Supporting Information

Nickel/Photoredox-Catalyzed Three-Component Silylacylation of Acrylates via Chlorine Photoelimination

Yejin Koo^{a,b}, Sungwoo Hong^{b,a}*

Email : hongorg@kaist.ac.kr

^aDepartment of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea

^bCenter for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea

I. General Methods and Materials	S2	
II. Experimental Procedure	S3	
III. Optimization Table	S6	
IV. Control Experiments	S8	
V. Mechanistic investigation	S12	
VI. Compound Characterizations	S17	
Appendix I		
Spectral Copies of ¹ H-, ¹³ C- and ¹⁹ F-NMR Data		

I. General Methods and Materials

Unless stated otherwise, reactions were performed in flame-dried glassware. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F²⁵⁴ plates and silica gel 60 RP-18 F²⁵⁴s, and visualization on TLC was achieved by UV light (254 and 365 nm). Flash column chromatography was performed on silica gel (400-630 mesh) or a CombiFlash[®] R_f^+ system with RediSep® R_f silica columns (230-400 mesh) using a proper eluent. ¹H NMR was recorded on Brucker Avance 400 MHz, Brucker Avance 500 MHz or Agilent Technologies DD2 600 MHz. Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, td = triplet of doublet, dd = doublet of doublet of doublet. Coupling constants, J, were reported in hertz unit (Hz). ¹³C NMR was recorded on Brucker Avance 125 MHz, or Agilent Technologies DD2 150 MHz and was fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the centerline of a pentet at 53.8 ppm of CD₂Cl₂. ¹⁹F NMR was recorded on Brucker Advance 376 MHz. High resolution mass spectroscopy was conducted on a Bruker Daltonik micrOTOF-QII and obtained by using ESI from Korea Basic Science Institute (Ochang). The Absorption spectra were measured by a spectrophotometer (V-530 UV/Vis Spectrophotometer, Jasco, Inc.). Commercial grade reagents and solvents were used without further purification except as indicated below.

Figure S1. Set-up for the visible light induced reaction (25% Kessil 427 nm in hepatochem reactor)

II. Experimental Procedure

Trialkylhydrosilanes **3a-3h** and acrylates **2aa-2af**, **2ai**, **and 2ak** were purchased from commercial suppliers (Tokyo Chemical Industry Co. or Sigma-Aldrich Co.) and used as received unless otherwise noted. ¹H and ¹³C NMR spectra were in agreement with those in the literature. ^[1-4]

Scheme S1.

General procedure 1 for the preparation of hydrosilanes 3i-3l and 3p-3r (GP1)^[1]

R'—MgBr	R ₂ ClSiH (1.0 equiv)		R
(1.2 equiv)	THF, 0 °C to rt, 8 h		

In a 100 mL round-bottom flask, R_2 ClSiH (1.11 mL, 10.0 mmol) in THF (6 mL) was cooled to 0 °C. A solution of phenylmagnesium bromide (24 mL, 0.5 M in THF) was added dropwise slowly over 15 min. Then reaction was allowed to warm to room temperature and stirred for 8 hours. The reaction mixture was quenched with NH₄Cl (5 mL, sat. aq.) and the product was extracted with Et₂O (15 mL × 3). The organic layer was washed with water (20 mL), brine (20 mL), dried over MgSO₄, and then concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to afford the hydrosilane.

Scheme S2.

General procedure 2 for the preparation of hydrosilanes 3m-3o and 3s-3u (GP2)^[2]

R'—Br	1) ⁱ PrMgCl, THF, -78 °C to -40 °C	R
or		R'−Śi−H
R'—I	2) R ₂ CISiH, THF, -40 °C to rt	Ŕ

In a 100 mL round-bottom flask, aryl bromide or aryl iodide (5.0 mmol, 1.0 equiv) in THF (10 mL) was cooled to -78 °C. ^{*i*}PrMgCl (3 mL, 2.0 M in THF, 6.0 mmol, 1.2 equiv) was added dropwise slowly over 15 min. The resulting mixture was allowed to warm to -40 °C in 2 h and maintained at -40 °C for another 2 h before the dropwise addition of R₂ClSiH (6.0 mmol, 1.2 equiv). The reaction was allowed to warm to room temperature and stirred for 8 h. The reaction mixture was quenched with NH₄Cl (10 mL, sat. aq.) and the mixture was extracted with CH₂Cl₂ (15 mL × 3). The combined organic layer was washed with water (20 mL), brine (20 mL), dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to afford the hydrosilane.

4-(diisopropylsilyl)benzonitrile (30). Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.64 (m, 4H), 3.97 (m, 1H), 1.32 – 1.22 (m, 2H), 1.07 (d, *J* = 7.3 Hz, 6H), 0.98 (d, *J* = 7.4 Hz, 6H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 141.7, 136.3, 131.2, 119.3, 113.2, 18.6, 18.5, 10.9. HRMS (ESI⁺) m/z calcd. C₁₃H₂₀NSi⁺ [M+H]⁺: 218.1365, found: 218.1365.

(1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-(dimethylsilyl)benzoate (3u). Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 8.03 (d, *J* = 8.1 Hz, 2H), 7.66 (d, *J* = 8.1 Hz, 2H), 5.12 (m, 1H), 4.46 (m, 1H), 2.60 – 2.41 (m, 1H), 2.16 (m, 1H), 1.83 (m, 1H), 1.75 (m, 1H), 1.46 – 1.38 (m, 1H), 1.32 (m, 1H), 1.13 (m, 1H), 0.99 (s, 3H), 0.93 (m, 6H), 0.38 (d, *J* = 3.8 Hz, 6H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 167.0, 144.0, 134.4, 132.0, 128.8, 80.9, 49.5, 48.3, 45.5, 37.3, 28.4, 27.8, 19.9, 19.1, 13.8, -3.8. HRMS (ESI⁺) m/z calcd. C₁₉H₂₈O₂NaSi⁺ [M+Na]⁺: 339.1756, found: 339.1757.

Scheme S3.

General procedure 3 for the preparation of acrylates 2ag, 2ah, 2aj, and 2al-2ao (GP3)^[5]

To a solution of R–OH and Et₃N (20 mmol, 2.0 equiv) in CH_2Cl_2 (25 mL) at 0 °C acryloyl chloride (20 mmol, 2.0 equiv) was added dropwise. The reaction mixture was warmed to rt and stirred for 12 h. The reaction mixture was quenched with water (15 mL) and the mixture was extracted with CH_2Cl_2 (15 mL × 3). The combined organic layer was dried over MgSO₄, and then concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography to afford the acrylate.

General procedure 4 for three-component silylacylation (GP4)

In an argon-filled glovebox, to a flame-dried 12 mL test tube equipped with a magnetic bar were added with NaHCO₃ (1.0 equiv, 0.05 mmol) and Ir[(dF(CF₃)ppy)]₂(dtbbpy)]PF₆ (0.02 equiv, 1 µmol). To the reaction vial was added 100 µL of a dark purple solution of Ni(cod)₂ (0.1 equiv, 0.005 mmol) and 4,4[']- di-tert-butyl-2,2[']-bipyridine (0.15 equiv, 0.0075 mmol) in benzene which had been stirred for 15 minutes prior to use. This was followed successively by 100 µL of a stock solution of hydrosilane (2.0 equiv, 0.1 mmol), 100 µL of a stock solution of alkene (1.5 equiv, 0.075 mmol), and 200 µL of a stock solution of aroyl chloride (1.0 equiv, 0.05 mmol) in benzene, turning the solution a deep red color. The tube was sealed with a screw cap, removed from the glove box, irradiated with Kessil PR160-427 nm blue LED with 25% intensity, and stirred for 22 hours in a water bath set to 33°C. After reaction completion, the reaction mixture was dried over anhydrous Na₂SO₄, filtered through a Celite pad, and then concentrated under reduced pressure. After removal of solvent, the residue was purified by flash column chromatography on silica gel (eluent: ethyl acetate/*n*-hexane = 1:15 – 1:20).

1 mmol scale procedure

In an argon-filled glovebox, to a flame-dried 50 ml round-bottom flask equipped with a magnetic bar were added with NaHCO₃ (1.0 equiv, 1 mmol) and Ir[(dF(CF₃)ppy)]₂(dtbbpy)]PF₆ (0.02 equiv, 0.02 mmol). To the reaction vial was added 2 mL of a dark purple solution of Ni(cod)₂ (0.1 equiv, 0.1 mmol) and 4,4[']-di-tert-butyl-2,2[']-bipyridine (0.15 equiv, 0.15 mmol) in benzene which had been stirred for 15 minutes prior to use. This was followed successively by hydrosilane (2.0 equiv, 2 mmol), alkene (1.5 equiv, 1.5 mmol), aroyl chloride (1.0 equiv, 1 mmol), and dry benzene (8 mL). The tube was sealed with a rubber septa, removed from the glove box, irradiated with Kessil PR160-427 nm blue LED with 25% intensity, and stirred for 22 hours in a water bath set to 33°C. After reaction completion, the reaction mixture was diluted with distilled water and was extracted with EtOAc three times. The combined organic layer was dried over anhydrous Na₂SO₄, filtered through a Celite pad, and then concentrated under reduced pressure. After removal of solvent, the residue was purified by flash column S5

chromatography on silica gel.

III. Optimization Table

Table S1. Effect of ligand [a]

[a] Yields were determined by ¹H NMR with caffeine as internal standard.

Table S2. Effect of base [a]

7	Na ₂ HPO ₄	25
8	NaH ₂ PO ₄	20
9	KHCO3	23
10	Na ₂ CO ₃	26
11	K ₂ CO ₃	25
12	Cs ₂ CO ₃	24
13	$K_3PO_4H_2O$	23
14	NaTFA	7
15	NaOAc	33
16	NaO ^t Bu	17
17	KO [′] Bu	16

[a] Yields were determined by ¹H NMR with caffeine as internal standard.

Table S3. Effect of solvent [a]

^t Bu 1a (0.05 mmol)	+ 0 + EtO + 2a (1.5 equiv)	Nii dt (TMS) ₃ SiH <u>Ir[(dF(CF₃)p</u> Nat 3a solver (2.0 equiv) Blue LI	$cod)_2$ (10 mol%) bbpy (15 mol%) $by)]_2(dtbbpy)]PF_6$ (2 mol%) HCO_3 (1.0 equiv) tt (0.1 M), 33 °C, Ar EDs (λ_{max} = 427 nm)	Si(TMS) ₃
-	Entry	Solvent	Yield (%)	-
_	1	PhH	78	-
	2	1,4-dioxane	51	
	3	MeCN	12	
	4	toluene	70	
	5	DMSO	trace	
	6	DMF	NR	
	7	DMA	NR	
	8	1,2-DCE	17	
	9	DCM	trace	
	10	HFIP	NR	
	11	EA	51	
	12	iPrOAc	60	

[a] Yields were determined by ¹H NMR with caffeine as internal standard.

Table S4. Effect of photocatalyst ^[a]

1	CI +	o U	+ (TMS) ₃ SiH	Ni(cod) ₂ (10 mol%) dtbbpy (15 mol%) photocatalyst (2 mol%)	^t Bu _	0	
^t Bu	1a (0.05 mmol)	EtO 2a (1.5 equiv)	3a (2.0 equiv)	NaHCO ₃ (1.0 equiv) PhH (0.1 M), 33 °C, Ar Blue LEDs (λ_{max} = 427 nm)		EtOSi(TMS) ₃	
	Er	ıtry	Photoc	atalyst	Yield (%)		
	1 [Ir(dFCF ₃ ppy)		[Ir(dFCF ₃ ppy)	₂ (dtbbpy)]PF ₆	78		
		2	[Ir(dFCF ₃ ppy) ₂ (bpy)]PF ₆		16	16	
		3	Ir(dF]	ppy) ₃	10		
		4	[Ir(dFppy) ₂ (dtbbpy)]PF ₆	11		
	5 $[Ir(dFCF_3ppy)_2(5,$		5'-dCF ₃ bpy)]PF ₆	26			
	6 [Ir(ppy) ₂ (bpy)]PF ₆	trace			
		7 fac-[Ir		[ppy) ₃]	NR		
		8	[Ir(ppy) ₂ (d	tbbpy)]PF ₆	11		
		9	[Mes-Ac	r] ⁺ ClO ₄ ⁻	NR		
	1	0	Without ph	otocatalyst	NR		

[a] Yields were determined by ¹H NMR with caffeine as internal standard.

IV. Control Experiments

Radical inhibitor experiment with TEMPO

In an argon-filled glovebox, to a flame-dried 12 mL test tube equipped with a magnetic bar were added with NaHCO₃ (1.0 equiv, 0.05 mmol), $Ir[(dF(CF_3)ppy)]_2(dtbbpy)]PF_6$ (0.02 equiv, 1 µmol), and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl, 2.0 equiv, 0.1 mmol). To the reaction vial was added 100 µL of a dark purple solution of Ni(cod)₂ (0.1 equiv, 0.005 mmol) and 4,4[']-di-tert-butyl-2,2[']- bipyridine (0.15 equiv, 0.0075 mmol) in benzene which had been stirred for 15 minutes prior to use. This was followed successively by 100 µL of a stock solution of hydrosilane (2.0 equiv, 0.1 mmol), 100 µL of a stock solution of alkene (1.5 equiv, 0.075 mmol), and 200 µL of a stock solution of aroyl chloride (1.0 equiv, 0.05 mmol) in benzene. The tube was sealed with a screw cap, removed from the glove box, irradiated with Kessil PR160-427 nm blue LED with 25% intensity, and stirred for 22 hours in a water bath set to 33°C. The crude reaction mixture was analyzed directly by ¹H-NMR and HRMS (ESI). As a result, compound **4b** was not detected, suggesting that the reaction proceeds via a radical S8

pathway.

Figure S2. HRMS (ESI) spectra for radical inhibitor experiment with TEMPO

Radical inhibitor experiment with 1,1-diphenylethylene

In an argon-filled glovebox, to a flame-dried 12 mL test tube equipped with a magnetic bar were added with NaHCO₃ (1.0 equiv, 0.05 mmol), Ir[(dF(CF₃)ppy)]₂(dtbbpy)]PF₆ (0.02 equiv, 1 µmol), and 1,1-diphenylethylene (2.0 equiv, 0.1 mmol). To the reaction vial was added 100 µL of a dark purple solution of Ni(cod)₂ (0.1 equiv, 0.005 mmol) and 4,4[']-di-tert-butyl-2,2[']-bipyridine (0.15 equiv, 0.0075 mmol) in benzene which had been stirred for 15 minutes prior to use. This was followed successively by 100 µL of a stock solution of hydrosilane (2.0 equiv, 0.1 mmol), 100 µL of a stock solution of alkene (1.5 equiv, 0.075 mmol), and 200 µL of a stock solution of aroyl chloride (1.0 equiv, 0.05 mmol) in benzene. The tube was sealed with a screw cap, removed from the glove box, irradiated with Kessil PR160-427 nm blue LED with 25% intensity, and stirred for 22 hours in a water bath set to 33°C. The crude reaction mixture was analyzed directly by ¹H-NMR using caffeine as an internal standard.

Stoichiometric experiment with complex Ni-I

The oxidative addition complex Ni-I was prepared following literature procedures.^[6]

In an argon-filled glovebox, to a flame-dried 12 mL test tube equipped with a magnetic bar were added with complex **Ni-I** (1.0 equiv, 0.025 mmol) NaHCO₃ (1.0 equiv, 0.025 mmol) and $Ir[(dF(CF_3)ppy)]_2(dtbpy)]PF_6$ (0.1 equiv, 2.5 µmol). To the reaction vial was added 100 µL of a stock solution of hydrosilane (2.0 equiv, 0.05 mmol), 100 µL of a stock solution of alkene (1.5 equiv, 0.0375 mmol), and dry benzene (1.8 mL). The tube was sealed with a screw cap, removed from the glove box, irradiated with Kessil PR160-427 nm blue LED with 25% intensity, and stirred for 22 hours in a water bath set to 33°C. The crude reaction mixture was analyzed directly by ¹H-NMR using caffeine as an internal standard.

Catalytic experiment with complex Ni-I

In an argon-filled glovebox, to a flame-dried 12 mL test tube equipped with a magnetic bar were added with Ni-I (0.1 equiv, 0.005 mmol), NaHCO₃ (1.0 equiv, 0.05 mmol) and $Ir[(dF(CF_3)ppy)]_2(dtbbpy)]PF_6$ (0.02 equiv, 1 µmol). To the reaction vial was added successively 100 µL of a stock solution of hydrosilane (2.0 equiv, 0.1 mmol), 100 µL of a stock solution of alkene (1.5 equiv, 0.075 mmol), and 200 µL of a stock solution of aroyl chloride (1.0 equiv, 0.05 mmol) in benzene and dry benzene (0.3 mL). The tube was sealed with a screw cap, removed from the glove box, irradiated with Kessil PR160-427 nm blue LED with 25% intensity, and stirred for 22 hours in a water bath set to 33°C. The crude reaction mixture was analyzed directly by ¹H-NMR using caffeine as an internal standard.

Control experiment with N-acylSuccinimide

The *N*-acylsuccinimide **1bb** was prepared following literature procedures.^[7]

In an argon-filled glovebox, to a flame-dried 12 mL test tube equipped with a magnetic bar were added with *N*-acylsuccinimide (1.0 equiv, 0.05 mmol), NaHCO₃ (1.0 equiv, 0.05 mmol), Ir[(dF(CF₃)ppy)]₂(dtbbpy)]PF₆ (0.02 equiv, 1 µmol), and LiCl (1.0 equiv, 0.05 mmol). To the reaction vial was added 100 µL of a dark purple solution of Ni(cod)₂ (0.1 equiv, 0.005 mmol) and 4,4[']-di-tertbutyl-2,2[']-bipyridine (0.15 equiv, 0.0075 mmol) in benzene which had been stirred for 15 minutes prior to use. This was followed successively by 100 µL of a stock solution of hydrosilane (2.0 equiv, 0.1 mmol),100 µL of a stock solution of alkene (1.5 equiv, 0.075 mmol) and dry benzene (0.2 mL). The tube was sealed with a screw cap, removed from the glove box, irradiated with Kessil PR160-427 nm blue LED with 25% intensity, and stirred for 22 hours in a water bath set to 33°C. The crude reaction mixture was analyzed directly by ¹H-NMR using caffeine as an internal standard.

In an argon-filled glovebox, to a flame-dried 12 mL test tube equipped with a magnetic bar were added with *N*-acylsuccinimide (1.0 equiv, 0.05 mmol), NaHCO₃ (1.0 equiv, 0.05 mmol), and $Ir[(dF(CF_3)ppy)]_2(dtbbpy)]PF_6$ (0.02 equiv, 1 µmol). To the reaction vial was added 100 µL of a dark purple solution of Ni(cod)₂ (0.1 equiv, 0.005 mmol) and 4,4[']-di-tert-butyl-2,2[']-bipyridine (0.15 equiv, 0.0075 mmol) in benzene which had been stirred for 15 minutes prior to use. This was followed successively by 100 µL of a stock solution of hydrosilane (2.0 equiv, 0.1 mmol),100 µL of a stock solution of alkene (1.5 equiv, 0.075 mmol) and dry benzene (0.2 mL). The tube was sealed with a screw cap, removed from the glove box, irradiated with Kessil PR160-427 nm blue LED with 25% intensity, and stirred for 22 hours in a water bath set to 33°C. The crude reaction mixture was analyzed directly by LC-MS and ¹H-NMR using caffeine as an internal standard. The desired product **4a** was not observed without LiCl additive, underscoring the essential role of chloride in this transformation.

V. Mechanistic investigation

Stern-Volmer Quenching Experiments

Procedure: Following stock solutions and samples were prepared in an argon-filled glovebox, and analyzed immediately.

Photocatalyst (0.1 mM): $Ir[(dF(CF_3)ppy)]_2(dtbbpy)]PF_6$ (0.90 mg, 0.8 µmol) in 8.0 mL 1,2-dichloroethane

4-tertbutyl benzoyl chloride (0.02 M): benzoyl chloride (15.6 μ L, 80 μ mol) in 4.0 mL 1,2-dichloroethane

Ethyl acrylate (0.02 M): Ethyl acrylate (8.5 µL, 80 µmol) in 4.0 mL 1,2-dichloroethane

TMS₃SiH (0.02 M): TTMSS (24.7 µL, 80 µmol) in 4.0 mL 1,2-dichloroethane

Ni(dtbbpy)(tBuPhCO)Cl (Ni-I) solution was prepared by mixing 0.04 mmol Ni(cod)₂ with 0.04 mmol dtbbpy in 10.0 mL 1,2-dichloroethane. After 30 min, 0.04 mmol 4-*tert* butybenzoyl chloride was then added. After 30 minutes, 1.0 mL of the mixture was transferred to a volumetric flask of 4.0 mL, and diluted to give a solution of (1.0 mM).

With the above solutions, the samples for the analysis were prepared as following.

4-*tert***butyl benzoyl chloride (1a) :** The process is the same as the above. The final concentrations of photocatalyst was 0.01 mM, and the concentrations of benzoyl chloride were 0.004 M, 0.008 M, 0.012 M, 0.016 M.

Ethyl acrylate (2a) : The process is the same as the above. The final concentrations of photocatalyst was 0.01 mM, and the concentrations of ethyl acrylate were 0.004 M, 0.008 M, 0.012 M, 0.016 M.

 TMS_3SiH (3a) : To four volumetric flasks of 4.0 mL were added 0.4 mL, 0.8 mL, 1.2 mL and 1.6 mL TMS_3SiH stock solution, followed by the addition of 0.2 mL of photocatalyst stock solution (0.1 mM). Then, the solutions were diluted to give the final concentration of 0.01 mM for photocatalyst, and of 0.004 M, 0.008 M, 0.012 M, 0.016 M for TMS_3SiH .

Ni(dtbbpy)(*t*BuPhCO)Cl (Ni-I) solution: The process is the same as the above. The final concentrations of photocatalyst was 0.01 mM, and the concentrations of Ni(dtbbpy)(*t*BuPhCO)Cl were 0.02 mM, 0.04 mM, 0.06 mM, 0.08 mM.

All solutions were excited at 405 nm and the fluorescence spectra was measured over the range of 420 -700 nm at low speed, among which the emission intensity was recorded at 469 nm.

It was clearly found that the Ni(dtbbpy)(*t*BuPhCO)Cl is the only reagent which could quench the emission of Ir photocatalyst. Other reagents such as TMS₃SiH could not quench the emission of the photocatalyst.

Figure S3. Quenching of the $Ir[(dF(CF_3)ppy)]_2(dtbbpy)]PF_6$ emission in the presence of increasing amount of Ni-I

Figure S4. Stern-Volmer quenching plot with Ni-I

Figure S5. Quenching of the $Ir[(dF(CF_3)ppy)]_2(dtbbpy)]PF_6$ emission in the presence of increasing amount of 1a

Figure S6. Quenching of the $Ir[(dF(CF_3)ppy)]_2(dtbbpy)]PF_6$ emission in the presence of increasing amount of **2a**

Figure S7. Quenching of the $Ir[(dF(CF_3)ppy)]_2(dtbbpy)]PF_6$ emission in the presence of increasing amount of **3a**

Figure S8. Stern-Volmer quenching plot with 'BuPhCOCl (1a), ethyl acrylate (2a), TTMSS (3a), and Ni-I.

References

(1) Kan, S. B. J.; Lewis, R. D.; Chen, K.; Arnold, F. H. Directed Evolution of Cytochrome c for Carbon-Silicon Bond Formation: Bringing Silicon to Life. *Science* **2016**, *354*, 1048–1051.

(2) Liang, H.; Wang, L.-J.; Ji, Y.-X.; Wang, H.; Zhang, B. Selective Electrochemical Hydrolysis of Hydrosilanes to Silanols via Anodically Generated Silyl Cations. *Angew. Chem. Int. Ed.* **2021**, *60*, 1839–1844.

(3) He, P.; Zhang, F.; Si, X.; Jiang, W.; Shen, Q.; Li, Z.; Zhu, Z.; Tang, S.; Gui, Q.-W. Visible-Light-Induced Aerobic Oxidation of Tertiary Silanes to Silanols Using Molecular Oxygen as an Oxidant. *Synthesis* **2023**, *55*, 765–772.

(4) Li, S.; Li, H.; Tung, C.-H.; Liu, L. Practical and Selective Bio-Inspired Iron-Catalyzed Oxidation of Si–H Bonds to Diversely Functionalized Organosilanols. *ACS Catal.* **2022**, *12*, 9143–9152.

(5) García-Domínguez, A.; Mondal, R.; Nevado, C. Dual Photoredox/Nickel-Catalyzed Three-Component Carbofunctionalization of Alkenes. *Angew. Chem. Int. Ed.* **2019**, *58*, 12286–12290.

(6) Sun, Z.; Kumagai, N.; Shibasaki, M. Photocatalytic α-Acylation of Ethers. Org. Lett. 2017, 19, 3727–3730.

(7) Lee, G. S.; Won, J.; Choi, S.; Baik, M.-H.; Hong, S. H. Synergistic Activation of Amides and Hydrocarbons for Direct C(sp³)–H Acylation Enabled by Metallaphotoredox Catalysis. *Angew. Chem. Int. Ed.* **2020**, *59*, 16933–16942.

VI. Compound Characterizations

Characterization of silylacylated products obtained in this study

ethyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3oxopropanoate (4a). Yield 76%. 19.3 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.89 (d, *J* = 8.6 Hz, 2H), 7.50 (d, *J* = 8.6 Hz, 2H), 4.32 (t, *J* = 6.7 Hz, 1H), 4.14 – 4.07 (m, 2H), 1.58 (dd, *J* = 14.7, 6.6 Hz, 1H), 1.39 (dd, *J* = 14.7, 6.8 Hz, 1H), 1.34 (s, 9H), 1.15 (t, *J* = 7.1 Hz, 3H), 0.18 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.9, 171.3, 157.7, 133.7, 128.9, 126.2, 61.7, 53.6, 35.5, 31.3, 14.2, 7.4, 1.3. HRMS (ESI⁺) m/z calcd. C₂₅H₄₈NaO₃Si₄⁺ [M+Na]⁺: 531.2578, found: 531.2578.

ethyl 3-(4-(*tert***-butyl)phenyl)-3-oxo-2-((***triethylsilyl***)methyl)propanoate (4b).** Yield 58%. 10.9 mg. Yellow oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 8.03 – 7.78 (m, 2H), 7.58 – 7.43 (m, 2H), 4.32 (t, *J* = 7.3 Hz, 1H), 4.10 (m, 2H), 1.37 – 1.30 (m, 9H), 1.24 (d, *J* = 7.2 Hz, 2H), 1.22 – 1.12 (m, 3H), 0.99 – 0.86 (m, 9H), 0.53 (m, 6H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.8, 171.6, 157.6, 133.7, 128.9, 126.1, 61.7, 50.1, 35.4, 31.2, 14.2, 11.6, 7.5, 3.8. HRMS (ESI⁺) m/z calcd. C₂₂H₃₇O₃Si⁺ [M+H]⁺: 377.2512, found: 377.2513.

ethyl 3-(4-(*tert*-butyl)phenyl)-3-oxo-2-((triisopropylsilyl)methyl)propanoate (4c). Yield 54%. 11.3 mg. Yellow oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.91 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.2 Hz, 2H), 4.43 (t, *J* = 6.7 Hz, 1H), 4.18 – 4.02 (m, 2H), 1.42 (dd, *J* = 15.3, 6.3 Hz, 1H), 1.34 (s, 9H), 1.28 (dd, *J* = 15.4, 7.0 Hz, 1H), 1.15 (t, *J* = 7.1 Hz, 3H), 1.04 (m, 21H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.9, 171.3, 157.7, 133.7, 128.9, 126.2, 61.7, 53.6, 35.5, 31.3, 14.2, 7.4, 1.3. HRMS (ESI⁺) m/z calcd. C₂₅H₄₃O₃Si⁺ [M+H]⁺: 419.2981, found: 419.2982.

ethyl 3-(4-(*tert*-butyl)phenyl)-2-((*tert*-butyldimethylsilyl)methyl)-3-oxopropanoate (4d). Yield 60%. 11.4 mg. Yellow oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.90 (d, J = 8.5 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 4.32 (m, 1H), 4.11 (m, 2H), 1.34 (s, 9H), 1.24 (m, 2H), 1.18 (t, J = 7.1 Hz, 3H), 0.89 (s, 9H), -0.04 (d, J = 15.2 Hz, 6H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.9, 171.5, 157.7, 133.7, 128.9, 126.1, 61.7, 50.3, 35.5, 31.2, 26.5, 16.9, 14.2, 12.32, -5.8, -5.9. HRMS (ESI⁺) m/z calcd. C₂₂H₃₇O₃Si⁺ [M+H]⁺: 377.2512, found: 377.2513.

ethyl 2-((benzyldimethylsilyl)methyl)-3-(4-(*tert*-butyl)**phenyl)-3-oxopropanoate (4e).** Yield 58%. 11.9 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.84 (d, *J* = 8.5 Hz, 2H), 7.49 (d, *J* = 8.6 Hz, 2H), 7.20 (t, *J* = 7.7 Hz, 2H), 7.10 – 7.04 (m, 1H), 7.04 – 6.97 (m, 2H), 4.26 (m, 1H), 4.10 (m, 2H), 2.12 (s, 2Hf), 1.35 (s, 9H), 1.24 (m, 2H), 1.17 (t, *J* = 7.1 Hz, 3H), -0.02 (m, 6H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.8, 171.4, 157.7, 140.2, 133.6, 128.9, 128.6, 128.5, 126.1, 124.5, 61.7, 50.0, 35.4, 31.18, 26.0, 14.8, 14.2, -3.0, -3.1. HRMS (ESI⁺) m/z calcd. C₂₅H₃₅O₃Si⁺ [M+H]⁺: 411.2355, found: 411.2355.

ethyl 3-(4-(*tert*-butyl)phenyl)-2-((isopropyldimethylsilyl)methyl)-3-oxopropanoate (4f). Yield 58%. 10.5 mg. Colorless oil. ¹H NMR (500 MHz, CD_2Cl_2) δ 7.90 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H), 4.31 (m, 1H), 4.10 (m, 2H), 1.34 (s, 9H), 1.22 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.95 (m, 6H), 0.78 (m, 1H), -0.05 (m, 6H). ¹³C NMR (125 MHz, CD_2Cl_2) δ 195.9, 171.5, 157.6, 133.7, 128.9, 126.1, 61.7, 50.2, 35.4, 31.2, 17.6, 14.2, 13.8, 13.4, -5.1, -5.2. HRMS (ESI⁺) m/z calcd. C₂₁H₃₅O₃Si⁺ [M+H]⁺: 363.2355, found: 363.2356.

ethyl 3-(4-(*tert***-butyl)phenyl)-3-oxo-2-((tribenzylsilyl)methyl)propanoate (4g).** Yield 57%. 16.0 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.67 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 8.6 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 6H), 7.10 (t, *J* = 7.5 Hz, 3H), 7.02 – 6.95 (m, 6H), 4.05 (m, 3H), 2.19 – 1.99 (m, 6H), 1.35 (s, 9H), 1.33 – 1.28 (m, 1H), 1.20 (m, 1H), 1.14 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.5, 171.3, 157.7, 139.3, 133.6, 129.0, 128.9, 128.8, 126.0, 124.9, 61.8, 49.3, 35.4, 31.2, 22.2, 14.1, 11.8. HRMS (ESI⁺) m/z calcd. C₃₇H₄₃O₃Si⁺ [M+H]⁺: 563.2981, found: 563.2984.

ethyl 3-(4-(*tert***-butyl)phenyl)-3-oxo-2-((triphenylsilyl)methyl)propanoate (4h).** Yield 60%. 15.6 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.64 (d, *J* = 8.1 Hz, 2H), 7.55 (m, 6H), 7.37 (m, 11H), 4.43 (m, 1H), 3.90 – 3.65 (m, 2H), 2.17 (dd, *J* = 15.3, 8.3 Hz, 1H), 2.07 (dd, *J* = 15.4, 5.9 Hz, 1H), 1.32 (s, 9H), 1.01 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.4, 170.8, 157.5, 136.2, 134.4, 133.5, 130.1, 128.9, 128.3, 125.8, 61.7, 49.9, 35.4, 31.2, 13.9, 12.8. HRMS (ESI⁺) m/z calcd. C₃₄H₃₆O₃ NaSi⁺ [M+Na]⁺: 543.2331, found: 543.2331.

ethyl 3-(4-(*tert***-butyl)phenyl)-2-((diisopropyl**(*o***-tolyl)silyl)methyl)-3-oxopropanoate (4i).** Yield 52%. 12.1 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 7.4 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.4 Hz, 1H), 4.28 (t, *J* = 6.9 Hz, 1H), 3.90 (m, 2H), 2.40 (s, 3H), 1.68 (dd, *J* = 15.5, 6.7 Hz, 1Hf), 1.62 (dd, *J* = 15.4, 6.9 Hz, 1H), 1.41 (m, 2H), 1.32 (s, 9H), 1.12 – 1.01 (m, 15H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.5, 171.3, 157.4, 144.7, 136.5, 133.9, 133.6, 130.7, 129.5, 128.8, 125.9, 125.1, 61.7, 50.0, 35.4, 31.2, 23.9, 18.9, 18.8, 14.0, 12.9, 12.7, 10.8. HRMS (ESI⁺) m/z calcd. C₂₉H₄₂O₃NaSi⁺ [M+Na]⁺: 489.2801, found: 489.2801.

ethyl 3-(4-(*tert*-butyl)phenyl)-2-(((4-methoxyphenyl)dimethylsilyl)methyl)-3-oxopropanoate (4j). Yield 60%. 12.8 mg. Colorless oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.84 – 7.72 (m, 2H), 7.50 – 7.34 (m, 4H), 6.93 – 6.83 (m, 2H), 4.23 (m, 1H), 4.01 (q, *J* = 7.1 Hz, 2H), 3.80 (s, 3H), 1.46 (dd, *J* = 14.8, 8.5 Hz, 1H), 1.33 (m, 10H), 1.13 (t, *J* = 7.1 Hz, 3H), 0.27 (m, 6H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.9, 171.3, 161.1, 157.5, 135.6, 133.5, 129.0, 128.9, 126.0, 113.9, 61.6, 55.4, 50.1, 35.4, 31.2, 16.2, 14.1, - 2.5, -2.5. HRMS (ESI⁺) m/z calcd. C₂₅H₃₄O₄NaSi⁺ [M+Na]⁺: 449.2124, found: 449.2124.

ethyl 3-(4-(*tert***-butyl)phenyl)-2-(((4-methoxyphenyl)diphenylsilyl)methyl)-3-oxopropanoate (4k).** Yield 54%. 14.8 mg. Colorless oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 7.2 Hz, 4H), 7.46 (d, *J* = 8.1 Hz, 2H), 7.42 – 7.26 (m, 8H), 6.89 (d, *J* = 8.1 Hz, 2H), 4.43 (dd, *J* = 8.1, 6.0 Hz, 1H), 3.93 – 3.68 (m, 5H), 2.15 (dd, *J* = 15.2, 8.1 Hz, 1H), 2.06 (dd, *J* = 15.2, 6.0 Hz, 1H), 1.33 (s, 9H), 1.03 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.4, 170.9, 161.5, 157.5, 137.7, 136.1, 134.9, 133.5, 130.0, 128.9, 128.3, 125.8, 124.8, 114.1, 61.7, 55.4, 49.9, 35.4, 31.2, 14.0, 13.1. HRMS (ESI⁺) m/z calcd. C₃₅H₃₈O₄NaSi⁺ [M+Na]⁺: 573.2437, found: 573.2437.

ethyl **3-(4-(***tert***-butyl)phenyl)-2-(((4-(***tert***-butyl)phenyl)diphenylsilyl)methyl)-3-oxopropanoate (4l). Yield 54%. 15.6 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) \delta 7.62 (d,** *J* **= 8.3 Hz, 2H), 7.58 – 7.54 (m, 4H), 7.48 (d,** *J* **= 7.9 Hz, 2H), 7.38 (m, 10H), 4.43 (dd,** *J* **= 8.1, 6.0 Hz, 1H), 3.82 (m, 1H), 3.78 – 3.71 (m, 1H), 2.15 (dd,** *J* **= 15.3, 8.1 Hz, 1H), 2.07 (dd,** *J* **= 15.3, 6.0 Hz, 1H), 1.40 – 1.19 (m, 18H), 1.01 (t,** *J* **= 7.1 Hz, 3H). ¹³C NMR (125 MHz, CD₂Cl₂) \delta 195.4, 170.9, 157.4, 153.2, 136.1, 136.1, 134.7, 133.5, 130.6, 130.0, 128.9, 128.3, 125.8, 125.3, 61.7, 49.9, 35.4, 35.0, 31.3, 31.2, 14.0, 12.9. HRMS (ESI⁺) m/z calcd. C₃₈H₄₄O₃NaSi⁺ [M+Na]⁺: 599.2957, found: 599.2956.**

ethyl 3-(4-(*tert*-butyl)phenyl)-2-((diisopropyl(4-(trimethylsilyl)phenyl)silyl)methyl)-3-oxopropanoate (4m). Yield 42%. 11.0 mg. Colorless oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.80 – 7.68 (m, 2H), 7.52 – 7.38 (m, 6H), 4.35 (t, *J* = 6.8 Hz, 1H), 3.96 (q, *J* = 7.1 Hz, 2H), 1.64 – 1.53 (m, 2H), 1.33 (m, 11H), 1.15 – 0.97 (m, 15H), 0.26 (s, 9H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.5, 171.4, 157.6, 141.6, 135.2, 134.7, 133.7, 132.9, 128.9, 126.0, 61.7, 50.0, 35.4, 31.2, 18.4, 18.3, 14.1, 11.7, 11.6, 9.8, -1.1. HRMS (ESI⁺) m/z calcd. C₃₁H₄₈O₃NaSi₂⁺ [M+Na]⁺: 547.3040, found: 547.3040.

ethyl 3-(4-(*tert*-butyl)phenyl)-2-((diphenyl(4-(trifluoromethyl)phenyl)silyl)methyl)-3-oxopropanoate (4n). Yield 60%. 17.6 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.68 (d, *J* = 7.7 Hz, 2H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.58 – 7.52 (m, 6H), 7.46 – 7.34 (m, 8H), 4.43 (t, *J* = 7.1 Hz, 1H), 3.85 (m, 1H), 3.77 (m, 1H), 2.22 – 2.11 (m, 2H), 1.31 (s, 9H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.1, 170.8, 157.7, 139.9, 136.6, 136.1, 133.5, 133.5, 130.4, 128.8, 128.5, 128.5, 125.9, 124.76 – 124.55 (m), 61.8, 49.7, 35.4, 31.1, 13.9, 12.6. ¹⁹F NMR (376 MHz, CD₂Cl₂) δ -63.3. HRMS (ESI⁺) m/z calcd. C₃₅H₃₅O₃F₃NaSi⁺ [M+Na]⁺: 611.2205, found: 611.2203.

ethyl 3-(4-(*tert***-butyl)phenyl)-2-(((4-cyanophenyl)diisopropylsilyl)methyl)-3-oxopropanoate (40).** Yield 50%. 12.1 mg. Colorless oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.76 (d, *J* = 8.1 Hz, 2H), 7.56 (m, 4H), 7.45 (d, *J* = 8.1 Hz, 2H), 4.33 (t, *J* = 6.9 Hz, 1H), 3.98 (q, *J* = 7.1 Hz, 2H), 1.69 (dd, *J* = 15.3, 7.0 Hz, 1H), 1.59 (dd, *J* = 15.4, 7.1 Hz, 1H), 1.41 – 1.25 (m, 11H), 1.15 – 0.96 (m, 15H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.0, 171.2, 157.8, 142.1, 135.9, 133.6, 131.1, 128.8, 126.0, 119.2, 113.0, 61.9, 49.7, 35.4, 31.2, 18.2, 18.2, 14.0, 11.5, 11.5, 9.4. HRMS (ESI⁺) m/z calcd. C₂₉H₃₉NO₃NaSi⁺ [M+Na]⁺: 500.2597, found: 500.2597.

ethyl 3-(4-(*tert*-butyl)phenyl)-2-(((4-fluorophenyl)diphenylsilyl)methyl)-3-oxopropanoate (4p). Yield 60%. 16.2 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.56 – 7.49 (m, 6H), 7.44 – 7.32 (m, 8H), 7.07 – 7.00 (m, 2H), 4.43 (dd, *J* = 7.9, 6.3 Hz, 1H), 3.89 – 3.73 (m, 2H), 2.16 (dd, *J* = 15.3, 7.9 Hz, 1H), 2.09 (dd, *J* = 15.3, 6.3 Hz, 1H), 1.32 (s, 9H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.3, 170.8, 164.5 (d, *J* = 248.9 Hz), 157.6, 138.4, 138.3, 136.1, 134.2 (d, *J* = 4.8 Hz), 133.5, 130.2, 130.0 (d, *J* = 3.7 Hz), 128.9, 128.4, 125.8, 115.4 (d, *J* = 19.8 Hz), 61.8, 49.8, 35.4, 31.2, 14.0, 12.9. ¹⁹F NMR (471 MHz, CD₂Cl₂) δ -111.6. HRMS (ESI⁺) m/z calcd. C₃₄H₃₅O₃F NaSi⁺ [M+Na]⁺: 561.2237, found: 561.2236.

ethyl 3-(4-(*tert***-butyl)phenyl)-2-(((3-chlorophenyl)diphenylsilyl)methyl)-3-oxopropanoate (4q).** Yield 51%. 14.2 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.67 – 7.62 (m, 2H), 7.54 (m, 4H), 7.49 (m, 1H), 7.45 – 7.33 (m, 10H), 7.29 (m, 1H), 4.43 (dd, *J* = 7.9, 6.2 Hz, 1H), 3.90 – 3.74 (m, 2H), 2.17 (dd, *J* = 15.5, 8.0 Hz, 1H), 2.10 (dd, *J* = 15.3, 6.1 Hz, 1H), 1.32 (s, 9H), 1.03 (m, 3H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.2, 170.8, 157.6, 137.5, 136.1, 135.6, 134.7, 134.3, 133.6, 133.5, 130.3, 130.1, 129.8, 128.9, 128.4, 125.9, 61.8, 49.7, 35.4, 31.2, 14.0, 12.7. HRMS (ESI⁺) m/z calcd. C₃₄H₃₅O₃NaSi Cl⁺ [M+Na]⁺: 577.1942, found: 577.1942.

ethyl 3-(4-(*tert***-butyl)phenyl)-2-((diisopropyl(phenylethynyl)silyl)methyl)-3-oxopropanoate (4r).** Yield 50%. 11.8 mg. Colorless oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.95 (d, *J* = 8.1 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.32 – 7.11 (m, 5H), 4.64 (t, *J* = 7.1 Hz, 1H), 4.09 (m, 2H), 1.45 (dd, *J* = 15.0, 7.3 Hz, 1H), 1.31 (m, 10H), 1.12 (m, 17H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.5, 171.4, 157.5, 134.7, 132.9, 132.2, 129.1, 128.5, 126.0, 123.2, 108.9, 89.8, 61.7, 50.5, 35.4, 31.2, 18.2, 18.1, 14.1, 12.7, 9.4, -1.1. HRMS (ESI⁺) m/z calcd. C₃₀H₄₀O₃NaSi⁺ [M+Na]⁺: 499.2644, found: 499.2645.

ethyl 3-(4-(*tert*-butyl)phenyl)-2-(((4-((2-(4-isobutylphenyl)propanoyl)oxy)phenyl)diphenylsilyl) methyl)-3-oxopropanoate (4s). Yield 51%. 18.5 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.64 – 7.58 (m, 2H), 7.57 – 7.49 (m, 6H), 7.42 – 7.32 (m, 8H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.16 (d, *J* = 7.9 Hz, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 4.42 (dd, *J* = 8.2, 5.9 Hz, 1H), 3.95 (q, *J* = 7.1 Hz, 1H), 3.82 (m, 1H), 3.78 – 3.70 (m, 1H), 2.48 (d, *J* = 7.2 Hz, 2H), 2.16 (dd, *J* = 15.3, 8.3 Hz, 1H), 2.06 (dd, *J* = 15.3, 5.9 Hz, 1H), 1.87 (m, 1H), 1.59 (d, *J* = 7.2 Hz, 3H), 1.32 (s, 9H), 1.01 (t, *J* = 7.1 Hz, 3H), 0.91 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.4, 173.4, 170.8, 157.5, 152.8, 141.3, 137.8, 137.4, 136.1, 134.2, 133.5, 131.9, 130.2, 129.9, 128.9, 128.4, 127.6, 125.9, 121.5, 61.7, 49.8, 45.6, 45.3, 35.4, 31.2, 30.6, 22.5, 18.8, 13.9, 12.9. HRMS (ESI⁺) m/z calcd. C₄₇H₅₂O₅NaSi⁺ [M+Na]⁺: 747.3482, found: 747.3483.

2-isopropyl-5-methylcyclohexyl 4-((2-(4-(*tert***-butyl)benzoyl)-3-ethoxy-3-oxopropyl)dimethylsilyl) benzoate (4t).** Yield 57%. 16.5 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.99 – 7.94 (m, 2H), 7.73 (t, *J* = 8.2 Hz, 2H), 7.58 (d, *J* = 7.7 Hz, 2H), 7.43 (dd, *J* = 8.5, 2.5 Hz, 2H), 4.92 (td, *J* = 10.9, 4.4 Hz, 1H), 4.24 (m, 1H), 4.05 – 3.93 (m, 2H), 2.11 (m, 1H), 2.03 – 1.90 (m, 1H), 1.78 – 1.71 (m, 2H), 1.62 – 1.53 (m, 2H), 1.51 (m, 1H), 1.43 (m, 1H), 1.33 (s, 9H), 1.20 – 1.11 (m, 5H), 0.99 – 0.90 (m, 7H), 0.79 (m, 3H), 0.35 – 0.30 (m, 6H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.7, 171.2, 166.3, 157.7, 144.5, 134.1, 133.5, 131.9, 128.8, 128.8, 126.0, 75.2, 61.7, 50.0, 47.7, 41.4, 35.4, 34.7, 31.9, 31.2, 27.0, 24.1, 22.2, 20.9, 16.7, 15.7, 14.1, -2.7. HRMS (ESI⁺) m/z calcd. C₃₅H₅₀O₅NaSi⁺ [M+Na]⁺: 601.3325, found: 601.3325.

(1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-((2-(4-(*tert*-butyl)benzoyl)-3-ethoxy-3-oxo propyl)dimethylsilyl)benzoate (4u). Yield 60%. 17.2 mg. Colorless oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.99 (d, *J* = 7.6 Hz, 2H), 7.74 (d, *J* = 8.1 Hz, 2H), 7.59 (d, *J* = 7.6 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 5.21 – 5.01 (m, 1H), 4.25 (t, *J* = 7.4 Hz, 1H), 4.00 (q, *J* = 7.1 Hz, 2H), 2.46 (m, 1H), 2.15 (m, 1H), 1.82 (m, 1H), 1.74 (m, 1H), 1.55 – 1.22 (m, 14H), 1.15 – 1.09 (m, 3H), 0.98 (s, 3H), 0.92 (m, 6H), 0.33 (m, 6H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.7, 171.2, 167.0, 157.7, 144.6, 134.1, 133.5, 131.9, 128.9, 128.8, 126.0, 80.9, 61.7, 50.0, 49.4, 48.2, 45.5, 37.3, 35.4, 31.2, 28.4, 27.7, 19.9, 19.1, 15.7, 14.1, 13.8, -2.7. HRMS (ESI⁺) m/z calcd. C₃₅H₄₉O₅Si⁺ [M+H]⁺: 577.3349, found: 577.3348.

methyl 3-(4-(*tert***-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(***trimethylsilyl***)***trisilan-2-yl***)methyl)-3-oxopropanoate (4aa).** Yield 77%. 19.1 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.94 – 7.81 (m, 2H), 7.58 – 7.44 (m, 2H), 4.42 – 4.28 (m, 1H), 3.65 (s, 3H), 1.59 – 1.52 (m, 1H), 1.42 (m, 1H), 1.34 (s, 9H), 0.17 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.8, 171.7, 157.8, 133.5, 128.9, 126.2, 53.3, 52.8, 35.5, 31.2, 7.6, 1.3. HRMS (ESI⁺) m/z calcd. C₂₄H₄₆O₃NaSi₄⁺ [M+Na]⁺: 517.2422, found: 517.2422.

tert-butyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl) meth yl)-3-oxopropanoate (4ab). Yield 66%. 17.7 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.87 (m, 2H), 7.49 (m, 2H), 4.19 (m, 1H), 1.61 (m, 1H), 1.34 (m, 9H), 1.32 (m, 9H), 1.31 – 1.28 (m, 1H), 0.17 (m, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.0, 170.7, 157.5, 134.1, 128.8, 126.0, 81.9, 54.6, 35.4, 31.2, 27.9, 6.6, 1.2. HRMS (ESI⁺) m/z calcd. C₂₇H₅₂O₃NaSi₄⁺ [M+Na]⁺: 559.2891, found: 559.2891.

butyl 3-(4-(*tert***-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3oxopropanoate (4ac).** Yield 61%. 16.3 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.89 (m, 2H), 7.50 (m, 2H), 4.32 (m, 1H), 4.04 (m, 2H), 1.60 (m, 1H), 1.53 – 1.45 (m, 2H), 1.39 (m, 1H), 1.34 (s, 9H), 1.25 – 1.16 (m, 2H), 0.82 (m, 3H), 0.18 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.8, 171.4, 157.7, 133.8, 128.9, 126.1, 65.5, 53.6, 35.5, 31.2, 30.9, 19.4, 13.8, 7.2, 1.3. HRMS (ESI⁺) m/z calcd. C₂₇H₅₂O₃NaSi₄⁺ [M+Na]⁺: 559.2891, found: 559.2890.

phenyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanoate (4ad). Yield 57%. 15.9 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.97 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.3 Hz, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.25 – 7.19 (m, 1H), 6.96 (d, J = 8.7 Hz, 2H), 4.57 – 4.54 (m, 1H), 1.72 – 1.61 (m, 1H), 1.56 – 1.49 (m, 1H), 1.36 (s, 9H), 0.22 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.8, 170.2, 158.1, 151.2, 133.4, 129.8, 129.0, 126.4, 126.3, 121.7, 53.6, 35.5, 31.2, 7.5, 1.3. HRMS (ESI⁺) m/z calcd. C₂₉H₄₈O₃NaSi₄⁺ [M+Na]⁺: 579.2578, found: 579.2579.

benzyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanoate (4ae). Yield 79%. 22.5 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.85 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 7.27 (m, 3H), 7.17 (m, 2H), 5.08 (d, *J* = 4.4 Hz, 2H), 4.36 (t, *J* = 6.7 Hz, 1H), 1.62 (dd, *J* = 14.7, 6.9 Hz, 1H), 1.40 (dd, *J* = 14.7, 6.4 Hz, 1H), 1.34 (s, 9H), 0.17 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.5, 171.1, 157.8, 136.0, 133.6, 128.9, 128.8, 128.5, 128.4, 126.1, 67.3, 53.5, 35.4, 31.2, 7.3, 1.3. HRMS (ESI⁺) m/z calcd. C₃₀H₅₀O₃NaSi₄⁺ [M+Na]⁺: 593.2735, found: 593.2736.

2-methoxyethyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl) methyl)-3-oxopropanoate (4af). Yield 79%. 21.2 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.90 (d, J = 8.6 Hz, 2H), 7.50 (d, J = 8.6 Hz, 2H), 4.35 (t, J = 6.6 Hz, 1H), 4.19 (m, 2H), 3.49 – 3.41 (m, 2H), 3.21 (s, 3H), 1.61 (dd, J = 14.7, 6.9 Hz, 1H), 1.40 (dd, J = 14.7, 6.4 Hz, 1H), 1.34 (s, 9H), 0.18 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.5, 171.4, 157.7, 133.6, 128.9, 126.1, 70.5, 64.7, 59.0, 53.5, 35.5, 31.2, 7.3, 1.3. HRMS (ESI⁺) m/z calcd. C₂₆H₅₀O₄NaSi₄⁺ [M+Na]⁺: 561.2684, found: 561.2683.

tert-butyl 4-((3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl) methyl)-3-oxopropanoyl)oxy)piperidine-1-carboxylate (4ag). Yield 76%. 25.2 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.87 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 4.90 (m, 1H), 4.32 (t, J = 6.6 Hz, 1H), 3.37 – 3.25 (m, 2H), 3.25 – 3.14 (m, 2H), 1.68 (m, 2H), 1.58 (m, 2H), 1.52 – 1.42 (m, 2H), 1.40 (s, 9H), 1.34 (s, 9H), 0.18 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.8, 170.7, 157.8, 154.8, 133.8, 128.9, 126.2, 79.6, 75.5, 70.9, 35.5, 31.2, 30.6, 30.4, 28.5, 7.0, 1.3. HRMS (ESI⁺) m/z calcd. C₃₃H₆₁NO₅NaSi₄⁺ [M+Na]⁺: 686.3524, found: 686.3525.

ethyl 6-((3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl) -3-oxopropanoyl)oxy)hexanoate (4ah). Yield 79%. 24.6 mg. Colorless oil. ¹H NMR (600 MHz, CD_2Cl_2) δ 7.89 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.6 Hz, 2H), 4.32 (t, J = 6.7 Hz, 1H), 4.16 – 3.99 (m, 4H), 2.18 (t, J = 7.6 Hz, 2H), 1.62 – 1.55 (m, 1H), 1.52 (m, 4H), 1.39 (m, 1H), 1.34 (s, 9H), 1.22 (m, 5H), 0.17 (s, 27H). ¹³C NMR (125 MHz, CD_2Cl_2) δ 194.7, 173.6, 171.3, 157.7, 133.7, 128.9, 126.1, 65.5, 60.5, 53.5, 35.5, 34.4, 31.2, 28.5, 25.7, 24.8, 14.5, 7.3, 1.3. HRMS (ESI⁺) m/z calcd. $C_{31}H_{58}O_5NaSi_4^+$ [M+Na]⁺: 645.3259, found: 645.3259.

2-hydroxyethyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl) methyl)-3-oxopropanoate (4ai). Yield 71%. 18.6 mg. Colorless oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.89 (d, *J* = 8.5 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 4.37 (dd, *J* = 7.9, 5.8 Hz, 1H), 4.25 (m, 1H), 4.14 (m, 1H), 3.85 – 3.44 (m, 2H), 1.91 (s, 1H), 1.52 (dd, *J* = 14.7, 5.8 Hz, 1H), 1.45 (dd, *J* = 14.6, 7.8 Hz, 1H), 1.34 (s, 9H), 0.19 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.8, 171.4, 158.1, 133.3, 129.0, 126.3, 67.2, 61.2, 53.7, 35.5, 31.2, 7.6, 1.3. HRMS (ESI⁺) m/z calcd. C₂₅H₄₈O₄NaSi₄⁺ [M+Na]⁺: 547.2527, found: 547.2527.

(tetrahydro-2*H*-pyran-2-yl)methyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimeth ylsilyl)trisilan-2-yl)methyl)-3-oxopropanoate (4aj). Yield 75%. 21.7 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.95 – 7.84 (m, 2H), 7.55 – 7.45 (m, 2H), 4.48 – 4.24 (m, 1H), 4.01 (m, 2H), 3.93 – 3.72 (m, 1H), 3.34 (m, 1H), 3.25 (m, 1H), 1.78 – 1.72 (m, 1H), 1.63 (m, 1H), 1.44 – 1.35 (m, 5H), 1.34 (s, 9H), 1.15 (m, 1H), 0.17 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.5, 171.3, 157.7, 133.7, 129.0, 126.1, 75.6, 68.5, 68.2, 53.5, 35.4, 31.2, 28.2, 26.2, 23.3, 7.2, 1.3. HRMS (ESI⁺) m/z calcd. C₂₉H₅₅O₄Si₄⁺ [M+H]⁺: 579.3177, found: 579.3177.

*N-(tert-***butyl)-3-(4-(***tert-***butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(***trimethylsilyl***)***trisilan-2-yl***) methyl)-3-oxopropanamide (4ak).** Yield 54%. 14.5 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 8.14 – 7.81 (m, 2H), 7.64 – 7.32 (m, 2H), 5.35 (s, 1H), 4.14 (dd, *J* = 8.8, 4.1 Hz, 1H), 1.69 (dd, *J* = 14.4, 8.8 Hz, 1H), 1.34 (s, 9H), 1.33 – 1.29 (m, 1H), 1.20 (s, 9H), 0.15 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 197.9, 169.5, 157.7, 134.1, 129.1, 126.0, 58.0, 51.6, 35.5, 31.2, 28.6, 8.5, 1.2. HRMS (ESI⁺) m/z calcd. C₂₇H₅₄NO₂Si₄ + [M+H]⁺: 536.3232, found: 536.3233.

2-isopropyl-5-methylcyclohexyl 3-(4-(*tert***-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethyl silyl)trisilan-2-yl)methyl)-3-oxopropanoate (4al).** Yield 51%. 15.8 mg. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.89 – 7.82 (m, 2H), 7.53 – 7.41 (m, 2H), 4.55 (td, J = 10.7, 4.2 Hz, 1H), 4.32 – 4.21 (m, 1H), 1.83 (m, 1H), 1.80 – 1.70 (m, 1H), 1.66 – 1.57 (m, 3H), 1.50 – 1.39 (m, 2H), 1.34 (s, 9H), 1.24 (m, 1H), 1.03 – 0.77 (m, 6H), 0.75 – 0.69 (m, 3H), 0.51 (m, 3H), 0.17 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 193.6, 170.7, 157.6, 134.0, 128.7, 126.1, 74.9, 53.9, 47.3, 40.5, 34.5, 31.7, 31.2, 25.9, 23.2, 22.1, 20.9, 15.8, 6.7, 1.2.HRMS (ESI⁺) m/z calcd. C₃₃H₆₂O₃NaSi₄⁺ [M+Na]⁺: 641.3674, found: 641.3675.

10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H***cyclopenta[a]phenanthren-3-yl 3-(4-(***tert***-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethyl silyl)trisilan-2-yl)methyl)-3-oxopropanoate (4am).** Yield 54%. 22.9 mg. White solid. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.87 (d, *J* = 8.1 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 5.33 (m, 1H), 4.54 (m, 1H), 4.27 (t, *J* = 6.5 Hz, 1H), 2.19 (m, 2H), 2.05 – 1.89 (m, 2H), 1.89 – 1.75 (m, 2H), 1.75 – 1.65 (m, 1H), 1.65 – 1.40 (m, 9H), 1.34 (m, 15H), 1.13 (m, 10H), 0.91 (m, 4H), 0.86 (m, 6H), 0.67z (s, 3H), 0.17 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.5, 170.4, 157.2, 139.6, 139.5, 133.4, 128.5, 125.7, 122.6, 74.9, 56.7, 56.1, 50.0, 42.3, 39.7, 39.5, 37.8, 37.6, 36.9, 36.5, 36.2, 35.8, 35.0, 31.9, 30.8, 28.2, 28.0, 27.5, 27.3, 24.2, 23.8, 22.5, 22.3, 21.0, 19.0, 18.5, 11.6, 6.6, 0.9. HRMS (ESI⁺) m/z calcd. C₅₀H₈₈O₃NaSi₄⁺ [M+Na]⁺: 871.5708, found: 871.5707.

13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropa noate (4an). Yield 60%. 21.9 mg. Colorless oil. ¹H NMR (500 MHz, CD_2Cl_2) δ 7.96 (d, *J* = 8.1 Hz, 2H), 7.55 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 8.5 Hz, 1H), 6.72 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.65 (d, *J* = 2.6 Hz, 1H), 4.52 (t, *J* = 6.7 Hz, 1H), 2.86 (m, 2H), 2.45 (m, 1H), 2.37 (m, 1H), 2.27 (m, 1H), 2.16 – 1.95 (m, 3H), 1.90 (m, 1H), 1.71 – 1.39 (m, 8H), 1.36 (s, 9H), 0.88 (s, 3H), 0.21 (s, 27H). ¹³C NMR (125 MHz, CD_2Cl_2) δ 194.8, 170.4, 158.1, 149.0, 138.7, 138.3, 133.4, 129.0, 126.7, 126.3, 121.6, 121.6, 118.7, 53.6, 50.8, 48.2, 44.6, 38.4, 36.2, 35.5, 32.0, 31.2, 29.8, 26.7, 26.2, 21.9, 14.1, 7.4, 1.3. HRMS (ESI⁺) m/z calcd. $C_{41}H_{64}O_4NaSi_4^+$ [M+Na]⁺: 755.3779, found: 755.3779.

4-allyl-2-methoxyphenyl 3-(4-(*tert***-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)tri silan-2-yl)methyl)-3-oxopropanoate (4ao).** Yield 51%. 16.0 mg. Colorless oil. ¹H NMR (600 MHz, CD_2Cl_2) δ 8.12 – 7.93 (m, 2H), 7.54 (d, J = 8.5 Hz, 2H), 6.82 (d, J = 8.0 Hz, 1H), 6.76 – 6.67 (m, 2H), 5.95 (ddt, J = 16.8, 10.0, 6.7 Hz, 1H), 5.17 – 4.98 (m, 2H), 4.55 (dd, J = 7.9, 5.0 Hz, 1H), 3.57 (s, 3H), 3.35 (d, J = 6.8 Hz, 2H), 1.82 (dd, J = 14.7, 7.9 Hz, 1H), 1.54 (dd, J = 14.7, 4.9 Hz, 1H), 1.36 (s, 9H), 0.20 (s, 27H). ¹³C NMR (125 MHz, CD_2Cl_2) δ 193.7, 169.9, 157.8, 151.3, 139.9, 138.2, 137.5, 133.8, 129.1, 126.1, 122.5, 120.7, 116.2, 113.0, 55.7, 53.3, 40.4, 35.5, 31.2, 7.2, 1.2. HRMS (ESI⁺) m/z calcd. $C_{33}H_{54}O_4NaSi_4^+$ [M+Na]⁺: 649.2997, found: 649.2995.

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxo-3-phenyl propan oate (4ap). Yield 75%. 16.9 mg. Colorless oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.95 (d, *J* = 7.8 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.3 Hz, 2H), 4.33 (m, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 1.59 (m, 1H), 1.45 – 1.36 (m, 1H), 1.14 (t, *J* = 7.2, 3H), 0.17 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.2, 171.2, 136.3, 133.8, 129.1, 129.0, 61.8, 53.6, 14.1, 7.3, 1.2. HRMS (ESI⁺) m/z calcd. C₂₁H₄₀O₃NaSi₄⁺ [M+Na]⁺: 475.1952, found: 475.1954.

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxo-3-(*p*-tolyl) propan oate (4aq). Yield 69%. 16.1 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 4.31 (t, *J* = 6.7 Hz, 1H), 4.11 (m, 2H), 2.42 (s, 3H), 1.60 (dd, *J* = 14.7, 6.8 Hz, 1H), 1.39 (dd, *J* = 14.7, 6.6 Hz, 1H), 1.15 (t, *J* = 7.1 Hz, 3H), 0.18 (s, 27H). ¹³C NMR (150 MHz, CD₂Cl₂) δ 194.7, 171.3, 144.9, 133.8, 129.9, 129.1, 61.7, 53.5, 21.8, 14.2, 7.4, 1.3. HRMS (ESI⁺) m/z calcd. C₂₂H₄₃O₃Si₄⁺ [M+H]⁺: 467.2289, found: 467.2290.

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-(4-methoxyphenyl)-3oxopropanoate (4ar). Yield 68%. 16.5 mg. Colorless oil. ¹H NMR (600 MHz, CD_2Cl_2) δ 7.98 – 7.92 (m, 2H), 6.99 – 6.94 (m, 2H), 4.29 (t, J = 6.7 Hz, 1H), 4.10 (m, 2H), 3.87 (s, 3H), 1.59 (dd, J = 14.7, 6.8 Hz, 1H), 1.39 (dd, J = 14.7, 6.5 Hz, 1H), 1.16 (t, J = 7.1 Hz, 3H), 0.17 (s, 27H). ¹³C NMR (125 MHz, CD_2Cl_2) δ 193.6, 171.4, 164.3, 131.3, 129.3, 114.3, 61.7, 56.0, 53.3, 14.2, 7.4, 1.3. HRMS (ESI⁺) m/z calcd. $C_{22}H_{43}O_4Si_4^+$ [M+H]⁺: 483.2238, found: 483.2240.

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxo-3-(4-(trifluoro meth oxy)phenyl)propanoate (4as). Yield 60%. 16.1 mg. Colorless oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.24 – 7.73 (m, 2H), 7.32 (m, 2H), 4.29 (m, 1H), 4.19 – 3.99 (m, 2H), 1.60 (m, 1H), 1.41 (m, 1H), 1.14 (t, *J* = 7.2 Hz, 3H), 0.18 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 193.7, 170.9, 153.2 (d, *J* = 3.1 Hz), 134.7, 131.1, 120.9, 62.0, 53.9, 14.1, 7.2, 1.3. ¹⁹F NMR (471 MHz, CD₂Cl₂) δ -58.0. HRMS (ESI⁺) m/z calcd. C₂₂H₃₉O₄F₃NaSi₄⁺ [M+Na]⁺: 559.1775, found: 559.1774.

ethyl 3-(4-fluorophenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxo propanoate (4at). Yield 63%. 14.8 mg. Colorless oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.00 (m, 2H), 7.17 (m, 2H), 4.28 (t, *J* = 6.7 Hz, 1H), 4.10 (m, 2H), 1.59 (dd, *J* = 14.7, 6.9 Hz, 1H), 1.39 (dd, *J* = 14.7, 6.3 Hz, 1H), 1.14 (t, *J* = 7.1 Hz, 3H), 0.17 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 193.6, 171.0, 166.3 (d, *J* = 254.6 Hz), 132.8 (d, *J* = 3.2 Hz), 131.7 (d, *J* = 9.3 Hz), 116.2 (d, *J* = 22.0 Hz), 61.9, 53.7, 14.1, 7.3, 1.2. ¹⁹F NMR (376 MHz, CD₂Cl₂) δ -105.5. HRMS (ESI⁺) m/z calcd. C₂₁H₃₉O₃FNaSi₄⁺ [M+Na]⁺: 493.1858, found: 493.1858.

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-(3-methoxyphenyl)-3oxopropanoate (4au). Yield 63%. 15.2 mg. Colorless oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.52 (d, J = 7.8 Hz, 1H), 7.49 (s, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.14 (m, 1H), 4.31 (t, J = 6.6 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.85 (s, 3H), 1.59 (dd, J = 14.6, 6.8 Hz, 1H), 1.38 (dd, J = 14.7, 6.5 Hz, 1H), 1.15 (t, J = 7.1 Hz, 3H), 0.17 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.0, 171.2, 160.5, 137.7, 130.1, 121.4, 120.2, 113.3, 61.8, 55.8, 53.7, 14.1, 7.3, 1.2. HRMS (ESI⁺) m/z calcd. C₂₂H₄₂O₄NaSi₄⁺ [M+Na]⁺: 505.2058, found: 505.2059.

ethyl 3-([1,1'-biphenyl]-3-yl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3oxopropanoate (4av). Yield 72%. 19.1 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 8.22 (s, 1H), 7.94 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.85 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.67 – 7.62 (m, 2H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.43 – 7.37 (m, 1H), 4.41 (t, *J* = 6.7 Hz, 1H), 4.20 – 4.05 (m, 2H), 1.64 (dd, *J* = 14.7, 6.7 Hz, 1H), 1.44 (dd, *J* = 14.7, 6.6 Hz, 1H), 1.16 (t, *J* = 7.1 Hz, 3H), 0.19 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 195.2, 171.2, 142.3, 140.4, 136.9, 132.4, 129.6, 129.4, 128.3, 127.8, 127.6, 127.5, 61.9, 53.8, 14.2, 7.4, 1.3. HRMS (ESI⁺) m/z calcd. C₂₇H₄₄O₃NaSi₄⁺ [M+Na]⁺: 551.2265, found: 551.2266.

ethyl 3-(3-fluorophenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxo propanoate (4aw). Yield 60%. 14.1 mg. Colorless oil. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.76 (m, 1H), 7.66 (m, 1H), 7.49 (m, 1H), 7.31 (m, 1H), 4.28 (t, *J* = 6.6 Hz, 1H), 4.12 (m, 2H), 1.60 (dd, *J* = 14.7, 6.9 Hz, 1H), 1.40 (dd, *J* = 14.7, 6.4 Hz, 1H), 1.15 (t, *J* = 7.2 Hz, 3H), 0.18 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.0, 170.9, 163.4 (d, *J* = 247.7 Hz), 138.5 (d, *J* = 6.3 Hz), 131.0 (d, *J* = 7.7 Hz), 124.8 (d, *J* = 2.9 Hz), 120.8 (d, *J* = 21.6 Hz), 115.6 (d, *J* = 22.6 Hz), 62.0, 53.9, 14.1, 7.3, 1.3. ¹⁹F NMR (376 MHz, CD₂Cl₂) δ -112.2. HRMS (ESI⁺) m/z calcd. C₂₁H₃₉O₃FNaSi₄⁺ [M+Na]⁺: 493.1858, found: 493.1859.

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxo-3-(3-(trifluoromethyl)phenyl)propanoate (4ax). Yield 52%. 13.5 mg. Colorless oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.23 (s, 1H), 8.15z (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.66 (t, *J* = 7.9 Hz, 1H), 4.36 – 4.29 (m, 1H), 4.11 (q, *J* = 7.2 Hz, 2H), 1.63 – 1.55 (m, 1H), 1.47 – 1.37 (m, 1H), 1.14 (t, *J* = 7.2 Hz, 3H), 0.17 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.1, 170.6, 136.9, 132.2, 130.2, 130.2, 130.0, 125.8, 125.8, 62.1, 14.1, 7.2, 1.2. ¹⁹F NMR (471 MHz, CD₂Cl₂) δ -63.2. HRMS (ESI⁺) m/z calcd. C₂₂H₃₉O₃F₃NaSi₄⁺ [M+Na]⁺: 543.1826, found: 543.1827.

methyl 3-(3-ethoxy-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanoyl)benzoate (4ay). Yield 60%. 15.3 mg. White solid. ¹H NMR (600 MHz, CD₂Cl₂) δ 8.59 (s, 1H), 8.25 (d, *J* = 7.7 Hz, 1H), 8.15 (d, *J* = 7.8 Hz, 1H), 7.60 (t, *J* = 7.8 Hz, 1H), 4.37 (t, *J* = 6.7 Hz, 1H), 4.12 (q, *J* = 7.2 Hz, 2H), 3.93 (s, 3H), 1.57 (dd, *J* = 14.7, 6.4 Hz, 1H), 1.43 (dd, *J* = 14.6, 6.9 Hz, 1H), 1.15 (t, *J* = 7.1 Hz, 3H), 0.18 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 194.7, 170.8, 166.3, 136.6, 134.5, 133.0, 131.5, 129.9, 129.5, 61.9, 53.7, 52.7, 14.1, 7.3, 1.3. HRMS (ESI⁺) m/z calcd. C₂₃H₄₂O₅NaSi₄⁺ [M+Na]⁺: 533.2007, found: 533.2006.

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxo-3-(*o*-tolyl)propanoate (4az). Yield 55%. 12.8 mg. White solid. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.59 (d, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.28 (m, 2H), 4.18 (m, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 2.45 (s, 3H), 1.42 (m, 2H), 1.11 (t, *J* = 7.1 Hz, 3H), 0.17 (s, 27H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 199.3, 170.9, 139.0, 137.5, 132.3, 131.8, 128.4, 126.0, 61.6, 56.2, 21.0, 14.1, 6.7, 1.2, 1.2. HRMS (ESI⁺) m/z calcd. C₂₂H₄₂O₃Na Si₄⁺ [M+Na]⁺: 489.2109, found: 489.2107.

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-(2-methoxyphenyl)-3oxopropanoate (4ba). Yield 40%. 9.7 mg. White solid. ¹H NMR (600 MHz, CD_2Cl_2) δ 7.72 (m, 1H), 7.49 (m, 1H), 7.11 – 6.87 (m, 2H), 4.41 (m, 1H), 4.14 – 3.99 (m, 2H), 3.87 (s, 3H), 1.75 – 1.53 (m, 1H), 1.25 (m, 1H), 1.22 – 1.03 (m, 3H), 0.16 (s, 27H). ¹³C NMR (125 MHz, CD_2Cl_2) δ 196.5, 171.9, 158.8, 134.3, 131.4, 127.2, 121.1, 112.0, 61.2, 57.5, 55.6, 14.2, 6.3, 1.2. HRMS (ESI⁺) m/z calcd. C₂₂H₄₂O₄Na Si₄⁺ [M+Na]⁺: 505.2058, found: 505.2058.

Appendix /

Spectral Copies of ¹H, ¹³C, and ¹⁹F NMR Data

Obtained in this study

4-(diisopropylsilyl)benzonitrile (30).

50 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 7 f1 (ppm)

ethyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanoate (4a).

125 MHz, ¹³C NMR in CD₂Cl₂

50 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 7 f1 (ppm)

125 MHz, ¹³C NMR in CD₂Cl₂

125 MHz, ¹³C NMR in CD₂Cl₂

ethyl 3-(4-(tert-butyl)phenyl)-3-oxo-2-((triphenylsilyl)methyl)propanoate (4h).

ро 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

ethyl 3-(4-(*tert*-butyl)phenyl)-2-((diisopropyl(*o*-tolyl)silyl)methyl)-3-oxopropanoate (4i).

125 MHz, ¹³C NMR in CD₂Cl₂

ethyl 3-(4-(*tert*-butyl)phenyl)-2-(((4-methoxyphenyl)diphenylsilyl)methyl)-3-oxopropanoate (4k).

125 MHz, ¹³C NMR in CD₂Cl₂

125 MHz, ¹³C NMR in CD₂Cl₂

125 MHz, ¹³C NMR in CD₂Cl₂

125 MHz, ¹³C NMR in CD₂Cl₂

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

376 MHz, ¹⁹F NMR in CD₂Cl₂

ethyl 3-(4-(*tert*-butyl)phenyl)-2-(((4-cyanophenyl)diisopropylsilyl)methyl)-3-oxopropanoate (40).

125 MHz, ¹³C NMR in CD₂Cl₂

ethyl 3-(4-(*tert*-butyl)phenyl)-2-(((4-fluorophenyl)diphenylsilyl)methyl)-3-oxopropanoate (4p).

125 MHz, ¹³C NMR in CD₂Cl₂

-111.56

-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 f1 (ppm)

ethyl 3-(4-(*tert*-butyl)phenyl)-2-(((3-chlorophenyl)diphenylsilyl)methyl)-3-oxopropanoate (4q).

125 MHz, ¹³C NMR in CD₂Cl₂

ethyl 3-(4-(*tert*-butyl)phenyl)-2-((diisopropyl(phenylethynyl)silyl)methyl)-3-oxopropanoate (4r).

125 MHz, ¹³C NMR in CD₂Cl₂

ethyl 3-(4-(*tert*-butyl)phenyl)-2-(((4-((2-(4-isobutylphenyl)propanoyl)oxy)phenyl)diphenylsilyl) methyl)-3-oxopropanoate (4s).

125 MHz, ¹³C NMR in CD₂Cl₂

2-isopropyl-5-methylcyclohexyl 4-((2-(4-(*tert*-butyl)benzoyl)-3-ethoxy-3-oxopropyl)dimethylsilyl) benzoate (4t).

125 MHz, ¹³C NMR in CD₂Cl₂

(1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-((2-(4-(*tert*-butyl)benzoyl)-3-ethoxy-3-oxo propyl)dimethylsilyl)benzoate (4u).

125 MHz, ¹³C NMR in CD₂Cl₂

methyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanoate (4aa).

125 MHz, ¹³C NMR in CD₂Cl₂

125 MHz, ¹³C NMR in CD₂Cl₂

butyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanoate (4ac).

125 MHz, ¹³C NMR in CD₂Cl₂

phenyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanoate (4ad).

100 f1 (ppm)

125 MHz, ¹³C NMR in CD₂Cl₂

benzyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanoate (4ae).

125 MHz, ¹³C NMR in CD₂Cl₂

2-methoxyethyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanoate (4af).

125 MHz, ¹³C NMR in CD₂Cl₂

125 MHz, ¹³C NMR in CD₂Cl₂

125 MHz, ¹³C NMR in CD₂Cl₂

125 MHz, ¹³C NMR in CD₂Cl₂

N-(*tert*-butyl)-3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanamide (4ak).

125 MHz, ¹³C NMR in CD₂Cl₂

2-isopropyl-5-methylcyclohexyl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanoate (4al).

125 MHz, ¹³C NMR in CD₂Cl₂

10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[a]phenanthren-3-yl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethyl silyl)trisilan-2-yl)methyl)-3-oxopropanoate (4am).

125 MHz, ¹³C NMR in CD₂Cl₂

13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl 3-(4-(*tert*-butyl)phenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3oxopropanoate (4an).

125 MHz, ¹³C NMR in CD₂Cl₂

125 MHz, ¹³C NMR in CD₂Cl₂

125 MHz, ¹³C NMR in CD₂Cl₂

150 MHz, ¹³C NMR in CD₂Cl₂

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-(4-methoxyphenyl)-3-oxopropanoate (4ar).

125 MHz, ¹³C NMR in CD₂Cl₂

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxo-3-(4-(trifluoromethoxy)phenyl)propanoate (4as).

125 MHz, ¹³C NMR in CD₂Cl₂

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

471 MHz, ¹⁹F NMR in CD₂Cl₂

ethyl 3-(4-fluorophenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxo propanoate (4at).

125 MHz, ¹³C NMR in CD₂Cl₂

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

376 MHz, ¹⁹F NMR in CD₂Cl₂

-105.50

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-(3-methoxyphenyl)-3-oxopropanoate (4au).

¹²⁵ MHz, ¹³C NMR in CD₂Cl₂

ethyl 3-([1,1'-biphenyl]-3-yl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanoate (4av).

125 MHz, ¹³C NMR in CD₂Cl₂

ethyl 3-(3-fluorophenyl)-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxopropanoate (4aw).

125 MHz, ¹³C NMR in CD₂Cl₂

 $\frac{1}{20} + \frac{1}{10} + \frac{1}{20} + \frac{1}{10} + \frac{1}{20} + \frac{1}{10} + \frac{1}{10}$

-112.23

S92

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxo-3-(3-(trifluoromethyl)phenyl)propanoate (4ax).

125 MHz, ¹³C NMR in CD₂Cl₂

-63.20

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

471 MHz, ¹⁹F NMR in CD₂Cl₂

methyl 3-(3-ethoxy-2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3oxopropanoyl)benzoate (4ay).

100 f1 (ppm)

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-oxo-3-(o-tolyl)propanoate (4az).

125 MHz, ¹³C NMR in CD₂Cl₂

ethyl 2-((1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)methyl)-3-(2-methoxyphenyl)-3-oxopropanoate (4ba).

125 MHz, ¹³C NMR in CD₂Cl₂