ¹H ¹⁵N HMBC section for the of NTPA **1**/imine **8** complex at 180 K and 600 MHz in CD_2Cl_2 . The section shows characteristic ¹H ¹⁵N HMBC cross signals for E- and Z-complex.

^a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Figure S8: Low field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **9** at 180 K and 600 MHz in CD_2Cl_2 . ¹H ¹⁵N HMBC section for the of NTPA **1**/imine **9** complex at 180 K and 600 MHz in CD_2Cl_2 . The section shows characteristic ¹H ¹⁵N HMBC cross signals for E- and Z-complex.

a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Figure S9: Low field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **10** at 180 K and 600 MHz in CD₂Cl₂. ¹H ¹⁵N HMBC section for the of NTPA **1**/imine **10** complex at 180 K and 600 MHz in CD₂Cl₂. The section shows characteristic ¹H ¹⁵N HMBC cross signals for E- and Z-complex.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

NTPA 1/imine-11 complex

Figure S10: Low field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **11** at 180 K and 600 MHz in CD₂Cl₂. ¹H ¹⁵N HMBC section for the of NTPA **1**/imine **11** complex at 180 K and 600 MHz in CD₂Cl₂. The section shows characteristic ¹H ¹⁵N HMBC cross signals for E- and Z-complex.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Figure S11: Low field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **12** at 180 K and 600 MHz in CD₂Cl₂. ¹H ¹⁵N HMBC section for the of NTPA **1**/imine **12** complex at 180 K and 600 MHz in CD₂Cl₂. The section shows characteristic ¹H ¹⁵N HMBC cross signals for E- and Z-complex.

^a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

NMR measurements at 273 K

All NMR spectra regarding the H-bond analysis were recorded at 180 K to reach the slow tumbling and slow exchange regime of the hydrogen-bonded protons. Since reactions using NTPA and CPA are carried out at higher temperatures as well, we also conducted NMR studies at 273 K whether temperature influences the binary complexes. At higher temperatures the H-bond appears as a single broad signal, preventing any further investigations on the H-bond situation (Figure S12, Figure S13). However, the H-bond is still present at this temperature indicating the formation of the binary complex at 273 K too (Figure S12), but the signal intensity of this signal is weak for intermolecular studies (NOESY/ROESY/HMBC). Furthermore, comparing the isomeric ratio of the binary *E*- and *Z*-complex at 180 K and 273 K (Figure S14), only slight changes are detected. Thus, the NMR spectra at 273 K show a complex formation and isomeric ratio like the one observed at 180 K. This is in accordance with the *ee*-values in Table 1 in the manuscript. In case no significant structure changes occur upon temperature reduction, the *ee* value is expected to increase at lower temperatures.

Figure S12: ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **2** at 273 K and 600 MHz in CD₂Cl₂. At 273 K, the H-bond peak for the E- and Z-complex appeared as a single broad signal, preventing any further investigations on the H-bond situation.

a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S13: ${}^{1}H {}^{31}P HMBC$ spectrum of NTPA **1**/imine **2** complex at 273 K and 600 MHz in CD₂Cl₂. The section shows no ${}^{1}H {}^{31}P HMBC$ cross signals for the H-bond due to significant line broadening at higher temperatures.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S14: High field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **2** at 273 K (top) and 180 K (bottom), 600 MHz in CD_2Cl_2 . At both temperatures the binary E- and Z-complex is visible in a similar isomeric ratio.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

¹⁵N-labeling of NTPA 1

Synthesis

The ¹⁵N-labeled NTPA **1** was synthesized according to the procedure of Yamamoto et *al*.¹⁴

¹⁵N-NTPA 1

¹⁵N-labeled NTPA **1** was obtained as a beige solid (48 %). ¹H, ¹⁹F and ³¹P NMR data were in accordance with literature.¹⁵

¹**H-NMR** (400.1 MHz, CD₃CN) δH = 8.26 (s, 2H), 8.2 (m, 3H), 8.18 (s, 1H), 8.01 (d, 2H, ²*J*_{HH} = 8.29 Hz), 7.92 (s, 2H), 7.48 (m, 2H), 7.33 – 7.18 ppm (m, 4H).

¹⁹**F-NMR** (376 MHz, CD₃CN) δ F = -62.0 (12F), -79.5 ppm (3F).

³¹**P-NMR** (202 MHz, CD₃CN) δ P = 1.25 ppm.

¹⁵**N-NMR** (40.5 MHz, CD₃CN) δN = 101.87 ppm.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Comparison of ¹⁵N-labeled and not labeled NTPA 1

Figure S15: a) Low field section of the ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **2** at 180 K and 600 MHz in CD_2Cl_2 . b) Low field section of the ¹H spectrum of ¹⁵N-labeled NTPA **1** and ¹⁵N-labeled imine **2** at 180 K and 600 MHz in CD_2Cl_2 . C) ¹H,¹⁵N-HSQC section of ¹⁵N-labeled NTPA **1** and ¹⁵N-labeled imine **2** at 180 K and 600 MHz in CD_2Cl_2 . The section shows characteristic ¹H,¹⁵N-HSQC cross signals between the nitrogen of the imine and the proton but not for the nitrogen of the NTPA catalyst.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Figure S16: ¹⁵N spectrum of free NTPA **1** in CD_2Cl_2 at 300 K and ¹⁵N spectrum of the binary complex NTPA **1**/imine **2** in CD_2Cl_2 at 180 K. The ¹⁵N signal in the binary complex is slightly broadened.

a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Qualitative Detection of ^{2h}J_{PH} scalar coupling

The presence of a cross signal in the ¹H,³¹P-HMBC does not serve as a direct indication for a "covalent character". Theoretical studies suggest that for Fermi contact interaction - the spin polarization of nuclei mediated by electrons - covalent bonding between these nuclei is not an essential requirement.^{16,17} The magnetization transfer between both involved nuclei can theoretically be mediated by relaxation interference of the ¹H chemical shift anisotropy (¹H-CSA) and ¹H-³¹P dipolar interactions (DD) instead of a Fermi contact interaction (scalar coupling). Several NMR experimental studies on trans hydrogen bond scalar couplings in bio macromolecules suggest this phenomenon.^{2,18-21} To ensure that the measured magnetization transfer between ¹H and ³¹P is caused mainly by scalar coupling between ¹H and ³¹P and is not mediated by a cross correlation between the ¹H-CSA and the ¹H,³¹P dipole interaction, modified 1D¹H,³¹P-HMBC experiments were carried out. For this purpose, if it is in fact a ^{2h}/_{PH} scalar coupling, Löhr et al. developed modified ¹H,³¹P-HMBC pulse sequences for the detection of scalar couplings.² Originally these pulse sequences were developed for the detection of scalar couplings across NH···OP and OH···OP hydrogen bonds in flavoproteins.² The modified 1D ¹H ³¹P HMBC experiments were also used by our group for the detection of ^{2h}/_{PH} scalar coupling in CPA/imine complexes.⁴

^a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S17: Modified 1D ¹H,³¹P-HMBCs developed by Löhr et al.² a) Polarization transfer is mediated only by scalar coupling b) and c) Polarization transfer is mediated by ¹H-CSA and ¹H ³¹P-DD cross relaxation. d) Polarization transfer is mediated by the sum of scalar coupling and the ¹H-CSA and ¹H ³¹P-DD cross relaxation. Thin and wide bars indicate 90° and 180° pulses. All phases are x, unless otherwise specified. Pulse phases: $\phi 1 = x, x, -x, -x; \phi 2 = x, -x; \phi 3 = 4$ (x), 4 (-x).

Chemical Exchange

Figure S18: a) ¹H spectrum of ¹⁵N-labeled imine **2** at 293 K and 600 MHz in CD_2Cl_2 . b) ¹H spectrum of NTPA **1** and ¹⁵N-labeled imine **2** at 180 K and 600 MHz in CD_2Cl_2 . No EXSY peaks between NTPA **1**/imine **2** complexes and free imine **2** were observed in a 1:1 sample. c) An excess of the imine **2** in the samples revealed EXSY peaks between the NTPA **1**/imine **2** complex and the free *E*-imine.

a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S19: ¹H, ¹H-ROESY section for the of NTPA **1**/imine **2** complex at 180 K and 600 MHz in CD_2Cl_2 . The section shows exchange signals between the NTPA **1**/imine **2** complex and the free *E*-imine.

Assignments of the chemical shifts

¹H (black), ¹³C (blue), ¹⁵N (green), ¹⁹F (red) and ³¹P (yellow) chemical shifts of the binary complex with ¹⁵N-labeled imine **2** and NTPA **1** were assigned with ¹H,¹H-COSY, ¹H,¹H-TOCSY, ¹H,¹H-NOESY, ¹H,¹⁹F-HOESY, ¹H,¹³C-HSQC, ¹H,¹³C-HMBC, ¹H,¹⁵N-HMBC and ¹H,³¹P-HMBC at 180 K.

NTPA **1**/*Z***-2** complex

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Structure Identification of the Binary Complex

Figure S20: ¹H-NMR section for the of NTPA **1**/imine **2** complex at 180 K and 600 MHz in CD₂Cl₂.

a[.] Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Characteristic ¹H, ¹H-NOESY cross signals

Figure S21: ¹H, ¹H-NOESY section for the of NTPA **1**/imine **2** complex at 180 K and 600 MHz in CD_2Cl_2 . The section shows characteristic NOE cross signals between the NTPA backbone and the imine.

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S22: ¹H, ¹H-NOESY section for the of NTPA **1**/imine **2** complex at 180 K and 600 MHz in CD₂Cl₂. The section shows characteristic NOE cross signals between the NTPA backbone and the imine.

Characteristic ¹H, ¹⁹F-HOESY cross signals

Figure S23: ¹H, ¹⁹F-HOESY section for the of NTPA **1**/imine **2** complex at 180 K and 600 MHz in CD₂Cl₂. The section shows characteristic NOE cross signals between the NTPA backbone and the imine.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S24: ¹H, ¹⁹F-HOESY section for the of NTPA **1**/imine **2** complex at 180 K and 600 MHz in CD₂Cl₂. The section shows characteristic NOE cross signals between the NTPA backbone and the imine.

Asymmetric Mukaiyama-Mannich reaction

Reaction

To a solution of aldimine **13** (42.2 mg, 0.2 mmol) and the NTPA catalyst **1** (0.002 – 0.05 mmol) in dry toluene at temperatures from -80 °C up to 80 °C was added dropwise a solution of ketene silyl acetal **14** (69.8 mg, 81.2 μ L, 0.4 mmol) under argon atmosphere. After being stirred at the temperature for 24 hours, the mixture was quenched by addition of saturated NaHCO₃ (0.4 mL). THF (10 mL) and 1 M HCl (2 mL) was added at room temperature, the mixture was stirred for one hour and extracted with DCM (2x 10 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (SiO₂, hexane:ethylacetate = 3:1). The product was obtained as a white solid and enantiomeric excess was determined by Daciel Chiralpak column. ¹H and ¹³C NMR data was in accordance with literature.²²

As our focus was directed towards the enantioselectivity of the reaction, given that chemical yields of up to 95% have already been reported²², we isolated the product only once in a yield of 70%. Thus, in all reactions where we varied catalyst loading and temperature, the

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

enantiomeric excess was directly determined after the work up, without undergoing purification via column chromatography or determination of the chemical yield.

¹**H-NMR** (400.1 MHz, CDCl₃) δ H = δ = 7.18 (d, 2H, ²*J*_{HH} = 8.73), 7.05 (t, 2H, ²*J*_{HH} = 7.63), 6.81 (d, 2H, ²*J*_{HH} = 8.62), 6.61 (t, 1H, ²*J*_{HH} = 7.20), 6.49 (d, 2H, ²*J*_{HH} = 7.72), 4.74 (brs, 1H), 4.44 (brs, 1H), 3.77 (s, 3H), 3.65 (s, 3H), 1.26 (s, 3H), 1.15 ppm (s, 3H).

¹³**C-NMR** (100.6 MHz, CDCl₃): δC = = 177.1, 158.8, 147.0, 131.1, 129.2, 129.0, 117.2, 113.7, 113.4, 63.8, 55.0, 52.1, 47.2, 24.4, 20.6 ppm.

HPLC Conditions

The conditions for separating major and minor enantiomer were previously established in the group of Yamamoto.²² HPLC, Daciel Chiralpak YA-H, Hexane:*i*-PrOH = 99:1, Flow rate 0.5 mL/min, λ = 220 nm. t_R = 29.287 min (minor isomer), t_R = 41.787 min (major isomer).²² In this work, the product **15** consisting of major and minor isomer was isolated and detected by HPLC chromatography. Conditions were later optimized to Hexane:*i*-PrOH = 97:3, Flow rate 0.5 mL/min, Daciel Chiralpak IA. Major and minor isomer in all reactions were checked with a diode array detector. For all reactions the resulting UV-spectrum is shown below the HPLC chromatogram.

a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

HPLC chromatograms

Asymmetric Mukaiyama-Mannich reaction with aldimine **13** and ketene silyl acetal **14** at r.t and 10% catalyst loading.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Asymmetric Mukaiyama-Mannich reaction with aldimine **13** and ketene silyl acetal **14** at r.t and 25% catalyst loading.

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Asymmetric Mukaiyama-Mannich reaction with aldimine **13** and ketene silyl acetal **14** at -10 °C and 25% catalyst loading.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Asymmetric Mukaiyama-Mannich reaction with aldimine **13** and ketene silyl acetal **14** at 80 °C and 10% catalyst loading.

Asymmetric Mukaiyama-Mannich reaction with aldimine **13** and ketene silyl acetal **14** at -80 °C and 25% catalyst loading.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Molecular dynamics (MD) simulations

Figure S25: Model system, with numbered for comparison with the subsequent distance distributions

The model system consists of (2,6-bis(3,5-bis(trifluoromethyl)phenyl)-4-oxidodinaphtho [2,1d:1',2'-f][1,3,2]dioxaphosphepin-4-yl) ((trifluoromethyl)sulfonyl)amide

and the molecule (E)-N-(1-(4-methoxyphenyl)-ethylidene)benzenaminium (see Figure S25).

The corresponding NMR-spectrum is given in Figure S26. Here it is not immediately clear how the underlying conformer species are constituted. MD-simulations were employed to suggest possible structures based on NOE-contacts. (see Figure S28)

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S26: ¹*H NMR-spectrum of the model complex between and E-imine measured at* 180 *K and 600 MHz. Assignment by M. Hecht.*

For brevity's sake those molecules in Figure S25 will be referred to as "*NTPA*" and "*iminium*" respectively.

For the MD-investigation only the E-imine was simulated, because this one led to clear NOEsignals. Furthermore, the strong acidity of the NTPA led to the description as a purely ionic system, as a NTPA⁻ and iminium⁺ species.

Accordingly, only simulations of the ionic species were done.

Methods

Force Field parameters

Using ORCA²³ version 5.0.2 geometry optimizations of the individual ions were obtained at B3LYP def2-TZVP level using the conductor-like polarizable continuum Model²⁴ (CPCM) for CH₂Cl₂ and the D3BJ correction. The same parameters were used for optimization of the combined complex. Mayer bond orders were used as a check for validity.

a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

For the structure "tight" optimization was chosen, as well as a change in the grid to "defgrid3". Frequencies were obtained numerically. RESP charges were obtained with Multiwfn 3.7²⁵.

Antechamber²⁶ was used for assigning GAFF²⁷ parameters. The imine the parameters "ce" and "na" were used as an approximation within the GAFF context for the iminium nitrogen and the neighboring carbon atom.

Similarly, the N⁻ of the NTPA-anion was approximated as an "ne" type, an inner sp² N in conjugated chain systems with 2 substituents.

Dichloromethane was described by a GAFF based force field, by Horinek²⁸, which was modified, so it used virtual sites.

Acpype²⁹ was used for conversion of the topology file formats. The force fields are given below.

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Simulation Details for comparison of distances with NOE data

The GROMACS³⁰ simulation package was used for all MD-simulations in versions of 2018 and newer.

Simulations of the E-imine were carried out within a box containing 1 iminium, 605 DCM and 1 NTPA molecule with a timestep of 2 fs for a total simulation time of 1.6 μ s at 1 bar and 180 K.

For this the Parrinello-Rahman barostat (compressibility= $2.5e^{-5}$ bar⁻¹, $\tau_p=1$ ps) and the vrescale thermostat ($\tau_T=1$ ps). For the data evaluation a relatively long equilibration period of 50 ns was excluded. This time corresponds to the initial formation of the complex. At 180K no interconversion of I and II occurs. Complete ergodicity cannot be assumed. Simulations at higher temperatures (300K and more) were also tested, to see whether new preferential structures occur or exchange between motifs I and II occur on the simulation time scale. As there were no significant changes, the simulations at 180K will be evaluated in the discussion. The usual corrections for energy and pressure were employed during the simulations.

Simulation Details for the determination of free energy differences along the H-bond donor and acceptor H-coordinate

For the comparison between the H-bond possibilities towards the NTPA phosphate centered oxygen and nitrogen, umbrella sampling was performed with the parameters from above, starting from the oxygen bound situation (see Figure S65, Figure S66) at a umbrella distance of around 0.37 nm.

Umbrella windows were centered at distances of 0.42, 0.37, 0.32, 0.27, 0.22, 0.17, 0.12 and 0.08 nm between the E-iminium H and the NTPA's nitrogen atom with a force constant of $k=1000 \text{ kJ} \text{ mol}^{-1} \text{ nm}^{-2}$. For every subsequent umbrella simulation the end point of the previous ones was taken. The data was written to the file every 500 steps. Two different

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

PMFs were obtained with *gmx wham*.³¹ Once for simulations that were run at 300K for 1000000000 steps (2µs), which also showed significant rotations of the iminium in the binding pocket along the umbrella steps. Subtrajectories yielded similar PMFs, which means quasi-ergodic sampling can be assumed (*Figure S68*).

Another short set (20 ns) of simulations at 180K, which do not show significant conformational changes (see *Figure S69*) along the umbrella coordinate, was also used to obtain PMFs as an estimate for moving the iminium molecule towards the nitrogen without rotations. Because of the qualitative similarity of the 180K and 300K PMFs the 300K simulations are assumed to be sufficiently sampled.

Mayer Bond Orders: An Initial Check for Validity

As the N⁻ atom is not a standardized atom in the GAFF context a quick check for validity of using the "ne" parameter was employed. This is by no means a comprehensive analysis. Instead serves as a plausibility argument: if the bond orders did not reflect the force field description, another model would be needed.

It is usually assumed that a negatively charged NTPA molecule has its charge centered fully on the nitrogen, which means that the bond towards its neighboring P and S atoms should be described as a single bond. The Mayer bond orders (from ORCA) obtained for the geometry optimization of the anion is shown in fig. Figure S27 (rounded to the second decimal point). The Mulliken gross atomic charge for the double bond oxygen atom is -0.5934 and for the formally negative nitrogen -0.4539.

The charges from the RESP fit are -0.6925900998/-0.7664559612 for O and N respectively using the default settings and -0.6978260556/-0.7417259377 after adding equivalencies for the fluoride atoms. The main charge seems nitrogen centered. Thus, an H-bond through oxygen is probably not caused simply by a higher charge on the oxygen compared to the nitrogen position.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Figure S27: Mayer bond order between atoms of interest (rounded) for the NTPA anion (full data given in the DFT section)

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Comparison of Weighted Distances with NOE-Contacts

From the NMR-experiments the following NOE-contacts are known:

Table S2: NOE contacts between H positions on the iminium molecule and the molecule; "/" denotes a logical "or". For these the signals could not be assigned completely by due to overlap.

iminium	NTPA
2	8a
3	8a
2	9a
3	9a
1/5	10a/11/11a
2	10a/11/11a
3	10a/11/11a

Table S3: HOE contacts; "/" denotes a logical "or"

iminium	NTPA
1/5	С
A + B	6 and Me
A + B	1/5

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Evaluated Distances Related to the NOE-Contacts Allow for a Differentiation between Structure Motifs

Two distinct structure motifs have emerged from the simulations: they differ mainly by the rotation of the iminium by 180 $^{\circ}$ (see Figure S28).

They will be referred to as motifs **I** and **II** in the following section.

It will be shown that **II** most probably does not correspond to the observed NOE-contacts in Table S2. Additionally, it will be shown that motif **I** contains contributions of two main conformers.

Figure S28: Structure motif I (left) and II (right) differ by the rotation of the iminium molecule in the binding pocket

As one can surmise from the NOE contacts (compare Figure S28 to Table S2) between the iminium positions **2** and **3** to the positions **8a**, **9a**, **10a** and possibly **11a**, the iminium-phenyl ring might be positioned on top of the NTPA-backbone.

We will discuss both sides of the NTPA-backbone separately. Due to the necessary number of distance distributions related to this discussion the results are presented first, and the distance distributions are shown afterwards. This is done for BINOL-sides separately.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Distances Towards Atoms Situated on the "a" BINOL Side

First the BINOL-side denoted as "**a**" in Figure S25 will be discussed.

Due to the NOE-contacts small distances would have been expected between the iminium positions **2** and **3** towards positions **8a** and **9a** on the molecule. This is not the case for either motif **I** or **II** (in Figure S28) as the distances observed in the simulations are larger than 0.6 nm. NOE contacts can usually be found below this value (compare Figures S30, S31, S33, S34).

It is also not the case for the contacts assigned towards position **10a** from the imine positions **1**, **2** and **3** (compare Figures S35, S36, S37).

A possible contact from **11a** towards **1**, **2** and **3** seems possible only for structure motif **I**. This lets us exclude the positioning of both motif **I** and **II** on the BINOL "a" side. In addition, it may be possible that just the nomenclature used for the BINOL "a" side and the "non-a" side needs to be reversed to be compatible with the NMR data.

Distances Towards Atoms Situated on the "non-a" BINOL Side

The difference between structure motif **I** and **II** regarding the distances from the other side of the BINOL-backbone not denoted as "a" becomes prominent.

I shows close distances between positions **2** or **3** on the iminium towards **8**, **9** or **10** of the of around and below 0.5 nm, whereas II does not. These distances likely correspond to possible NOE-contacts (see Figures S42, S43, S45, S46, S48, S49).

This allows for a similar exclusion of structure motif **II** for the other -side and promotes **I** to a strong candidate for the experimentally measured structure – provided the HOE contacts correspond to reasonable distances. *Figure S53* ff below confirm this. Still, it is not possible to differentiate whether **A** and **B** are in contact with atoms **1** or **5**. This means the initial arbitrary assignment of which side was denoted with "a" needs to be reversed. Motif **I** may well correspond to the NMR-results, whereas **II** can be excluded.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Distance Distributions related to the NOE-Contacts of the "a" BINOL Side

Figure S29: r^{-6} weighted and unweighted distance distributions between 1 and 8a. As there are two possible hydrogen atoms corresponding to position 1, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S30: r^{-6} weighted and unweighted distance distributions between 2 and 8a. As there are two possible hydrogen atoms corresponding to position 2, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

Figure S31: r⁻⁶ weighted and unweighted distance distributions between 3 and 8a. Distances for structure motif I are shown on the top and for II on the bottom.

Figure S32: r⁻⁶ weighted and unweighted distance distributions between 1 and 9a. As there are two possible hydrogen atoms corresponding to position 1, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

Figure S33: r^{-6} weighted and unweighted distance distributions between 2 and 9a. As there are two possible hydrogen atoms corresponding to position 2, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

Figure S34: r⁻⁶ weighted and unweighted distance distributions between 3 and 9a. Distances for structure motif I are shown on the top and for II on the bottom.

- a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de
- ^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Figure S35: r⁻⁶ weighted and unweighted distance distributions between 1 and 10a. As there are two possible hydrogen atoms corresponding to position 1, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

Figure S36: r⁻⁶ weighted and unweighted distance distributions between 2 and 10a. As there are two possible hydrogen atoms corresponding to position 2, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

Figure S37: r⁻⁶ weighted and unweighted distance distributions between 3 and 10a. Distances for structure motif I are shown on the top and for II on the bottom.

^a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S38: r⁻⁶ weighted and unweighted distance distributions between 1 and 11a. As there are two possible hydrogen atoms corresponding to position 1, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S39: r⁻⁶ weighted and unweighted distance distributions between 2 and 11a. As there are two possible hydrogen atoms corresponding to position 2, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S40: r⁻⁶ weighted and unweighted distance distributions between 3 and 11a. Distances for structure motif I are shown on the top and for II on the bottom.

a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Distance Distributions related to the NOE-Contacts of the "non-a" BINOL Side

Figure S41: r⁻⁶ weighted and unweighted distance distributions between 1 and 8. As there are two possible hydrogen atoms corresponding to position 1, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S42: r⁻⁶ weighted and unweighted distance distributions between 2 and 8. As there are two possible hydrogen atoms corresponding to position 2, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S43: r⁻⁶ weighted and unweighted distance distributions between 3 and 8. Distances for structure motif I are shown on the top and for II on the bottom.

^a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S44: r⁻⁶ weighted and unweighted distance distributions between 1 and 9. As there are two possible hydrogen atoms corresponding to position 1, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S45: r⁻⁶ weighted and unweighted distance distributions between 2 and 9. As there are two possible hydrogen atoms corresponding to position 2, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S46: r⁻⁶ weighted and unweighted distance distributions between 3 and 9. Distances for structure motif I are shown on the top and for II on the bottom.

^a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S47: r⁻⁶ weighted and unweighted distance distributions between 1 and 10. As there are two possible hydrogen atoms corresponding to position 1, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S48: r⁻⁶ weighted and unweighted distance distributions between 2 and 10. As there are two possible hydrogen atoms corresponding to position 2, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S49: r⁻⁶ weighted and unweighted distance distributions between 3 and 10. Distances for structure motif I are shown on the top and for II on the bottom.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Figure S50: r⁻⁶ weighted and unweighted distance distributions between 1 and 11. As there are two possible hydrogen atoms corresponding to position 1, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S51: r^{-6} weighted and unweighted distance distributions between 2 and 11. As there are two possible hydrogen atoms corresponding to position 2, both are shown. Distances for structure motif I are shown on the top and for II on the bottom.

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S52: r⁻⁶ weighted and unweighted distance distributions between 3 and 11. Distances for structure motif I are shown on the top and for II on the bottom.

^a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

HOE-Signals (involving CF₃ groups) Differentiation between Iminium Positions 1 and 5

As it couldn't be decided based on the spectra whether the HOE-contacts to **A**, **B** and **C** on the NTPA-molecule were due to the iminium positions **1** or **5**, this is analyzed for the simulation results of structure I.

An analysis for structure motif **II** is not done because motif II was already excluded based on the previously shown NOE contacts.

No unambiguous assignment for the NOE-signal to **A**NTPA is possible: It either arises from position **1** or **5**. (see Figures S53, S54)

The same holds for the contact to **B**NTPA. (see Figures S55, S56)

However, it seems that the contact to C_{NTPA} is more likely to stem from the 5 position on the imine. (see Figures S57, S58)

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S53: Distance distributions between iminium position 1 and the F atoms of the A (CF3) group.

Figure S54: Distance distributions between iminium position 5 and the F atoms of the A (CF3) group.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S55: Distance distributions between iminium position 1 and the F atoms of the B (CF3) group.

Figure S56: Distance distributions between iminium position 5 and the F atoms of the B (CF3) group.

^a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S57: Distance distributions between iminium position 1 and the F atoms of the C (CF3) group.

Figure S58: Distance distributions between iminium position 5 and the F atoms of the C (CF3) group.

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Distances to the Iminium Methoxy and Methyl Groups

The following figures only show the distance distributions for one of the equivalent H-atoms, because the distributions are representative. For all the distances can correspond to measurable contacts observable in the NMR spectra.

Figure S59: r^{-6} weighted and unweighted distance distributions between Me and the CF₃ group A. The individual lines shown are for each of the three F atoms of the A group.

Figure S60: r^{-6} weighted and unweighted distance distributions between Me and the CF₃ group B. The individual lines shown are for each of the three F atoms of the B group.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S61: r^{-6} weighted and unweighted distance distributions between 6 and the CF₃ group A. The individual lines shown are for each of the three F atoms of the A group.

Figure S62: r^{-6} weighted and unweighted distance distributions between 6 and the CF₃ group B. The individual lines shown are for each of the three F atoms of the B group.

a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Multiple Conformers of Interest correspond to structure motif I

The distance distributions frequently contained more than a single distribution for the system of interest **I**. Therefore, differences in the conformation of the cluster are shown below in Figure S63. For differentiation distances, which correspond to NOEs in one case but not in the second case can be used: e.g. Figure S65 depicts the time resolved distance between the iminium position **3** and the position **10**. The exchange on the 1.6 μ s timescale is a rare event, so no quantitative population assignment is possible just from the simulation data. The times suggest a possible fast exchange on the NMR-timescale, so that a distinction between both species is probably unnecessary. Still, it seems that the right conformer of Figure S63 will be the one detected by its NOE-signals in the NMR and the left conformer (with a 3-10 distance of around 1 nm) should not show NOE signals. An additional DFT geometry optimization of the complex without explicit solvent (details see Methods above), starting from the solvated species (left side in Figure S63) obtained from the MD-simulation converged to the conformation, which corresponds to the NOE signals. This hints at the fact, that the second form (which should not correspond to NOE signals) may result from the solvation.

Figure S63: left: conformation with a 3-10 distance of around 1 nm - should not show NOEsignals; right: conformation with a 3-10 distance of around 0.5 nm - NOE-signals can be expected

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

The H-bond orientation towards the NTPA oxygen atom

Complex I was identified as the most probable one. Considering the charge situation with a N^- , it seems unintuitive that a H-bond situation seems to occur on the phosphate oxygen. For such systems it is usually assumed that the H-bond occurs via the charged nitrogen atom. In the simulations of I closer contacts between the iminium hydrogen and the nitrogen anion had been expected - rather than the oxygen atom.

This stands in apparent opposition to the simulation results and is also surprising considering the charge distribution between oxygen and nitrogen. Figure S64 shows that in the simulations the distance distribution is inverted. The time resolved distances are given in Figure S66. A comparison with the time resolved distances of Figure S65 allows an assignment to the substructures of motif **I**. An additional (DFT) geometry optimization of the complex based on the structures obtained from MD did not deviate from the close oxygen distance compared to the nitrogen distance. In addition, the Mayer bond orders (given below with the optimized structure) resemble the ones of the geometry optimization of the isolated anion (given in Figure S27). While this is clearly no proof, these facts – together with the corresponding NMR evidence – strongly hints at a conformation, which looks like an oxygen-based hydrogen bond in the ground state. This casts doubt on possible transition states via an N-based hydrogen bond. Still, even if the TS occurs via N, it will mean that the TS occurs via a rare event, which is not favored by a pre-organization of the H-bond. This clearly shows that further investigations into the nature and catalytic mechanisms of NTPA systems are required.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S64: The distance distribution between groups and the iminium H-binding hydrogen atom suggests H-bonding via the oxygen atom rather than the N^{-} .

^a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S65: The distance between atoms, which correspond to an observed NOE contact can be used to differentiate species with and without a possible NOE signal provided the change in distances are sufficiently large. This is the case for example for the iminium position 3 and the position 10. It allows for a clear distinction between two different conformers. The exchange on the 1.6 μ s timescale is a rare event however (5 times for differently long periods), so no quantitative population assignment is possible. The times suggest a possible fast exchange on the NMR-timescale.

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S66: Time resolved distance between atoms on the NTPA (N/O) and the iminium Hbinding hydrogen atom

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Potentials of mean force (PMFs) from umbrella sampling along the NTPA N⁻ E-iminium H⁺ distance suggests the "NTPA oxygen-based" H-bond as the preferred position

Figure S68 and *Figure S67* show the change in free energy for the process of umbrella pulling of the iminium H⁺ towards the NTPA N⁻ starting from the oxygen-based H-bond situation at around 0.38 nm.

It becomes clear that a second minimum exists closer towards the NTPA N⁻. However, this is not well sampled in the short 180K simulation and long times (μ s) are needed to assume convergence for the 300K simulations.

While the actual value of the difference between the most stable (O centered) and the second minimum (between O and N⁻, closer to N⁻) will not be exact due to the assumption for the NTPA group in the forcefield, a qualitative agreement can be expected: that means with the thermal energy at 180K in the NMR the global minimum should be mainly populated, which supports the experimental results.

Umbrella potential

Figure S67: The 300K PMF shows a deeper minimum in the vicinity of the N^{-} than the 180K simulation. PMFs of the corresponding sub-trajectories reveal that this is probably due to

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

undersampling of the 180K PMF, and also occurs if only brief sub-trajectories are taken into account. If sufficiently long simulation times are taken into account the estimate of the PMF does (red, blue and dotted black curve) not change significantly.

^a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S68: The PMFs for process of pulling the iminium H^+ towards the NTPA N^- starting from the "oxygen-bound" H-bond situation (minimum around 0.38nm), reveals a second possible minimum for the simulation at 300K (or plateau in the 180K control simulation, which was not fully converged but does not include the many possible rotations of the 300K simulation). The minimum closer to N^- (at around 0.2-0.3 nm) is less favored, suggesting the previously found structure with an oxygen based H-bond is prevalent in the system.

a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Figure S69: Overlay of 20000 subsequent MD-snapshots at 180K of the iminium methoxy oxygen (red points) relative to its position of the NTPA molecule (first frame shown: frames are rotated+translated to fit the NTPA molecule). The iminium's position is not changing much during the simulation windows.

a. Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S70: Overlay of the first 200000 subsequent MD-snapshots at 300K of the iminium methoxy oxygen (red points) relative to its position of the NTPA molecule (first frame shown: frames are rotated+translated to fit the NTPA molecule). The iminium's position is clearly changing during the simulation windows: The deepening of the second minimum in the PMFs at around 0.2-0.3 nm is clearly connected to this process.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Forcefield parameters used for the MD-simulations

NTPA-anion

[moleculetype]					
;name	nrexcl				
NTP	3				

[atoms]

1	p5	1	NTP	Р	1	1.1271450579 30.	97000
2	0	1	NTP	0	2 -	0.6978260556 16	00000
3	ne	1	NTP	Ν	3	-0.7417259377 14	.01000
4	os	1	NTP	01	4	-0.4652712854 1	5.00000
5	os	1	NTP	02	5	-0.3038336509 1	5.00000
6	ср	1	NTP	С	6	-0.2713862117 12	.01000
7	ca	1	NTP	C1	7	0.3851728678 12	01000
8	ср	1	NTP	C2	8	-0.1209486910 12	2.01000
9	ca	1	NTP	C3	9	-0.2692929487 12	2.01000
10	ca	1	NTP	C4	10	0.0844331351 1	2.01000
11	ca	1	NTP	C5	11	-0.2256462747	12.01000
12	ca	1	NTP	C6	12	-0.1345093487	12.01000
13	ca	1	NTP	C7	13	-0.1264692488	12.01000
14	ca	1	NTP	C8	14	-0.3047518097	12.01000
15	ca	1	NTP	C9	15	0.3681113917 1	2.01000
16	ср	1	NTP	C10) 16	0.0214851165	12.01000
17	ca	1	NTP	C11	. 17	0.1536764988	12.01000
18	ср	1	NTP	C12	2 18	-0.0531660126	12.01000
19	са	1	NTP	C13	8 19	-0.3569141602	12.01000
20	са	1	NTP	C14	20	0.2948932857	12.01000

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

21	ca	1 NTP C15 21 -0.3024262197 12.01000
22	са	1 NTP C16 22 -0.0778468635 12.01000
23	са	1 NTP C17 23 -0.2249180615 12.01000
24	са	1 NTP C18 24 -0.0360539262 12.01000
25	са	1 NTP C19 25 -0.0530868561 12.01000
26	ср	1 NTP C20 26 0.2842854286 12.01000
27	ср	1 NTP C21 27 0.2988807348 12.01000
28	sy	1 NTP S 28 0.9467154126 32.06000
29	0	1 NTP 03 29 -0.5921943706 16.00000
30	0	1 NTP 04 30 -0.5688279615 16.00000
31	c3	1 NTP C22 31 0.4100038100 12.01000
32	f	1 NTP F 32 -0.1610135216 19.00000
33	f	1 NTP F1 33 -0.1610135216 19.00000
34	f	1 NTP F2 34 -0.1610135216 19.00000
35	са	1 NTP C23 35 -0.2815115983 12.01000
36	са	1 NTP C24 36 0.0263520303 12.01000
37	са	1 NTP C25 37 -0.2124409418 12.01000
38	са	1 NTP C26 38 -0.0016129669 12.01000
39	са	1 NTP C27 39 -0.2445550345 12.01000
40	са	1 NTP C28 40 -0.2651172589 12.01000
41	са	1 NTP C29 41 -0.0011313726 12.01000
42	са	1 NTP C30 42 -0.1852256654 12.01000
43	са	1 NTP C31 43 0.0381590648 12.01000
44	са	1 NTP C32 44 -0.2593918241 12.01000
45	c3	1 NTP C33 45 0.6181732748 12.01000
46	f	1 NTP F3 46 -0.2206155246 19.00000
47	f	1 NTP F4 47 -0.2206155246 19.00000
48	f	1 NTP F5 48 -0.2206155246 19.00000
49	c3	1 NTP C34 49 0.6282597501 12.01000
50	f	1 NTP F6 50 -0.2245655745 19.00000

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

51	f	1	NTP	F7	51	-0.22456557	45	19.00000
52	f	1	NTP	F8	52	-0.22456557	45	19.00000
53	c3	1	NTP	C35	53	0.5493890	203	12.01000
54	f	1	NTP	F9	54	-0.20355942	84	19.00000
55	f	1	NTP	F10	55	-0.20355942	284	19.00000
56	f	1	NTP	F11	56	-0.20355942	284	19.00000
57	c3	1	NTP	C36	57	0.6217899	328	12.01000
58	f	1	NTP	F12	58	-0.2224720	550	19.00000
59	f	1	NTP	F13	59	-0.2224720	550	19.00000
60	f	1	NTP	F14	60	-0.2224720	550	19.00000
61	ha	1	NTP	Н	61	0.18118001	75	1.00800
62	ha	1	NTP	H1	62	0.1558360	623	1.00800
63	ha	1	NTP	H2	63	0.1411753	796	1.00800
64	ha	1	NTP	H3	64	0.14326794	458	1.00800
65	ha	1	NTP	H4	65	0.1691164	371	1.00800
66	ha	1	NTP	Н5	66	0.1847317	680	1.00800
67	ha	1	NTP	H6	67	0.1681273	015	1.00800
68	ha	1	NTP	H7	68	0.13348082	251	1.00800
69	ha	1	NTP	H8	69	0.1618543	396	1.00800
70	ha	1	NTP	Н9	70	0.0691988	656	1.00800
71	ha	1	NTP	H1() 71	0.1740367	411	1.00800
72	ha	1	NTP	H11	l 72	0.1770541	.639	1.00800
73	ha	1	NTP	H12	2 73	0.2260367	016	1.00800
74	ha	1	NTP	H13	3 74	0.1835987	238	1.00800
75	ha	1	NTP	H14	ł 75	0.1683930	151	1.00800
76	ha	1	NTP	H15	5 76	0.1807466	697	1.00800
[bonds]								
; ai	aj f	fun	ct r]	k			
1	2	1	1.486	6e-0	1 4	.0125e+05 ;	P -	0
1	3	1	1.605	0e-0	1 3	.6685e+05 ;	P -	N

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

1	4	1	1.6147e-01	2.7665e+05 ;	P - 01
1	5	1	1.6147e-01	2.7665e+05 ;	P - 02
3	28	1	1.6723e-01	2.6535e+05;	N - S
4	7	1	1.3696e-01	3.1514e+05 ;	01 - C1
5	17	1	1.3696e-01	3.1514e+05;	02 - C11
6	7	1	1.4058e-01	3.7673e+05 ;	C - C1
6	15	1	1.4058e-01	3.7673e+05;	C - C9
6	16	1	1.4854e-01	2.9405e+05;	C - C10
7	8	1	1.4058e-01	3.7673e+05;	C1 - C2
8	9	1	1.4058e-01	3.7673e+05;	C2 - C3
8	27	1	1.4854e-01	2.9405e+05;	C2 - C21
9	10	1	1.3984e-01	3.8585e+05;	C3 - C4
9	61	1	1.0860e-01	2.8937e+05;	СЗ - Н
10	11	1	1.3984e-01	3.8585e+05;	C4 - C5
10	15	1	1.3984e-01	3.8585e+05;	C4 - C9
11	12	1	1.3984e-01	3.8585e+05;	C5 - C6
11	62	1	1.0860e-01	2.8937e+05;	C5 - H1
12	13	1	1.3984e-01	3.8585e+05;	C6 - C7
12	63	1	1.0860e-01	2.8937e+05;	C6 - H2
13	14	1	1.3984e-01	3.8585e+05;	C7 - C8
13	64	1	1.0860e-01	2.8937e+05;	C7 - H3
14	15	1	1.3984e-01	3.8585e+05 ;	C8 - C9
14	65	1	1.0860e-01	2.8937e+05;	C8 - H4
16	17	1	1.4058e-01	3.7673e+05;	C10 - C11
16	25	1	1.4058e-01	3.7673e+05;	C10 - C19
17	18	1	1.4058e-01	3.7673e+05;	C11 - C12
18	19	1	1.4058e-01	3.7673e+05;	C12 - C13
18	26	1	1.4854e-01	2.9405e+05;	C12 - C20
19	20	1	1.3984e-01	3.8585e+05;	C13 - C14
19	66	1	1.0860e-01	2.8937e+05;	C13 - H5

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany
20	21	1	1.3984e-01	3.8585e+05 ;	C14 - C15
20	25	1	1.3984e-01	3.8585e+05;	C14 - C19
21	22	1	1.3984e-01	3.8585e+05;	C15 - C16
21	67	1	1.0860e-01	2.8937e+05;	С15 - Н6
22	23	1	1.3984e-01	3.8585e+05;	C16 - C17
22	68	1	1.0860e-01	2.8937e+05;	С16 - Н7
23	24	1	1.3984e-01	3.8585e+05;	C17 - C18
23	69	1	1.0860e-01	2.8937e+05;	С17 - Н8
24	25	1	1.3984e-01	3.8585e+05;	C18 - C19
24	70	1	1.0860e-01	2.8937e+05;	С18 - Н9
26	40	1	1.4058e-01	3.7673e+05;	C20 - C28
26	44	1	1.4058e-01	3.7673e+05;	C20 - C32
27	35	1	1.4058e-01	3.7673e+05;	C21 - C23
27	39	1	1.4058e-01	3.7673e+05;	C21 - C27
28	29	1	1.4660e-01	4.1254e+05;	S - 03
28	30	1	1.4660e-01	4.1254e+05;	S - 04
28	31	1	1.8087e-01	1.9481e+05 ;	S - C22
31	32	1	1.3497e-01	2.9865e+05;	C22 - F
31	33	1	1.3497e-01	2.9865e+05;	C22 - F1
31 31	33 34	1 1	1.3497e-01 1.3497e-01	2.9865e+05; 2.9865e+05;	C22 - F1 C22 - F2
31 31 35	33 34 36	1 1 1	1.3497e-01 1.3497e-01 1.3984e-01	2.9865e+05; 2.9865e+05; 3.8585e+05;	C22 - F1 C22 - F2 C23 - C24
31 31 35 35	 33 34 36 71 	1 1 1 1	1.3497e-01 1.3497e-01 1.3984e-01 1.0860e-01	2.9865e+05; 2.9865e+05; 3.8585e+05; 2.8937e+05;	C22 - F1 C22 - F2 C23 - C24 C23 - H10
31 31 35 35 36	 33 34 36 71 37 	1 1 1 1 1	1.3497e-01 1.3497e-01 1.3984e-01 1.0860e-01 1.3984e-01	2.9865e+05; 2.9865e+05; 3.8585e+05; 2.8937e+05; 3.8585e+05;	C22 - F1 C22 - F2 C23 - C24 C23 - H10 C24 - C25
 31 35 35 36 36 	 33 34 36 71 37 49 	1 1 1 1 1 1	1.3497e-01 1.3497e-01 1.3984e-01 1.0860e-01 1.3984e-01 1.5156e-01	2.9865e+05; 2.9865e+05; 3.8585e+05; 2.8937e+05; 3.8585e+05; 2.6861e+05;	C22 - F1 C22 - F2 C23 - C24 C23 - H10 C24 - C25 C24 - C34
 31 35 35 36 36 37 	 33 34 36 71 37 49 38 	1 1 1 1 1 1 1 1	1.3497e-01 1.3984e-01 1.0860e-01 1.3984e-01 1.5156e-01 1.3984e-01	2.9865e+05; 2.9865e+05; 3.8585e+05; 2.8937e+05; 3.8585e+05; 2.6861e+05;	C22 - F1 C22 - F2 C23 - C24 C23 - H10 C24 - C25 C24 - C34
 31 35 35 36 36 37 37 	 33 34 36 71 37 49 38 72 	1 1 1 1 1 1 1 1 1 1	1.3497e-01 1.3984e-01 1.0860e-01 1.3984e-01 1.5156e-01 1.3984e-01 1.0860e-01	2.9865e+05; 2.9865e+05; 3.8585e+05; 2.8937e+05; 2.6861e+05; 3.8585e+05; 2.8937e+05;	C22 - F1 C22 - F2 C23 - C24 C23 - H10 C24 - C25 C24 - C34 C25 - C26 C25 - H11
 31 35 35 36 36 37 37 38 	 33 34 36 71 37 49 38 72 39 	1 1 1 1 1 1 1 1 1 1 1	1.3497e-01 1.3984e-01 1.0860e-01 1.3984e-01 1.5156e-01 1.3984e-01 1.0860e-01 1.3984e-01	2.9865e+05; 2.9865e+05; 3.8585e+05; 2.8937e+05; 2.6861e+05; 3.8585e+05; 2.8937e+05; 3.8585e+05;	C22 - F1 C22 - F2 C23 - C24 C23 - H10 C24 - C25 C24 - C34 C25 - C26 C25 - H11 C26 - C27
 31 35 35 36 36 37 37 38 38 	 33 34 36 71 37 49 38 72 39 45 	1 1 1 1 1 1 1 1 1 1 1 1	1.3497e-01 1.3984e-01 1.0860e-01 1.3984e-01 1.5156e-01 1.3984e-01 1.3984e-01 1.3984e-01	2.9865e+05; 2.9865e+05; 3.8585e+05; 2.8937e+05; 3.8585e+05; 3.8585e+05; 2.8937e+05; 3.8585e+05; 2.6861e+05;	C22 - F1 C22 - F2 C23 - C24 C23 - H10 C24 - C25 C24 - C34 C25 - C26 C25 - H11 C26 - C27 C26 - C33
 31 35 35 36 36 37 37 38 38 39 	 33 34 36 71 37 49 38 72 39 45 73 	1 1 1 1 1 1 1 1 1 1 1 1 1	1.3497e-01 1.3984e-01 1.0860e-01 1.3984e-01 1.5156e-01 1.3984e-01 1.3984e-01 1.3984e-01 1.5156e-01 1.5156e-01	2.9865e+05; 2.9865e+05; 3.8585e+05; 2.8937e+05; 2.6861e+05; 3.8585e+05; 2.8937e+05; 3.8585e+05; 2.6861e+05;	C22 - F1 C22 - F2 C23 - C24 C23 - H10 C24 - C25 C24 - C34 C25 - C26 C25 - H11 C26 - C33 C27 - H12

40	74	1	1.0860e-01	2.8937e+05;	C28 - H13
41	42	1	1.3984e-01	3.8585e+05;	C29 - C30
41	57	1	1.5156e-01	2.6861e+05;	C29 - C36
42	43	1	1.3984e-01	3.8585e+05;	C30 - C31
42	75	1	1.0860e-01	2.8937e+05;	C30 - H14
43	44	1	1.3984e-01	3.8585e+05;	C31 - C32
43	53	1	1.5156e-01	2.6861e+05;	C31 - C35
44	76	1	1.0860e-01	2.8937e+05;	C32 - H15
45	46	1	1.3497e-01	2.9865e+05;	C33 - F3
45	47	1	1.3497e-01	2.9865e+05;	C33 - F4
45	48	1	1.3497e-01	2.9865e+05;	C33 - F5
49	50	1	1.3497e-01	2.9865e+05;	C34 - F6
49	51	1	1.3497e-01	2.9865e+05;	C34 - F7
49	52	1	1.3497e-01	2.9865e+05;	C34 - F8
53	54	1	1.3497e-01	2.9865e+05;	C35 - F9
53	55	1	1.3497e-01	2.9865e+05;	C35 - F10
53	56	1	1.3497e-01	2.9865e+05;	C35 - F11
57	58	1	1.3497e-01	2.9865e+05;	C36 - F12
57	59	1	1.3497e-01	2.9865e+05;	C36 - F13
57	60	1	1.3497e-01	2.9865e+05;	C36 - F14

[pairs]

;	ai	aj	funct	
	1	6	1;	P - C
	1	8	1;	P - C2
	1	16	1;	P - C10
	1	18	1;	P - C12
	1	29	1;	P - 03
	1	30	1;	P - 04
	1	31	1;	P - C22

2	7	1;	0 - C1
2	17	1;	0 - C11
2	28	1;	0 - S
3	7	1;	N - C1
3	17	1;	N - C11
3	32	1;	N - F
3	33	1;	N - F1
3	34	1;	N - F2
4	9	1;	01 - C3
4	15	1;	01 - C9
4	16	1;	01 - C10
4	17	1;	01 - C11
4	27	1;	01 - C21
4	28	1;	01 - S
5	6	1;	02 - C
5	7	1;	02 - C1
5	19	1;	02 - C13
5	~-		
	25	1;	02 - C19
5	25 26	1; 1;	02 - C19 02 - C20
5 5	25 26 28	1; 1; 1;	02 - C19 02 - C20 02 - S
5 5 6	25 26 28 9	1; 1; 1; 1;	02 - C19 02 - C20 02 - S C - C3
5 5 6 6	25 26 28 9 11	1; 1; 1; 1; 1;	02 - C19 02 - C20 02 - S C - C3 C - C5
5 5 6 6	 25 26 28 9 11 13 	1; 1; 1; 1; 1; 1;	02 - C19 02 - C20 02 - S C - C3 C - C5 C - C7
5 6 6 6	 25 26 28 9 11 13 18 	1; 1; 1; 1; 1; 1; 1; 1;	02 - C19 02 - C20 02 - S C - C3 C - C5 C - C7 C - C12
5 5 6 6 6 6	 25 26 28 9 11 13 18 20 	1; 1; 1; 1; 1; 1; 1; 1; 1;	02 - C19 02 - C20 02 - S C - C3 C - C5 C - C7 C - C12 C - C14
5 5 6 6 6 6 6 6	 25 26 28 9 11 13 18 20 24 	1; 1; 1; 1; 1; 1; 1; 1; 1; 1;	02 - C19 02 - C20 02 - S C - C3 C - C5 C - C7 C - C12 C - C14 C - C18
5 5 6 6 6 6 6 6 6	 25 26 28 9 11 13 18 20 24 27 	1; 1; 1; 1; 1; 1; 1; 1; 1; 1;	02 - C19 02 - C20 02 - S C - C3 C - C5 C - C7 C - C12 C - C14 C - C18 C - C21
5 5 6 6 6 6 6 6 6 6	 25 26 28 9 11 13 18 20 24 27 65 	1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;	02 - C19 02 - C20 02 - S C - C3 C - C5 C - C7 C - C12 C - C14 C - C18 C - C21 C - H4
5 6 6 6 6 6 6 6 7	 25 26 28 9 11 13 18 20 24 27 65 10 	1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;	02 - C19 02 - C20 02 - S C - C3 C - C5 C - C7 C - C12 C - C14 C - C18 C - C21 C - H4 C1 - C4
5 6 6 6 6 6 6 6 7 7	 25 26 28 9 11 13 18 20 24 27 65 10 14 	1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;	02 - C19 02 - C20 02 - S C - C3 C - C5 C - C7 C - C12 C - C14 C - C18 C - C21 C - H4 C1 - C4 C1 - C8

7	17	1;	C1 - C11
7	25	1;	C1 - C19
7	35	1;	C1 - C23
7	39	1;	C1 - C27
7	61	1;	C1 - H
8	11	1;	C2 - C5
8	15	1;	C2 - C9
8	16	1;	C2 - C10
8	36	1;	C2 - C24
8	38	1;	C2 - C26
8	71	1;	C2 - H10
8	73	1;	C2 - H12
9	12	1;	C3 - C6
9	14	1;	C3 - C8
9	35	1;	C3 - C23
9	39	1;	C3 - C27
9	62	1;	C3 - H1
10	13	1;	C4 - C7
10	16	1;	C4 - C10
10	27	1;	C4 - C21
10	63	1;	C4 - H2
10	65	1;	C4 - H4
11	14	1;	C5 - C8
11	61	1;	С5 - Н
11	64	1;	С5 - НЗ
12	15	1;	C6 - C9
12	65	1;	C6 - H4
13	62	1;	C7 - H1
14	16	1;	C8 - C10
14	63	1;	C8 - H2

15	17	1;	C9 - C11
15	25	1;	C9 - C19
15	61	1;	С9 - Н
15	62	1;	C9 - H1
15	64	1;	С9 - НЗ
16	19	1;	C10 - C13
16	21	1;	C10 - C15
16	23	1;	C10 - C17
16	26	1;	C10 - C20
16	70	1;	С10 - Н9
17	20	1;	C11 - C14
17	24	1;	C11 - C18
17	40	1;	C11 - C28
17	44	1;	C11 - C32
17	66	1;	С11 - Н5
18	21	1;	C12 - C15
18	25	1;	C12 - C19
18	41	1;	C12 - C29
18	43	1;	C12 - C31
18	74	1;	C12 - H13
18	76	1;	C12 - H15
19	22	1;	C13 - C16
19	24	1;	C13 - C18
19	40	1;	C13 - C28
19	44	1;	C13 - C32
19	67	1;	С13 - Н6
20	23	1;	C14 - C17
20	26	1;	C14 - C20
20	68	1;	C14 - H7
20	70	1;	С14 - Н9

24	1;	C15 - C18
66	1;	C15 - H5
69	1;	С15 - Н8
25	1;	C16 - C19
70	1;	С16 - Н9
67	1;	С17 - Н6
68	1;	C18 - H7
66	1;	С19 - Н5
67	1;	С19 - Н6
69	1;	С19 - Н8
42	1;	C20 - C30
53	1;	C20 - C35
57	1;	C20 - C36
66	1;	C20 - H5
37	1;	C21 - C25
45	1;	C21 - C33
49	1;	C21 - C34
61	1;	С21 - Н
32	1;	03 - F
33	1;	03 - F1
34	1;	03 - F2
32	1;	04 - F
33	1;	04 - F1
34	1;	04 - F2
38	1;	C23 - C26
50	1;	C23 - F6
51	1;	C23 - F7
52	1;	C23 - F8
72	1;	C23 - H11
73	1;	C23 - H12
	24 66 69 25 70 67 68 66 67 69 42 53 57 66 37 45 49 61 32 33 34 32 33 34 32 33 34 32 33 57 66 37 45 49 61 32 33 34 32 33 57 23 34 32 34 32 33 32 33 34 32 33 34 32 33 34 32 33 32 33 34 32 33 32 33 32 33 32 33 32 33 32 33 32 33 32 33 32 33 32 33 32 33 32 33 32 33 32 33 33	241;661;691;251;701;671;681;671;691;421;531;571;661;371;451;371;311;321;331;341;331;341;351;501;511;521;721;731;

36	39	1;	C24 - C27
36	45	1;	C24 - C33
37	46	1;	C25 - F3
37	47	1;	C25 - F4
37	48	1;	C25 - F5
37	50	1;	C25 - F6
37	51	1;	C25 - F7
37	52	1;	C25 - F8
37	71	1;	C25 - H10
37	73	1;	C25 - H12
38	49	1;	C26 - C34
39	46	1;	C27 - F3
39	47	1;	C27 - F4
39	48	1;	C27 - F5
39	71	1;	C27 - H10
39	72	1;	C27 - H11
40	43	1;	C28 - C31
40	58	1;	C28 - F12
40	59	1;	C28 - F13
40	60	1;	C28 - F14
40	75	1;	C28 - H14
40	76	1;	C28 - H15
41	44	1;	C29 - C32
41	53	1;	C29 - C35
42	54	1;	C30 - F9
42	55	1;	C30 - F10
42	56	1;	C30 - F11
42	58	1;	C30 - F12
42	59	1;	C30 - F13
42	60	1;	C30 - F14

42	74	1;	С30 - Н13
42	76	1;	C30 - H15
43	57	1;	С31 - С36
44	54	1;	C32 - F9
44	55	1;	C32 - F10
44	56	1;	C32 - F11
44	74	1;	С32 - Н13
44	75	1;	C32 - H14
45	72	1;	С33 - Н11
45	73	1;	С33 - Н12
49	71	1;	C34 - H10
49	72	1;	C34 - H11
53	75	1;	C35 - H14
53	76	1;	С35 - Н15
57	74	1;	С36 - Н13
57	75	1;	C36 - H14
62	63	1;	H1 - H2
63	64	1;	H2 - H3
64	65	1;	H3 - H4
67	68	1;	H6 - H7
68	69	1;	H7 - H8
69	70	1;	H8 - H9

[angles]

ak funct theta cth ; ai aj 1 1.3184e+02 6.5689e+02; P-N -S 3 28 1 $1 \quad 1.2318e{+}02 \quad 6.5019e{+}02 \; ; \quad P - 01 \quad - C1$ 1 4 7 1 1.2318e+02 6.5019e+02; P-02 - C11 1 5 17 1 1.1353e+02 3.6987e+02; 2 1 3 0 - P - N 2 1 1.1546e+02 3.6736e+02; 1 4 0 - P - 01

2	1	5	1 1	.1546e+02	3.6736e+02 ;	0 - P - 02
3	1	4	1 1	.0240e+02	3.7489e+02 ;	N-P -01
3	1	5	1 1	.0240e+02	3.7489e+02 ;	N - P - O2
3	28	29	1	1.0965e+02	5.8827e+02;	N - S - 03
3	28	30	1	1.0965e+02	5.8827e+02;	N - S - O4
3	28	31	1	1.0219e+02	5.3639e+02;	N - S - C22
4	1	5	1 1	.0184e+02	3.7656e+02 ;	01 - P - 02
4	7	6	1 1	.1691e+02	5.8660e+02 ;	01-C1 -C
4	7	8	1 1	.1691e+02	5.8660e+02 ;	01-C1 -C2
5	17	16	1	1.1691e+02	5.8660e+02;	02 - C11 - C10
5	17	18	1	1.1691e+02	5.8660e+02;	02 - C11 - C12
6	7	8	1 1	.1152e+02	5.7572e+02 ;	C - C1 - C2
6	15	10	1	1.2069e+02	5.5480e+02;	C - C9 - C4
6	15	14	1	1.2069e+02	5.5480e+02;	C - C9 - C8
6	16	17	1	1.2111e+02	5.3555e+02;	C-C10 -C11
6	16	25	1	1.2111e+02	5.3555e+02;	C-C10 -C19
7	6	15	1	1.1838e+02	5.5815e+02;	C1 - C - C9
7	6	16	1	1.2111e+02	5.3555e+02;	C1 - C - C10
7	8	9	1 1	.1838e+02	5.5815e+02 ;	C1 - C2 - C3
7	8	27	1	1.2111e+02	5.3555e+02;	C1 - C2 - C21
8	9	10	1	1.2069e+02	5.5480e+02;	C2 - C3 - C4
8	9	61	1	1.1986e+02	4.0166e+02;	С2 - С3 - Н
8	27	35	1	1.2111e+02	5.3555e+02;	C2 - C21 - C23
8	27	39	1	1.2111e+02	5.3555e+02;	C2 - C21 - C27
9	8	27	1	1.2111e+02	5.3555e+02;	C3 - C2 - C21
9	10	11	1	1.2002e+02	5.5731e+02;	C3 - C4 - C5
9	10	15	1	1.2002e+02	5.5731e+02;	C3 - C4 - C9
10	9	61	1	1.1988e+02	4.0334e+02;	C4 - C3 - H
10	11	12	1	1.2002e+02	2 5.5731e+02;	; C4 - C5 - C6
10	11	62	1	1.1988e+02	2 4.0334e+02;	C4 - C5 - H1

10	15	14	1	1.2002e+02	5.5731e+02;	C4 - C9	- C8
11	10	15	1	1.2002e+02	5.5731e+02;	C5 - C4	- C9
11	12	13	1	1.2002e+02	5.5731e+02;	C5 - C6	- C7
11	12	63	1	1.1988e+02	4.0334e+02;	C5 - C6	- H2
12	11	62	1	1.1988e+02	4.0334e+02;	C6 - C5	- H1
12	13	14	1	1.2002e+02	5.5731e+02;	C6 - C7	- C8
12	13	64	1	1.1988e+02	4.0334e+02;	C6 - C7	- H3
13	12	63	1	1.1988e+02	4.0334e+02;	C7 - C6	- H2
13	14	15	1	1.2002e+02	5.5731e+02;	С7 - С8	- C9
13	14	65	1	1.1988e+02	4.0334e+02;	С7 - С8	- H4
14	13	64	1	1.1988e+02	4.0334e+02;	C8 - C7	- H3
15	6	16	1	1.2111e+02	5.3555e+02;	C9 - C - 0	C10
15	14	65	1	1.1988e+02	4.0334e+02;	C9 - C8	- H4
16	17	18	1	1.1152e+02	5.7572e+02;	C10 - C11	- C12
16	25	20	1	1.2069e+02	5.5480e+02;	C10 - C19	- C14
16	25	24	1	1.2069e+02	5.5480e+02;	C10 - C19	- C18
17	16	25	1	1.1838e+02	5.5815e+02;	C11 - C10	- C19
17	18	19	1	1.1838e+02	5.5815e+02;	C11 - C12	- C13
17	18	26	1	1.2111e+02	5.3555e+02;	C11 - C12	- C20
18	19	20	1	1.2069e+02	5.5480e+02;	C12 - C13	- C14
18	19	66	1	1.1986e+02	4.0166e+02;	C12 - C13	- H5
18	26	40	1	1.2111e+02	5.3555e+02;	C12 - C20	- C28
18	26	44	1	1.2111e+02	5.3555e+02;	C12 - C20	- C32
19	18	26	1	1.2111e+02	5.3555e+02;	C13 - C12	- C20
19	20	21	1	1.2002e+02	5.5731e+02;	C13 - C14	- C15
19	20	25	1	1.2002e+02	5.5731e+02;	C13 - C14	- C19
20	19	66	1	1.1988e+02	4.0334e+02;	C14 - C13	- H5
20	21	22	1	1.2002e+02	5.5731e+02;	C14 - C15	- C16
20	21	67	1	1.1988e+02	4.0334e+02;	C14 - C15	- H6
20	25	24	1	1.2002e+02	5.5731e+02;	C14 - C19	- C18

21	20	25	1	1.2002e+02	5.5731e+02;	C15-C14 -C19
21	22	23	1	1.2002e+02	5.5731e+02;	C15-C16 -C17
21	22	68	1	1.1988e+02	4.0334e+02;	C15 - C16 - H7
22	21	67	1	1.1988e+02	4.0334e+02;	С16-С15 -Н6
22	23	24	1	1.2002e+02	5.5731e+02;	C16-C17 -C18
22	23	69	1	1.1988e+02	4.0334e+02;	С16-С17 - Н8
23	22	68	1	1.1988e+02	4.0334e+02;	С17-С16 - Н7
23	24	25	1	1.2002e+02	5.5731e+02;	C17-C18 -C19
23	24	70	1	1.1988e+02	4.0334e+02;	С17-С18 - Н9
24	23	69	1	1.1988e+02	4.0334e+02;	С18-С17 - Н8
25	24	70	1	1.1988e+02	4.0334e+02;	С19-С18 - Н9
26	40	41	1	1.2069e+02	5.5480e+02;	C20 - C28 - C29
26	40	74	1	1.1986e+02	4.0166e+02;	C20-C28 -H13
26	44	43	1	1.2069e+02	5.5480e+02;	C20-C32 -C31
26	44	76	1	1.1986e+02	4.0166e+02;	C20-C32 -H15
27	35	36	1	1.2069e+02	5.5480e+02;	C21 - C23 - C24
27	35	71	1	1.1986e+02	4.0166e+02;	C21-C23 -H10
27	39	38	1	1.2069e+02	5.5480e+02;	C21-C27 -C26
27	39	73	1	1.1986e+02	4.0166e+02;	C21-C27 -H12
28	31	32	1	1.0968e+02	5.2802e+02;	S - C22 - F
28	31	33	1	1.0968e+02	5.2802e+02;	S - C22 - F1
28	31	34	1	1.0968e+02	5.2802e+02;	S - C22 - F2
29	28	30	1	1.2141e+02	6.0668e+02;	03 - S - 04
29	28	31	1	1.0785e+02	5.4727e+02;	03 - S - C22
30	28	31	1	1.0785e+02	5.4727e+02;	04 - S - C22
32	31	33	1	1.0736e+02	5.9329e+02;	F - C22 - F1
32	31	34	1	1.0736e+02	5.9329e+02;	F - C22 - F2
33	31	34	1	1.0736e+02	5.9329e+02;	F1 - C22 - F2
35	27	39	1	1.1838e+02	5.5815e+02;	C23 - C21 - C27
35	36	37	1	1.2002e+02	5.5731e+02;	C23 - C24 - C25

35	36	49	1	1.2077e+02	5.3137e+02;	C23 - C24	- C34
36	35	71	1	1.1988e+02	4.0334e+02;	C24 - C23	- H10
36	37	38	1	1.2002e+02	5.5731e+02;	C24 - C25	- C26
36	37	72	1	1.1988e+02	4.0334e+02;	C24 - C25	- H11
36	49	50	1	1.1177e+02	5.5229e+02;	C24 - C34	- F6
36	49	51	1	1.1177e+02	5.5229e+02;	C24 - C34	- F7
36	49	52	1	1.1177e+02	5.5229e+02;	C24 - C34	- F8
37	36	49	1	1.2077e+02	5.3137e+02;	C25 - C24	- C34
37	38	39	1	1.2002e+02	5.5731e+02;	C25 - C26	- C27
37	38	45	1	1.2077e+02	5.3137e+02;	C25 - C26	- C33
38	37	72	1	1.1988e+02	4.0334e+02;	C26 - C25	- H11
38	39	73	1	1.1988e+02	4.0334e+02;	C26 - C27	- H12
38	45	46	1	1.1177e+02	5.5229e+02;	C26 - C33	- F3
38	45	47	1	1.1177e+02	5.5229e+02;	C26 - C33	- F4
38	45	48	1	1.1177e+02	5.5229e+02;	C26 - C33	- F5
39	38	45	1	1.2077e+02	5.3137e+02;	C27 - C26	- C33
40	26	44	1	1.1838e+02	5.5815e+02;	C28 - C20	- C32
40	41	42	1	1.2002e+02	5.5731e+02;	C28 - C29	- C30
40	41	57	1	1.2077e+02	5.3137e+02;	C28 - C29	- C36
41	40	74	1	1.1988e+02	4.0334e+02;	C29 - C28	- H13
41	42	43	1	1.2002e+02	5.5731e+02;	C29 - C30	- C31
41	42	75	1	1.1988e+02	4.0334e+02;	C29 - C30	- H14
41	57	58	1	1.1177e+02	5.5229e+02;	C29 - C36	- F12
41	57	59	1	1.1177e+02	5.5229e+02;	C29 - C36	- F13
41	57	60	1	1.1177e+02	5.5229e+02;	C29 - C36	- F14
42	41	57	1	1.2077e+02	5.3137e+02;	C30 - C29	- C36
42	43	44	1	1.2002e+02	5.5731e+02;	C30 - C31	- C32
42	43	53	1	1.2077e+02	5.3137e+02;	C30 - C31	- C35
43	42	75	1	1.1988e+02	4.0334e+02;	C31 - C30	- H14
43	44	76	1	1.1988e+02	4.0334e+02;	C31 - C32	- H15

43	53	54	1	1.1177e+02	5.5229e+02;	C31 - C35 - F9	
43	53	55	1	1.1177e+02	5.5229e+02;	C31 - C35 - F10	
43	53	56	1	1.1177e+02	5.5229e+02;	C31 - C35 - F11	
44	43	53	1	1.2077e+02	5.3137e+02;	C32 - C31 - C35	
46	45	47	1	1.0736e+02	5.9329e+02;	F3 - C33 - F4	
46	45	48	1	1.0736e+02	5.9329e+02;	F3 - C33 - F5	
47	45	48	1	1.0736e+02	5.9329e+02;	F4 - C33 - F5	
50	49	51	1	1.0736e+02	5.9329e+02;	F6 - C34 - F7	
50	49	52	1	1.0736e+02	5.9329e+02;	F6 - C34 - F8	
51	49	52	1	1.0736e+02	5.9329e+02;	F7 - C34 - F8	
54	53	55	1	1.0736e+02	5.9329e+02;	F9 - C35 - F10	
54	53	56	1	1.0736e+02	5.9329e+02;	F9 - C35 - F11	
55	53	56	1	1.0736e+02	5.9329e+02;	F10 - C35 - F11	
58	57	59	1	1.0736e+02	5.9329e+02;	F12 - C36 - F13	
58	57	60	1	1.0736e+02	5.9329e+02;	F12 - C36 - F14	
59	57	60	1	1.0736e+02	5.9329e+02;	F13 - C36 - F14	

[dihedrals]; propers

; for gromacs 4	.5 or higher	, using funct 9

;	i	j	k l	func	c phase kd pn	
	1	3	28	29	9 180.00 2.09200 3; P- N- S- O3	
	1	3	28	29	9 180.00 28.45120 1; P- N- S- O3	
	1	3	28	30	9 180.00 2.09200 3; P- N- S- O4	
	1	3	28	30	9 180.00 28.45120 1; P- N- S- O4	
	1	3	28	31	9 180.00 2.09200 3; P- N- S- C22	
	1	3	28	31	9 180.00 28.45120 1; P- N- S- C22	
	1	4	7	6 9	9 180.00 3.76560 2; P- O1- C1- C	
	1	4	7	8 9	9 180.00 3.76560 2; P- O1- C1- C2	
	1	5	17	16	9 180.00 3.76560 2; P- 02- C11- C10	
	1	5	17	18	9 180.00 3.76560 2; P- 02- C11- C12	

2	1	3 28 9 180.00 4.18400 3; O- P- N- S
2	1	4 7 9 0.00 0.41840 3; O- P- O1- C1
2	1	4 7 9 180.00 3.34720 2; O- P- O1- C1
2	1	5 17 9 0.00 0.41840 3; O- P- O2- C11
2	1	5 17 9 180.00 3.34720 2; O- P- O2- C11
3	1	4 7 9 0.00 3.34720 2; N- P- 01- C1
3	1	5 17 9 0.00 3.34720 2; N- P- 02- C11
3	28	31 32 9 0.00 0.60436 3; N- S- C22- F
3	28	31 33 9 0.00 0.60436 3; N- S- C22- F1
3	28	31 34 9 0.00 0.60436 3; N- S- C22- F2
4	1	3 28 9 180.00 4.18400 3; O1- P- N- S
4	1	5 17 9 0.00 3.34720 2; 01- P- 02- C11
4	7	6 15 9 180.00 15.16700 2; O1- C1- C- C9
4	7	6 16 9 180.00 15.16700 2; O1- C1- C- C10
4	7	8 9 9 180.00 15.16700 2; O1- C1- C2- C3
4	7	8 27 9 180.00 15.16700 2; O1- C1- C2- C21
5	1	3 28 9 180.00 4.18400 3; O2- P- N- S
5	1	4 7 9 0.00 3.34720 2; O2- P- O1- C1
5	17	16 6 9 180.00 15.16700 2; O2- C11- C10- C
5	17	16 25 9 180.00 15.16700 2; O2- C11- C10- C19
5	17	18 19 9 180.00 15.16700 2; O2- C11- C12- C13
5	17	18 26 9 180.00 15.16700 2; O2- C11- C12- C20
6	7	8 9 9 180.00 15.16700 2; C- C1- C2- C3
6	7	8 27 9 180.00 15.16700 2; C- C1- C2- C21
6	15	10 9 9 180.00 15.16700 2; C- C9- C4- C3
6	15	10 11 9 180.00 15.16700 2; C- C9- C4- C5
6	15	14 13 9 180.00 15.16700 2; C- C9- C8- C7
6	15	14 65 9 180.00 15.16700 2; C- C9- C8- H4
6	16	17 18 9 180.00 15.16700 2; C- C10- C11- C12
6	16	25 20 9 180.00 15.16700 2; C- C10- C19- C14

6	16	25	24	9 180.00 15.16700 2; C- C10- C19- C18
7	6	15	10	9 180.00 15.16700 2; C1- C- C9- C4
7	6	15	14	9 180.00 15.16700 2; C1- C- C9- C8
7	6	16	17	9 180.00 4.18400 2; C1- C- C10- C11
7	6	16	25	9 180.00 4.18400 2; C1- C- C10- C19
7	8	9	10	9 180.00 15.16700 2; C1- C2- C3- C4
7	8	9	61	9 180.00 15.16700 2; C1- C2- C3- H
7	8	27	35	9 180.00 4.18400 2; C1- C2- C21- C23
7	8	27	39	9 180.00 4.18400 2; C1- C2- C21- C27
8	7	6	15	9 180.00 15.16700 2; C2- C1- C- C9
8	7	6	16	9 180.00 15.16700 2; C2- C1- C- C10
8	9	10	11	9 180.00 15.16700 2; C2- C3- C4- C5
8	9	10	15	9 180.00 15.16700 2; C2- C3- C4- C9
8	27	35	36	9 180.00 15.16700 2; C2- C21- C23- C24
8	27	35	71	9 180.00 15.16700 2; C2- C21- C23- H10
8	27	39	38	9 180.00 15.16700 2; C2- C21- C27- C26
8	27	39	73	9 180.00 15.16700 2; C2- C21- C27- H12
9	8	27	35	9 180.00 4.18400 2; C3- C2- C21- C23
9	8	27	39	9 180.00 4.18400 2; C3- C2- C21- C27
9	10	11	12	9 180.00 15.16700 2; C3- C4- C5- C6
9	10	11	62	9 180.00 15.16700 2; C3- C4- C5- H1
9	10	15	14	9 180.00 15.16700 2; C3- C4- C9- C8
10	9	8	27	9 180.00 15.16700 2; C4- C3- C2- C21
10	11	12	13	9 180.00 15.16700 2; C4- C5- C6- C7
10	11	12	63	9 180.00 15.16700 2; C4- C5- C6- H2
10	15	6	16	9 180.00 15.16700 2; C4- C9- C- C10
10	15	14	13	9 180.00 15.16700 2; C4- C9- C8- C7
10	15	14	65	9 180.00 15.16700 2; C4- C9- C8- H4
11	10	9	61	9 180.00 15.16700 2; C5- C4- C3- H
11	10	15	14	9 180.00 15.16700 2; C5- C4- C9- C8

11	12	13	14	9	180.00 15.16700 2; C5- C6- C7- C8
11	12	13	64	9	180.00 15.16700 2; C5- C6- C7- H3
12	11	10	15	9	180.00 15.16700 2; C6- C5- C4- C9
12	13	14	15	9	180.00 15.16700 2; C6- C7- C8- C9
12	13	14	65	9	180.00 15.16700 2; C6- C7- C8- H4
13	12	11	62	9	180.00 15.16700 2; C7- C6- C5- H1
14	13	12	63	9	180.00 15.16700 2; C8- C7- C6- H2
14	15	6	16	9	180.00 15.16700 2; C8- C9- C- C10
15	6	16	17	9	180.00 4.18400 2; C9- C- C10- C11
15	6	16	25	9	180.00 4.18400 2; C9- C- C10- C19
15	10	9	61	9	180.00 15.16700 2; C9- C4- C3- H
15	10	11	62	9	180.00 15.16700 2; C9- C4- C5- H1
15	14	13	64	9	180.00 15.16700 2; C9- C8- C7- H3
16	17	18	19	9	180.00 15.16700 2; C10- C11- C12- C13
16	17	18	26	9	180.00 15.16700 2; C10- C11- C12- C20
16	25	20	19	9	180.00 15.16700 2; C10- C19- C14- C13
16	25	20	21	9	180.00 15.16700 2; C10- C19- C14- C15
16	25	24	23	9	180.00 15.16700 2; C10- C19- C18- C17
16	25	24	70	9	180.00 15.16700 2; C10- C19- C18- H9
17	16	25	20	9	180.00 15.16700 2; C11- C10- C19- C14
17	16	25	24	9	180.00 15.16700 2; C11- C10- C19- C18
17	18	19	20	9	180.00 15.16700 2; C11- C12- C13- C14
17	18	19	66	9	180.00 15.16700 2; C11- C12- C13- H5
17	18	26	40	9	180.00 4.18400 2; C11- C12- C20- C28
17	18	26	44	9	180.00 4.18400 2; C11- C12- C20- C32
18	17	16	25	9	180.00 15.16700 2; C12- C11- C10- C19
18	19	20	21	9	180.00 15.16700 2; C12- C13- C14- C15
18	19	20	25	9	180.00 15.16700 2; C12- C13- C14- C19
18	26	40	41	9	180.00 15.16700 2; C12- C20- C28- C29
18	26	40	74	9	180.00 15.16700 2; C12- C20- C28- H13

18	26	44	43	9	180.00 15.16700 2; C12- C20- C32- C31
18	26	44	76	9	180.00 15.16700 2; C12- C20- C32- H15
19	18	26	40	9	180.00 4.18400 2; C13- C12- C20- C28
19	18	26	44	9	180.00 4.18400 2; C13- C12- C20- C32
19	20	21	22	9	180.00 15.16700 2; C13- C14- C15- C16
19	20	21	67	9	180.00 15.16700 2; C13- C14- C15- H6
19	20	25	24	9	180.00 15.16700 2; C13- C14- C19- C18
20	19	18	26	9	180.00 15.16700 2; C14- C13- C12- C20
20	21	22	23	9	180.00 15.16700 2; C14- C15- C16- C17
20	21	22	68	9	180.00 15.16700 2; C14- C15- C16- H7
20	25	24	23	9	180.00 15.16700 2; C14- C19- C18- C17
20	25	24	70	9	180.00 15.16700 2; C14- C19- C18- H9
21	20	19	66	9	180.00 15.16700 2; C15- C14- C13- H5
21	20	25	24	9	180.00 15.16700 2; C15- C14- C19- C18
21	22	23	24	9	180.00 15.16700 2; C15- C16- C17- C18
21	22	23	69	9	180.00 15.16700 2; C15- C16- C17- H8
22	21	20	25	9	180.00 15.16700 2; C16- C15- C14- C19
22	23	24	25	9	180.00 15.16700 2; C16- C17- C18- C19
22	23	24	70	9	180.00 15.16700 2; C16- C17- C18- H9
23	22	21	67	9	180.00 15.16700 2; C17- C16- C15- H6
24	23	22	68	9	180.00 15.16700 2; C18- C17- C16- H7
25	20	19	66	9	180.00 15.16700 2; C19- C14- C13- H5
25	20	21	67	9	180.00 15.16700 2; C19- C14- C15- H6
25	24	23	69	9	180.00 15.16700 2; C19- C18- C17- H8
26	18	19	66	9	180.00 15.16700 2; C20- C12- C13- H5
26	40	41	42	9	180.00 15.16700 2; C20- C28- C29- C30
26	40	41	57	9	180.00 15.16700 2; C20- C28- C29- C36
26	44	43	42	9	180.00 15.16700 2; C20- C32- C31- C30
26	44	43	53	9	180.00 15.16700 2; C20- C32- C31- C35
27	8	9	61	9 1	180.00 15.16700 2; C21- C2- C3- H

27	35	36	37	9	180.00 15.16700 2; C21- C23- C24- C25
27	35	36	49	9	180.00 15.16700 2; C21- C23- C24- C34
27	39	38	37	9	180.00 15.16700 2; C21- C27- C26- C25
27	39	38	45	9	180.00 15.16700 2; C21- C27- C26- C33
29	28	31	32	9	0.00 0.60436 3; O3- S- C22- F
29	28	31	33	9	0.00 0.60436 3; O3- S- C22- F1
29	28	31	34	9	0.00 0.60436 3; O3- S- C22- F2
30	28	31	32	9	0.00 0.60436 3; 04- S- C22- F
30	28	31	33	9	0.00 0.60436 3; 04- S- C22- F1
30	28	31	34	9	0.00 0.60436 3; 04- S- C22- F2
35	27	39	38	9	180.00 15.16700 2; C23- C21- C27- C26
35	27	39	73	9	180.00 15.16700 2; C23- C21- C27- H12
35	36	37	38	9	180.00 15.16700 2; C23- C24- C25- C26
35	36	37	72	9	180.00 15.16700 2; C23- C24- C25- H11
35	36	49	50	9	0.00 0.00000 0; C23- C24- C34- F6
35	36	49	51	9	0.00 0.00000 0; C23- C24- C34- F7
35 35	36 36	49 49	51 52	9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8
35 35 36	36 36 35	49 49 27	51 52 39	9 9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8 180.00 15.16700 2; C24- C23- C21- C27
35 35 36 36	36 36 35 37	49 49 27 38	51 52 39 39	9 9 9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8 180.00 15.16700 2; C24- C23- C21- C27 180.00 15.16700 2; C24- C25- C26- C27
35 35 36 36 36	36 36 35 37 37	 49 49 27 38 38 	51 52 39 39 45	9 9 9 9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8 180.00 15.16700 2; C24- C23- C21- C27 180.00 15.16700 2; C24- C25- C26- C27 180.00 15.16700 2; C24- C25- C26- C33
 35 35 36 36 36 37 	 36 36 35 37 37 36 	 49 49 27 38 38 35 	 51 52 39 39 45 71 	9 9 9 9 9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8 180.00 15.16700 2; C24- C23- C21- C27 180.00 15.16700 2; C24- C25- C26- C27 180.00 15.16700 2; C24- C25- C26- C33 180.00 15.16700 2; C25- C24- C23- H10
 35 35 36 36 36 37 37 	 36 36 35 37 37 36 36 	 49 49 27 38 38 35 49 	 51 52 39 39 45 71 50 	9 9 9 9 9 9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8 180.00 15.16700 2; C24- C23- C21- C27 180.00 15.16700 2; C24- C25- C26- C27 180.00 15.16700 2; C24- C25- C26- C33 180.00 15.16700 2; C25- C24- C23- H10 0.00 0.00000 0; C25- C24- C34- F6
 35 35 36 36 36 37 37 37 37 	 36 36 35 37 37 36 36 36 36 	 49 49 27 38 38 35 49 49 	 51 52 39 39 45 71 50 51 	9 9 9 9 9 9 9 9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8 180.00 15.16700 2; C24- C23- C21- C27 180.00 15.16700 2; C24- C25- C26- C27 180.00 15.16700 2; C24- C25- C26- C33 180.00 15.16700 2; C25- C24- C23- H10 0.00 0.00000 0; C25- C24- C34- F6 0.00 0.00000 0; C25- C24- C34- F7
 35 35 36 36 36 37 37 37 37 37 	 36 36 35 37 37 36 36 36 36 36 36 	 49 49 27 38 38 35 49 49 49 49 	 51 52 39 39 45 71 50 51 52 	9 9 9 9 9 9 9 9 9 9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8 180.00 15.16700 2; C24- C23- C21- C27 180.00 15.16700 2; C24- C25- C26- C27 180.00 15.16700 2; C24- C25- C26- C33 180.00 15.16700 2; C25- C24- C34- F6 0.00 0.00000 0; C25- C24- C34- F7 0.00 0.00000 0; C25- C24- C34- F8
 35 35 36 36 36 37 37 37 37 37 37 37 	 36 36 35 37 37 36 36 36 36 36 38 	 49 49 27 38 38 35 49 49 49 39 	 51 52 39 39 45 71 50 51 52 73 	9 9 9 9 9 9 9 9 9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8 180.00 15.16700 2; C24- C23- C21- C27 180.00 15.16700 2; C24- C25- C26- C27 180.00 15.16700 2; C24- C25- C26- C33 180.00 15.16700 2; C25- C24- C34- F6 0.00 0.00000 0; C25- C24- C34- F7 0.00 0.00000 0; C25- C24- C34- F8 180.00 15.16700 2; C25- C26- C27- H12
35 36 36 36 37 37 37 37 37 37 37	36 36 35 37 37 36 36 36 36 38 38 38	 49 49 27 38 38 35 49 49 49 39 45 	 51 52 39 39 45 71 50 51 52 73 46 	9 9 9 9 9 9 9 9 9 9 9 9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8 180.00 15.16700 2; C24- C23- C21- C27 180.00 15.16700 2; C24- C25- C26- C27 180.00 15.16700 2; C24- C25- C26- C33 180.00 15.16700 2; C25- C24- C34- F6 0.00 0.00000 0; C25- C24- C34- F7 0.00 0.00000 0; C25- C24- C34- F8 180.00 15.16700 2; C25- C24- C34- F8
35 36 36 36 37 37 37 37 37 37 37 37	36 36 35 37 37 36 36 36 36 38 38 38 38	 49 49 27 38 38 35 49 49 49 39 45 45 	 51 52 39 39 45 71 50 51 52 73 46 47 	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8 180.00 15.16700 2; C24- C23- C21- C27 180.00 15.16700 2; C24- C25- C26- C27 180.00 15.16700 2; C25- C24- C23- H10 0.00 0.00000 0; C25- C24- C34- F6 0.00 0.00000 0; C25- C24- C34- F7 0.00 0.00000 0; C25- C24- C34- F8 180.00 15.16700 2; C25- C24- C34- F8 180.00 15.16700 2; C25- C26- C33- F3 0.00 0.00000 0; C25- C26- C33- F4
35 36 36 36 37 37 37 37 37 37 37 37 37 37	 36 36 35 37 37 36 36 36 36 36 38 38 38 38 38 38 	 49 49 27 38 35 49 49 49 39 45 45 45 45 	 51 52 39 45 71 50 51 52 73 46 47 48 	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8 180.00 15.16700 2; C24- C23- C21- C27 180.00 15.16700 2; C24- C25- C26- C33 180.00 15.16700 2; C25- C24- C33- H10 0.00 0.00000 0; C25- C24- C34- F6 0.00 0.00000 0; C25- C24- C34- F7 0.00 0.00000 0; C25- C24- C34- F8 180.00 15.16700 2; C25- C24- C34- F8 180.00 15.16700 2; C25- C26- C33- F3 0.00 0.00000 0; C25- C26- C33- F4 0.00 0.00000 0; C25- C26- C33- F5
 35 35 36 36 37 38 	 36 36 35 37 37 36 36 36 36 36 36 38 38 38 38 38 37 	 49 49 27 38 38 35 49 49 49 39 45 45 45 36 	 51 52 39 45 71 50 51 52 73 46 47 48 49 	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.00 0.00000 0; C23- C24- C34- F7 0.00 0.00000 0; C23- C24- C34- F8 180.00 15.16700 2; C24- C23- C21- C27 180.00 15.16700 2; C24- C25- C26- C33 180.00 15.16700 2; C25- C24- C33- H10 0.00 0.00000 0; C25- C24- C34- F6 0.00 0.00000 0; C25- C24- C34- F8 180.00 15.16700 2; C25- C24- C34- F8 180.00 15.16700 2; C25- C26- C33- F3 0.00 0.00000 0; C25- C26- C33- F3 0.00 0.00000 0; C25- C26- C33- F5 180.00 15.16700 2; C26- C25- C24- C34

39	38	37	72	9	180.00 15.16700 2; C27- C26- C25- H11
39	38	45	46	9	0.00 0.00000 0; C27- C26- C33- F3
39	38	45	47	9	0.00 0.00000 0; C27- C26- C33- F4
39	38	45	48	9	0.00 0.00000 0; C27- C26- C33- F5
40	26	44	43	9	180.00 15.16700 2; C28- C20- C32- C31
40	26	44	76	9	180.00 15.16700 2; C28- C20- C32- H15
40	41	42	43	9	180.00 15.16700 2; C28- C29- C30- C31
40	41	42	75	9	180.00 15.16700 2; C28- C29- C30- H14
40	41	57	58	9	0.00 0.00000 0; C28- C29- C36- F12
40	41	57	59	9	0.00 0.00000 0; C28- C29- C36- F13
40	41	57	60	9	0.00 0.00000 0; C28- C29- C36- F14
41	40	26	44	9	180.00 15.16700 2; C29- C28- C20- C32
41	42	43	44	9	180.00 15.16700 2; C29- C30- C31- C32
41	42	43	53	9	180.00 15.16700 2; C29- C30- C31- C35
42	41	40	74	9	180.00 15.16700 2; C30- C29- C28- H13
42	41	57	58	9	0.00 0.00000 0; C30- C29- C36- F12
42	41	57	59	9	0.00 0.00000 0; C30- C29- C36- F13
42	41	57	60	9	0.00 0.00000 0; C30- C29- C36- F14
42	43	44	76	9	180.00 15.16700 2; C30- C31- C32- H15
42	43	53	54	9	0.00 0.00000 0; C30- C31- C35- F9
42	43	53	55	9	0.00 0.00000 0; C30- C31- C35- F10
42	43	53	56	9	0.00 0.00000 0; C30- C31- C35- F11
43	42	41	57	9	180.00 15.16700 2; C31- C30- C29- C36
44	26	40	74	9	180.00 15.16700 2; C32- C20- C28- H13
44	43	42	75	9	180.00 15.16700 2; C32- C31- C30- H14
44	43	53	54	9	0.00 0.00000 0; C32- C31- C35- F9
44 44	43 43	53 53	54 55	9 9	0.00 0.00000 0; C32- C31- C35- F9 0.00 0.00000 0; C32- C31- C35- F10
44 44 44	43 43 43	53 53 53	54 55 56	9 9 9	0.00 0.00000 0; C32- C31- C35- F9 0.00 0.00000 0; C32- C31- C35- F10 0.00 0.00000 0; C32- C31- C35- F11
44 44 44 45	43 43 43 38	53 53 53 37	54 55 56 72	9 9 9 9	0.00 0.00000 0; C32- C31- C35- F9 0.00 0.00000 0; C32- C31- C35- F10 0.00 0.00000 0; C32- C31- C35- F11 180.00 15.16700 2; C33- C26- C25- H11

49	36	35	71	9	180.00	15.16700	2;	C34-	C24-	C23-	H10
49	36	37	72	9	180.00	15.16700	2;	C34-	C24-	C25-	H11
53	43	42	75	9	180.00	15.16700	2;	C35-	C31-	C30-	H14
53	43	44	76	9	180.00	15.16700	2;	C35-	C31-	C32-	H15
57	41	40	74	9	180.00	15.16700	2;	C36-	C29-	C28-	H13
57	41	42	75	9	180.00	15.16700	2;	C36-	C29-	C30-	H14
62	11	12	63	9	180.00	15.16700	2;	H1-	C5-	C6-	H2
63	12	13	64	9	180.00	15.16700	2;	H2-	С6-	C7-	Н3
64	13	14	65	9	180.00	15.16700	2;	Н3-	C7-	C8-	H4
67	21	22	68	9	180.00	15.16700	2;	Н6-	C15-	C16-	H7
68	22	23	69	9	180.00	15.16700	2;	H7-	C16-	C17-	H8
69	23	24	70	9	180.00	15.16700	2;	H8-	C17-	C18-	H9

[dihedrals]; impropers

; trea	ted as	s prop	oers ii	n GROMACS to use correct AMBER analytical function
; i	j l	k l	func	phase kd pn
6	8	7	4 4	180.00 4.60240 2; C- C2- C1- O1
7	9	8 2	27	4 180.00 4.60240 2; C1- C3- C2- C21
7	15	6	16	4 180.00 4.60240 2; C1- C9- C- C10
9	11	10	15	4 180.00 4.60240 2; C3- C5- C4- C9
10	8	9	61	4 180.00 4.60240 2; C4- C2- C3- H
10	12	11	62	4 180.00 4.60240 2; C4- C6- C5- H1
10	14	15	6	4 180.00 4.60240 2; C4- C8- C9- C
11	13	12	63	4 180.00 4.60240 2; C5- C7- C6- H2
12	14	13	64	4 180.00 4.60240 2; C6- C8- C7- H3
13	15	14	65	4 180.00 4.60240 2; C7- C9- C8- H4
16	18	17	5	4 180.00 4.60240 2; C10- C12- C11- O2
17	19	18	26	4 180.00 4.60240 2; C11- C13- C12- C20
17	25	16	6	4 180.00 4.60240 2; C11- C19- C10- C
19	21	20	25	4 180.00 4.60240 2; C13- C15- C14- C19

20	18	19	66	4	180.00	4.60240	2;	C14-	C12-	C13-	H5
20	22	21	67	4	180.00	4.60240	2;	C14-	C16-	C15-	H6
20	24	25	16	4	180.00	4.60240	2;	C14-	C18-	C19-	C10
21	23	22	68	4	180.00	4.60240	2;	C15-	C17-	C16-	H7
22	24	23	69	4	180.00	4.60240	2;	C16-	C18-	C17-	H8
23	25	24	70	4	180.00	4.60240	2;	C17-	C19-	C18-	H9
35	37	36	49	4	180.00	4.60240	2;	C23-	C25-	C24-	C34
35	39	27	8	4	180.00	4.60240	2;	C23-	C27-	C21-	C2
36	27	35	71	4	180.00	4.60240	2;	C24-	C21-	C23-	H10
36	38	37	72	4	180.00	4.60240	2;	C24-	C26-	C25-	H11
38	27	39	73	4	180.00	4.60240	2;	C26-	C21-	C27-	H12
40	44	26	18	4	180.00	4.60240	2;	C28-	C32-	C20-	C12
41	26	40	74	4	180.00	4.60240	2;	C29-	C20-	C28-	H13
41	43	42	75	4	180.00	4.60240	2;	C29-	C31-	C30-	H14
43	26	44	76	4	180.00	4.60240	2;	C31-	C20-	C32-	H15
45	37	38	39	4	180.00	4.60240	2;	C33-	C25-	C26-	C27
53	42	43	44	4	180.00	4.60240	2;	C35-	C30-	C31-	C32
57	40	41	42	4	180.00	4.60240	2;	C36-	C28-	C29-	C30

Iminium-cation [moleculetype] nrexcl ;name MAE 3

[atoms]

1	na	1	MAE	N	1	-0.5019940291	14.01000
2	ce	1	MAE	С	2	0.5055575319	12.01000
3	са	1	MAE	C1	3	0.4365084735	12.01000
4	ca	1	MAE	C2	4	-0.3155317549	12.01000
5	са	1	MAE	С3	5	-0.0605277162	12.01000
6	са	1	MAE	C4	6	-0.1528215726	12.01000
7	са	1	MAE	C5	7	-0.0759100819	12.01000
8	са	1	MAE	C6	8	-0.2939740325	12.01000
9	са	1	MAE	C7	9	-0.1121681626	12.01000
10	c3	1	MAE	C8	10	-0.447398411	2 12.01000
11	ca	1	MAE	C9	11	-0.076853647	2 12.01000
12	са	1	MAE	C10	12	-0.333879175	57 12.01000
13	са	1	MAE	C11	13	0.526488098	2 12.01000
14	са	1	MAE	C12	14	-0.264041804	1 12.01000
15	ca	1	MAE	C13	15	-0.123750670	03 12.01000
16	OS	1	MAE	0	16	-0.3668202686	5 16.00000
17	c3	1	MAE	C14	17	0.056596032	0 12.01000
18	hn	1	MAE	Н	18	0.3801451114	1.00800
19	ha	1	MAE	H1	19	0.2004808690	0 1.00800
20	ha	1	MAE	H2	20	0.1387034634	4 1.00800
21	ha	1	MAE	Н3	21	0.1473165056	5 1.00800
22	ha	1	MAE	H4	22	0.1455940644	4 1.00800
23	ha	1	MAE	H5	23	0.1877996713	3 1.00800
24	hc	1	MAE	H6	24	0.1650739263	3 1.00800

25	hc	1	MAE	Η7	25	0.1650739263	1.00800
26	hc	1	MAE	H8	26	0.1650739263	1.00800
27	ha	1	MAE	H9	27	0.1757174210	1.00800
28	ha	1	MAE	H10	28	0.1784330807	1.00800
29	ha	1	MAE	H11	29	0.1734240999	1.00800
30	ha	1	MAE	H12	30	0.1666439014	1.00800
31	h1	1	MAE	H13	31	0.0703470748	1.00800
32	h1	1	MAE	H14	32	0.0703470748	1.00800
33	h1	1	MAE	H15	33	0.0703470748	1.00800

[bonds]

;	ai	aj fun	ctrk		
	1	2 1	1.4209e-01	3.1263e+05 ;	N - C
	1	3 1	1.3840e-01	3.5187e+05 ;	N - C1
	1	18 1	1.0100e-01	3.4175e+05;	N - H
	2	91	1.4763e-01	3.0234e+05;	C - C7
	2	10 1	1.5159e-01	2.6836e+05;	C - C8
	3	4 1	1.3984e-01	3.8585e+05 ;	C1 - C2
	3	8 1	1.3984e-01	3.8585e+05;	C1 - C6
	4	5 1	1.3984e-01	3.8585e+05 ;	C2 - C3
	4	19 1	1.0860e-01	2.8937e+05;	C2 - H1
	5	6 1	1.3984e-01	3.8585e+05 ;	C3 - C4
	5	20 1	1.0860e-01	2.8937e+05;	C3 - H2
	6	7 1	1.3984e-01	3.8585e+05 ;	C4 - C5
	6	21 1	1.0860e-01	2.8937e+05;	C4 - H3
	7	8 1	1.3984e-01	3.8585e+05 ;	C5 - C6
	7	22 1	1.0860e-01	2.8937e+05;	C5 - H4
	8	23 1	1.0860e-01	2.8937e+05;	C6 - H5
	9	11 1	1.3984e-01	3.8585e+05;	C7 - C9
	9	15 1	1.3984e-01	3.8585e+05;	C7 - C13
	10	24 1	1.0969e-01	2.7665e+05;	C8 - H6

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

10	25	1	1.0969e-01	2.7665e+05 ;	C8 - H7
10	26	1	1.0969e-01	2.7665e+05;	C8 - H8
11	12	1	1.3984e-01	3.8585e+05;	C9 - C10
11	27	1	1.0860e-01	2.8937e+05;	С9 - Н9
12	13	1	1.3984e-01	3.8585e+05;	C10 - C11
12	28	1	1.0860e-01	2.8937e+05;	C10 - H10
13	14	1	1.3984e-01	3.8585e+05;	C11 - C12
13	16	1	1.3696e-01	3.1514e+05;	C11 - 0
14	15	1	1.3984e-01	3.8585e+05;	C12 - C13
14	29	1	1.0860e-01	2.8937e+05;	C12 - H11
15	30	1	1.0860e-01	2.8937e+05;	C13 - H12
16	17	1	1.4316e-01	2.5824e+05;	0 - C14
17	31	1	1.0969e-01	2.7665e+05;	C14 - H13
17	32	1	1.0969e-01	2.7665e+05;	C14 - H14
17	33	1	1.0969e-01	2.7665e+05;	C14 - H15

[pairs]

;	ai	aj	funct	
	1	5	1;	N - C3
	1	7	1;	N - C5
	1	11	1;	N - C9
	1	15	1;	N - C13
	1	19	1;	N - H1
	1	23	1;	N - H5
	1	24	1;	N - H6
	1	25	1;	N - H7
	1	26	1;	N - H8
	2	4	1;	C - C2
	2	8	1;	C - C6
	2	12	1;	C - C10

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

2	14	1;	C - C12
2	27	1;	C - H9
2	30	1;	C - H12
3	6	1;	C1 - C4
3	9	1;	C1 - C7
3	10	1;	C1 - C8
3	20	1;	C1 - H2
3	22	1;	C1 - H4
4	7	1;	C2 - C5
4	21	1;	C2 - H3
4	23	1;	C2 - H5
5	8	1;	C3 - C6
5	22	1;	C3 - H4
6	19	1;	C4 - H1
6	23	1;	C4 - H5
7	20	1;	C5 - H2
8	19	1;	C6 - H1
8	21	1;	C6 - H3
9	13	1;	C7 - C11
9	24	1;	C7 - H6
9	25	1;	C7 - H7
9	26	1;	C7 - H8
9	28	1;	C7 - H10
9	29	1;	C7 - H11
10	11	1;	C8 - C9
10	15	1;	C8 - C13
11	14	1;	C9 - C12
11	16	1;	C9 - O
11	30	1;	C9 - H12
12	15	1;	C10 - C13

12	17	1;	C10 - C14
12	29	1;	C10 - H11
13	27	1;	С11 - Н9
13	30	1;	C11 - H12
13	31	1;	C11 - H13
13	32	1;	C11 - H14
13	33	1;	C11 - H15
14	17	1;	C12 - C14
14	28	1;	C12 - H10
15	16	1;	C13 - 0
15	27	1;	С13 - Н9
16	28	1;	0 - H10
16	29	1;	0 - H11
18	4	1;	H - C2
18	8	1;	Н - Сб
18	9	1;	H - C7
18	10	1;	Н - С8
19	20	1;	H1 - H2
20	21	1;	H2 - H3
21	22	1;	H3 - H4
22	23	1;	H4 - H5
27	28	1;	H9 - H10
29	30	1:	H11 - H12
	00	,	

[angles]

cth ak funct theta ; ai aj 1 1.1919e+02 5.7823e+02; N-C -C7 1 2 9 1 1.1956e+02 5.4894e+02; N-C 2 - C8 1 10 1 1.1834e+02 5.7823e+02; N - C1 - C2 1 3 4 3 1 1.1834e+02 5.7823e+02; N - C1 - C6 1 8

2	1	3	1	1.2661e+02	5.2635e+02 ;	C - N -	- C1
2	1	18	1	1.2554e+02	3.8995e+02;	C - N	- H
2	9	11	1	1.2082e+02	5.3974e+02;	C - C7	- C9
2	9	15	1	1.2082e+02	5.3974e+02;	C - C7	- C13
2	10	24	1	1.1059e+02	3.9162e+02;	C - C8	- H6
2	10	25	1	1.1059e+02	3.9162e+02;	C - C8	- H7
2	10	26	1	1.1059e+02	3.9162e+02;	C - C8	- H8
3	1	18	1	1.2554e+02	3.8995e+02;	C1 - N	- H
3	4	5	1	1.2002e+02	5.5731e+02;	C1 - C2	- C3
3	4	19	1	1.1988e+02	4.0334e+02;	C1 - C2	- H1
3	8	7	1	1.2002e+02	5.5731e+02;	C1 - C6	- C5
3	8	23	1	1.1988e+02	4.0334e+02;	C1 - C6	- H5
4	3	8	1	1.2002e+02	5.5731e+02;	C2 - C1	- C6
4	5	6	1	1.2002e+02	5.5731e+02 ;	C2 - C3	- C4
4	5	20	1	1.1988e+02	4.0334e+02;	C2 - C3	- H2
5	4	19	1	1.1988e+02	4.0334e+02;	C3 - C2	- H1
5	6	7	1	1.2002e+02	5.5731e+02 ;	C3 - C4	- C5
5	6	21	1	1.1988e+02	4.0334e+02;	C3 - C4	- H3
6	5	20	1	1.1988e+02	4.0334e+02;	C4 - C3	- H2
6	7	8	1	1.2002e+02	5.5731e+02 ;	C4 - C5	- C6
6	7	22	1	1.1988e+02	4.0334e+02;	C4 - C5	- H4
7	6	21	1	1.1988e+02	4.0334e+02;	C5 - C4	- H3
7	8	23	1	1.1988e+02	4.0334e+02;	C5 - C6	- H5
8	7	22	1	1.1988e+02	4.0334e+02;	C6 - C5	- H4
9	2	10	1	1.1924e+02	5.2300e+02;	C7 - C	- C8
9	11	12	1	1.2002e+02	5.5731e+02;	C7 - C9	- C10
9	11	27	1	1.1988e+02	4.0334e+02;	C7 - C9	- H9
9	15	14	1	1.2002e+02	5.5731e+02;	C7 - C1	3 - C12
9	15	30	1	1.1988e+02	4.0334e+02;	C7 - C1	3 - H12
11	9	15	1	1.2002e+02	5.5731e+02;	C9 - C7	- C13

11	12	13	1	1.2002e+02	5.5731e+02;	C9-C10 -C11
11	12	28	1	1.1988e+02	4.0334e+02;	C9-C10 -H10
12	11	27	1	1.1988e+02	4.0334e+02;	С10-С9-Н9
12	13	14	1	1.2002e+02	5.5731e+02;	C10-C11 -C12
12	13	16	1	1.1920e+02	5.8241e+02;	C10 - C11 - O
13	12	28	1	1.1988e+02	4.0334e+02;	C11-C10 -H10
13	14	15	1	1.2002e+02	5.5731e+02;	C11-C12 -C13
13	14	29	1	1.1988e+02	4.0334e+02;	C11-C12 -H11
13	16	17	1	1.1796e+02	5.2300e+02;	C11 - O - C14
14	13	16	1	1.1920e+02	5.8241e+02;	C12 - C11 - O
14	15	30	1	1.1988e+02	4.0334e+02;	C12 - C13 - H12
15	14	29	1	1.1988e+02	4.0334e+02;	C13-C12 -H11
16	17	31	1	1.0978e+02	4.2509e+02;	0-C14 -H13
16	17	32	1	1.0978e+02	4.2509e+02;	0-C14 -H14
16	17	33	1	1.0978e+02	4.2509e+02;	0-C14 -H15
24	10	25	1	1.0758e+02	3.2970e+02;	H6 - C8 - H7
24	10	26	1	1.0758e+02	3.2970e+02;	Н6 - С8 - Н8
25	10	26	1	1.0758e+02	3.2970e+02;	H7 - C8 - H8
31	17	32	1	1.0846e+02	3.2803e+02;	H13-C14 -H14
31	17	33	1	1.0846e+02	3.2803e+02;	H13-C14 -H15
32	17	33	1	1.0846e+02	3.2803e+02;	H14 - C14 - H15

[dihedrals]; propers

; for gromacs 4.5 or higher, using funct 9

;	i	j	k	l fun	c p	hase	kd pn					
	1	2	9	11	9	180.00	2.92880	2;	N-	C-	С7-	С9
	1	2	9	15	9	180.00	2.92880	2;	N-	C-	С7-	C13
	1	2	10	24	9	0.00	0.00000	0;	N-	C-	С8-	H6
	1	2	10	25	9	0.00	0.00000	0;	N-	C-	С8-	H7
	1	2	10	26	9	0.00	0.00000	0;	N-	C-	С8-	H8

1	3	4	5	9 180.00 15.16700 2; N- C1- C2- C3
1	3	4	19	9 180.00 15.16700 2; N- C1- C2- H1
1	3	8	7	9 180.00 15.16700 2; N- C1- C6- C5
1	3	8	23	9 180.00 15.16700 2; N- C1- C6- H5
2	1	3	4	9 180.00 1.25520 2; C- N- C1- C2
2	1	3	8	9 180.00 1.25520 2; C- N- C1- C6
2	9	11	12	9 180.00 15.16700 2; C- C7- C9- C10
2	9	11	27	9 180.00 15.16700 2; C- C7- C9- H9
2	9	15	14	9 180.00 15.16700 2; C- C7- C13- C12
2	9	15	30	9 180.00 15.16700 2; C- C7- C13- H12
3	1	2	9	9 180.00 7.11280 2; C1- N- C- C7
3	1	2	10	9 180.00 7.11280 2; C1- N- C- C8
3	4	5	6	9 180.00 15.16700 2; C1- C2- C3- C4
3	4	5	20	9 180.00 15.16700 2; C1- C2- C3- H2
3	8	7	6	9 180.00 15.16700 2; C1- C6- C5- C4
3	8	7	22	9 180.00 15.16700 2; C1- C6- C5- H4
4	3	8	7	9 180.00 15.16700 2; C2- C1- C6- C5
4	3	8	23	9 180.00 15.16700 2; C2- C1- C6- H5
4	5	6	7	9 180.00 15.16700 2; C2- C3- C4- C5
4	5	6	21	9 180.00 15.16700 2; C2- C3- C4- H3
5	4	3	8	9 180.00 15.16700 2; C3- C2- C1- C6
5	6	7	8	9 180.00 15.16700 2; C3- C4- C5- C6
5	6	7	22	9 180.00 15.16700 2; C3- C4- C5- H4
6	5	4	19	9 180.00 15.16700 2; C4- C3- C2- H1
6	7	8	23	9 180.00 15.16700 2; C4- C5- C6- H5
7	6	5	20	9 180.00 15.16700 2; C5- C4- C3- H2
8	3	4	19	9 180.00 15.16700 2; C6- C1- C2- H1
8	7	6	21	9 180.00 15.16700 2; C6- C5- C4- H3
9	2	10	24	9 0.00 0.00000 0; C7- C- C8- H6
9	2	10	24	9 0.00 4.81160 1; C7- C- C8- H6

9	2	10	24	9	180.00 1.58992 3; C7- C- C8- H6
9	2	10	25	9	0.00 0.00000 0; C7- C- C8- H7
9	2	10	25	9	0.00 4.81160 1; C7- C- C8- H7
9	2	10	25	9	180.00 1.58992 3; C7- C- C8- H7
9	2	10	26	9	0.00 0.00000 0; C7- C- C8- H8
9	2	10	26	9	0.00 4.81160 1; C7- C- C8- H8
9	2	10	26	9	180.00 1.58992 3; C7- C- C8- H8
9	11	12	13	9	180.00 15.16700 2; C7- C9- C10- C11
9	11	12	28	9	180.00 15.16700 2; C7- C9- C10- H10
9	15	14	13	9	180.00 15.16700 2; C7- C13- C12- C11
9	15	14	29	9	180.00 15.16700 2; C7- C13- C12- H11
10	2	9	11	9	180.00 2.92880 2; C8- C- C7- C9
10	2	9	15	9	180.00 2.92880 2; C8- C- C7- C13
11	9	15	14	9	180.00 15.16700 2; C9- C7- C13- C12
11	9	15	30	9	180.00 15.16700 2; C9- C7- C13- H12
11	12	13	14	9	180.00 15.16700 2; C9- C10- C11- C12
11	12	13	16	9	180.00 15.16700 2; C9- C10- C11- O
12	11	9	15	9	180.00 15.16700 2; C10- C9- C7- C13
12	13	14	15	9	180.00 15.16700 2; C10- C11- C12- C13
12	13	14	29	9	180.00 15.16700 2; C10- C11- C12- H11
12	13	16	17	9	180.00 3.76560 2; C10- C11- O- C14
13	12	11	27	9	180.00 15.16700 2; C11- C10- C9- H9
13	14	15	30	9	180.00 15.16700 2; C11- C12- C13- H12
13	16	17	31	9	0.00 1.60387 3; C11- O- C14- H13
13	16	17	32	9	0.00 1.60387 3; C11- O- C14- H14
13	16	17	33	9	0.00 1.60387 3; C11- O- C14- H15
14	13	12	28	9	180.00 15.16700 2; C12- C11- C10- H10
14	13	16	17	9	180.00 3.76560 2; C12- C11- O- C14
15	9	11	27	9	180.00 15.16700 2; C13- C7- C9- H9
15	14	13	16	9	180.00 15.16700 2; C13- C12- C11- O

16	13	12	28	9 180.00 15.16700 2; O- C11- C10- H10
16	13	14	29	9 180.00 15.16700 2; O- C11- C12- H11
18	1	2	9	9 180.00 7.11280 2; H- N- C- C7
18	1	2	10	9 180.00 7.11280 2; H- N- C- C8
18	1	3	4	9 180.00 1.25520 2; H- N- C1- C2
18	1	3	8	9 180.00 1.25520 2; H- N- C1- C6
19	4	5	20	9 180.00 15.16700 2; H1- C2- C3- H2
20	5	6	21	9 180.00 15.16700 2; H2- C3- C4- H3
21	6	7	22	9 180.00 15.16700 2; H3- C4- C5- H4
22	7	8	23	9 180.00 15.16700 2; H4- C5- C6- H5
27	11	12	28	9 180.00 15.16700 2; H9- C9- C10- H10
29	14	15	30	9 180.00 15.16700 2; H11- C12- C13- H12

[dihedrals]; impropers

; treated as propers in GROMACS to use correct AMBER analytical function													
;	i	j	k	l fur	IC	phase	kd pn						
	1	2	9	10	4	180.00	4.6024	02;	N-	C-	C7-	C8	
	1	3	8	4	4	180.00	4.60240	2;	N-	C1-	С6-	C2	
	3	5	4	19	4	180.00	4.6024	02;	C1-	C3-	C2-	· H1	
	3	7	8	23	4	180.00	4.6024	02;	C1-	C5-	С6-	H5	
	4	6	5	20	4	180.00	4.6024	02;	C2-	C4-	С3-	H2	
	5	7	6	21	4	180.00	4.6024	02;	С3-	C5-	C4-	Н3	
	6	8	7	22	4	180.00	4.6024	02;	C4-	С6-	C5-	H4	
	9	12	11	27		4 180.0	0 4.602	40 2	; C7	7- C1	.0- (С9- Н9	
	9	14	15	30		4 180.0	0 4.602	40 2	; C7	7- C1	2- C	13- H12	
	11	13	12	28	3	4 180.	00 4.602	240 2	2; C	9- C	11- (C10- H10)
	11	15	9	2	Ą	ł 180.0	0 4.6024	ł02;	С9-	- C13	3- C	7- C	
	12	14	13	16	5	4 180.	00 4.602	240 2	2; C1	10- (212-	C11- 0	
	13	15	14	29)	4 180.	00 4.602	240 2	2; C1	11- (213-	C12- H1	1
	18	1	2	3	4	180.00	4.6024	02;	H-	N-	C-	C1	

DCM

[atomtypes] c3s c3s 0.00000 0.00000 A 3.39967e-01 4.57730e-01 cls cls 0.00000 0.00000 A 3.30000e-01 1.20000e+00 h2s h2s 0.00000 0.00000 V 2.29317e-01 6.56888e-02 [moleculetype] ;name nrexcl2 DCM 3

[atoms]

; nr type resi res atom cgnr charge mass ; 1 c3s 1 DCM Cs 1 -0.137416 14.01000; 1 DCM Cls 2 -0.117537 2 cls 35.45000; 3 h2s 1 DCM Hs 3 0.184786 0.00000; 4 cls 1 DCM Cls1 4 -0.115826 35.45000; 5 h2s 1 DCM Hs1 5 0.185993 0.00000;

[bonds]

; ai aj funct r k
1 2 1 1.7860e-01 2.3347e+05; C-cl2s
1 4 1 1.7860e-01 2.3347e+05; C-cl2s1

[angles] ; ai aj ak funct theta cth 2 1 4 1 1.1103e+02 4.5380e+02; cl2s-C - cl2s1

[virtual_sites3]

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

; Site from funct a b c

 3
 1
 2
 4
 -0.2831048825030728 -0.2831048825030728

 3.154641146073173

 5
 1
 2
 4
 -0.2831048825030728 -0.2831048825030728

3.154641146073173

[exclusions]

31245 51234

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

DFT structure optimization results based on the MD-structure motif, which was identified with possible NOE-contacts

Final energy, structure and Mayer bond orders for the optimized neutral complex consisting of both NTPA and E-imin

The structure optimization based on a MD-snapshot was followed with a numerical frequency calculation (in ORCA 5.0.2 with B3LYP D3BJ def2-TZVP CPCM(CH2Cl2) NUMFREQ defgrid3). It yielded the following:

Dispersion correction	-0.333128479								
FINAL SINGLE POINT ENE	ERGY -4798.90622884666	7							

All vibrational frequencies were shown to be positive, which let's us assume that the MD structure (corresponding to possible NOE-signals) found is actually a minimum structure. The fact that the H-bond H atom remains does not change its positioning is a good indication that the H-bond situation is as described (at least a local minimum exists that corresponds to the structure). While this is of course no proof, a more indepth investigation (using e.g. relaxed scans) was not feasible. However, together with the experimental results this is a good indication. *Figure S71* shows the optimized structure, and the coordinates are given below:

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

Figure S71: Optimized complex structure based on the MD-structure motif, related to the supposed NOE contacts.
For comparison with the bond situation of the pure NTPA anion, the Mayer bond orders are given again for the obtained neutral iminium-NTPA complex: it is clear that the model used for the N- in the ff-MD should still hold true, because no fundamental changes occur in the vicinity.

Mayer bond orders larger than 0.100000

B(0-N, 1-C): 1.5470 B(0-N, 2-C): 0.8552 B(0-N, 17-H): 0.8037 B(1-C, 8-C): 1.0361 B(1-C, 9-C): 1.0001 B(2-C, 3-C): 1.3750 B(2-C, 7-C): 1.3821 B(3-C, 4-C): 1.4143 B(3-C, 18-H): 0.9644 B(4-C, 5-C): 1.3668 B(4-C, 19-H): 0.9677 B(5-C, 6-C): 1.3778 B(5-C, 20-H): 0.9672 B(6-C, 7-C): 1.3904 B(6-C, 21-H): 0.9821 B(7-C,22-H): 0.9510 B(8-C,10-C): 1.2898 B(8-C,14-C): 1.2263 B(9-C,23-H): 0.9370 B(9-C,24-H): 0.9631 B(9-C,25-H): 0.9385 B(10-C, 11-C): 1.5299 B(10-C, 26-H): 0.8795 B(11-C, 12-C): 1.2396 B(11-C, 27-H): 0.9540 B(12-C, 13-C): 1.2912 B(12-C, 15-O): 1.1794 B(13-C, 14-C): 1.5107 B(13-C, 28-H): 0.9920 B(14-C, 29-H): 0.9803 B(15-0,16-C): 0.8887 B(16-C, 30-H): 0.9644 B(16-C, 31-H): 0.9656 B(16-C, 32-H): 0.9609 B(17-H, 34-O): 0.1353 B(33-P, 34-O): 1.7549 B(33-P, 35-N): 1.3537 B(33-P, 36-O): 0.9931 B(33-P, 37-O): 1.0822 B(35-N,60-S): 1.3320 B(36-O,39-C): 0.7766 B(37-O,49-C): 0.8516 B(38-C, 39-C): 1.4428 B(38-C, 47-C): 1.0422 B(38-C, 48-C): 0.7864 B(39-C,40-C): 1.2752 B(40-C,41-C): 1.4469 B(40-C,59-C): 0.8348 B(41-C, 42-C): 1.2124 B(41-C, 93-H): 0.9974 B(42-C, 43-C): 1.2126 B(42-C,47-C): 1.2768 B(43-C,44-C): 1.5125 B(43-C,94-H): 0.9871 B(44-C, 45-C): 1.2502 B(44-C, 95-H): 0.9804 B(45-C, 46-C): 1.5353 B(45-C,96-H): 0.9784 B(46-C,47-C): 1.2495 B(46-C,97-H): 0.9675 B(48-C, 49-C): 1.4454 B(48-C, 57-C): 1.0635 B(49-C, 50-C): 1.2759

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

B(50-C, 51-C): 1.3974 B(50-C, 58-C): 0.8896 B(51-C, 52-C): 1.1910 B(51-C,98-H): 1.0111 B(52-C,53-C): 1.2041 B(52-C,57-C): 1.2298 B(53-C,54-C): 1.5091 B(53-C,99-H): 0.9919 B(54-C,55-C): 1.2411 B(54-C,100-H): 0.9848 B(55-C,56-C): 1.5257 B(55-C,101-H): 0.9806 B(56-C, 57-C): 1.2478 B(56-C, 102-H): 0.9776 B(58-C, 72-C): 1.2915 B(58-C,76-C): 1.3964 B(59-C,67-C): 1.3874 B(59-C,71-C): 1.3105 B(60-S,61-O): 1.7859 B(60-S,62-O): 1.7941 B(60-S,63-C): 0.8518 B(63-C,64-F): 1.1262 B(63-C,65-F): 1.1191 B(63-C,66-F): 1.1101 B(67-C,68-C): 1.3374 B(67-C,103-H): 0.9451 B(68-C,69-C): 1.3418 B(68-C, 81-C): 1.0033 B(69-C, 70-C): 1.2812 B(69-C, 104-H): 0.9742 B(70-C,71-C): 1.3550 B(70-C,77-C): 1.0110 B(71-C,105-H): 0.9708 B(72-C,73-C): 1.3855 B(72-C,106-H): 0.9674 B(73-C,74-C): 1.3213 B(73-C, 89-C): 1.0075 B(74-C, 75-C): 1.3472 B(74-C, 107-H): 0.9593 B(75-C, 76-C): 1.3686 B(75-C, 85-C): 1.0035 B(76-C, 108-H): 0.9307 B(77-C, 78-F): 1.0804 B(77-C, 79-F): 1.1509 B(77-C, 80-F): 1.0947 B(81-C,82-F): 1.1010 B(81-C,83-F): 1.0990 B(81-C,84-F): 1.1341 B(85-C,86-F): 1.1350 B(85-C,87-F): 1.1293 B(85-C,88-F): 1.1307 B(89-C,90-F): 1.1182 B(89-C,91-F): 1.1151 B(89-C,92-F): 1.1287

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

CARTESIAN COORDINATES (ANGSTROEM)

Ν	16.972588	19.993525	16.995068
С	15.751628	19.706079	16.633159
С	17.452732	21.211402	17.558156
С	18.582937	21.795523	16.995924
С	19.109955	22.943701	17.569733
С	18.525455	23.490859	18.707039
С	17.406030	22.888622	19.271234
С	16.864586	21.743991	18.700285
С	15.426904	18.327946	16.317053
С	14.714254	20.770450	16.554805
С	16.139491	17.274555	16.911274
С	15.839231	15.954272	16.645012
С	14.800471	15.650425	15.757433
С	14.065608	16.690075	15.166551
С	14.366710	18.001718	15.449986
0	14.429975	14.403734	15.425565
С	15.152619	13.296332	15.980159
Н	17.719715	19.284456	16.869863
Н	19.039746	21.348180	16.123808
Н	19.987936	23.401817	17.136475
Н	18.956389	24.370550	19.165305
Н	16.961076	23.299239	20.168111
Н	16.012741	21.253007	19.149522
Н	13.995852	20.646763	17.366715
Н	15.148102	21.764168	16.609596
Н	14.160551	20.670536	15.622305
Η	16.906575	17.482385	17.639200
Н	16.396998	15.176536	17.143134

Η	13.263549	16.439065	14.485506
Н	13.790411	18.780034	14.971496
Н	16.206755	13.345862	15.702138
Н	14.697919	12.407511	15.552500
Н	15.055417	13.278067	17.065789
Р	19.726120	18.011149	18.114085
0	19.226384	18.449466	16.791644
N	19.704283	16.439168	18.351236
0	18.807004	18.764718	19.218562
0	21.200409	18.542447	18.473446
С	20.288227	19.320069	21.000543
С	19.174604	18.645698	20.554808
С	18.400522	17.791764	21.372985
С	18.833722	17.560228	22.654340
С	20.019806	18.148914	23.147781
С	20.489067	17.859237	24.452314
С	21.657400	18.405485	24.915535
С	22.410842	19.261996	24.085516
С	21.975580	19.573746	22.822459
С	20.762745	19.043355	22.319549
С	20.978096	20.274707	20.095576
С	21.419717	19.859536	18.859109
С	22.087788	20.711665	17.945140
С	22.314004	22.011527	18.329124
С	21.843262	22.514437	19.559843
С	22.009596	23.879080	19.900283
С	21.470770	24.384638	21.053930
С	20.735979	23.541698	21.913909
С	20.575706	22.211088	21.621569
С	21.137294	21.651361	20.448730

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

С	22.480296	20.242568	16.598066
С	17.137264	17.198254	20.870769
S	20.535505	15.487106	19.250130
0	21.378367	16.107733	20.247030
0	19.746043	14.350096	19.666633
С	21.741404	14.755896	18.033671
F	22.531548	13.865891	18.648598
F	21.102119	14.131690	17.036678
F	22.516048	15.710946	17.503905
С	16.978468	15.820474	20.787611
С	15.766010	15.279513	20.363448
С	14.700353	16.098080	20.031755
С	14.860900	17.478458	20.120796
С	16.068135	18.028040	20.521533
С	23.173782	19.043815	16.406093
С	23.534536	18.642850	15.129235
С	23.205065	19.411455	14.015805
С	22.518773	20.599492	14.206833
С	22.159038	21.015355	15.485236
С	13.678644	18.354348	19.822142
F	14.006465	19.659613	19.730313
F	12.729939	18.262432	20.785337
F	13.072419	18.017262	18.662463
С	15.642886	13.784949	20.265480
F	16.501279	13.266224	19.356839
F	14.407359	13.386661	19.904872
F	15.924179	13.179088	21.441788
С	22.116532	21.452665	13.037324
F	22.646689	21.030841	11.875039
F	22.493996	22.742081	13.199850

F	20.771196	21.471913	12.870487
С	24.259398	17.342080	14.921340
F	23.416167	16.354601	14.532889
F	24.876567	16.909156	16.036333
F	25.202400	17.436047	13.957774
Н	18.259729	16.912351	23.305150
Н	19.909258	17.186218	25.072190
Н	22.011597	18.172967	25.911611
Н	23.344971	19.672422	24.447528
Н	22.569874	20.222659	22.195872
Н	22.838017	22.682685	17.660263
Н	22.554740	24.519146	19.217256
Н	21.592961	25.431365	21.301176
Н	20.289126	23.951140	22.810984
Н	20.001569	21.582584	22.286220
Н	17.808398	15.171354	21.029385
Н	13.761438	15.675291	19.705734
Н	16.184642	19.100383	20.584072
Н	23.439042	18.435895	17.257174
Η	23.483871	19.088610	13.023561
Н	21.611256	21.938799	15.615934

Final energy, structure and Mayer bond orders for the anion structure used for the force field creation

 Dispersion correction
 -0.222525384

 FINAL SINGLE POINT ENERGY
 -4087.914862335938

 FINAL SINGLE POINT ENERGY
 -4087.914862335938

 ----- -----

 CARTESIAN COORDINATES (ANGSTROEM)

 ----- P

 1.561825
 0.232380
 0.403192

 0
 2.702716
 0.633039
 0.739012

0	2.702716	-0.633039	0.739012
Ν	1.866703	1.800999	0.386125
0	0.379086	-0.095533	1.469782
0	0.865888	-0.093207	-1.019326
С	-1.650776	-0.029601	0.235309
С	-0.886040	0.439070	1.281428
С	-1.359678	1.401076	2.212647
С	-2.590439	1.967138	1.973612
С	-3.354517	1.638699	0.834429
С	-4.577872	2.298021	0.558599
С	-5.302194	1.991318	-0.563281
С	-4.823703	1.015224	-1.462908
С	-3.650251	0.349159	-1.214774
С	-2.887644	0.626398	-0.054210
С	-1.195978	-1.191888	-0.570921

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

С	0.028318	-1.177326	-1.202702
С	0.440715	-2.184982	-2.113685
С	-0.398970	-3.255242	-2.310870
С	-1.611325	-3.389300	-1.600905
С	-2.423553	-4.540129	-1.753123
С	-3.579988	-4.683314	-1.032228
С	-3.964736	-3.680550	-0.117444
С	-3.206792	-2.547772	0.040694
С	-2.018140	-2.356286	-0.705470
С	1.700253	-2.070712	-2.886253
С	-0.627623	1.731026	3.460206
S	1.238107	2.994469	-0.373960
0	-0.045237	2.768187	-1.002253
0	1.395655	4.220281	0.377138
С	2.401510	3.215996	-1.814481
F	2.426371	2.120059	-2.584876
F	2.003679	4.250145	-2.570623
F	3.649633	3.460573	-1.395361
С	-1.328630	1.713099	4.670104
С	-0.690185	2.018669	5.864239
С	0.661312	2.342578	5.886117
С	1.356233	2.363625	4.685973
С	0.725171	2.066361	3.483581
С	1.670748	-2.253742	-4.268784
С	2.837604	-2.162019	-5.019662
С	4.053378	-1.884127	-4.411632
С	4.082226	-1.706498	-3.033795
С	2.924420	-1.798156	-2.272905
С	2.829444	2.662122	4.668096
F	3.249171	3.270006	5.796549

F	3.176140	3.458368	3.636056
F	3.566234	1.530363	4.542734
С	-1.470210	2.040862	7.147677
F	-2.561676	1.250680	7.104453
F	-1.911327	3.289574	7.445960
F	-0.731766	1.638078	8.203781
С	5.374637	-1.359669	-2.348990
F	6.455227	-1.709560	-3.077793
F	5.495670	-1.963812	-1.149084
F	5.479103	-0.027356	-2.120623
С	2.766973	-2.394425	-6.501784
F	1.722703	-1.750828	-7.069240
F	2.607245	-3.709215	-6.797920
F	3.877544	-1.987285	-7.145829
Н	-2.978305	2.709009	2.660234
Н	-4.922874	3.057770	1.249548
Н	-6.233205	2.503586	-0.769745
Н	-5.385802	0.794458	-2.361539
Н	-3.293475	-0.387514	-1.919560
Н	-0.112364	-4.038565	-3.001422
Н	-2.103986	-5.309644	-2.445454
Н	-4.192612	-5.567810	-1.151276
Н	-4.865232	-3.808892	0.469832
Н	-3.513202	-1.794799	0.751731
Н	-2.374511	1.440818	4.675154
Н	1.158795	2.570382	6.817288
Н	1.287222	2.116951	2.564437
Н	0.727782	-2.450613	-4.760767
Н	4.956969	-1.806178	-4.996905
Н	2.976617	-1.661428	-1.202022

^{a.} Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de ^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

Mayer bond orders larger than 0.100000

B(0-P, 1-0): 1.9986 B(0-P, 2-N): 1.2713 B(0-P, 3-0): 1.0469 B(0-P, 4-0): 1.0315 B(2-N, 27-S): 1.3392 B(3-0, 6-C): 0.9710 B(4-0, 16-C): 0.9236 B(5-C, 6-C): 1.4642 B(5-C, 14-C): 1.1051 B(5-C, 15-C): 0.8586 B(6-C, 7-C): 1.2690 B(7-C, 8-C): 1.4547 B(7-C, 26-C): 0.8981 B(8-C, 9-C): 1.1987 B(8-C, 60-H): 0.9744 B(9-C, 10-C): 1.2088 B(9-C, 14-C): 1.2588 B(10-C, 11-C): 1.5162 B(10-C, 61-H): 0.9887 B(11-C, 12-C): 1.2473 B(11-C, 62-H): 0.9822 B(12-C,13-C): 1.5357 B(12-C,63-H): 0.9791 B(13-C,14-C): 1.2541 B(13-C, 64-H): 0.9649 B(15-C, 16-C): 1.4650 B(15-C, 24-C): 1.0636 B(16-C, 17-C): 1.2815 B(17-C, 18-C): 1.4609 B(17-C, 25-C): 0.9059 B(18-C, 19-C): 1.2045 B(18-C, 65-H): 0.9842 B(19-C, 20-C): 1.2102 B(19-C, 24-C): 1.2651 B(20-C, 21-C): 1.5136 B(20-C, 66-H): 0.9883 B(21-C, 22-C): 1.2480 B(21-C, 67-H): 0.9822 B(22-C, 23-C): 1.5365 B(22-C, 68-H): 0.9793 B(23-C, 24-C): 1.2546 B(23-C, 69-H): 0.9690 B(25-C, 39-C): 1.3667 B(25-C, 43-C): 1.3358 B(26-C, 34-C): 1.3501 B(26-C, 38-C): 1.3338 B(27-S, 28-O): 1.7884 B(27-S, 29-O): 1.8262 B(27-S, 30-C): 0.8530 B(30-C, 31-F): 1.1099 B(30-C, 32-F): 1.1184 B(30-C, 33-F): 1.1177 B(34-C, 35-C): 1.3720 B(34-C, 70-H): 0.9528 B(35-C, 36-C): 1.3297 B(35-C, 48-C): 1.0054 B(36-C, 37-C): 1.3312 B(36-C, 71-H): 0.9660 B(37-C, 38-C): 1.3988 B(37-C, 44-C): 1.0110 B(38-C,72-H): 0.9042 B(39-C,40-C): 1.3664 B(39-C,73-H): 0.9567 B(40-C, 41-C): 1.3423 B(40-C, 56-C): 1.0068 B(41-C, 42-C): 1.3265 B(41-C,74-H): 0.9603 B(42-C,43-C): 1.4048 B(42-C,52-C): 1.0079 B(43-C,75-H): 0.9156 B(44-C,45-F): 1.1298 B(44-C,46-F): 1.1337 B(44-C, 47-F): 1.1315 B(48-C, 49-F): 1.1299 B(48-C, 50-F): 1.1402 B(48-C, 51-F): 1.1302 B(52-C, 53-F): 1.1264 B(52-C, 54-F): 1.1290 B(52-C,55-F): 1.1316 B(56-C,57-F): 1.1321 B(56-C,58-F): 1.1378 B(56-C, 59-F): 1.1328

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

References

- 1 R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow and P. Granger, *Pure Appl. Chem.*, 2001, **73**, 1795.
- 2 F. Löhr, S. G. Mayhew and H. Rüterjans, J. Am. Chem. Soc., 2000, 122, 9289.
- 3 N. Sorgenfrei, J. Hioe, J. Greindl, K. Rothermel, F. Morana, N. Lokesh and R. M. Gschwind, J. *Am. Chem. Soc.*, 2016, **138**, 16345.
- 4 J. Greindl, J. Hioe, N. Sorgenfrei, F. Morana and R. M. Gschwind, *J. Am. Chem. Soc.*, 2016, **138**, 15965.
- 5 F. H. Westheimer and K. Taguchi, J. Org. Chem., 1971, **36**, 1570.
- 6 J. Barluenga, A. Jiménez-Aquino, F. Aznar and C. Valdés, J. Am. Chem. Soc., 2009, 131, 4031.
- 7 Y. Schramm, F. Barrios-Landeros and A. Pfaltz, Chem. Sci., 2013, 4, 2760.
- 8 M. C. Hansen and S. L. Buchwald, Organic letters, 2000, 2, 713.
- 9 J. S. M. Samec and J.-E. Bäckvall, Chem. Eur. J., 2002, 8, 2955.
- 10 Z. Wang, X. Ye, S. Wei, P. Wu, A. Zhang and J. Sun, Organic letters, 2006, 8, 999.
- 11 J. Hermeke, H. F. T. Klare and M. Oestreich, *Chem. Eur. J.*, 2014, **20**, 9250.
- 12 K. Rothermel, M. Melikian, J. Hioe, J. Greindl, J. Gramüller, M. Žabka, N. Sorgenfrei, T. Hausler, F. Morana and R. M. Gschwind, *Chem. Sci.*, 2019, **10**, 10025.
- 13 K. Rothermel, M. Žabka, J. Hioe and R. M. Gschwind, J. Org. Chem., 2019, 84, 13221.
- 14 D. Nakashima and H. Yamamoto, J. Am. Chem. Soc., 2006, 128, 9626.
- 15 A. Franchino, À. Martí and A. M. Echavarren, J. Am. Chem. Soc., 2022, 144, 3497.
- 16 J.-C. Hierso, Chem. Rev., 2014, 114, 4838.
- 17 W. D. Arnold and E. Oldfield, J. Am. Chem. Soc., 2000, 122, 12835.
- 18 F. von Rekowski, C. Koch and R. M. Gschwind, J. Am. Chem. Soc., 2014, 136, 11389.
- K. Pervushin, A. Ono, C. Fernández, T. Szyperski, M. Kainosho and K. Wüthrich, PNAS, 1998, 95, 14147.
- 20 M. Mishima, M. Hatanaka, S. Yokoyama, T. Ikegami, M. Wälchli, Y. Ito and M. Shirakawa, J. Am. Chem. Soc., 2000, **122**, 5883.
- 21 A. J. Dingley and S. Grzesiek, J. Am. Chem. Soc., 1998, 120, 8293.
- 22 F. Zhou and H. Yamamoto, Angew. Chem. Int. Ed., 2016, 55, 8970.

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de

^b Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

- 23 F. Neese, WIREs Comput. Mol. Sci., 2022, 12.
- 24 V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.
- 25 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580.
- 26 J. Wang, W. Wang, P. A. Kollman and D. A. Case, *Journal of molecular graphics & modelling*, 2006, **25**, 247.
- 27 J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, *J. Comput. Chem.*, 2004, **25**, 1157.
- 28 N. Berg, S. Bergwinkl, P. Nuernberger, D. Horinek and R. M. Gschwind, J. Am. Chem. Soc., 2021, **143**, 724.
- 29 A. W. Da Sousa Silva and W. F. Vranken, BMC research notes, 2012, 5, 367.
- 30 D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C. Berendsen, J. Comput. Chem., 2005, 26, 1701.
- 31 J. S. Hub, B. L. de Groot and D. van der Spoel, J. Chem. Theory Comput., 2010, 6, 3713.

^{b.} Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053, Germany

^a Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. E-mail: ruth.gschwind@chemie.uni-regensburg.de