SUPPORTING INFORMATION

Synergistically Activating Nucleophile Strategy Enabled Organocatalytic Asymmetric P-Addition of Cyclic Imines

Hongkui Zhang,^{1,3,#} Jian-Ping Tan,^{1,4,#} Xiaoyu Ren,¹ Fan Wang,¹ Jia-Yan Zheng,¹

Jiajia He,¹ Yu Feng,³ Zhipeng Xu,^{2,*} Zhishan Su,¹ and Tianli Wang^{1,*}

E-mail: zpxu@scu.edu.cn; wangtl@scu.edu.cn

1. General information	2
2. Optimizations of reaction conditions	3
3. Preparation of catalysts.	6
4. Preparation of cyclic imines and phosphine oxides 2	13
5. Representative procedure for asymmetric <i>P</i> -nucleophile addition	17
6. Investigation of the absolute stereochemistry	
7. Gram-scale preparations and transformations	103
8. Mechanistic studies	106
9. References	

^[1] Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

^[2] College of Water Resource and Hydropower, Sichuan University, Chengdu 610064, P. R. China.

^[3] School of Materials Science & Engineering, Changzhou University, Changzhou, 213164, P. R. China

^[4] Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China

^[*] These authors contributed equally to this work.

1. General information

All the starting materials were obtained from commercial sources and used without further purification unless otherwise stated. ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III HD (400 MHz) spectrometer in CDCl₃. Chemical shifts (δ) are reported in ppm, and the residual solvent peak was used as an internal reference CDCl₃ [δ (¹H) = 7.26 ppm, δ (¹³C) = 77.0 ppm]. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br s (broad singlet). Coupling constants (*J*) were reported in Hertz (Hz). CD spectra were acquired using a J-1500 CD spectrometer and an Applied Photophysics Chirascan spectrometer. All high resolution mass spectra were obtained on a Thermo LTQ mass spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Flash chromatographic separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel. Enantiomeric excesses were determined by HPLC analysis using chiral column described below in detail. Optical rotations were measured with polarimeter.

All the cyclic imines 1/1', 6 listed in Figure S2 were synthesized following general procedures D,^[4] E,^[5] and F.^[6] Phosphine oxides 2a, 2g, 3a, 3b, 3c and 3d were obtained from commercial sources, and other phosphine oxides 2 were synthesized following the previous reported literature and listed in Figure S3.^[3] All the phosphonium salt catalysts used in this study were prepared via a P-alkylation reaction of our previously reported organophosphines according to the known procedures.^[1] The structure and absolute configurations of products were assigned by optical rotation analysis of 5'b and 5'j (Figure S4), and CD analysis of compound 4a, 5a, 7a and 7g were tested and calculated (Figure S5-8).

2. Optimizations of reaction conditions

2.1 Optimization for asymmetric P-nucleophile addition to cyclic N-sulfonyl imines 1a with secondary phosphine oxides 2a

Table S1. The asymmetric **P**-nucleophile addition to cyclic ketimine **1a** with diphenylphosphine oxide **2a** catalyzed by different chiral phosphonium salts in DCE.^a

	0 °,⊊O _,N +	O ^{II} Ph-P-Ph	cat. (10 mol	<u>%)</u>	
	CO₂Et	Η	DCE, rt, t		EtO ₂ C
1a	-	2a			4a
entry	cat.	base(x equiv.)	t (h)	yield $(\%)^b$	ee (%) ^c
1	P0	K ₂ CO ₃ (1.0)	1	98	0
2	-	-	2	83	0
3	P1	-	2	90	34
4	P2	-	2	92	53
5	P3	-	2	90	71
6	P4	-	2	93	90
7	P5	-	2	86	68
8	P6	-	2	92	86
9	P7	-	2	87	83
⊕⊝ Ph₂Me₂PI	NHTs	OVNH	PPh₂Me IH	R PPh₂Me I S NH	⊖ → S → NH ⊕ PPh₂BnBr
		E-C CE-	, ''NHBoc	HN	HN
P0	P1	P2	P3	P4 : R = ^{<i>i</i>} Pr; P5 : R = M P6 : R = ^{<i>t</i>} Bu	e P7

^{*a*}Reactions were performed with **1a** (0.1 mmol), **2a** (0.12 mmol), catalyst (10 mol%) in solvent (1.0 mL) at room temperature. ^{*b*}Isolated yield. ^{*c*}The ee value was determined by HPLC analysis on a chiral stationary phase. Ts = 4-toluenesulfonyl. DCE = 1,2-dichloroethane.

Table S2. The asymmetric **P**-nucleophile addition to cyclic ketimine **1a** with diphenylphosphine oxide **2a** catalyzed by **P4** : screening solvents and other conditions.^{*a*}

entry	solvent	base(x equiv.)	t (h)	yield $(\%)^b$	ee (%) ^c
1	CH_2Cl_2	-	2	93	90
2	CHCl ₃	-	2	94	73
3	Et ₂ O		2	89	88
4	toluene		2	88	93
5	hexane		4	90	75
6	DCE		2	95	>99
7^d	DCE	K ₂ CO ₃ (1.0)	0.5	92	<5
8 ^e	DCE	$K_2CO_3(0.5)$	1	96	75
9 ^f	DCE	-	2.5	92	89

^{*a*}Reactions were performed with **1a** (0.1 mmol), **2a** (0.12 mmol), **P4** (10 mol%) in solvent (1.0 mL) at room temperature. ^{*b*}Isolated yield. ^{*c*}The ee value was determined by HPLC analysis on a chiral stationary phase. ^{*d*}1.0 equivalent of K₂CO₃ was added. ^{*e*}0.5 equivalent of K₂CO₃ was added. ^{*f*}The catalyst loading was 5 mol%. Ts = 4-toluenesulfonyl. c

2.2 Optimization for asymmetric P-nucleophile addition to cyclic N-sulfonyl imines 1a with secondary phosphine oxides 3a

Table S3. The asymmetric **P**-nucleophile addition to cyclic ketimine **1a** with $(PhO)_2P(O)H$ **3a** catalyzed by different chiral phosphonium salts in CH₂Cl₂. ^{*a*}

$ \begin{array}{c} $	O II IP-OPh H H 3a	cat. (10 mol%) CH₂Cl₂, rt, 24h	O S NH EtO ₂ C 5a
entry	cat.	yield $(\%)^b$	ee (%) ^c
1	P1	90	2
2	P2	88	85
3	P3	91	62
4	P4	92	88
5	P5	90	70
6	P6	89	80
7	P7	92	38

^{*a*}Reactions were performed with **1a** (0.1 mmol), **3a** (0.12 mmol), catalyst (10 mol%) in CH₂Cl₂ (2.0 mL) at room temperature. ^{*b*}Isolated yield. ^{*c*}Determined by HPLC analysis on a chiral stationary phase.

0 S = 0 N R 1a, R = CO₂Et 1'a, R = H	$ \begin{array}{cccc} & 0 & & 0 \\ & & & & & \\ & & & & & \\ & & & & & $		P4 (10 mol%) solvent, rt, 24h	→ NH R 5a, R = CO ₂ Et 5'k, R = H		
entry	ketimine	solvent	t (h)	yield $(\%)^b$	ee (%) ^c	
1	1a	CH_2Cl_2	24	92	88	
2	1a	CHCl ₃	24	92	73	
3	1a	DCE	24	95	91	
4	1a	hexane	48	91	95	
5	1a	toluene	24	96	>99	
6^d	1a	toluene	24	93	90	
7	1'a	toluene	-	-	-	
8 ^e	1'a	toluene	54	91	88	
9^e	1'a	DCE	48	92	90	
10^e	1'a	CH_2Cl_2	48	95	98	
$11^{d,e}$	1'a	CH_2Cl_2	48	94	89	

Table S4. The asymmetric **P**-nucleophile addition to cyclic ketimine **1a** with $(PhO)_2P(O)H$ **3a** catalyzed by **P4**: screening of the solvents, and catalyst Loading. ^{*a*}

^{*a*}Reactions were performed with **1a** (0.1 mmol), **3a** (0.12 mmol), **P4** (10 mol%) in solvent (2.0 mL) at room temperature. ^{*b*}Isolated yield. ^{*c*}Determined by HPLC analysis on a chiral stationary phase. ^{*d*}With 5 mol% catalyst **P4**. ^{*e*}2.0 equiv. of Cs₂CO₃ was added.

3.1 Optimization of reaction conditions for the asymmetric P-nucleophile addition to CF₃-substituted cyclic N-sulfonyl amines 6a with secondary phosphine oxides 2a

Table S5. The asymmetric **P**-nucleophile addition to cyclic ketimine **6a** with diphenylphosphine oxide **2a**: screening different chiral phosphonium salts and other conditions.^{*a*}

1	P1	-30	24	90	4
2	P2	-30	24	93	4
3	P3	-30	24	89	24
4	P4	-30	24	92	71
5	P5	-30	24	92	56
6	P6	-30	24	90	0
7	P7	-30	24	92	23
8	P4	-50	24	90	63
9 ^d	P4	-30	30	93	94
10^d	P4	-78	48	92	92
11 ^{d,e}	P4	-30	48	92	28

^{*a*}Reactions were performed with **6a** (0.1 mmol), **2a** (0.12 mmol), catalyst (10 mol%) in CH₂Cl₂ (1.0 mL). ^{*b*}Isolated yield. ^{*c*}Determined by HPLC analysis on a chiral stationary phase. ^{*d*}3.0 mL CH₂Cl₂ was used. ^{*e*}With 5 mol% catalyst **P4**.

3. Preparation of catalysts.

All the catalysts listed in Figure S1 were synthesized following general procedures A^[1], B and C^[2]. The catalysts **P1-P4** are known compounds, and their characterization data were in agreement with those reported in the literature.^[1,2] Unknown compounds **P5- P7, P4-1, P4-2, P4-3 and P4-4** were fully characterized.

Figure S1. Phosphonium salt catalysts in this study. 6 / 218

(1) General procedure A: preparation of phosphonium salt P1

General procedure A: To a solution of phosphine SP1 (1 mmol, 425 mg) in CH₂Cl₂ (10 mL) was slowly added the methyl iodide solution (4 mmol, 568 mg, 2.0 M in CH₂Cl₂). Then the mixture was allowed to stir at room temperature for 2 h. The reaction crude mixture was directly purified by flash chromatography dichloromethane/ methanol = 20/1 to afford the desired chiral phosphonium salt P1 as a yellow solid (93% yield). The phosphonium salts P2-P6 were prepared from the above procedure by using the corresponding phosphines as reactants.^[1]

(2) General procedure B: preparation of phosphonium salt P7

General procedure B: To a solution of phosphine **SP7** (1 mmol, 424 mg) in toluene was slowly added the benzyl bromide solution (1.2 mmol, 204 mg, 2.0 M in toluene). Then, the mixture was refluxed in toluene for 12 h. The reaction crude mixture was directly purified by flash chromatography dichloromethane/methanol = 20/1 to afford the desired chiral phosphonium salt **P7** as a white solid (95% yield).

(3) General procedure C: preparation of phosphonium salts P4-1

General procedure C: To a solution of compound **A** (0.4 mmol, 114 mg) in anhydrous CH_2Cl_2 was cooled to 0 °C, and a solution of **B** (0.48 mmol, 73.4 mg) in CH_2Cl_2 was added dropwise.^[2] Then, the reaction mixture was stirred at room temperature for 6 hours. The reaction crude mixture was directly purified by flash chromatography (petroleum ether/ethyl acetate = 5/1) to afford **SP4-1** (95% yield) as a colorless solid. To a solution of phosphine **SP4-1** (1.0 mmol, 438mg) in CH_2Cl_2 was slowly added the methyl iodide solution (4.0 mmol, 568 mg, 2.0 M in CH_2Cl_2). Then, the mixture was allowed to stir at room temperature for 24 h. The reaction crude mixture was directly purified by flash chromatography dichloromethane/methanol = 20/1 to afford the desired chiral phosphonium salt **P4-1** as a yellow solid (70% yield) was fully characterized.

(4) General procedure C: preparation of phosphonium salts P4-2

To a solution of chiral phosphonium salt P4 (0.1 mmol) in anhydrous tolunne was quickly added AgBF₄ (0.3 mmol). Then, the mixture was allowed to stir at room temperature for 3 h. The reaction crude mixture was directly purified by flash chromatography dichloromethane/methanol = 20/1 to afford the desired chiral phosphonium salt P4-2 as a yellow solid (85% yield). chiral phosphonium salt P4-2, P4-3 and P4-4 were fully characterized.

Characterization of the unknown phosphonium salts

(S)-(2-(3-(4-fluorophenyl)thioureido)propyl)(methyl)diphenylphosphonium iodide (P5)

A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.71 (d, J = 8.8 Hz, 1H), 7.89 - 7.81 (m, 2H), 7.81 - 7.69 (m, 4H), 7.70 - 7.61 (m, 4H), 7.44 - 7.31 (m, 2H), 7.01 - 6.87 (m, 2H), 5.33 - 5.19 (m, 1H), 3.79 (dt, J = 15.5, 11.0 Hz, 1H), 3.11 - 2.97 (m, 1H), 2.85 (d, J = 13.9 Hz, 3H), 1.48 (dd, J = 6.6, 2.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 180.34, 160.12 (d, J = 242.9 Hz), 135.14 (d, J = 2.9 Hz), 134.88 (d, J = 2.9 Hz), 134.59 (d, J = 2.5 Hz), 132.39 (d, J = 10.2 Hz), 132.25 (d, J = 10.0 Hz), 130.52 (d, J = 6.4 Hz), 130.40 (d, J = 6.6 Hz), 126.11 (d, J = 8.0 Hz), 119.50 (d, J = 8.4 Hz), 118.65 (d, J = 8.7 Hz), 115.15 (d, J = 22.4 Hz), 45.22 (d, J = 4.1 Hz), 30.94 (d, J = 51.5 Hz), 23.64 (d, J = 14.0 Hz), 8.62 (d, J = 53.7 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 20.94; HRMS (ESI) m/z calcd for C₂₃H₂₅N₂PSFI [M-I]⁺ = 411.1460, found = 411.1466.

(S)-(2-(3-(4-fluorophenyl)thioureido)-3,3-

dimethylbutyl)(methyl)diphenylphosphonium iodide (P6)

A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.88 (d, J = 9.8 Hz, 1H), 7.90 - 7.79 (m, 3H), 7.80 - 7.67 (m, 5H), 7.67 - 7.59 (m, 2H), 7.56 - 7.48 (m, 2H), 7.03 - 6.90 (m, 2H), 4.95 - 4.85 (m, 1H), 3.95 - 3.77 (m, 1H), 2.89 (d, J = 14.1 Hz, 3H), 2.75 (t, J = 14.8 Hz, 1H), 1.01 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 181.84, 160.21 (d, J = 242.7 Hz), 135.52 (d, J = 3.0 Hz), 135.04 (d, J = 2.6 Hz), 134.88 (d, J = 3.0 Hz), 132.55 (d, J = 9.5 Hz), 132.24 (d, J = 10.3 Hz), 130.61 (d, J = 7.7 Hz), 130.48 (d, J = 8.0 Hz), 126.18 (d, J = 8.1 Hz), 121.20, 120.35, 118.14, 117.28, 115.18 (d, J = 22.4 Hz), 56.29 (d, J = 4.5 Hz), 37.36 (d, J = 11.7 Hz), 26.32, 26.15 (d, J = 53.4 Hz), 8.09 (d, J = 53.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 24.13; HRMS (ESI) m/z calcd for C₂₆H₃₁N₂PSFI [M-I]⁺ = 453.1930, found = 453.1924.

(S)-benzyl(2-(3-(4-fluorophenyl)thioureido)-3-methylbutyl)

diphenylphosphonium bromide (P7)

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 9.29 (s, 1H), 9.20 (d, J = 9.4 Hz, 1H), 7.78 - 7.68 (m, 3H), 7.65 - 7.49 (m, 7H), 7.42 - 7.34 (m, 2H), 7.22 - 7.18 (m, 1H), 7.13 (t, J = 7.6 Hz, 2H), 6.93 - 6.82 (m, 4H), 5.25 - 5.08 (m, 1H), 4.88 - 4.66 (m, 2H), 3.55 - 3.42 (m, 1H), 2.69 - 2.56 (m, 1H), 2.04 - 1.92 (m, 1H), 0.94 (t, J = 6.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 181.06, 159.71 (d, J = 242.3 Hz), 135.13 (d, J = 2.7 Hz), 135.03 (d, J = 2.7 Hz), 134.62 (d, J = 2.7 Hz), 133.36 (d, J = 2.7 Hz), 133.27 (d, J = 2.5Hz), 130.38 (d, J = 5.7 Hz), 130.11 (d, J = 9.8 Hz), 129.99 (d, J = 10.1 Hz), 129.23 (d, J = 3.1 Hz), 129.02, 128.73 (d, J = 3.6 Hz), 128.21, 126.89 (d, J = 8.5 Hz), 125.48 (d, J = 8.0 Hz), 118.68, 117.86, 117.52, 116.69, 114.76 (d, J = 22.3 Hz), 52.66 (d, J = 4.3Hz), 34.78 (d, J = 12.6 Hz), 28.91 (d, J = 44.8 Hz), 25.38 (d, J = 51.5 Hz), 18.41 (d, J= 18.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 24.29; HRMS (ESI) m/z calcd for C₃₁H₃₃N₂PSFBr [M-Br]⁺ = 515.2081, found = 515.2080.

(S)-(2-(3-(4-fluorophenyl)-1-

methylthioureido)propyl)(methyl)diphenylphosphonium iodide (P4-1)

A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.11 - 7.88 (m, 4H), 7.78 - 7.59 (m, 6H), 7.33 - 7.29 (m, 1H), 7.08 - 6.88 (m, 2H), 6.75 - 6.61 (m, 1H), 5.85 (dd, J = 22.0, 6.8 Hz, 1H), 4.49 - 4.25 (m, 1H), 3.22 (s, 1H), 2.92 (dd, J = 22.0, 10.8 Hz, 3H), 2.80 (s, 1H), 1.63 (s, 1H), 1.31 - 1.20 (m, 3H), 1.05 - 0.92 (m, 3H), 0.91 - 0.85 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 183.05, 159.61, 135.44, 134.91, 132.67 (dd, J = 13.4, 10.0 Hz), 130.39, 130.26 (d, J = 1.5 Hz), 130.12, 128.60 (d, J = 8.2 Hz), 115.89, 115.26 (d, J = 22.5 Hz), 100.10, 60.51, 34.43, 32.79 (d, J = 12.8 Hz), 29.80, 19.67 (d, J = 145.9 Hz), 15.95, 8.93 (d, J = 53.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 21.55; HRMS (ESI) m/z calcd for C₂₆H₃₁N₂PSFI [M-I]⁺ = 453.1924, found = 453.1920.

(S)-(2-(3-(4-fluorophenyl)thioureido)propyl)(methyl)diphenylphosphonium tetrafluoroborate (P4-2)

A white solid; ¹H NMR (400 MHz, CD₃OD) δ 7.87 - 7.57 (m, 10 H), 7.56 - 7.51 (m, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.11 - 7.04 (m, 1H), 6.95 - 6.88 (m, 1H), 5.67 (d, *J* = 10.0 Hz, 1H), 3.30 - 3.21 (m, 2H), 3.11 - 3.00 (m, 1H), 2.72 - 2.65 (m, 3H), 2.36 (s, 1H), 1.03 (dd, *J* = 6.8, 2.8 Hz, 1H), 0.95 (d, *J* = 6.8 Hz, 3H), 0.65 (dd, *J* = 11.6, 7.2 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 160.97, 158.59, 156.81, 145.13, 140.16, 136.38 (d, *J* = 2.8 Hz), 135.90 (d, *J* = 3.0 Hz), 135.52 (dd, *J* = 10.6, 3.1 Hz), 135.30 (d, *J* = 3.0 Hz), 133.63 (d, *J* = 9.8 Hz), 133.40 - 132.91 (m), 127.70, 126.29 (d, *J* = 8.5 Hz), 123.10, 122.46 (d, *J* = 45.6 Hz), 121.80 (d, *J* = 7.5 Hz), 120.97 (dd, *J* = 85.7, 45.0 Hz), 117.16 (d, *J* = 23.3 Hz), 116.00 (d, *J* = 22.5 Hz), 55.60 (d, *J* = 4.9 Hz), 35.59 (d, *J* = 13.2 Hz), 33.98 (d, *J* = 11.0 Hz), 28.77 (d, *J* = 53.3 Hz), 25.90 (d, *J* = 53.7 Hz), 21.40, 17.94 (dd, *J* = 223.9, 87.6 Hz), 6.70 (dd, *J* = 101.3, 54.8 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 23.18; HRMS (ESI) *m/z* calcd for C₂₅H₂₉BN₂PSF₅ [M-BF₄]⁺ = 439.1768, found = 439.1766.

(S)-(2-(3-(4-fluorophenyl)thioureido)propyl)(methyl)diphenylphosphonium hexafluorophosphate(V) (P4-3)

A white solid; ¹H NMR (400 MHz, CD₃OD) δ 7.89 - 7.75 (m, 6H), 7.74 - 7.64 (m, 4H), 7.62 - 7.57 (m, 1H), 7.36 - 7.30 (m, 1H), 7.14 - 6.93 (m, 2H), 4.82 (s, 3H), 3.34 -

3.29 (m, 1H), 3.10 - 2.97 (m, 1H), 2.83 (d, J = 14.0 Hz, 1H), 2.72 (dd, J = 14.4, 3.6 Hz, 2H), 2.40 (s, 1H), 1.05 - 0.97 (m, 3H), 0.69 (dd, J = 10.8, 6.8 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 145.18, 140.04, 135.92 (d, J = 2.9 Hz), 135.63 (dd, J = 7.2 4.0 Hz), 133.55 (d, J = 9.8 Hz), 133.23 (dd, J = 10.1, 6.3 Hz), 131.47 - 130.79 (m), 128.10 (d, J = 8.3 Hz), 127.71, 122.10 (d, J = 86.2 Hz), 120.73 (d, J = 86.1 Hz), 116.68 (d, J = 23.1 Hz), 36.22 (d, J = 13.2 Hz), 33.96 (d, J = 10.9 Hz), 26.04 (d, J = 53.3 Hz), 21.42, 18.89 (d, J = 78.3 Hz), 17.15 (d, J = 128.6 Hz), 7.17 (dd, J = 54.9, 9.8 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 23.13; HRMS (ESI) *m*/*z* calcd for C₂₅H₂₉N₂P₂SF₇ [M-BF₆]⁺ = 439.1768, found = 439.1768.

(S)-1-(4-fluorophenyl)-3-(1-(methyl(nitro)diphenylphosphoranyl)propan-2yl)thiourea (P4-4)

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.90 - 7.75 (m, 6H), 7.70 - 7.60 (m, 6H), 7.49 - 7.46 (m, 1H), 6.95 - 6.91 (m, 1H), 5.08 - 4.87 (m, 1H), 3.83 - 3.57 (m, 1H), 3.01 (d, *J* = 14.0 Hz, 1H), 2.91 - 2.81 (m, 3H), 2.37 (s, 1H), 2.09 - 2.00 (m, 1H), 1.249 - 1.19 (m, 1H), 0.99 (dd, *J* = 10.8, 6.8 Hz, 6H), 0.78 (d, *J* = 6.8 Hz, 1H), 0.65 (d, *J* = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 181.34, 160.06 (d, *J* = 242.5 Hz), 143.33, 139.27, 135.27 (dd, *J* = 40.1, 3.0 Hz), 135.07 (dd, *J* = 47.9, 2.9 Hz), 132.71 - 132.08 (m), 130.87 - 130.07 (m), 129.72, 126.47, 126.00 (d, *J* = 80. Hz), 121.51 (d, *J* = 85.7 Hz), 119.22 (dd, *J* = 166.6, 85.5 Hz), 117.36 (d, *J* = 84.5 Hz), 115.07 (d, *J* = 22.4 Hz), 53.15 (d, *J* = 4.5 Hz), 34.69 (d, *J* = 12.8 Hz), 32.90 (d, *J* = 12.2 Hz), 26.92 (d, *J* = 53.1 Hz), 20.51 (d, *J* = 224.6 Hz), 18.42, 8.86 (dd, *J* = 117.1, 53.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 23.16; HRMS (ESI) *m*/*z* calcd for C₂₅H₂₉N₃O₂PSF [M-NO₂]⁺ = 439.1768, found = 439.1760.

4. Preparation of cyclic imines 1/1' and 6 and phosphine oxides 2

All cyclic ketimines 1/1' and 6 listed in Figure S2 were prepared following general procedures A^[4], B^[5] and C^[6]. All the phosphine oxides 2 were listed in Figure S3. Phosphine oxides 2a, 2f, 2g, 3a, 3b, 3c and 3d were obtained from commercial sources, other phosphine oxides were synthesized following the previous reported literature. All the cyclic imines 1/1' and 6 and phosphine oxides 2 were known compounds.

Figure S2. Substrates of cyclic imines 1/1' and 6

Figure S3. Substrates of phosphine oxides 2.

4.1 Preparation of cyclic imines 1/1' and 6

(1) General procedure D: preparation of cyclic imines 1

General procedure D: To a solution of tert-butylamine (30 mmol, 2.9 g) and triethylamine (40 mmol, 4.1 g) in DCM in an ice bath was added arylsulfonyl chloride (20 mmol, 3.8 g) dropwise. The mixture was stirred at room temperature overnight. It was washed with saturated sodium carbonate and brine. The organic layer was separated, and the aqueous layer was extracted with DCM. The combined organic extracts were dried over anhydrous sodium sulfate. The solvent was evaporated in vacuo to give the aryl sulfonamide as a solid without further purification.

n-butyllithium (30.75 mmol, 12.3 mL, 2.5 M in hexane) was added dropwise over a 20 minute period to a cold (0 $^{\circ}$ C), mechanically stirred solution of the aryl sulfonamide (15 mmol) in anhydrous tetrahydrofuran (100 mL) under a dry nitrogen atmosphere. After stirring an additional 25 min at 0 $^{\circ}$ C a precipitate formed. The suspension was cooled further to -78 $^{\circ}$ C and diethyl oxalate (45 mmol, 6.6 g) was added. The cooling bath was removed and the suspension was stirred at ambient temperature for 2 h. The reaction was quenched with 5% HCl (40 mL) and added to water (200 mL). The organics were extracted with diethyl ether (200 mL). The diethyl ether phase was washed with brine (200 mL). The solvent was removed and the crude product was obtained used directly in the next step.

To the crude product obtained above, formic acid (25 mL) was added and the suspension was stirred at room temperature under a dry nitrogen atmosphere. After 5 min dissolution occurred. After 20 h the solution was concentrated and the resultant solid was dissolved in DCM and concentrated (three times) to remove traces of formic acid. This afforded the title compound as a white solid which was further purified by flash chromatography.

(2) General procedure E: preparation of cyclic imines 1'

$$\rightarrow NH_2 \qquad \xrightarrow{\text{TsCl}} NHTs \qquad \xrightarrow{1) \ ^n\text{BuLi, DMF}} NHTs \qquad \xrightarrow{1) \ ^n\text{BuLi, DMF}} 1'a$$

General procedure E: To a solution of tert-butylamine (30 mmol, 2.9 g) and triethylamine (40 mmol, 4.1 g) in CH_2Cl_2 in an ice bath was added arylsulfonyl chloride (20 mmol, 3.4 g) dropwise. The mixture was stirred at room temperature overnight. It was washed with saturated sodium carbonate and brine. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 . The combined organic extracts were dried over anhydrous sodium sulfate. The solvent was evaporated in vacuo to give the aryl sulfonamide as a solid without further purification.

The N-tert-butylbenzenesulfonamide (20 mmol, 4.5 g) in tetrahydrofuran (100 mL) held at -78 °C under nitrogen atmosphere was added dropwise a 1.6 M solution of n-butyllithium in tetrahydrofuran (44 mmol, 27 mL). After stirred at -20 °C for 0.5 h, the yellow mixture was placed at -78 °C and dimethyl formamide (30 mmol, 15mL) was added. The solution was allowed to stir for 4 h, then warm slowly to room temperature. Saturated aqueous ammonium chloride (100 mL) was added, the mixture was transferred to a separatory funnel with EA, and the organic phase was separated. The aqueous phase was extracted with EA (3×50 mL) and the organic extracts were combined, washed with brine (80 mL), dried over anhydrous sodium sulfate. The resulting mixture was concentrated in vacuo and further purification was performed by a short silica gel column.

Subsequently, to a solution of the above crude product in toluene, p-toluenesulfonic acid (0.2 mmol, 40 mg) was added. The mixture was stirred at 110 °C for 5 h. The yellow oil was purified by a silica gel column eluted with PE/EA = 2/1 to give pure product as a yellow solid (58% yield).

(3) General procedure F: Preparation of *in situ* cyclic imine 6

General procedure F: n-Butyllithium (32 mmol, 13 mL, 2.5 M in hexance) was added dropwise over 20 minutes period to a cold (0 °C), mechanically stirred solution of the aryl sulfonamide (15 mmol, 3.4 g) in anhydrous tetrahydrofuran (100 ml) under a dry nitrogen atmosphere. After stirring an additional 25 min at 0 °C a precipitate formed. The suspension was cooled further to -78 °C and ethyl trifluoroacetate (45 mmol, 6.4 g) was added dropwise over 10 minutes. The resulting mixture was allowed to stir for 4 h at -30 °C and 2 h at ambient temperature. The reaction was quenched with 5% HCl (40 ml) and extracted with ether (50×3 mL). The combined ether phase was washed with brine (200 mL), dried over anhydrous Na₂SO₄. The solvent was removed and the crude product was obtained which can be used directly in the next step or purified by column chromatography (DCM/PE = 1/3-1/1).

To the crude product obtained above, TFA (75 mol) in toluene (20 mL) was added and the resulting mixture was stirred at 135 °C in sealed tube. After 2-3 h the solution was concentrated and the resultant solid was dissolved in CH₂Cl₂ (150 mL) and washed with saturated NaHCO₃ (50×2 mL) to remove traces of TFA. Then the organic phase was washed with brine and dried over Na₂SO₄. The solvent was removed and the obtained crude product was further purified by flash chromatography (PE/EA = 8/1-3/1) to give pure product as a white solid (68% yield).

4.2 General procedure G: Preparation of phosphine oxides 2

General procedure G: Aryl bromide (10 mol, 1.6 g) in THF was added slowly to a stirred THF solution of I_2 (0.1 mol, 0.25 g), and heated under reflux for 1 hour. Then diethyl phosphate (3 mol, 0.42 g) in THF was added slowly under the cooling of an ice-water bath. The mixture thus obtained was heated under reflux for 1 hour. The resulting reaction mixture was cooled to 0 °C, and hydrochloric acid (50 mL, 6 M) was added slowly upon stirring. The solution was evaporated under reduced pressure at 40 °C. The residue was extracted with EA (150 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo, The crude product was purified by column chromatography on silica gel using PE/EA (1:1) as eluents.

5. Representative procedure for asymmetric P-nucleophile addition

5.1 Representative procedure for asymmetric P-nucleophile addition to cyclic Nsulfonyl imines 1 with secondary phosphine oxides 2

Representative procedure for 4a: To a flame-dried round bottle flask with a magnetic stirring bar were added cyclic ketimine **1a** (0.10 mmol, 25.3 mg), phosphine oxide **2a** (0.12 mmol, 24.2 mg), phosphonium salt **P4** (0.01 mmol, 5.7 mg), and DCE (1.0 mL). The reaction mixture was stirred at room temperature for 2 h. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (CH₂Cl₂/ethyl acetate = 3:1) to afford **4a** (96% yield) as a white solid.

(S)-ethyl 3-(diphenylphosphoryl)-5-methyl-2,3-dihydrobenzo[d]

isothiazole-3-carboxylate1,1-dioxide (4a)

A white solid; m.p. = 185 - 187 °C; 43.7 mg, 96% yield; $[\alpha]^{25}_{D}$ = -70.67 (*c* 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.17 - 8.13 (m, 1H), 8.12 - 8.05 (m, 2H), 7.64 - 7.56 (m, 3H), 7.55 - 7.49 (m, 2H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.43 - 4.38 (m, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.30 - 7.23 (m, 3H), 6.00 (d, *J* = 4.0 Hz, 1H), 4.29 - 4.06 (m, 2H), 2.49 (s, 3H), 1.11 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.56 (d, *J* = 2.7 Hz), 144.64 (d, *J* = 1.9 Hz), 133.09 (d, *J* = 2.8 Hz), 132.82 (d, *J* = 2.8 Hz), 132.56 (dd, *J* = 16.7, 8.7 Hz), 131.85 (d, *J* = 1.6 Hz), 131.72 (d, *J* = 3.1 Hz), 131.43 (d, *J* = 2.4 Hz), 128.79 (d, *J* = 11.7 Hz), 128.42 (d, *J* = 2.4Hz), 128.36, 128.18 (d, *J* = 12.3 Hz), 127.45 (d, *J* = 13.8 Hz), 126.48, 120.90 (d, *J* = 1.3 Hz), 70.02 (d, *J* = 71.4Hz), 64.46, 21.97, 13.83; ³¹P NMR (162 MHz, CDCl₃) δ 28.18; HRMS (ESI) m/z calcd for C₂₃H₂₂NO₅PS [M+H]⁺ = 456.1035, found = 456.1038; The ee value was >99%, t_R (minor) = 12.1 min, t_R (major) = 16.9 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Chromatogram D:\LC-Data\ZHK\P=O\4-Me\R1-1.lcd

Enantiomerically enriched 4a

(S)-ethyl 3-(diphenylphosphoryl)-2,3-dihydrobenzo[d]isothiazole

-3-carboxylate 1,1-dioxide (4b)

A white solid; m.p. = 178 - 180 °C; 42.3 mg, 96% yield; $[\alpha]^{25}_{D}$ = -13.32 (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 7.6 Hz, 1H), 8.14 - 8.06 (m, 2H), 7.73 - 7.68 (m, 1H), 7.67 - 7.53 (m, 7H,) 7.47 - 7.40(m, 1H), 7.32 - 7.25 (m, 2H), 5.94 (d, *J* = 3.6 Hz, 1H), 4.29 - 4.10 (m, 2H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.63 (d, *J* = 2.6 Hz), 134.37 (d, *J* = 3.2 Hz), 133.51 (d, *J* = 1.7 Hz), 133.27 (d, *J* = 2.9 Hz), 132.99 (d, *J* = 2.8 Hz), 132.65 (dd, *J* = 18.7, 8.6 Hz), 131.26 (d, *J* = 2.3 Hz), 130.92 (d, *J* = 1.8 Hz), 128.93 (d, *J* = 11.7 Hz), 128.56 (d, *J* = 2.5 Hz), 128.33 (d, *J* = 12.3 Hz), 127.41 (d, *J* = 2.1 Hz), 126.38, 121.32 (d, *J* = 1.5 Hz), 70.29 (d, *J* = 70.8 Hz), 64.67, 13.94; ³¹P NMR (162 MHz, CDCl₃) δ 28.13; HRMS (ESI) m/z calcd for C₂₂H₂₁NO₅PS [M+H]⁺ = 478.0878, found = 478.0870; The ee value was >99%, t_R (minor) = 10.6 min, t_R (major) = 14.8 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Chromatogram D:\LC-Data\ZHK\P=O\H\R12-2.lcd

Enantiomerically enriched 4b

(S)-ethyl 5-(tert-butyl)-3-(diphenylphosphoryl)-2,3-dihydrobenzo[d] isothiazole-3-carboxylate 1,1-dioxide (4c)

A white solid; m.p. = 117 - 119 °C; 46.2 mg, 93% yield; $[\alpha]^{25}_{D}$ = -63.67 (*c* 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.34 - 8.30 (m, 1H), 8.13 - 8.04 (m, 2H), 7.70 - 7.61 (m, 3H), 7.60 - 7.53 (m, 2H), 7.54 (s, 1H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.44 - 7.38 (m, 1H), 7.31 - 7.24 (m, 2H), 5.83 (s, 1H), 4.29 - 4.21 (m, 2H), 1.37 (s, 9H), 1.20 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.72 (d, *J* = 2.8 Hz), 157.80 (d, *J* = 1.8 Hz), 133.20 (d, *J* = 2.8 Hz), 132.87 (d, *J* = 2.8 Hz), 132.63 (dd, *J* = 14.5, 8.5 Hz), 131.44 (d, *J* = 3.2 Hz), 131.38 (d, *J* = 2.4 Hz), 128.90 (d, *J* = 11.8 Hz), 128.59, 128.26 (d, *J* = 12.2 Hz), 128.01 (d, *J* = 1.5 Hz), 127.59 (d, *J* = 4.5 Hz), 126.53, 125.65 (d, *J* = 2.7 Hz), 120.82 (d, *J* = 1.3 Hz), 70.18 (d, *J* = 70.9 Hz), 64.43, 35.70, 31.20, 13.97; ³¹P NMR (162 MHz, CDCl₃) δ 28.13; HRMS (ESI) m/z calcd for C₂₆H₂₈NO₅PS [M+Na]⁺ = 498.1504, found = 498.1505; The ee value was >99%, t_R (minor) = 13.8 min, t_R (major) = 19.4 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min). Chromatogram D:\LC-Data\ZHK\2018 9 19\R13-1.lcd

Racemic 4c

Chromatogram D:\LC-Data\ZHK\P=O\4-t-Bu\R13-2-2.lcd mV 100 1Detector A 254nm 75-50-19.440 25-13.861 0 10.0 12.5 15.0 17.5 20.0 22.5 25.0 min Peak Table .54nm Ret. Time 13.861 2 440 Detector Peak# Height 150 Area 2616 Height% 0.417 0.203 1286874 1289490 35768 35917 99.583 99.797 Tota 100.000 100.000

Enantiomerically enriched 4c

(S)-ethyl 3-(diphenylphosphoryl)-5-methoxy-2,3-dihydrobenzo[d]

isothiazole-3-carboxylate 1,1-dioxide (4d)

A white solid; m.p. = 125 - 126 °C; 42.9 mg, 91% yield; $[\alpha]^{25}_{D}$ = -52.67 (*c* 1.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.14 - 8.05 (m, 2H), 7.82 - 7.78 (m, 1H), 7.68 - 7.59 (m, 3H), 7.58 - 7.51 (m, 2H), 7.49 - 7.41 (m, 2H), 7.34 - 7.27 (m, 2H), 7.05 (dd, *J* = 8.8, 1.6 Hz, 1H), 5.94 (d, *J* = 4.0 Hz, 1H), 4.28 - 4.14 (m, 2H), 3.93 (s, 3H), 1.14 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.43 (d, *J* = 2.5 Hz), 163.62 (d, *J* = 1.6 Hz), 133.87 (d, *J* = 2.2 Hz), 133.20 (d, *J* = 2.6 Hz), 132.96 (d, *J* = 2.7 Hz), 132.61 (dd, *J* = 18.4, 8.6 Hz), 128.87 (d, *J* = 11.7 Hz), 128.32, 128.31 (d, *J* = 12.3 Hz), 127.42 (d, *J* = 15.3 Hz), 126.45, 126.37 (d, *J* = 3.0 Hz), 122.45, 118.95 (d, *J* = 1.1 Hz), 111.38 (d, *J* = 2.1 Hz), 69.86 (d, *J* = 70.8 Hz), 64.54, 56.26, 13.91; ³¹P NMR (162 MHz, CDCl₃) δ 28.18; HRMS (ESI) m/z calcd for C₂₃H₂₂NO₆PS [M+H]⁺ = 472.0984, found = 472.0981; The ee value was >99%, t_R (minor) = 16.0 min, t_R (major) = 19.1 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 4d

Chromatogram D:\LC-Data\ZHK\P=O\4-Meo\R24-2.lcd

Enantiomerically enriched 4d

(S)-ethyl 5-chloro-3-(diphenylphosphoryl)-2,3-dihydrobenzo[d] isothiazole-3-carboxylate 1,1-dioxide (4e)

A white solid; m.p. = 139 - 141 °C; 44.7 mg, 94% yield; $[\alpha]^{25}_{D}$ = -34.22 (*c* 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.40 - 8.36 (m, 1H), 8.14 - 8.05 (m, 2H), 7.70 - 7.61 (m, 3H), 7.61 - 7.54 (m, 2H), 7.53 - 7.43 (m, 3H), 7.36 - 7.28 (m, 2H), 6.01 (d, *J* = 4.0 Hz, 1H), 4.30 - 4.14 (m, 2H), 1.15 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.15 (d, *J* = 2.2 Hz), 140.09 (d, *J* = 2.1 Hz), 133.40 (d, *J* = 2.7 Hz), 133.27 (d, *J* = 2.4 Hz), 133.17 (d, *J* = 2.8 Hz), 132.85 (d, *J* = 3.1 Hz), 132.63 (dd, *J* = 25.8, 8.6 Hz), 131.47 (d, *J* = 1.6 Hz), 128.98 (d, *J* = 11.9 Hz), 128.54, 128.45 (d, *J* = 12.4 Hz), 128.06, 127.10 (d, *J* = 4.9 Hz), 126.08, 122.34 (d, *J* = 1.3 Hz), 69.90 (d, *J* = 69.3 Hz), 64.95, 13.91; ³¹P NMR (162 MHz, CDCl₃) δ 28.10; HRMS (ESI) m/z calcd for C₂₂H₁₉NO₅PSCI [M+H]⁺ = 476.0488, found = 476.0493; The ee value was >99%, t_R (minor) = 8.3 min, t_R (major) = 12.0 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Chromatogram D:\LC-Data\ZHK\2018 9 19\R15-1.lcd

Enantiomerically enriched 4e

(S)-ethyl 3-(diphenylphosphoryl)-5-(trifluoromethyl)-2,3dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (4f)

^{24 / 218}

A white solid; m.p. = 112 - 113 °C; 45.8 mg, 90% yield; $[α]^{25}D = -42.37$ (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 8.14 - 8.06 (m, 2H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.73 - 7.65 (m, 2H), 7.65 - 7.55 (m, 4H), 7.48 - 7.42 (m, 1H), 7.31 (m, 2H), 6.09 (d, *J* = 3.6 Hz, 1H), 4.30 - 4.15 (m, 2H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.03 (d, *J* = 2.2 Hz), 137.41, 135.61 (d, *J* = 1.9 Hz), 135.28 (d, *J* = 1.8 Hz), 133.50 (d, *J* = 2.8 Hz), 133.25 (d, *J* = 2.8 Hz), 132.61 (dd, *J* = 23.4, 8.6 Hz), 132.57, 129.05 (d, *J* = 12.0 Hz), 128.50 (d, *J* = 12.4 Hz), 126.96 (d, *J* = 3.8 Hz), 126.15 (dd, *J* = 3.6, 2.6 Hz), 125.91, 124.37, 122.08 (d, *J* = 1.5 Hz), 121.66, 118.94, 70.23 (d, *J* = 68.9 Hz), 65.03, 13.84; ³¹P NMR (162 MHz, CDCl₃) δ 28.21; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.73; HRMS (ESI) m/z calcd for C₂₃H₁₉NO₅PSF₃ [M+Na]⁺ = 510.0752, found = 510.0744; The ee value was >99%, t_R (minor) = 6.2 min, t_R (major) = 8.3 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 4f

Chromatogram D:\LC-Data\ZHK\P=O\two\4-CF3\R17-2.lcd

Enantiomerically enriched 4f

(S)-ethyl 3-(diphenylphosphoryl)-5-phenyl-2,3-dihydrobenzo[d] isothiazole-3-carboxylate 1,1-dioxide (4g)

A white solid; m.p. = 165 - 167 °C; 46.5 mg, 90% yield; $[\alpha]^{25}_{D}$ = -78.33 (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.61 - 8.55 (m, 1H), 8.18 - 8.09 (m, 2H), 7.81 - 7.76 (m, 1H), 7.70 - 7.63 (m, 6H), 7.62 - 7.56 (m, 2H), 7.55 - 7.49 (m, 2H), 7.48 - 7.41 (m, 2H), 7.30 - 7.27 (m, 2H), 5.97 (d, *J* = 3.2 Hz, 1H), 4.37 - 4.11 (m, 2H), 1.15 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.63 (d, *J* = 2.6 Hz), 146.77, 138.88, 133.29 (d, *J* = 2.7 Hz), 133.02 (d, *J* = 2.8 Hz), 132.91 (d, *J* = 3.2 Hz), 132.66 (dd, *J* = 19.4, 8.6 Hz), 132.10 (d, *J* = 2.2 Hz), 129.90 (d, *J* = 1.6 Hz), 129.28, 129.01, 128.90, 128.41 (d, *J* = 12.3 Hz), 128.34, 127.79, 127.45 (d, *J* = 9.2 Hz), 126.74 (d, *J* = 2.6 Hz), 126.45, 121.63, 70.27 (d, *J* = 70.6 Hz), 64.71, 13.98; ³¹P NMR (162 MHz, CDCl₃) δ 28.25; HRMS (ESI) m/z calcd for C₂₈H₂₄NO₅PS [M+H]⁺ = 518.1191, found = 518.1186; The ee value was >99%, t_R (minor) = 13.8 min, t_R (major) = 19.4 min (Chiralcel IC, λ = 254

nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

<u>(S)-ethyl 3-(diphenylphosphoryl)-6-methyl-2,3-dihydrobenzo[d]</u> isothiazole-3-carboxylate 1,1-dioxide (4h)

A white solid; m.p. = 147 - 149 °C; 42.3 mg, 93% yield; $[α]^{25}_{D}$ = -34.72 (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.13 - 8.05 (m, 2H), 7.66 - 7.59 (m, 3H), 7.58 - 7.48 (m, 3H), 7.46 - 7.41 (m, 1H), 7.40 - 7.36 (m, 1H), 7.32 -7.26 (m, 2H), 5.94 (d, *J* = 4.0 Hz, 1H), 4.28 - 4.10 (m, 2H), 2.42 (s, 3H), 1.13 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.80 (d, *J* = 3.0 Hz), 141.81 (d, *J* = 1.9 Hz), 134.68 (d, *J* = 1.7 Hz), 134.39 (d, *J* = 3.2 Hz), 133.16 (d, *J* = 2.7 Hz), 132.90 (d, *J* = 2.8 Hz), 132.62 (dd, *J* = 28.7, 8.7 Hz), 128.86 (d, *J* = 11.7 Hz), 128.52, 128.42 (d, *J* = 2.5 Hz), 128.28 (d, *J* = 12.3 Hz), 128.14 (d, *J* = 2.5 Hz), 127.56 (d, *J* = 2.8 Hz), 126.53, 121.17 (d, *J* = 1.4 Hz), 70.05 (d, *J* = 71.7 Hz), 64.52, 21.41, 13.91; ³¹P NMR (162 MHz, CDCl₃) δ 27.96 ; HRMS (ESI) m/z calcd for C₂₃H₂₂NO₅PS [M+H]⁺ = 456.1035, found = 456.1038; The ee value was >99%, t_R (minor) = 12.5 min, t_R (major) = 17.7 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 4h

Chromatogram D:\LC-Data\ZHK\P=O\two\5-Me\R19-2.lcd

Enantiomerically enriched 4h

(S)-ethyl 7-chloro-3-(diphenylphosphoryl)-2,3-dihydrobenzo[d] isothiazole-3-carboxylate 1,1-dioxide (4i)

A white solid; m.p. = 131 - 133 °C; 44.7 mg, 94% yield; $[\alpha]^{25}_{D}$ = -42.32 (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.34 - 8.29 (m, 1H), 8.16 - 8.05 (m, 2H), 7.70 - 7.54 (m, 6H), 7.53 - 7.44 (m, 2H), 7.36 - 7.29 (m, 2H), 6.05 (d, *J* = 4.4 Hz, 1H), 4.28 - 4.07 (m, 2H), 1.14 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.27 (d, *J* = 2.4 Hz), 134.51 (d, *J* = 1.8 Hz), 133.91 (d, *J* = 2.0 Hz), 133.39 (d, *J* = 2.8 Hz), 133.29 (d, *J* = 2.8 Hz), 132.62 (dd, *J* = 19.5, 8.7 Hz), 132.30 (d, *J* = 3.2 Hz), 131.65 (d, *J* = 1.7 Hz), 128.98 (d, *J* = 11.8 Hz), 128.79 (d, *J* = 1.7 Hz), 128.48 (d, *J* = 12.3 Hz), 128.15, 127.16 (d, *J* = 3.0 Hz), 126.89 (d, *J* = 2.5 Hz), 126.10, 69.35 (d, *J* = 69.7 Hz), 64.88, 13.92; ³¹P NMR (162 MHz, CDCl₃) δ 21.58 ; HRMS (ESI) m/z calcd for C₂₂H₁₉NO₅PSC1 [M+H]⁺ = 476.0488, found = 476.0481; The ee value was 98%, t_R (minor) = 14.6 min, t_R (major) = 23.0 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Chromatogram D:\LC-Data\ZHK\P=O\two\6-Cl\R20-1.lcd

Enantiomerically enriched 4i

(S)-ethyl 3-(diphenylphosphoryl)-2,3-dihydronaphtho[2,3-d] isothiazole-3-carboxylate 1,1-dioxide (4j)

A white solid; m.p. = 116 - 118 °C; 45.2 mg, 92% yield; $[\alpha]^{25}_{D}$ = -37.43 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.88 - 8.83 (m, 1H), 8.21 - 8.06 (m, 4H), 7.95 (d, *J* = 8.4 Hz, 1H), 7.74 - 7.53 (m, 7H), 7.41 - 7.34 (m, 1H), 7.25 - 7.18 (m, 2H), 6.06 (d, *J* = 4.0 Hz, 1H), 4.33 - 4.13 (m, 2H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.98 (d, *J* = 3.1 Hz), 135.38 (d, *J* = 2.1 Hz), 133.23 (d, *J* = 2.6 Hz), 132.89 (d, *J* = 2.8 Hz), 132.67 (dd, *J* = 19.3, 8.6 Hz), 131.88 (d, *J* = 2.6 Hz), 129.42, 129.21 (d, *J* = 5.3 Hz), 128.93 (d, *J* = 11.7 Hz), 128.53 (d, *J* = 3.3 Hz), 128.47, 128.31 (d, *J* = 12.3 Hz), 127.63 (d, *J* = 12.5 Hz), 126.64, 126.20 (d, *J* = 2.6 Hz), 122.10 (d, *J* = 1.0 Hz), 70.05 (d, *J* = 71.5 Hz), 64.70, 13.98; ³¹P NMR (162 MHz, CDCl₃) δ 27.95; HRMS (ESI) m/z calcd for C₂₆H₂₂NO₅PS [M+H]⁺ = 492.1035, found = 492.1028; The ee value was 95%, t_R (minor) = 14.9 min, t_R (major) = 21.3 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 4j

Chromatogram D:\LC-Data\ZHK\P=O\2-naph\R99-6.lcd

Enantiomerically enriched 4j

(S)-ethyl 3-(diphenylphosphoryl)-2,3-dihydronaphtho[2,1-d] isothiazole-3-carboxylate 1,1-dioxide (4k)

A white solid; m.p. = 175 - 177 °C; 44.2 mg, 90% yield; $[\alpha]^{25}{}_{D}$ = -102.33 (*c* 1.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.44 - 8.39 (m, 1H), 8.24 - 8.18 (m, 1H), 8.18 - 8.09 (m, 3H), 7.98 - 7.93 (m, 1H), 7.69 - 7.61 (m, 5H), 7.60 - 7.54 (m, 2H), 7.39 - 7.32 (m, 1H), 7.24 - 7.28 (m, 2H), 6.13 (d, *J* = 4.0 Hz, 1H), 4.30 - 4.14 (m, 2H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.66 (d, *J* = 2.5 Hz), 134.14 (d, *J* = 1.3 Hz), 133.99 (d, *J* = 1.1 Hz), 133.23 (d, *J* = 2.8 Hz), 132.99 (d, *J* = 2.8 Hz), 132.61 (dd, *J* = 15.6, 8.7 Hz), 131.02 (d, *J* = 2.3 Hz), 130.00 (d, *J* = 4.0 Hz), 129.17, 128.90 (d, *J* = 11.8 Hz), 128.60 (d, *J* = 19.2 Hz), 128.27 (d, *J* = 12.3 Hz), 127.45 (d, *J* = 17.3 Hz), 126.32, 124.98 (d, *J* = 1.5 Hz), 123.73 (d, *J* = 1.7 Hz), 122.99, 70.72 (d, *J* = 70.8 Hz), 70.01, 64.69, 13.94; ³¹P NMR (162 MHz, CDCl₃) δ 28.32; HRMS (ESI) m/z calcd for C₂₆H₂₂NO₅PS [M+H]⁺ = 492.1035, found = 492.1036; The ee value was >99%, t_R (minor) = 11.4 min, t_R (major) = 16.7 min (Chiralcel IC, λ = 254 nm, 40% *i*-

PrOH/hexanes, flow rate = 1.0 mL/min).

(S)-ethyl 3-(di-o-tolylphosphoryl)-5-methyl-2,3-dihydrobenzo[d] isothiazole-3-carboxylate 1,1-dioxide (4l)

A white solid; m.p. = 171 - 173 °C; 44.4 mg, 92% yield; $[\alpha]^{25}_{D}$ = -41.00 (*c* 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.67 - 7.7.58 (m, 1H), 7.54 - 7.38 (m, 3H), 7.33 - 7.24 (m, 3H), 7.23 - 7.16 (m, 1H), 7.07 - 6.94 (m, 2H), 5.97 (d, *J* = 5.6 Hz, 1H), 4.36 - 4.23 (m, 2H), 2.51 (s, 3H), 2.42 (s, 3H), 1.98 (s, 3H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.12 (d, *J* = 3.1 Hz), 144.46 (d, *J* = 1.9 Hz), 144.05 (dd, *J* = 20.4, 9.0 Hz), 134.32 (d, *J* = 11.0 Hz), 132.84 (d, *J* = 11.2 Hz), 132.50 (dd, *J* = 7.3, 2.7 Hz), 132.27 (d, *J* = 1.3 Hz), 132.12 (d, *J* = 11.9 Hz), 131.98 (d, *J* = 1.6 Hz), 131.88 (d, *J* = 3.1 Hz), 130.43 (d, *J* = 10.4 Hz), 129.69, 129.44 (d, *J* = 2.3 Hz), 128.72, 126.70, 125.71, 125.49 (d, *J* = 12.2 Hz), 125.01 (d, *J* = 12.7 Hz), 121.10 (d, *J* = 1.3 Hz), 70.01 (d, *J* = 71.4 Hz), 64.73, 22.03, 21.71 (d, *J* = 3.8 Hz), 21.11 (d, *J* = 2.9 Hz), 13.84; ³¹P NMR (162 MHz, CDCl₃) δ 36.35; HRMS (ESI) m/z calcd for C₂₅H₂₆NO₅PS [M+H]⁺ = 484.1348, found = 484.1347; The ee value was >99%, t_R (minor) = 10.7 min, t_R (major) = 15.6min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 41 34 / 218

Chromatogram D:\LC-Data\ZHK\P=O\P\2-Me\R126-1-2.lcd

Enantiomerically enriched 41

(S)-ethyl -(bis(4-fluorophenyl)phosphoryl)-5-methyl-2,3dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (4m)

A white solid; m.p. = 163 - 167 °C; 46.2 mg, 94% yield; $[\alpha]^{25}_{D}$ = -47.67 (*c* 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.17 - 8.05 (m, 3H), 7.67 - 7.55 (m, 2H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.31 - 7.22 (m, 2H), 7.02 - 6.93 (m, 2H), 5.94 (d, *J* = 4.4 Hz, 1H), 4.32 - 4.15 (m, 2H), 2.53 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.17 (dd, *J* = 13.3, 3.3 Hz), 166.53 (d, *J* = 2.7 Hz), 164.63 (dd, *J* = 12.7, 3.5 Hz), 144.97 (d, *J* = 2.0 Hz), 135.27 (q, *J* = 9.8 Hz), 132.17 (d, *J* = 1.9 Hz), 131.82 (d, *J* = 3.2 Hz), 131.24 (d, *J* = 2.3 Hz), 128.38 (d, *J* = 2.6 Hz), 124.21 (d, *J* = 3.3 Hz), 123.23 (dd, *J* = 6.9, 3.6 Hz), 122.14 (d, *J* = 3.5 Hz), 121.18 (d, *J* = 1.6 Hz), 116.53 (dd, *J* = 21.3, 12.8 Hz), 115.90 (dd, *J* = 21.4, 13.5 Hz), 70.14 (d, *J* = 73.6 Hz), 64.78, 22.09, 14.01; ³¹P NMR (162 MHz, CDCl₃) δ 26.92; ¹⁹F NMR (376 MHz, CDCl₃) δ - 103.99; HRMS (ESI) m/z calcd for $C_{23}H_{20}NO_5PSF_2$ [M+H]⁺ = 492.0846, found = 492.0849; The ee value was 94%, t_R (minor) = 9.8 min, t_R (major) = 13.2 min (Chiralcel IC, $\lambda = 254$ nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Enantiomerically enriched 4m

(S)-ethyl 3-(bis(4-chlorophenyl)phosphoryl)-5-methyl-2,3dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (4n)

36 / 218

A white solid; m.p. = 148 - 150 °C; 48.6 mg, 93% yield; $[\alpha]^{25}_{D}$ = -44.80 (*c* 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 8.06 - 7.97 (m, 2H), 7.59 - 7.47 (m, 5H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.30 - 7.22 (m, 2H), 6.05 (d, *J* = 4.0 Hz, 1H), 4.30 - 4.4.13 (m, 2H), 2.51 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.34 (d, *J* = 2.8 Hz), 144.97 (d, *J* = 1.9 Hz), 140.24 (d, *J* = 3.6 Hz), 139.94 (d, *J* = 3.6 Hz), 133.94 (dd, *J* = 19.6, 9.4 Hz), 132.18 (d, , *J* = 1.7 Hz), 131.76 (d, *J* = 3.3 Hz), 130.99 (d, *J* = 2.4 Hz), 129.36 (d, *J* = 12.4 Hz), 128.76 (d, *J* = 12.9 Hz), 128.32 (d, *J* = 2.5 Hz), 126.64, 125.66 (d, *J* = 2.2 Hz), 124.60, 121.18 (d, *J* = 1.6 Hz), 69.93 (d, *J* = 73.9 Hz), 64.75, 22.05, 13.97; ³¹P NMR (162 MHz, CDCl₃) δ 26.89; HRMS (ESI) m/z calcd for C₂₃H₂₀NO₅PSCl₂ [M+H]⁺ = 524.0255, found = 524.0253; The ee value was 99%, t_R (minor) = 8.6 min, t_R (major) = 15.3 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 4n

Enantiomerically enriched 4n

(S)-ethyl 3-(bis(3,5-dimethylphenyl)phosphoryl)-5-methyl-2,3dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (40)

A white solid; m.p. = 155 - 157 °C; 47.0 mg, 92% yield; $[\alpha]^{25}_{D}$ = -35.00 (*c* 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.63 (d, *J* = 11.2 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.25 - 7.16 (m, 3H), 7.03 (s, 1H), 5.79 (d, *J* = 3.2 Hz, 1H), 4.31 - 4.13 (m, 2H), 2.50 (s, 3H), 2.39 (s, 6H), 2.18 (s, 6H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.73 (d, *J* = 2.9 Hz), 144.60 (d, *J* = 1.8 Hz), 138.53 (d, *J* = 12.5 Hz), 137.87 (d, *J* = 13.0 Hz), 134.82 (d, *J* = 3.0 Hz), 134.45 (d, *J* = 2.9 Hz), 131.84 (dd, *J* = 8.1, 2.5 Hz), 131.69 (d, *J* = 1.7 Hz), 130.25 (d, *J* = 8.6 Hz), 130.00 (d, *J* = 8.4 Hz), 128.52 (d, *J* = 2.5 Hz), 128.36, 127.34 (d, *J* = 11.3 Hz), 126.25, 120.77 (d, *J* = 1.4 Hz), 70.11 (d, *J* = 70.0 Hz), 64.38, 22.02, 21.52, 21.24, 13.89; ³¹P NMR (162 MHz, CDCl₃) δ 29.24; HRMS (ESI) m/z calcd for C₂₇H₃₀NO₅PS [M+H]⁺ = 512.1661, found = 512.1162; The ee value was 96%, t_R (minor) = 9.8 min, t_R (major) = 12.3 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Chromatogram D:\LC-Data\ZHK\P=O\P\3,5-Me\R126-12-1.lcd

Enantiomerically enriched 40

(S)-ethyl 3-(dimethylphosphoryl)-5-methyl-2,3-dihydrobenzo[d] isothiazole-3-carboxylate 1,1-dioxide (4p)

A white solid; m.p. = 94 - 97 °C; 31.4 mg, 95% yield; $[\alpha]^{25}{}_{D}$ = -10.68 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 4.49 - 4.36 (m, 2H), 2.52 (s, 3H), 1.63 (d, *J* = 12.8 Hz, 3H), 1.41 - 1.35 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.71 (d, *J* = 1.5 Hz), 145.35 (d, *J* = 1.6 Hz), 132.26 (d, *J* = 1.8 Hz), 131.74 (d, *J* = 3.0 Hz), 131.19 (d, *J* = 1.8 Hz), 127.97 (d, *J* = 2.2 Hz), 121.41 (d, *J* = 1.2 Hz), 68.74 (d, *J* = 67.8 Hz), 64.85, 22.12, 14.18, 13.25 (d, *J* = 68.4 Hz), 12.32 (d, *J* = 71.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 51.96; HRMS (ESI) m/z calcd for C₁₃H₁₈NO₅PS [M+Na]⁺ = 354.0541, found = 354.0546; The ee value was 96%, t_R (major) = 9.8 min, t_R (minor) = 17.3 min (Chiralcel IC, λ = 220 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min)

Racemic 4p

Enantiomerically enriched 4p

(*R*)-3-(dimethylphosphoryl)-5-methyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (4q)

A white solid; m.p. = 85 - 87 °C; 23.6 mg, 91% yield; $[\alpha]^{25}_{D}$ = -15.00 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, DMSO) δ 7.75 (d, *J* = 8.0 Hz, 1H), 7.54 (s, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 5.11 (d, *J* = 9.2 Hz, 1H), 2.44 (s, 3H), 1.58 (d, *J* = 13.2 Hz, 3H), 1.09 (d, *J* = 12.8 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 143.32 (d, *J* = 2.0 Hz), 134.05 (d, *J* = 2.3 Hz), 132.59 (d, *J* = 9.8 Hz), 130.64 (d, *J* = 1.4 Hz), 125.89 (d, *J* = 2.2 Hz), 120.79 (d, *J* = 1.3 Hz), 55.91 (d, *J* = 75.5 Hz), 21.28, 14.63 (d, *J* = 67.9 Hz), 10.65 (d, *J* = 67.4 Hz); ³¹P NMR (162 MHz, DMSO) δ 46.20; HRMS (ESI) m/z calcd for C₁₀H₁₄NO₃PS [M+Na]⁺ = 282.0330, found = 282.0327; The ee value was 99%, t_R (minor) = 23.6 min, t_R (major) = 29.3 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Chromatogram D:\HPLC-Data\ZHK\4\R48\R48-1-4.lcd mAU 25 1 PDA Multi 1 254nm,4nn 20-25.239 15 28.586 10-5 0-25.0 22.5 27.5 30.0 32.5 35.0 20.0 min

Peak Table

I Cak Table							
PDA Ch1 254nm							
Peak#	Ret. Time	Height	Height%	Area	Area%		
1	25.239	11983	62.126	762490	51.730		
2	28.586	7305	37.874	711479	48.270		
Total		19288	100.000	1473969	100.000		

Racemic 4q

Enantiomerically enriched 4q

5.2 Representative procedure for asymmetric P-nucleophile addition to cyclic Nsulfonyl imines 1/1' with secondary phosphine oxides 3

Representative procedure 5a: To a flame-dried round bottle flask with a magnetic stirring bar were added cyclic ketimine **1a** (0.10 mmol, 25.3mg), Phosphine Oxide **3a** (0.12 mmol, 28.1 mg), phosphonium salt **P4** (0.01 mmol, 5.7 mg), and toluene (2.0 mL). The reaction mixture was stirred at room temperature for 24 h. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (CH₂Cl₂/ethyl acetate = 3:1) to afford **5a** (93% yield) as a white solid.

(S)-ethyl 3-(diphenoxyphosphoryl)-5-methyl-2,3-dihydrobenzo[d] isothiazole-3-carboxylate 1,1-dioxide (5a)

A white solid; m.p. = 135 - 137 °C; 45.3 mg, 93% yield; $[\alpha]^{25}_{D}$ = -14.37 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.95 - 7.87 (m, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.35 - 7.27 (m, 2H), 7.24 - 7.14 (m, 5H), 7.11 - 7.05 (m, 1H), 7.01 - 6.94 (m, 2H), 6.09 (d, *J* = 5.2 Hz, 1H), 4.46 - 4.24 (m, 2H), 2.44 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.36 (d, *J* = 4.5 Hz), 150.50 (d, *J* = 9.6 Hz), 150.18 (d, *J* = 10.0 Hz), 145.02 (d, *J* = 2.7 Hz), 132.46 (d, *J* = 2.6 Hz), 132.14 (d, *J* = 5.1 Hz), 130.25 (d, *J* = 4.3 Hz), 129.91 (d, *J* = 0.6 Hz), 129.71, 127.86 (d, *J* = 3.0 Hz), 125.89 (d, *J* = 1.0 Hz), 125.57 (d, *J* = 0.7 Hz), 121.59 (d, *J* = 2.2 Hz), 120.58 (d, *J* = 4.4 Hz), 120.17 (d, *J* = 4.4 Hz), 67.62 (d, *J* = 166.5 Hz), 65.04, 22.01, 13.97; ³¹P NMR (162 MHz, CDCl₃) δ 4.32; HRMS (ESI) m/z calcd for C₂₃H₂₂NO₇PS [M+Na]⁺ = 510.0747, found = 510.0740; The ee value was >99%, t_R (minor) = 17.9 min, t_R (major) = 31.3 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Chromatogram D:\LC-Data\ZHK\P=O\three\4-Me\R108.lcd

Chromatogram D:\LC-Data\ZHK\P=O\three\4-Me\R108-2.lcd

Enantiomerically enriched 5a

(S)-ethyl 3-(diphenoxyphosphoryl)-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (5b)

A white solid; m.p. = 98 - 100 °C; 45.4 mg, 96% yield; $[\alpha]^{25}_{D}$ = -32.18 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.23 - 8.11 (m, 1H), 7.88 - 7.79 (m, 1H), 7.72 -7.59 (m, 2H), 7.34 - 7.26 (m, 2H), 7.22 - 7.12 (m, 5H), 7.11 - 7.05 (m, 1H), 7.01 - 6.92 (m, 2H), 6.22 (d, *J* = 4.8 Hz, 1H), 4.40 - 4.27 (m, 2H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.27 (d, *J* = 4.5 Hz), 150.24 (dd, *J* = 26.7, 9.7 Hz), 134.79 (d, *J* = 5.0 Hz), 134.37 (d, *J* = 18.5 Hz), 133.71 (d, *J* = 2.7 Hz), 131.49 (d, *J* = 2.7 Hz), 130.00 (d, *J* = 4.5 Hz), 129.89 (d, *J* = 0.7 Hz), 129.74, 127.76 (d, *J* = 2.9 Hz), 125.89 (d, *J* = 1.0 Hz), 125.61 (d, *J* = 0.7 Hz), 121.84 (d, *J* = 2.2 Hz), 120.56 (d, *J* = 4.4 Hz), 120.15 (d, *J* = 4.4 Hz), 67.77 (d, *J* = 167.0 Hz), 65.10, 13.92; ³¹P NMR (162 MHz, CDCl₃) δ 4.33; HRMS (ESI) m/z calcd for C22H20NO7PS [M+Na]⁺ = 496.0590, found = 496.0588; The ee value was >99%, t_R (minor) = 12.8 min, t_R (major) = 16.2 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 5b

Chromatogram D:\LC-Data\ZHK\4\P=O\H\R33-1-2.lcd

Enantiomerically enriched 5b

(S)-ethyl 5-(tert-butyl)-3-(diphenoxyphosphoryl)-2,3-dihydrobenzo[d] isothiazole-3-carboxylate 1,1-dioxide (5c)

A white solid; m.p. = 106 - 107 °C; 48.7 mg, 92% yield; $[\alpha]^{25}_{D}$ = -45.17 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.18 - 8.11 (m, 1H), 7.75 (dd, *J* = 8.4, 0.4 Hz, 1H), 7.68 - 7.62 (m, 1H), 7.35 - 7.26 (m, 2H), 7.22 - 7.13 (m, 5H), 7.10 - 7.03 (m, 1H), 6.98 -6.90 (m, 2H), 6.08 (s, 1H), 4.46 - 4.25 (m, 2H), 1.32 - 1.26 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 165.43 (d, *J* = 4.9 Hz), 158.11 (d, *J* = 2.4 Hz), 150.59 (d, *J* = 9.4 Hz), 150.14 (d, *J* = 10.0 Hz), 131.95 (d, *J* = 5.0 Hz), 129.94, 129.88, 129.67, 128.92 (d, *J* = 2.3 Hz), 125.93 (d, *J* = 0.9 Hz), 125.52, 124.85 (d, *J* = 3.0 Hz), 121.43 (d, *J* = 2.1 Hz), 120.63 (d, *J* = 4.4 Hz), 120.15 (d, *J* = 4.4 Hz), 67.73 (d, *J* = 166.1 Hz), 64.92, 35.70, 31.17, 14.01; ³¹P NMR (162 MHz, CDCl₃) δ 4.41; HRMS (ESI) m/z calcd for C₂₆H₂₈NO₇PS [M+Na]⁺ = 552.1222, found = 552.1226; The ee value was >99%, t_R (major) = 16.6 min, t_R (minor) = 25.5 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Chromatogram D:\LC-Data\ZHK\4\P=O\4-tBu\R33-3-1.lcd

(S)-ethyl 3-(diphenoxyphosphoryl)-5-methoxy-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (5d)

A white solid; m.p. = 107 - 110 °C; 48.8 mg, 97% yield; $[\alpha]^{25}_{D}$ = -16.67 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.58 - 7.52(m, 1H), 7.34 - 7.29 (m, 2H), 7.23 - 7.16 (m, 5H), 7.14 - 7.08 (m, 2H), 7.04 - 6.98 (m, 2H), 6.05 (s, 1H), 4.41 - 4.28 (m, 2H), 3.84 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.26 (d, *J* = 4.3 Hz), 163.87 (d, *J* = 2.5 Hz), 150.55 (d, *J* = 9.8 Hz), 150.19 (d, *J* = 9.6 Hz), 132.54 (d, *J* = 4.4 Hz), 129.86 (d, *J* = 19.5Hz), 126.80 (d, *J* = 4.9 Hz), 125.95, 125.63, 123.16 (d, *J* = 2.1 Hz), 120.96, 120.61 (d, *J* = 4.4 Hz), 120.22 (d, *J* = 4.4 Hz), 118.78 (d, *J* = 2.3 Hz), 111.55 (d, *J* = 2.7 Hz), 67.46 (d, *J* = 166.3 Hz), 65.08, 56.16, 14.02; ³¹P NMR (162 MHz, CDCl₃) δ 4.22; HRMS (ESI) m/z calcd for C₂₃H₂₂NO₈PS [M+Na]⁺ = 526.0696, found = 526.0691; The ee value was >99%, t_R (minor) = 20.8 min, t_R (major) = 24.2 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic **5d**

Chromatogram D:\LC-Data\ZHK\4\P=O\4-MeO\R33-2-2.lcd

Enantiomerically enriched 5d

(S)-ethyl 3-(diphenoxyphosphoryl)-5-fluoro-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (5e)

A white solid; m.p. = 105 - 107 °C; 46.2 mg, 94% yield; $[\alpha]^{25}_{D}$ = -42.37 (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.88 - 7.78 (m, 2H), 7.37 - 7.27 (m, 3H), 7.25 - 7.09 (m, 6H), 7.07 - 7.01 (m, 2H), 6.35 (d, *J* = 4.4 Hz, 1H), 4.39 - 4.30 (m, 2H), 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.72 (d, *J* = 3.2 Hz), 164.75 (d, *J* = 3.9 Hz), 164.17 (d, *J* = 3.1 Hz), 150.14 (dd, *J* = 25.6, 9.6 Hz), 133.14 (dd, *J* = 10.3, 4.6 Hz), 130.86 (dd, *J* = 4.9, 2.7 Hz), 129.93 (d, *J* = 0.6 Hz), 129.85, 125.89 (dd, *J* = 19.5, 1.0 Hz), 124.04 (dd, *J* = 10.0, 2.3 Hz), 120.48 (d, *J* = 4.4 Hz), 120.08 (d, *J* = 4.4 Hz), 119.72 (d, *J* = 2.4 Hz), 119.48 (d, *J* = 2.4 Hz), 115.22 (d, *J* = 2.7 Hz), 114.96 (d, *J* = 2.7 Hz), 67.26 (dd, *J* = 167.0, 2.2 Hz), 65.37, 13.89; ³¹P NMR (162 MHz, CDCl₃) δ 3.64; ¹⁹F NMR (376 MHz, CDCl₃) δ -102.22; HRMS (ESI) m/z calcd for C₂₂H₁₉NO₇PSF [M+Na]⁺ = 514.0491, found = 514.0487; The ee value was >99%, t_R (minor) = 12.8 min, t_R (major) = 20.3 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

(S)-ethyl 5-chloro-3-(diphenoxyphosphoryl)-2,3-dihydrobenzo[d]isothiazole-3carboxylate 1,1-dioxide (5f)

A white solid; m.p. = 92 - 94 °C; 48.2 mg, 95% yield; $[\alpha]^{25}{}_{D}$ = -31.83 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.17 - 8.09 (m, 1H), 7.80 - 7.72 (m, 1H), 7.61 - 7.58 (m, 1H), 7.31 - 7.28 (m, 2H), 7.27 - 7.20 (m, 2H), 7.20 - 7.10 (m, 4H), 7.08 - 7.02 (m, 2H), 4.42 - 4.30 (m, 2H), 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.70 (d, *J* = 3.8 Hz), 150.28 (d, *J* = 9.5 Hz), 150.02 (d, *J* = 10.1 Hz), 140.24 (d, *J* = 3.2 Hz), 133.23 (d, *J* = 4.9 Hz), 132.02 (d, *J* = 4.5 Hz), 131.93 (d, *J* = 2.7 Hz), 129.83 (d, *J* = 7.7 Hz), 127.86 (d, *J* = 2.8 Hz), 125.92, 125.72, 122.87 (d, *J* = 2.2 Hz), 120.39 (d, *J* = 4.4 Hz), 119.98 (d, *J* = 4.4 Hz), 67.27 (d, *J* = 165.8 Hz), 65.34, 13.85; ³¹P NMR (162 MHz, CDCl₃) δ 3.44; HRMS (ESI) m/z calcd for C₂₂H₁₉NO₇PSCl [M+Na]⁺ = 530.0192, found = 530.0195; The ee value was 98%, t_R (minor) = 13.0 min, t_R (major) = 16.8 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 5f

Chromatogram D:\LC-Data\ZHK\4\P=O\4-Cl\R33-5-2.lcd

Enantiomerically enriched 5f

(S)-ethyl 3-(diphenoxyphosphoryl)-5-(trifluoromethyl)-2,3-dihydrobenzo[d] isothiazole-3-carboxylate 1,1-dioxide (5g)

A white solid; m.p. = 96 - 98 °C; 50.9 mg, 94% yield; $[\alpha]^{25}_{D}$ = -45.00 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.99 - 7.86 (m 2H), 7.36 - 7.28 (m, 2H), 7.26 - 7.10 (m, 6H), 7.08 - 7.02 (m, 2H), 6.17 (s, 1H), 4.53 - 4.20 (m, 2H), 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.64 (d, *J* = 3.4 Hz), 150.41 (d, *J* = 9.6 Hz), 150.09 (d, *J* = 10.1 Hz), 137.97 (d, *J* = 4.8 Hz), 135.96 (d, *J* = 2.5 Hz), 135.63 (d, *J* = 2.5 Hz), 131.36 (d, *J* = 4.5 Hz),, 129.99 (d, *J* = 6.2 Hz), 128.72 (dd, *J* = 6.4, 3.0 Hz), 126.11 (d, *J* = 0.8 Hz), 125.89, 125.44 (dd, *J* = 7.2, 3.2 Hz), 124.25 (d, *J* = 2.8 Hz), 122.81 (d, *J* = 2.1 Hz), 120.45 (d, *J* = 4.4 Hz), 119.93 (d, *J* = 4.6 Hz), 67.65 (d, *J* = 165.2 Hz), 65.58, 13.90; ³¹P NMR (162 MHz, CDCl₃) δ 3.05; HRMS (ESI) m/z calcd for C₂₃H₁₉NO₇PSF₃ [M+Na]⁺ = 564.0530, found = 564.0536; The ee value was 94%, t_R (minor) = 16.5 min, t_R (major) = 19.7 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Chromatogram D:\LC-Data\ZHK\4\P=O\4-CF3\R33-6-1.lcd

Γ	1	15.358	220482	6031	57.051	50.1
Γ	2	20.539	218887	4540	42.949	49.8
	Total		439369	10571	100.000	100.0

Racemic 5g

Chromatogram D:\LC-Data\ZHK\4\P=O\4-CF3\R33-6-2.lcd

	Peak Table						
Detector A	Detector A 254nm						
Peak#	Ret. Time	Area	Height	Height%	Area%		
1	16.516	23749	345	6.855	3.205		
2	19.712	717134	4682	93.145	96.795		
Total		740883	5027	100.000	100.000		

Enantiomerically enriched **5g**

A white solid; m.p. = 85 - 88 °C; 50.1 mg, 90% yield; $[α]^{25}D = -31.67$ (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.05 - 8.01 (m, 1H), 7.89 - 8.85 (m, 1H), 7.47 (d, *J* = 8.4 Hz, 1H), 7.38 - 7.01 (m, 10H), 6.43 (d, *J* = 4.8 Hz, 1H), 4.43 - 4.27 (m, 2H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.61 (d, *J* = 3.8 Hz), 152.63 (dd, *J* = 3.0, 1.9 Hz), 150.13 (dd, *J* = 28.7, 9.6 Hz), 132.99 (d, *J* = 4.9 Hz), 132.71 (d, *J* = 4.6 Hz), 130.12 (d, *J* = 1.0 Hz), 129.92 (d, *J* = 0.6 Hz), 129.83, 129.46, 125.99 (d, *J* = 0.9 Hz), 125.79, 124.13, 123.69 (d, *J* = 2.2 Hz), 121.49, 120.61 (d, *J* = 4.9 Hz), 120.45 (d, *J* = 4.5 Hz), 119.97 (d, *J* = 4.5 Hz), 119.90, 118.90, 116.32, 115.39, 68.11 (dd, *J* = 165.4 Hz), 65.38, 13.75; ³¹P NMR (162 MHz, CDCl₃) δ 3.39; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.87; HRMS (ESI) m/z calcd for C₂₃H₁₉NO₈PSF₃ [M+Na]⁺ = 580.0408, found = 580.0400; The ee value was >99%, t_R (minor) = 9.8 min, t_R (major) = 16.7 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 5h

Enantiomerically enriched 5h

(S)-ethyl 3-(diphenoxyphosphoryl)-5-phenyl-2,3-dihydrobenzo[d]isothiazole-3carboxylate 1,1-dioxide (5i)

A white solid; m.p. = 106 - 107 °C; 51.6 mg, 94% yield; $[\alpha]^{25}_{D}$ = -38.17 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.34 - 8.28 (m, 1H), 7.92 - 7.79 (m, 2H), 7.55 - 7.40 (m, 5H), 7.37 - 7.29 (m, 2H), 7.23 - 7.12 (m, 5H), 7.069 - 7.03 (m, 1H), 7.02 - 6.97 (m, 2H), 6.14 (d, *J* = 3.6 Hz, 1H), 4.48 - 4.21 (m, 2H), 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.30 (d, *J* = 4.3 Hz), 150.53 (d, *J* = 9.6 Hz), 150.20 (d, *J* = 9.9 Hz), 147.29 (d, *J* = 2.5 Hz), 138.83, 133.31 (d, *J* = 4.9 Hz), 130.75 (d, *J* = 4.3 Hz), 130.59 (d, *J* = 2.6 Hz), 129.99, 129.75, 129.30, 129.05, 127.67, 126.27 (d, *J* = 2.9 Hz), 125.99, 125.66, 122.20 (d, *J* = 2.0 Hz), 120.61 (d, *J* = 4.4 Hz), 120.17 (d, *J* = 4.5 Hz), 67.77 (d, *J* = 165.6 Hz), 65.18, 14.07; ³¹P NMR (162 MHz, CDCl₃) δ 4.19; HRMS (ESI) m/z calcd for C₂₈H₂₄NO₇PS [M+Na]⁺ = 572.0898, found = 572.0899; The ee value was 98%, t_R (minor) = 30.1 min, t_R (major) = 40.3 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 5i

Chromatogram D:\LC-Data\ZHK\4\R33\Hex\R33-4.lcd

Enantiomerically enriched 5i

32769

100.000

100.000

2404466

Tota

(S)-ethyl 3-(diphenoxyphosphoryl)-6-methyl-2,3-dihydrobenzo[d]isothiazole-3carboxylate 1,1-dioxide (5j)

A white solid; m.p. = 98 - 99 °C; 45.8 mg, 94% yield; $[\alpha]^{25}_{D}$ = -33.47 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.62 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.33 - 7.27 (m, 2H), 7.24 - 7.07 (m, 6H), 7.02 - 6.96 (m, 2H), 6.07 (d, *J* = 4.8 Hz, 1H), 4.40- 4.25 (m, 2H), 2.47 (d, *J* = 1.6 Hz, 3H), 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.50 (d, *J* = 4.9 Hz), 150.47 (d, *J* = 9.5 Hz), 150.22 (d, *J* = 10.1 Hz), 142.53 (d, *J* = 2.8 Hz), 134.90 (d, *J* = 5.0 Hz), 134.86 (d, *J* = 2.6 Hz), 129.91, 129.77, 127.43 (d, *J* = 2.8 Hz), 127.31 (d, *J* = 4.8 Hz), 125.88, 125.58, 121.82 (d, *J* = 2.1 Hz), 120.63 (d, *J* = 4.4 Hz), 120.26 (d, *J* = 4.7 Hz), 67.61 (d, *J* = 167.6 Hz), 65.03, 21.46, 13.99; ³¹P NMR (162 MHz, CDCl₃) δ 4.51; HRMS (ESI) m/z calcd for C₂₃H₂₂NO₇PS [M+Na]⁺ = 510.0741, found = 510.0746; The ee value was >99%, t_R (minor) = 12.7 min, t_R (major) = 14.3 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 5j

Enantiomerically enriched 5j

(S)-ethyl 3-(diphenoxyphosphoryl)-7-fluoro-2,3-dihydrobenzo[d]isothiazole-3carboxylate 1,1-dioxide (5k)

A white solid; m.p. = 85 - 86 °C; 45.7 mg, 93% yield; $[\alpha]^{25}_{D}$ = -12.33 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.99 - 7.92 (m, 1H), 7.70 - 7.63 (m, 1H), 7.34 - 7.08 (m, 9H), 7.06 - 7.00 (m, 2H), 6.28 (d, *J* = 5.2 Hz, 1H), 4.38 - 4.29 (m, 2H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.91 (d, *J* = 3.8 Hz), 157.71 (d, *J* = 2.3 Hz), 155.13 (d, *J* = 2.2 Hz), 150.21 (dd, *J* = 29.6, 9.6 Hz), 136.19 (dd, *J* = 7.2, 2.7 Hz), 133.03 (dd, *J* = 3.9 1.5 Hz), 129.96 (d, *J* = 0.6 Hz), 129.85, 126.01 (d, *J* = 1.0 Hz), 125.75 (d, *J* = 0.8 Hz), 123.70 (d, *J* = 3.3 Hz), 123.63 - 123.40 (q, *J* = 2.5 Hz), 123.02 (dd, *J* = 20.1, 4.8 Hz), 120.53 (d, *J* = 4.4 Hz), 120.13 (d, *J* = 4.5 Hz), 118.35 (dd, *J* = 18.1, 2.4 Hz), 68.58, 67.75 (d, *J* = 167.0 Hz), 13.94; ³¹P NMR (162 MHz, CDCl₃) δ 3.73; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.25; HRMS (ESI) m/z calcd for C₂₂H₁₉NO₇PSF [M+Na]⁺ = 514.0491, found = 514.0498; The ee value was 99%, t_R (major) = 9.4 min, t_R (minor) = 12.8 min (Chiralcel IC, $\lambda = 254$ nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Enantiomerically enriched 5k

(S)-ethyl 7-chloro-3-(diphenoxyphosphoryl)-2,3-dihydrobenzo[d]isothiazole-3carboxylate 1,1-dioxide (51)

A white solid; m.p. = 81 - 83 °C; 47.2 mg, 93% yield; $[\alpha]^{25}_{D}$ = -31.83 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.64 - 7.50 (m, 3H), 7.47 - 7.40 (m, 2H), 7.39 - 7.28 (m, 6H), 7.24 - 7.14 (m, 2H), 5.53 (d, *J* = 3.6 Hz, 1H), 4.18 - 3.98 (m, 2H), 1.10 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.65, 150.22 (dd, *J* = 31.9, 7.3 Hz), 135.89, 135.05, 132.95 (d, *J* = 8.9 Hz), 132.53 (d, *J* = 5.7 Hz), 131.73, 130.00, 129.82, 129.41, 126.05, 123.38, 120.92 (d, *J* = 4.7 Hz), 120.71 (d, *J* = 4.9 Hz), 63.26, 61.87 (d, *J* = 5.1 Hz), 13.87; ³¹P NMR (162 MHz, CDCl₃) δ 3.81; HRMS (ESI) m/z calcd for C₂₂H₁₉NO₇PS [M+Na]⁺ = 530.0195, found = 530.0191; The ee value was 95%, t_R (major) = 9.4 min, t_R (minor) = 10.8 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 51

Chromatogram D:\LC-Data\ZHK\4\P=O\6-Cl\R33-8-2.lcd

Enantiomerically enriched 51

(S)-ethyl 3-(diphenoxyphosphoryl)-5,6-dimethyl-2,3-dihydrobenzo[d] isothiazole-3-carboxylate 1,1-dioxide (5m)

A white solid; m.p. = 147 - 149 °C; 46.1 mg, 92% yield; $[\alpha]^{25}_{D}$ = -31.67 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.87 - 7.81 (m, 1H), 7.57 (s, 1H), 7.33 - 7.27 (m, 2H), 7.23 - 7.13 (m, 5H), 7.13 - 7.06 (m, 1H), 7.04 - 6.98 (m, 2H), 6.08 (d, *J* = 5.2 Hz, 1H), 4.37 - 4.28 (m, 2H), 2.39 - 2.28 (m, 6H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.51 (d, *J* = 5.2 Hz), 150.36 (dd, *J* = 29.7, 9.7 Hz), 143.88 (d, *J* = 2.7 Hz), 141.28 (d, *J* = 2.8 Hz), 132.30 (d, *J* = 5.0 Hz), 129.85 (d, *J* = 0.6 Hz), 129.65, 127.94 (d, *J* = 2.9 Hz), 127.57 (d, *J* = 4.5 Hz), 125.80 (d, *J* = 1.0 Hz), 125.44 (d, *J* = 0.6 Hz), 121.98 (d, *J* = 2.2 Hz), 120.58 (d, *J* = 4.4 Hz), 120.19 (d, *J* = 4.5 Hz), 67.49 (d, *J* = 167.3 Hz), 64.90 , 20.71, 20.14, 13.95; ³¹P NMR (162 MHz, CDCl₃) δ 4.58; HRMS (ESI) m/z calcd for C24H24NO7PS [M+Na]⁺ = 524.0898, found = 524.0892; The ee value was 98%, t_R (minor) = 23.3 min, t_R (major) = 30.9 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Chromatogram D:\LC-Data\ZHK\P=O\three\4,5-Me\R110-7-1.lcd

Racemic 5m

Chromatogram D:\LC-Data\ZHK\P=O\three\4,5-Me\110-7-2.lcd

Enantiomerically enriched 5m

(S)-ethyl 3-(diphenoxyphosphoryl)-2,3-dihydronaphtho[2,3-d]isothiazole-3carboxylate 1,1-dioxide (5n)

A white solid; m.p. = 107 - 108 °C; 48.1 mg, 92% yield; $[\alpha]^{25}_{D}$ = -57.67 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 8.0 Hz, 1H), 8.20 - 8.07(m, 2H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.81 - 7.67 (m, 2H), 7.33 - 7.28 (m, 2H), 7.22 - 7.10 (m, 5H), 7.09 - 6.97 (m, 3H), 5.30 (s, 1H), 4.45 - 4.29 (m, 2H), 1.31 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.36 (d, *J* = 4.2 Hz), 150.36 (d, *J* = 10.0 Hz), 150.23 (d, *J* = 10.0 Hz), 134.58 (d, *J* = 2.0 Hz), 134.33 (d, *J* = 1.5 Hz), 130.65 (d, *J* = 5.9 Hz), 129.91 , 129.74, 129.57, 129.43 (d, *J* = 4.5 Hz), 128.82 (d, *J* = 16.1 Hz), 125.76 (d, *J* = 28.9 Hz), 125.33 (d, *J* = 2.2 Hz), 123.30, 122.70 (d, *J* = 1.6 Hz), 120.64 (d, *J* = 4.4 Hz), 120.28 (d, *J* = 4.5 Hz), 67.96 (d, *J* = 167.1 Hz), 65.21, 14.01; ³¹P NMR (162 MHz, CDCl₃) δ 4.20; HRMS (ESI) m/z calcd for C₂₆H₂₂NO₇PS [M+Na]⁺ = 546.0741, found [M+Na]⁺ = 546.0743; The ee value was 94%, t_R (minor) = 26.6 min, t_R (major) = 35.1 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 5n

Chromatogram D:\LC-Data\ZHK\4\P=O\2-naph\R33-10-2.lcd

Enantiomerically enriched 5n

(S)-ethyl 3-(diphenoxyphosphoryl)-2,3-dihydronaphtho[2,1-d]isothiazole-3carboxylate 1,1-dioxide (50)

A white solid; m.p. = 108 - 110 °C; 48.1 mg, 92% yield; $[\alpha]^{25}_{D}$ = -15.87 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.67 - 7.57 (m, 1H), 8.37 (s, 1H), 8.08 - 7.92 (m, 2H), 7.73 - 7.56 (m, 2H), 7.37 - 7.28 (m, 2H), 7.21 - 7.14 (m, 3H), 7.14 - 7.06 (m, 2H), 7.02 - 6.90 (m, 3H), 5.30 (s, 1H), 4.47 - 4.29 (m, 2H), 1.32 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.65 (d, *J* = 4.9 Hz), 150.47 (d, *J* = 9.6 Hz), 150.24 (d, *J* = 10.0 Hz), 135.33 (d, *J* = 2.8 Hz), 133.57 (d, *J* = 2.0 Hz), 132.00 (d, *J* = 4.2 Hz), 129.93, 129.67, 129.40, 129.22 (d, *J* = 11.6 Hz), 128.77, 128.06 (d, *J* = 4.1 Hz), 125.92, 125.51, 125.18, 122.71 (d, *J* = 1.6 Hz), 120.61 (d, *J* = 4.4 Hz), 120.14 (d, *J* = 4.5 Hz), 115.46, 67.52 (d, *J* = 167.1 Hz), 65.14, 14.03; ³¹P NMR (162 MHz, CDCl₃) δ 4.57; HRMS (ESI) m/z calcd for C₂₆H₂₂NO₇PS [M+Na]⁺ = 546.0741, found = 546.0738; The ee value was 99%, t_R (minor) = 13.2 min, t_R (major) = 15.3 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Enantiomerically enriched **50**

(S)-ethyl 3-(diisopropoxyphosphoryl)-5-methyl-2,3-dihydrobenzo[d] isothiazole-3-carboxylate 1,1-dioxide (5p)

A white solid; m.p. = 91 - 93 °C; 39.0 mg, 93% yield; $[\alpha]^{25}_{D}$ = -22.37 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.45 - 7.36 (m, 1H), 4.88 - 4.74 (m, 1H), 4.65 - 4.51 (m, 1H), 4.44 - 4.27 (m, 2H), 2.49 (s, 3H), 1.34 (dd, *J* = 7.2, 4.4 Hz, 6H), 1.28 (dd, *J* = 6.0, 2.8 Hz, 6H), 1.00 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.28 (d, *J* = 3.0 Hz), 144.52 (d, *J* = 2.5 Hz), 131.99 (dd, *J* = 17.5, 4.8 Hz), 131.47 (d, *J* = 4.7 Hz), 127.92 (d, *J* = 2.8 Hz), 121.21 (d, *J* = 1.9 Hz), 74.53 (dd, *J* = 17.0, 7.9 Hz), 67.96 (d, *J* = 160.3 Hz), 64.35, 24.22 (dd, *J* = 3.1, 0.2 Hz), 23.74 (d, *J* = 5.8 Hz), 23.16 (d, *J* = 5.6 Hz), 22.08, 14.08; ³¹P NMR (162 MHz, CDCl₃) δ 10.29; HRMS (ESI) m/z calcd for C₁₇H₂₆NO₇PS [M+Na]⁺ = 442.1054, found = 442.1048; The ee value was 91%, t_R (minor) = 23.8 min, t_R (major) = 28.1 min (Chiralcel IC, λ = 220 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

I Cak Table									
PDA Ch2	DA Ch2 220nm								
Peak#	Ret. Time	Height	Height%	Area	Area%				
1	23.572	2056900	51.443	202623371	49.724				
2	30.414	1941504	48.557	204872008	50.276				
Total		3998404	100.000	407495379	100.000				

Peak Table

Racemic 5p

Peak Table

PDA Ch2 220nm						
Peak#	Ret. Time	Height	Height%	Area	Area%	
1	23.797	481	3.977	10305	4.407	
2	28.145	11626	96.023	223556	95.593	
Total		12107	100.000	233861	100.000	

Enantiomerically enriched 5p

(S)-ethyl 3-(diethoxyphosphoryl)-5-methyl-2,3-dihydrobenzo[d]isothiazole-3carboxylate 1,1-dioxide (5q)

A white solid; m.p. = 85 - 87 °C; 36.8 mg, 94% yield; $[\alpha]^{25}_{D}$ = -22.37 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.87 - 7.82 (m, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.46 - 7.40 (m, 1H), 5.84 (s, 1H), 4.46 - 4.34 (m, 2H), 4.34 - 4.24 (m, 2H), 4.17 - 3.98 (m, 2H), 2.50 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.30 (td, *J* = 7.2, 0.8 Hz, 3H), 1.23 (td, *J* = 7.2, 0.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.10 (d, *J* = 2.9 Hz), 144.67 (d, *J* = 2.5 Hz), 132.10 (d, *J* = 2.8 Hz), 132.06 (d, *J* = 5.0 Hz), 131.51 (d, *J* = 4.4 Hz), 127.80 (d, *J* = 2.7 Hz), 121.33 (d, *J* = 2.0 Hz), 67.95 (d, *J* = 160.7 Hz), 65.96 (d, *J* = 7.3 Hz), 65.20 (d, *J* = 7.3 Hz), 64.60, 22.13, 16.55 (d, *J* = 5.4 Hz), 16.35 (d, *J* = 5.4 Hz), 14.12; ³¹P NMR (162 MHz, CDCl₃) δ 12.05; HRMS (ESI) m/z calcd for C₁₅H₂₂NO₇PS [M+Na]⁺ = 414.0752, found = 414.0750; The ee value was 94%, t_R (major) = 16.5 min, t_R (minor) = 21.1 min (Chiralcel AS-H, λ = 220 nm, 30% *i*-PrOH/hexanes, flow rate = 1.0 mL/min). Chromatogram D:\HPLC-Data\ZHK\4\R42\R42-1-3.lcd

Peak Table

I cuit Iuoic								
PDA Ch2	PDA Ch2 220nm							
Peak#	Ret. Time	Height	Height%	Area	Area%			
1	15.842	906673	57.278	49801409	50.544			
2	21.983	676253	42.722	48728520	49.456			
Total		1582926	100.000	98529929	100.000			

Racemic 5q

Chromatogram D:\HPLC-Data\ZHK\4\R42\R42-1-5.lcd

PDA Ch2 220nm						
Peak#	Ret. Time	Height	Height%	Area	Area%	
1	16.533	289891	96.426	24386843	96.924	
2	21.086	10745	3.574	773992	3.076	
Total		300636	100.000	25160835	100.000	

Enantiomerically enriched 5q

(S)-ethyl 3-(dimethoxyphosphoryl)-5-methyl-2,3-dihydrobenzo[d]isothiazole-3carboxylate 1,1-dioxide (5r)

mAU

A white solid; m.p. = 101 - 103 °C; 34.1 mg, 94% yield; $[\alpha]^{25}_{D}$ = -22.37 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.47 - 7.40 (m, 1H), 5.90 (s, 1H), 4.47 - 4.34 (m, 2H), 3.91 (d, *J* = 10.4 Hz, 3H), 3.76 (d, *J* = 10.8 Hz, 3H), 2.51 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.92 (d, *J* = 3.0 Hz), 144.85 (d, *J* = 2.6 Hz), 132.24 (d, *J* = 2.4 Hz), 131.97 (d, *J* = 4.6 Hz), 131.31 (d, *J* = 4.8 Hz), 127.55 (d, *J* = 2.6 Hz), 121.43 (d, *J* = 2.0 Hz), 67.89 (d, *J* = 162.5 Hz), 64.75, 56.40 (d, *J* = 7.5 Hz), 55.44 (d, *J* = 7.3 Hz), 22.13, 14.11; ³¹P NMR (162 MHz, CDCl₃) δ 14.46; HRMS (ESI) m/z calcd for C₁₃H₁₈NO₇PS [M+Na]⁺ = 386.0439, found = 386.0447; The ee value was 91%, t_R (minor) = 42.8 min, t_R (major) = 53.4 min (Chiralcel AS-H, λ = 254 nm, 10% *i*-PrOH/hexanes, flow rate = 0.8 mL/min).

~			-			
Р	ea	k.	1	а	h	le
	c			-	•	

			a come a conce				
PDA Ch1	PDA Ch1 254nm						
Peak#	Ret. Time	Height	Height%	Area	Area%		
1	43.667	24599	56.924	3913970	50.174		
2	54.143	18615	43.076	3886809	49.826		
Total		43215	100.000	7800779	100.000		

Racemic 5r

Enantiomerically enriched 5r

(S)-diethyl (5-methyl-1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-3-yl) Phosphonate (5'a)

A white solid; m.p. = 90 - 92 °C; 29.3 mg, 92% yield; $[\alpha]^{25}_{D}$ = -36.33 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 1H), 7.52 (s, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 6.00 - 5.87 (m, 1H), 5.00 (dd, *J* = 11.2, 4.8 Hz, 1H), 4.32 - 4.18 (m, 2H), 4.15 - 3.93 (m, 2H), 2.47 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.39 (d, *J* = 2.7Hz), 132.67 (d, *J* = 5.2 Hz), 132.45 (d, *J* = 5.6 Hz), 131.08 (d, *J* = 2.3 Hz), 126.17 (d, *J* = 2.8 Hz), 121.39 (d, *J* = 2.7Hz), 64.58 (d, *J* = 7.0 Hz), 64.17 (d, *J* = 7.2 Hz), 54.09 (d, *J* = 160.9 Hz), 21.98, 16.54 (d, *J* = 5.6 Hz), 16.38 (d, *J* = 5.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 16.85; HRMS (ESI) m/z calcd for C₁₂H₁₈NO₅PS [M+Na]⁺ = 342.0530, found = 342.0526; The ee value was 91%, t_R (major) = 11.2 min, t_R (minor) = 13.6 min (Chiralcel AS-H, λ = 240 nm, 40% *i*-PrOH/hexanes, flow rate = 0.6 mL/min).

Peak Table						
PDA Ch1 240nm						
Peak#	Ret. Time	Height	Height%	Area	Area%	
1	11.124	37126	59.778	893132	50.101	
2	13.592	24981	40.222	889533	49.899	
Total		62107	100.000	1782665	100.000	

Racemic 5'a

844	3.430
24599	100.000

Height

23755

PDA Ch1 240nm Peak# Ret. Time

> 2 Total

11.161

13.641

Peak Table

Height% 96.570

Area 529415

23843 553258 Area%

95.690

4.310 100.000

Enantiomerically enriched 5'a

(S)-diethyl (1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-3-yl)phosphonate (5'b)

A white solid; m.p. = 92 - 94 °C; 28.4 mg, 93% yield; $[\alpha]^{25}_{D}$ = -33.33 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.6 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.668 - 7.62(m, 1H), 7.61 - 7.54 (m, 1H), 6.27 - 6..14 (m, 1H), 5.07 (dd, *J* = 11.2, 4.4 Hz, 1H), 4.34 - 4.17 (m, 2H), 4.13 - 3.94 (m, 2H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.12 (d, *J* = 5.6 Hz), 133.26 (d, *J* = 2.4 Hz), 132.37 (d, *J* = 5.2 Hz), 130.05 (d, *J* = 2.6 Hz), 126.04 (d, *J* = 2.8 Hz), 121.66 (d, *J* = 1.9 Hz), 64.76 (d, *J* = 6.8 Hz), 64.11 (d, *J* = 7.1 Hz), 54.26 (d, *J* = 161.4 Hz), 16.52 (d, *J* = 5.4 Hz), 16.38 (d, *J* = 5.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 16.83; HRMS (ESI) m/z calcd for C₁₁H₁₆NO₅PS [M+Na]⁺ = 328.0379, found = 328.0369; The ee value was 90%, t_R (major) = 11.2 min, t_R (minor) = 16.3 min (Chiralcel AS-H, λ = 240 nm, 40% *i*-PrOH/hexanes, flow rate = 0.6 mL/min).

Racemic 5'b
Chromatogram D:\HPLC-Data\ZHK\2019 5 23\4-H\R9-4-5.lcd

Peak Table

PD/	A Ch1	240nm				
Pe	eak#	Ret. Time	Height	Height%	Area	Area%
	1	11.195	23720	98.028	533284	95.064
	2	16.275	477	1.972	27687	4.936
	Total		24197	100.000	560971	100.000

Enantiomerically enriched 5'b

(S)-diethyl (5-methoxy-1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-3-yl) Phosphonate (5'c)

A white solid; m.p. = 99 - 101 °C; 31.8 mg, 95% yield; $[\alpha]^{25}_{D}$ = -18.17 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.19 (s, 1H), 7.12 - 7.7.0 (m, 1H), 4.98 (d, *J* = 11.6 Hz, 1H), 4.32 - 4.20(m, 2H), 4.15 - 3.95 (m, 2H), 3.89 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.69 (d, *J* = 2.8 Hz), 135.01 (d, *J* = 5.4 Hz), 127.12 (d, *J* = 5.6 Hz), 123.03 (d, *J* = 1.8 Hz), 117.52 (d, *J* = 2.4 Hz), 109.63 (d, *J* = 2.6 Hz), 64.55 (d, *J* = 6.9 Hz), 64.25 (d, *J* = 7.1 Hz), 56.07, 54.00 (d, *J* = 159.9 Hz), 16.57 (d, *J* = 5.5 Hz), 16.41 (d, *J* = 5.7 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 16.62; HRMS (ESI) m/z calcd for C₁₂H₁₈NO₆PS [M+Na]⁺ = 358.0485, found = 358.0479; The ee value was 94%, t_R (minor) = 14.7 min, t_R (major) = 16.8 min (Chiralcel AS-H, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 0.6 mL/min). Chromatogram D:\HPLC-Data\ZHK\4\R22-2\R22-4-2.lcd

PDA Ch1	254nm							
Peak#	Ret. Time	Height	Height%	Area	Area%			
1	14.709	22690	54.823	1003933	50.067			
2	16.508	18698	45.177	1001233	49.933			
Total		41388	100.000	2005167	100.000			

Racemic 5'c

Chromatogram D:\HPLC-Data\ZHK\4\R22-2\R22-4-3.lcd

	I can I able							
]	PDA Ch1	254nm						
[Peak#	Ret. Time	Height	Height%	Area	Area%		
[1	14.687	455	5.106	12135	3.134		
ſ	2	16.828	8449	94.894	375044	96.866		
[Total		8904	100.000	387178	100.000		

Enantiomerically enriched 5'c

(S)-diethyl (5-fluoro-1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-3-yl)phosphonate (5'd)

A white solid; m.p. = 95 - 97 °C; 29.4 mg, 91% yield; $[\alpha]^{25}_{D}$ = -15.47 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.70 - 7.61 (m, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 7.28 - 7.19 (m, 1H), 6.36 - 5.85 (m, 1H), 5.05 (d, *J* = 12.0 Hz, 1H), 4.34 - 4.20 (m, 2H), 4.18 - 4.00 (m, 2H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.81 (d, *J* = 2.5 Hz), 135.75 (d, *J* = 1.2 Hz), 121.79 (d, *J* = 3.1 Hz), 121.75 (d, *J* = 3.0 Hz), 116.97 (d, *J* = 2.4 Hz), 116.79 (d, *J* = 2.4 Hz), 65.00 (d, *J* = 7.0 Hz), 64.27 (d, *J* = 7.3 Hz), 54.29 (d, *J* = 162.7 Hz), 16.55 (d, *J* = 5.4 Hz), 16.42 (d, *J* = 5.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 16.11; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.73; HRMS (ESI) m/z calcd for C₁₁H₁₅NO₅PSF [M+Na]⁺ = 346.0279, found = 346.0272; The ee value was >99%, t_R (major) = 12.9 min, t_R (minor) = 24.5 min (Chiralcel AS-H, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 0.6 mL/min).

Peak#	Ret. Time	Height	Height%	Area	Area%
1	12.424	5292	67.588	201772	50.841
2	26.348	2538	32.412	195093	49.159
Total		7830	100.000	396866	100.000

Racemic **5'd**

	reak fable							
PDA Ch2	PDA Ch2 254nm							
Peak#	Ret. Time	Height	Height%	Area	Area%			
1	12.922	305938	99.886	15174901	99.583			
2	24.515	349	0.114	63557	0.417			
Total		306287	100.000	15238457	100.000			

Enantiomerically enriched 5'd

(S)-diethyl (5-chloro-1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-3-yl)phosphonate (5'e)

A white solid; m.p. = 91 - 93 °C; 30.8 mg, 91% yield; $[\alpha]^{25}_{D}$ = -12.67 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 - 7.65 (m, 2H), 7.57 - 7.51 (m, 1H), 5.02 (d, *J* = 12.0 Hz, 1H), 4.30 - 4.20 (m, 2H), 4.20 - 4.09 (m, 3H), 1.29 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.74 (d, *J* = 3.0 Hz), 134.62 (d, *J* = 5.4 Hz), 133.75 (d, *J* = 5.3 Hz), 130.60 (d, *J* = 2.5 Hz), 126.17 (d, *J* = 2.7 Hz), 122.84 (d, *J* = 1.9 Hz), 64.69 (dd, *J* = 99.7, 7.9 Hz), 54.71, 53.08, 16.52 (d, *J* = 5.5 Hz), 16.43 (d, *J* = 5.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 16.34; HRM (ESI) m/z calcd for C₁₁H₁₅NO₅PSCl [M+Na]⁺ = 361.9984, found [M+Na]⁺ = 361.9980; The ee value was 96%, t_R (minor) = 13.5 min, t_R (major) = 19.9 min (Chiralcel IC, λ = 240 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min). **76/218** Chromatogram D:\HPLC-Data\ZHK\4\R22-2\R22-2-2.lcd

Racemic 5'e

PDA Ch2	240nm				
Peak#	Ret. Time	Height	Height%	Area	Area%
1	13.450	355	3.666	11913	1.886
2	19.923	9339	96.334	619648	98.114
Total		9694	100.000	631561	100.000

Enantiomerically enriched 5'e

(S)-diethyl (6-methyl-1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-3-yl)

Phosphonate (5'f)

A white solid; m.p. = 92- 94 °C; 29.0 mg, 91% yield; $[\alpha]^{25}_{D}$ = -30.47 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.67 - 7.58 (m, 2H), 7.46 (d, *J* = 8.0 Hz, 1H), 5.59 - 5.41 (m, 1H), 5.12 - 4.88 (m, 1H), 4.34 - 4.15 (m, 2H), 4.13 - 3.92 (m, 2H), 2.47 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.86 (d, *J* = 2.8 Hz), 135.10 (d, *J* = 5.7 Hz), 134.52 (d, *J* = 2.8 Hz), 129.44 (d, *J* = 5.3 Hz), 125.73 (d, *J* = 2.9 Hz), 121.63 (d, *J* = 1.8 Hz), 64.50 (d, *J* = 6.8 Hz), 64.15 (d, *J* = 7.2 Hz), 54.01 (d, *J* = 160.5 Hz), 21.45, 16.56 (d, *J* = 5.7 Hz), 16.41 (d, *J* = 5.5Hz); ³¹P NMR (162 MHz, CDCl₃) δ 16.86; HRMS (ESI) m/z calcd for C12H18NO5PS [M+Na]⁺ = 342.0530, found = 342.0526; The ee value was 90%, t_R (major) = 21.2 min, t_R (minor) = 28.7 min (Chiralcel AS-H, λ = 220 nm, 40% *i*-PrOH/hexanes, flow rate = 0.6 mL/min).

PDA Ch1	220nm				
Peak#	Ret. Time	Height	Height%	Area	Area%
1	22.709	113726	54.868	6237783	48.944
2	30.617	93545	45.132	6506981	51.056
Total		207271	100.000	12744764	100.000

Racemic 5'f

PDA Ch3 220nm Ret. Time Height Height% Peak# Area Area% 485099 21.158 94.087 36936207 94.950 1 2 28.738 30486 5.913 1964357 5.050 Total 515586 100.000 38900565 100.000

Enantiomerically enriched 5'f

(S)-diethyl (6-chloro-1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-3-yl) phosphonate (5'g)

A white solid; m.p. = 87 - 89 °C; 30.5 mg, 90% yield; $[\alpha]^{25}_{D}$ = -34.18 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.6 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.56 - 7.47 (m, 1H), 6.29 (s, 1H), 5.10 (d, *J* = 10.0 Hz, 1H), 4.26 - 4.07 (m, 4H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.31 (d, *J* = 4.5 Hz), 134.06 (d, *J* = 2.6 Hz), 131.83 (d, *J* = 3.9 Hz), 131.52 (d, *J* = 2.9 Hz), 131.46 (d, *J* = 6.5 Hz), 120.30 (d, *J* = 2.3 Hz), 64.80 (d, *J* = 7.1 Hz), 64.00 (d, *J* = 7.2 Hz), 54.69 (d, *J* = 154.5 Hz), 16.42 (d, *J* = 2.4 Hz), 16.36 (d, *J* = 2.1 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 17.03; HRMS (ESI) m/z calcd for C₁₁H₁₅NO₅PSCl [M+Na]⁺ = 361.9984, found = 361.9980; The ee value was 99%, t_R (major) = 15.3 min, t_R (minor) = 17.3 min (Chiralcel AS-H, λ = 220 nm, 40% *i*-PrOH/hexanes, flow rate = 0.6 mL/min).

(S)-diethyl (7-fluoro-1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-3-yl) phosphonate (5'h)

A white solid; m.p. = 85 - 87 °C; 29.1 mg, 90% yield; $[\alpha]^{25}_{D}$ = -40.00 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.32 - 7.23 (m,1H), 6.60 (s, 1H), 5.04 (d, *J* = 12.0 Hz, 1H), 4.33 - 4.20 (m, 2H), 4.19 -4.07 (m, 2H), 1.32 - 1.29 (t, *J* = 7.2 Hz, 3H), 1.29 - 1.25 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.39 (dd, J = 253.5, 2.9 Hz), 135.72 (dd, J = 10.1, 5.7 Hz), 131.27 (dd, J = 5.2, 2.4 Hz), 123.91 (dd, J = 9.9, 1.8 Hz), 118.16 (d, J = 2.1 Hz), 118.04 (d, J = 2.2 Hz), 113.19 (dd, J = 24.9, 2.5 Hz), 65.19 (d, J = 7.1 Hz), 64.15 (dd, J = 24, 2.1 Hz), 53.93 (d, J = 162.6 Hz), 16.51 (d, J = 5.4 Hz), 16.43 (d, J = 5.7 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 16.24; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.79; HRMS (ESI) m/z calcd for C₁₁H₁₅NO₅PSF [M+Na]⁺ = 346.0279, found = 346.0276; The ee value was 90%, t_R (major) = 15.7 min, t_R (minor) = 31.3 min (Chiralcel AS-H, $\lambda = 240$ nm, 40% *i*-PrOH/hexanes, flow rate = 0.6 mL/min).

FDA CIIZ	240000				
Peak#	Ret. Time	Height	Height%	Area	Area%
1	15.563	57312	70.995	2364546	50.289
2	32.425	23415	29.005	2337344	49.711
Total		80726	100.000	4701891	100.000

Racemic 5'h

Peak Table <u>PDA Ch2 240nm</u> Peak# Ret. Time Height Height% Area Area% 15.707 31.329 95.871 493607 94.956 7269 1 4.129 26219 313 5.044 7582 100.000 Total 519826 100.000

Enantiomerically enriched 5'h

(S)-dimethyl (5-methyl-1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-3-yl) Phosphonate (5'i)

A white solid; m.p. = 89 - 91 °C; 27.1 mg, 93% yield; $[\alpha]^{25}_{D}$ = -20.50 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 1H), 7.49 (s, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 6.14 (s, 1H), 5.05 (d, *J* = 11.2 Hz, 1H), 3.87 (d, *J* = 10.4 Hz, 3H), 3.72 (d, *J* = 10.8 Hz, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.56 (d, *J* = 4.8 Hz), 132.44 (d, *J* = 1.8 Hz), 132.38 (d, *J* = 2.4 Hz), 131.21 (d, *J* = 2.3 Hz), 126.14 (d, *J* = 2.8 Hz), 121.46 (d, *J* = 1.9 Hz), 55.07 (d, *J* = 7.0 Hz), 54.38 (d, *J* = 7.3 Hz), 53.77 (d, *J* = 162.6 Hz), 21.97; ³¹P NMR (162 MHz, CDCl₃) δ 19.22; HRMS (ESI) m/z calcd for C₁₀H₁₄NO₅PS [M+Na]⁺ = 314.0217, found = 314.0211; The ee value was 98%, t_R (minor) = 20.3 min, t_R (major) = 31.6 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Peak Table

I Cak Table							
PDA Ch1	254nm						
Peak#	Ret. Time	Height	Height%	Area	Area%		
1	19.768	45179	59.430	2732101	49.258		
2	31.778	30842	40.570	2814446	50.742		
Total		76020	100.000	5546547	100.000		

Racemic 5'i

Chromatogram D:\HPLC-Data\ZHK\4\R28\R28-2.led

			Peak Table		
PDA Ch1	254nm				
Peak#	Ret. Time	Height	Height%	Area	Area%
1	20.313	561	1.581	26587	0.852
2	31.564	34913	98.419	3093789	99.148
Total		35474	100.000	3120376	100.000

Enantiomerically enriched 5'i

(S)-diisopropyl (5-methyl-1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-3-yl) Phosphonate (5'j)

83 / 218

A white solid; m.p. = 88 - 90 °C; 31.9 mg, 92% yield; $[\alpha]^{25}_{D}$ = -11.00 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.0 Hz, 1H), 7.57 (s, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 5.46 (s, 1H), 4.93 (dd, *J* = 11.6, 2.8 Hz, 1H), 4.86 - 4.75 (m, 1H), 4.65 - 4.48 (m, 1H), 2.47 (s, 3H), 1.35 (d, *J* = 6.0 Hz, 3H), 1.30 (d, *J* = 2.8 Hz, 3H), 1.29 (d, *J* = 2.8 Hz, 3H), 1.03 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.35 (d, *J* = 2.6 Hz), 132.93 (d, *J* = 5.8 Hz), 132.52 (d, *J* = 5.7 Hz), 130.98 (d, *J* = 2.4 Hz), 126.11 (d, *J* = 2.8 Hz), 121.35 (d, *J* = 1.9 Hz), 73.38 (d, *J* = 14.5 Hz), 73.38, 54.47 (d, *J* = 159.5 Hz), 24.25 (d, *J* = 1.4 Hz), 24.22 (d, *J* = 1.6 Hz), 23.94 (d, *J* = 5.2 Hz), 23.51 (d, *J* = 5.1 Hz), 21.97; ³¹P NMR (162 MHz, CDCl₃) δ 14.85; HRMS (ESI) m/z calcd for C₁₄H₂₂NO₅PS [M+Na]⁺ = 370.0843, found = 370.0838; The ee value was 90%, t_R (minor) = 9.8 min, t_R (major) = 12.3 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 5'j

Peak Table

				ettile attraction		
]	PDA Ch1	254nm				
[Peak#	Ret. Time	Height	Height%	Area	Area%
[1	9.748	185462	97.939	3128663	95.027
[2	13.570	3902	2.061	163715	4.973
[Total		189364	100.000	3292378	100.000

Enantiomerically enriched 5'j

(S)-diphenyl (5-methyl-1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-3-yl) Phosphonate (5'k)

A white solid; m.p. = 91 - 93 °C; 39.4 mg, 95% yield; $[\alpha]^{25}_{D}$ = -17.43 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.57 (s, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.33- 7.27 (m, 2H), 7.23 - 7.13 (m 5H), 7.12 - 7.05 (m, 1H), 7.01 - 6.93 (m, 2H), 5.73 (s, 1H), 5.30 (d, *J* = 9.2 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.11 (d, *J* = 9.3 Hz), 149.85 (d, *J* = 9.3 Hz), 144.78 (d, *J* = 2.6 Hz), 132.45 (d, *J* = 6.2 Hz), 131.47 (d, *J* = 2.5 Hz), 131.30 (d, *J* = 5.1 Hz), 130.08, 129.77, 126.37 (d, *J* = 2.8 Hz), 125.98 (d, *J* = 0.9 Hz), 125.69, 121.61 (d, *J* = 2.0 Hz), 120.79 (d, *J* = 4.2 Hz), 120.46 (d, *J* = 4.3 Hz), 53.76 (d, *J* = 164.1 Hz), 21.86; ³¹P NMR (162 MHz, CDCl₃) δ 9.37; HRMS (ESI) m/z calcd for C₂₂H₁₈NO₅PS [M+Na]⁺ = 438.0530, found = 438.0526; The ee value was 98%, t_R (minor) = 18.6 min, t_R (major) = 21.6 min (Chiralcel IC, λ = 254 nm, 40% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Peak Table							
Peak#	Ret. Time	Height	Height%	Area	Area%		
1	18.944	66385	62.533	3058001	50.489		
2	21.683	39774	37.467	2998769	49.511		
Total		106159	100.000	6056770	100.000		

Racemic 5'k

Chromatogram ChromatograD:\HPLC-Data\ZHK\4\R50\R50-2.lcdm

Enantiomerically enriched 5'k

5.3 Representative procedure for the asymmetric P-nucleophile addition to CF₃substituted cyclic N-sulfonyl amines 6 and phosphine oxide 2 and 3

Representative procedure: To a flame-dried round bottle flask with a magnetic stirring bar were added the cyclic imine **6a** (0.1 mmol, 26.7 mg), Phosphine Oxide **2a** (0.12 mmol, 24.2 mg), and phosphonium salt **P4** (0.02 mmol, 11.3mg). followed by the addition of CH_2Cl_2 (1.0 ml). The reaction mixture was stirred at -30 °C for 24 h. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (CH_2Cl_2 /ethyl acetate = 3:1) to afford **7a** (92% yield) as a white solid.

Condition b: caried out room temperature.

(S)-3-(diphenylphosphoryl)-5-methyl-3-(trifluoromethyl)-2,3-

dihydrobenzo[d]isothiazole 1,1-dioxide (7a)

A white solid; m.p. = 85 - 87 °C; 41.5 mg, 92% yield; $[\alpha]^{25}_{D}$ = -12.32 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.13 - 8.04 (m, 2H), 7.98 - 7.86 (m, 3H), 7.55 - 7.47 (m, 2H), 7.47 - 7.27 (m, 6H), 7.00 (s, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.26, 133.07 (d, *J* = 2.6 Hz), 132.94 (d, *J* = 8.8 Hz), 132.83 (d, *J* = 2.6 Hz), 132.48 (d, *J* = 8.1 Hz), 129.07, 128.88 (d, *J* = 12.2 Hz), 128.66, 128.31 (d, *J* = 12.1 Hz), 127.62 (d, *J* = 8.9 Hz), 126.54 (d, *J* = 2.8 Hz), 125.33 (d, *J* = 7.3 Hz), 122.51 (dd, *J* = 6.7, 1.3 Hz), 121.27, 21.79; ³¹P NMR (162 MHz, CDCl₃) δ 24.65; HRMS (ESI) m/z calcd for C₂₁H₁₇NO₃PSF₃ [M+Na]⁺ = 474.0517, found = 474.0525; The ee value was 94%, t_R (minor) = 6.6 min, t_R (major) = 8.0 min (Chiralcel IC, λ = 254 nm, 30% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Chromatogram D:\LC-Data\ZHK\New folder\2019 4 22\R144-2.lcd

Chromatogram D:\LC-Data\ZHK\New folder\2019 5 6\R6-8.lcd

Enantiomerically enriched 7a

(S)-3-(diphenylphosphoryl)-5-methoxy-3-(trifluoromethyl)-2,3dihydrobenzo[d]isothiazole 1,1-dioxide (7b)

A white solid; m.p. = 88 - 90 °C; 44.4 mg, 95% yield; $[\alpha]^{25}_{D}$ = -14.17 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.16 - 8.04 (m, 2H), 7.99 - 7.88 (m, 2H), 7.65 - 7.37 (m, 6H), 7.36 - 7.28 (m, 2H), 7.07 - 6.98 (m, 1H), 6.03 (s, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.94 (d, *J* = 1.5 Hz), 133.46 (d, *J* = 2.8 Hz), 133.15 (d, *J* = 2.8 Hz), 132.99 (d, *J* = 8.9 Hz), 132.48 (d, *J* = 8.1 Hz), 131.56 (d, *J* = 1.5 Hz), 129.11 (d, *J* = 12.2 Hz), 128.66 (d, *J* = 12.1 Hz), 127.64 (d, *J* = 9.3 Hz), 127.05 (d, *J* = 2.7 Hz), 126.63, 123.09, 119.75 (d, *J* = 1.1 Hz), 110.35, 56.50; ³¹P NMR (162 MHz, CDCl₃) δ 24.93; HRMS (ESI) m/z calcd for C₂₁H₁₇NO₄PSF₃ [M+Na]⁺ = 490.0466, found = 490.0466; The ee value was >99%, t_R (major) = 8.4 min, t_R (minor) = 21.8 min (Chiralcel IC, λ = 254 nm, 10% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

1	FDA CIT 234IIII					
Γ	Peak#	Ret. Time	Height	Height%	Area	Area%
Γ	1	9.291	415708	84.680	11820782	50.992
Γ	2	21.600	75209	15.320	11360881	49.008
	Total		490917	100.000	23181663	100.000
_						

Racemic 7b

Enantiomerically enriched 7b

(S)-3-(diphenylphosphoryl)-5-(trifluoromethoxy)-3-(trifluoromethyl)-2,3dihydrobenzo[d]isothiazole 1,1-dioxide (7c)

A white solid; m.p. = 80 - 82 °C; 47.9 mg, 92% yield; $[\alpha]^{25}_{D}$ = -17.17 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.73 - 7.63 (m, 5H), 7.58 - 7.43 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 132.67 (d, *J* = 2.8 Hz), 131.89, 131.62 (d, *J* = 9.3 Hz), 130.880, 130.77 (d, *J* = 11.3 Hz), 128.98 (d, *J* = 12.7 Hz), 120.75 (d, *J* = 6.9 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 21.59; HRMS (ESI) m/z calcd for C₂₁H₁₄NO₄PSF₆ [M+Na]⁺ = 544.0183, found = 544.0194; The ee value was 98%, t_R (minor) = 13.7 min, t_R (major) = 21.5 min (Chiralcel IC, λ = 254 nm, 10% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Enantiomerically enriched 7c

(S)-3-(diphenylphosphoryl)-3-(trifluoromethoxy)-2,3- dihydronaphtho[2,1d]isothiazole 1,1-dioxide (7d)

A white solid; m.p. = 95 - 97 °C; 44.8 mg, 92% yield; $[\alpha]^{25}_{D}$ = -20.83 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, DMSO) δ 10.20 (s, 1H), 8.33 (d, *J* = 8.7 Hz, 1H), 8.21 - 8.05 (m, 5H), 7.84 - 7.63 (m, 7H), 7.35 - 7.18 (m, 3H); ¹³C NMR (100 MHz, DMSO) δ 134.29, 133.65, 133.07 (d, *J* = 2.5 Hz), 132.72 (d, *J* = 2.3 Hz), 132.50 (d, *J* = 8.7 Hz), 131.77 (d, *J* = 8.0 Hz), 130.99 (d, *J* = 3.6 Hz), 129.63, 129.13, 128.95, 128.83, 128.16 (d, *J* = 11.7 Hz), 127.90, 127.75 (d, *J* = 1.2 Hz), 126.87, 123.81, 121.83 (d, *J* = 4.8 Hz); ³¹P NMR (162 MHz, DMSO) δ 23.73; HRMS (ESI) m/z calcd for C₂₄H₁₇NO₃PSF₃ [M+Na]⁺ = 510.0517, found = 510.0525; The ee value was 99%, t_R (minor) = 17.0 min, t_R (major) = 21.4min (Chiralcel IG, λ = 254 nm, 10% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 7d

	Peak Table					
PDA Ch1	254nm					
Peak#	Ret. Time	Height	Height%	Area	Area%	
1	16.998	111067	99.678	5742991	99.339	
2	21.385	358	0.322	38195	0.661	
Total		111425	100.000	5781185	100.000	

Enantiomerically enriched 7d

(S)-dimethyl (5-methyl-1,1-dioxido-3-(trifluoromethyl)-2,3-

dihydrobenzo[d]isothiazol-3-yl)phosphonate (7e)

A white solid; m.p. = 85 - 87 °C; 33.0 mg, 92% yield; $[\alpha]^{25}_{D}$ = -9.67 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 1H), 7.67 (s, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 5.88 (d, *J* = 6.8 Hz, 1H), 3.90 (d, *J* = 10.8 Hz, 3H), 3.67 (d, *J* = 10.8 Hz, 3H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.36 (d, *J* = 2.1 Hz), 141.47, 133.94, 132.98 (d, *J* = 1.8 Hz), 126.83 (d, *J* = 2.1 Hz), 121.96 (d, *J* = 1.3 Hz), 55.65 (dd, *J* = 23.5, 6.8 Hz), 29.85, 22.11; ³¹P NMR (162 MHz, CDCl₃) δ 12.99; HRMS (ESI) m/z calcd for C₁₁H₁₃NO₅PSF₃ [M+Na]⁺ = 382.0102, found = 382.0998; The ee value was 99%, t_R (minor) = 8.4 min, t_R (major) = 11.1 min (Chiralcel IC, λ = 254 nm, 10% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 7e

Chromatogram D:\HPLC-Data\ZHK\4\R44\R44-2-4.lcd mAU 500 1 PDA Multi 1 254nm,4nm 400 300-365 200-100-011.116 0 9.0 9.5 8.5 10.0 10.5 11.5 11.0 8.0 12.0 min Peak Table Ch1 254nm ak# Ret. Time А Peak# Height Height% Area% Area 1 8.365 158972 99.908 1470203 99.494 7484 1477687

Enantiomerically enriched 7e

147 159119 0.092

100.000

0.506

100.000

2

Total

11.116

(S)-diethyl (5-methyl-1,1-dioxido-3-(trifluoromethyl)-2,3-

dihydrobenzo[d]isothiazol-3-yl)phosphonate (7f)

A white solid; m.p. = 79 - 91 °C; 35.2 mg, 91% yield; $[\alpha]^{25}_{D}$ = -10.50 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.00 - 7.78 (m, 1H), 7.67 - 7.64 (m, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 5.93 (s, 1H), 4.19 - 4.09 (m, 4H), 2.43 (d, *J* = 7.6 Hz, 3H), 1.36 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 144.20, 138.13, 130.33 (d, *J* = 4.2 Hz), 129.83, 128.92 (d, *J* = 10.0 Hz), 126.57, 67.20 (d, *J* = 32.0 Hz), 65.74 (d, *J* = 1.8 Hz), 62.19 (d, *J* = 5.7 Hz), 30.69, 29.83, 21.67, 16.41 (d, *J* = 6.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 10.55; HRMS (ESI) m/z calcd for C₁₃H₁₇NO₅PSF₃ [M+Na]⁺ = 410.0415, found = 410.0410; The ee value was 90%, t_R (minor) = 9.4 min, t_R (major) = 10.4 min (Chiralcel IC, λ = 220 nm, 10% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Peak Table DA Ch2 220nm Peak# Ret. Time Height Height% Area Area9 8.971 2532 54.547 503207 49.119 10.464 21101 45.453 521255 50.881 46423 100.000 1024462 100.000 Tota

Racemic 7f

Enantiomerically enriched 7f

(S)-diphenyl (5-methyl-1,1-dioxido-3-(trifluoromethyl)-2,3-

dihydrobenzo[d]isothiazol-3-yl)phosphonate (7g)

A white solid; m.p. = 77 - 79 °C; 44.0 mg, 91% yield; $[\alpha]^{25}_{D}$ = -21.68 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 1H), 7.66 (s, 1H), 7.43 (dd, *J* = 8.1, 0.5 Hz, 1H), 7.38 - 7.30 (m, 2H), 7.24 - 7.20 (m, 1H), 7.18 - 7.11 (m, 3H), 7.09 - 7.03 (m, 1H), 6.93 - 6.81 (m, 3H), 6.04 (d, *J* = 6.8 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.75, 149.98 (dd, *J* = 84.6, 9.1 Hz), 145.48 (d, *J* = 2.3 Hz), 133.16 (d, *J* = 2.1 Hz), 132.78 (d, *J* = 5.4 Hz), 130.21 (d, *J* = 0.8 Hz), 129.72 (d, *J* = 8.2 Hz), 127.32, 126.41 (d, *J* = 1.1 Hz), 125.85, 122.02 (d, *J* = 1.4 Hz), 120.79, 120.49 (d, *J* = 4.3 Hz), 119.72 (d, *J* = 4.5 Hz), 115.43, 29.84, 21.83; ³¹P NMR (162 MHz, CDCl₃) δ 1.60; HRMS (ESI) m/z calcd for C₂₁H₁₇NO₅PSF₃ [M+Na]⁺ = 506.0415, found = 506.0420; The ee value was 97%, t_R (major) = 6.3 min, t_R (minor) = 9.9 min (Chiralcel IC, $\lambda = 220$ nm, 5% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Enantiomerically enriched 7g

(S)-3-(bis(4-methoxyphenyl)phosphoryl)-5-methyl-3-(trifluoromethyl)-2,3dihydrobenzo[d]isothiazole 1,1-dioxide (7h)

A white solid; m.p. = 81 - 83 °C; 38.6 mg, 92% yield; $[\alpha]^{25}_{D}$ = -10.43 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.99 - 7.91 (m, 2H), 7.82 - 7.75 (m, 3H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.05 - 6.98 (m, 2H), 6.84 - 6.75 (m, 2H), 5.37 (s, 1H), 3.87 (d, *J* = 1.6 Hz, 3H), 3.75 (d, *J* = 1.6 Hz, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.49 (d, *J* = 2.8 Hz), 163.09 (d, *J* = 2.9 Hz), 145.16 (d, *J* = 0.9 Hz), 134.77 (d, *J* = 10.0 Hz), 134.31 (d, *J* = 9.6 Hz), 132.49, 132.37 (d, *J* = 2.7 Hz), 129.60, 127.36, 121.43, 118.68 (d, *J* = 24.7 Hz), 117.68, 114.59 (d, *J* = 13.1 Hz), 114.06 (d, *J* = 13.1 Hz), 55.55, 55.41, 21.90; ³¹P NMR (162 MHz, CDCl₃) δ 26.26; HRMS (ESI) m/z calcd for C₂₃H₂₁NO₅PSF₃ [M+Na]⁺ = 534.0728, found = 534.0720; The ee value was 99%, t_R (minor) = 15.5 min, t_R (major) = 24.6 min (Chiralcel IC, λ = 254 nm, 20% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Racemic 7h

Chromatogram D:\LC-Data\ZHK\New folder\2019 5 8\R11-3-3.lcd

Enantiomerically enriched 7h

6. Investigation of the absolute stereochemistry

6.1. Determination of absolute configuration of 5'

The absolute configuration of **5'b** and **5'j** were assigned to be *S* by comparing optical rotation of the same compounds reported in the literature (Scheme S4),^[6] and the configuration of **5'a**, **5'c** - **5'i** and **5'k** were assigned by analogy.

Figure S4. Optical rotation of 5'b and 5'j compared to reported

6.2. Determination of absolute configuration of 4, 5 and 7^[7].

In order to confirm the absolute configuration of compounds 4, 5 and 7. For four compounds, geometry optimization e and ectronic circular dichroism (ECD) spectrum calculations were performed at the PBE0-D3(BJ)/ 6-311+G(d,p) / SMD

(dichloromethane) level of theory,^[7b-7e] using Gaussian 09 program package.^[7f] The calculated ECD curves were generated using Multiwfn 3.8 software.^[7g]

A. Determination of absolute configuration of 4a

The absolute configuration (AC) of **4a** was confirmed as *S* and detailed method was elaborated as following: the CD spectrum experiment of **4a** from the catalytic reaction was obtained, at the same time, the ECD spectra of (*S*)-**4a** were calculated. As shown in Figure S5, the simulated spectra are in good agreement with the experimental spectral data, and the *S* configuration could be reliably assigned to compound **4a**.

Figure S5. Experimental ECD spectra (left) and simulated spectra (right) proving *S*-conformer absolute configuration of **4a**.

B. Determination of absolute configuration of 5a

As shown in Scheme S6, the simulated spectra of (S)-**5a** are in good agreement with the experimental spectral data, and the *S* configuration could be reliably assigned to compound **5a**.

Figure S6. Experimental CD spectra (left) and simulated spectra (right) proving S-conformer 5a absolute configuration

C. Determination of absolute configuration of 7a

As shown in Scheme S7, the simulated spectra of (S)-7a are in good agreement with the experimental spectral data, and the *S* configuration could be reliably assigned to compound 7a.

Figure S7. Experimental ECD spectra (left) and simulated spectra (right) proving *S*-conformer absolute configuration of **7a**.

D. Determination of absolute configuration of 7g

As shown in Scheme S8, the simulated spectra of (S)-**7g** are in good agreement with the experimental spectral data, and the *S* configuration could be reliably assigned to compound **7g**.

Figure S8. Experimental ECD spectra (left) and simulated spectra (right) proving *S*-conformer absolute configuration of **7g**.

6.3 Single crystal structure of catalyst P4

The absolute configuration of the catalyst **P4** was assigned as (*S*) by X-ray crystallographic analysis of a single crystal of **14** (Figure S9). CCDC 1935757 contains the supplementary crystallographic data of the chiral catalyst **P4** for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S9. X-ray structure of P4

Identification code	catalyst P4		
Empirical formula	C ₂₅ H ₂₉ FIN ₂ PS		
Formula weight	566.43		
Temperature/K	295.4(6)		
Crystal system	monoclinic		
Space group	P21		
a/Å	9.4752(4)		
b/Å	11.6241(3)		
c/Å	12.9271(6)		
a/°	90		
β/°	111.550(5)		
$\gamma/^{\circ}$	90		
Volume/Å ³	1324.26(10)		
Z	2		
$ ho_{calc}g/cm^3$	1.421		
μ/mm^{-1}	10.974		
F(000)	572.0		
Crystal size/mm ³	0.7 imes 0.6 imes 0.2		
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)		
2Θ range for data collection/°	7.352 to 131.016		
Index ranges	$-11 \le h \le 11, -13 \le k \le 9, -12 \le l \le 15$		
Reflections collected	6569		
Independent reflections	3343 [$R_{int} = 0.1119, R_{sigma} = 0.0835$]		
Data/restraints/parameters	3343/1/283		
Goodness-of-fit on F ²	1.131		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0957, wR_2 = 0.2193$		
Final R indexes [all data]	$R_1 = 0.0978, wR_2 = 0.2230$		
Largest diff. peak/hole / e Å ⁻³	2.88/-2.26		
Flack parameter	0.009(16)		

 Table S6. Crystal data and structure refinement for P4

7. Gram-scale preparations and transformations

A. Procedure for the gram-scale synthesis of 4a and 5a

Gram-scale synthesis of 4a: To a flame-dried round bottle flask with a magnetic stirring bar were added the cyclic imine **1a** (4.0 mmol, 1012 mg), Phosphine Oxide **2a** (4.8 mmol, 969.6 mg), and phosphonium salt **P4** (0.4 mmol, 476 mg). followed by the addition of dry DCE (60.0 ml). The reaction mixture was stirred at 0 °C for 48 h. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (CH₂Cl₂/ethyl acetate = 3:1) to afford 4a (93% yield) as a white solid.

Gram-scale synthesis of 5a: To a flame-dried round bottle flask with a magnetic stirring bar were added the cyclic imine **1a** (4.0 mmol, 1012 mg), Phosphine Oxide **3a** (4.8 mmol, 1123.2 mg), and phosphonium salt **P6** (0.4 mmol, 226.4 mg). followed by the addition of toluene (40.0 mL). The reaction mixture was stirred at room temperature for 48 h. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (CH₂Cl₂/ethyl acetate = 3:1) to afford **5a** (92% yield) as a white solid.

B. Preparation of compound 8^[8]

General procedure: To the solution of **4a** (0.2 mmol, 91.0 mg) in THF (5 mL) was added NaBH₄ (0.6 mmol, 22.8 mg) in three portions at 0 °C. The resulting mixture was stirred for 0.5 hour at room temperature. Then, the reaction was quenched with saturated aqueous chloride ammonium (2 mL). The organic solvent was removed in vacuo and the aqueous layer was extracted with CH₂Cl₂ (5 mL x 3). The combined organic layer was dried over anhydrous sodium sulfate, filtered and evaporated under vacuum. The residue was purified by flash chromatography over silica gel (CH₂Cl₂/ethyl acetate = 3:1) to afford the desired product **8**.

(S)-3-(diphenylphosphoryl)-3-(hydroxymethyl)-5-methyl-2,3dihydrobenzo[d]isothiazole 1,1-dioxide (8)

104 / 218

A white solide; m.p. = 142 - 144 °C; 74.3 mg, 90% yield, 99% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.66 - 7.47 (m, 5H), 7.47 - 7.30(m 3H), 7.16 - 6.95 (m, 5H), 5.86 (s, 1H), 5.32 (s, 1H), 3.92 - 3.54 (m, 1H), 2.21 (s, 1H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃:CD3OD = 1:1) δ 143.81 (d, *J* = 2.1 Hz), 143.65, 137.72, 132.88, 132.69 (d, *J* = 2.6 Hz), 132.55 (d, *J* = 3.0 Hz), 132.40 (dd, *J* = 12.9, 2.7 Hz), 132.01 (d, *J* = 3.7 Hz), 131.58 (dd, *J* = 56.4, 9.0 Hz), 130.39 (d, *J* = 1.9 Hz), 130.06 (d, *J* = 11.8 Hz), 129.90, 129.53, 128.57 (d, *J* = 13.0 Hz), 128.12 (dd, *J* = 66.8, 12.0 Hz), 126.18, 125.42 (d, *J* = 2.5 Hz), 125.18, 124.64, 120.42 (d, *J* = 1.6 Hz), 120.10, 64.03, 58.53, 56.23 (d, *J* = 84.4 Hz); ³¹P NMR (162 MHz, CDCl₃:CD₃OD = 1:1) δ 35.78; HRMS (ESI) m/z calcd for C₂₁H₂₀NO4PS [M+Na]⁺ = 436.0748, found = 436.0740.

C. Preparation of compound 9^[9]

General procedure: To the solution of 4a (0.2 mmol, 91.0 mg) in DMF (5 mL) was added CH₃I (0.6 mmol), The resulting mixture was stirred for 0.5 hour at room temperature. Then, the reaction was added Cs_2CO_3 (0.2 mmol). The resulting mixture was stirred for 4 hours at room temperature. The reaction was quenched with saturated aqueous NaCl (2 mL). The mixture layer was extracted with CH₂Cl₂ (10 mL x 3). The combined organic layer was dried over anhydrous sodium sulfate, filtered and evaporated under vacuum. The residue was purified by flash chromatography over silica gel (CH₂Cl₂/ethyl acetate = 3:1) to afford the desired product **9**.

(S)-ethyl 3-(diphenylphosphoryl)-2,5-dimethyl-2,3-dihydrobenzo[d]isothiazole-3carboxylate 1,1-dioxide (9)

A white solide, m.p. = 184 - 186 °C; 87.2 mg, 93% yield, 99% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.88 - 7.77 (m, 2H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.59 - 7.48 (m, 4H), 7.46 - 7.37 (m, 4H), 7.33 (d, *J* = 8.0 Hz, 1H), 6.88 (s, 1H), 4.42 - 4.17 (m, 2H), 2.90 (s, 3H), 2.21 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.15 (d, *J* = 6.8 Hz), 143.54 (d, *J* = 1.7 Hz), 133.40 (d, *J* = 8.7 Hz), 132.92 (d, *J* = 2.7 Hz), 132.78 (d, *J* = 2.9 Hz), 131.57 (d, *J* = 1.6 Hz), 130.88 (d, *J* = 3.4 Hz), 130.56 (d, *J* = 2.6 Hz), 129.40 (d, *J* = 16.4 Hz), 128.65 (d, *J* = 11.9 Hz), 128.41 (d, *J* = 19.6 Hz), 127.96 (d, *J* = 12.0 Hz), 127.21 (d, *J* = 3.0 Hz), 121.24 (d, *J* = 0.8 Hz), 73.93 (d, *J* = 73.5 Hz), 63.38, 27.18, 21.78, 14.08; ³¹P NMR (162 MHz, CDCl₃) δ 31.85; HRMS (ESI) m/z calcd for C₂₄H₂₄NO₅PS [M+Na]⁺ = 492.1010, found = 492.1002.

8. Mechanistic studies

8.1. Model reaction promoted by different catalysts

According to previous mechanistic results, we prepared the methylated phosphonium salt catalyst **P4-1**. As shown, employment of N-methylated catalyst **P4-1** led to the formation of the desired product **4a** in low yield with sharply decreased enantioselectivities (entry 2). Additionally, when methanol was used as solvent (entry 3), erosion of enantioselectivity was observed due to that the hydrogen-bond network was disrupted under polar system, Besides, when changed the optimal phosphonium salt catalyst P4 to its corresponding trivalent. phosphine (**P4-0**) under the standard conditions for the reaction, the yield and selectivity of the reaction decreased remarkably, giving nearly racemic product only with 35% isolated yield (entry 4). All these results indicated the importance of both hydrogen-bonding and ion-pair interactions in this phase-transfer system. Futhermore, we have also tested different negative ions with a neutral H-bonding trivalent phosphine catalyst (P4-0) under the standard conditions for the reaction. Not surprisingly, the yield and selectivity of the reactivity is phosphine (P4-0) under the standard conditions for the reaction. Not surprisingly, the yield and selectivity of the reactivity of the reaction. Not surprisingly, the yield and selectivity of the reaction decreased remarkably, giving nearly racemic product with moderate isolated

yield (entries 5-7), which indicated the synergistic effect between the hydrogenbonding and ion pair of the bifunctional phosphonium salts. Additionally, the anions effect of the bifunctional phosphonium salt were investigated, the other types of bifunctional phosphonium salt catalysts with BF_{4}^{-} (**P4-2**) $\$ PF_{6}^{-} (**P4-3**) and NO_{2}^{-} (**P4-**4) were synthesized and applied in the model reaction under standard conditions, and the results shown that the enantioselectivities of this asymmetric P-addition reaction were dropped sharply (Table S7, entries 8-10). We speculated that mainly due to the steric hindrance and the tightness of ion pairs moiety in the catalyst.

Table S7. Asymmetric P-nucleophile addition to cyclic ketimine 1a with 2a promoted by different phosphonium salts^a

^aReactions were performed with 1a (0.1 mmol), 2a (0.12 mmol), catalyst (0.01 mmol) in solvent (1.0

mL). ^{*b*}Isolated yield. ^{*c*}Determined by HPLC analysis on a chiral stationary phase. ^{*d*}The NaI (0.1 mmol) was used. ^{*e*}The NaBr (0.1 mmol) was used. ^{*f*}The NaCl (0.1 mmol) was used.

8.2. ¹H NMR titration of 1a or 2a with catalyst P4

¹H NMR titration experiments were conducted on a Bruker spectrometer by recording the changes of ¹H NMR spectra of the catalyst **P4** after the corresponding targets addition. In a typical experiment, the catalyst **P4** (28.3 mg, 0.05 mmol) was dissolved with CD₃Cl (0.5 mL) in nuclear magnetic tube. Then, the ¹H NMR spectrum of catalyst **P4** was recorded. After that, the corresponding equivalent of substrate (**1a** or **2a**) was stepwise added to the NMR-tube and chemical shifts of the protons on the catalyst **P4** were recorded after each addition.

Figure S10. ¹H NMR spectrum of P4 with 1a

Figure S11. ¹H NMR spectrum of P4 with 2a

¹H NMR titration was conducted in chloroform-d, which was dried with potassium carbonate and degassed. The total concentration of the host (**P4**) and the guest (**1a/2a**) was 0.04 M. The proportion of the concentration of the host vs the total concentration varied from 0.2 equivalent to 0.8. The chemical shift of N-H¹ of **P4** were recorded. 1:1 binding pattern could also be observed in the Job plot.

Figure S12. ¹H NMR titration of substrate 1a or 2a with P4

B. Proposed reaction catalytic cycle

It was plausible to propose a reaction catalytic cycle presented as Figure S13. At first the diphenylphosphine oxide 2a was deprotonated by iodide ion and converted into diphenylphosphinite anion, which was stabilized and simultaneously activated by the catalyst P4 via H-bonding and ion-pair interaction. Subsequently, the nucleophilic addition of the anionic P-specie towaeds cyclic imine substrate 1a preferentially occurred via the transition state TS-1, which quickly was protonated experiencing the transition state TS-2 to produce product (*R*)-5a and release catalyst P4 that would enter the next reaction cycle.

Figure S13. Proposed reaction mechanism

C. Structure characteristics of bifunctional phosphonium salt catalyst P4 by-DFT calculation

Figure S14. The electrostatic potential and DFT structure of catalysts, catalyst cations, and catalyst complexes. (The optimized structures were calculated at the M062X-D3/6-311+G(d,p)-SMD(CH₂Cl₂)//M062X-D3/6-31G(d,p)-SMD(CH₂Cl₂) level of theory).

D. Cartesian coordinates of DFT-computed structures

P4

Ι	0.88830600	2.79315600	-1.90715500
Р	-2.35508800	-1.02153100	0.62610700
S	1.02321100	-0.62164700	3.03876100
N	0.00763600	1.12046800	1.27936200
С	-1.26298100	1.21988000	1.96772600
С	-3.78507200	-1.40015600	-0.41938400
С	-0.87182300	-1.49290100	-0.28645000
С	3.95910400	-0.09725800	-0.64318100
N	2.02838800	0.32201800	0.68458100

С	3.24196500	-0.36773000	0.54082400
С	-2.39138400	0.75208100	1.03057400
С	-4.83697600	-0.49017500	-0.60323600
С	4.97102000	-1.95354700	1.17268200
С	0.53683800	-1.19450800	-2.23113000
С	3.76563800	-1.30237600	1.44959400
С	-0.59664500	-0.84198500	-1.50013500
С	-1.50254800	2.64235800	2.53268800
С	-1.69895800	3.70554600	1.45018200
С	-0.01569300	-2.49867800	0.18763800
С	1.38919400	-2.19961700	-1.76198700
С	1.03848900	0.30713300	1.61829600
С	-2.65231000	2.65233100	3.54300800
С	1.11209200	-2.85013800	-0.55742100
С	-5.92656300	-0.84559600	-1.40299300
С	-2.46800700	-1.97967000	2.15019500
С	-3.82773000	-2.66110600	-1.03964700
С	5.16048200	-0.74369500	-0.91955900
С	-4.92167900	-3.00873700	-1.83164500
С	-5.97097300	-2.10099200	-2.01461200
F	6.81439800	-2.30554800	-0.26849300
С	5.65235100	-1.67114900	-0.00468300
Н	0.09788700	1.65533200	0.40886800

Н	-1.19550600	0.54370000	2.83002700
Н	3.55869700	0.62570400	-1.35776300
Н	1.83806200	0.94132900	-0.11010700
Н	-2.37344400	1.30096600	0.07651500
Н	-3.37187500	0.92490400	1.49840500
Н	-4.81766500	0.49438800	-0.13513500
Н	5.38341200	-2.68257200	1.87353100
Н	0.76084400	-0.67041700	-3.16187000
Н	3.22244400	-1.52009600	2.36512200
Н	-1.25467800	-0.05280200	-1.86933500
Н	-0.57230800	2.87562800	3.07893800
Н	-0.87892300	3.70766300	0.71565900
Н	-1.74081100	4.70891400	1.90263200
Н	-2.64337100	3.55516800	0.90138000
Н	-0.21131300	-3.00020800	1.13476900
Н	2.28090400	-2.46699300	-2.33283100
Н	-3.62570700	2.46307600	3.05998000
Н	-2.72328900	3.63445200	4.03648700
Н	-2.50985100	1.89172000	4.32796200
Н	1.78509100	-3.62435600	-0.18397400
Н	-6.74199300	-0.13378900	-1.54879000
Н	-3.35625200	-1.63714700	2.70081700
Н	-1.56120100	-1.81406400	2.75205100

Н	-2.57649800	-3.04617000	1.90911600
Н	-3.00446800	-3.36773700	-0.91062600
Н	5.71471100	-0.53632800	-1.83701000
Н	-4.95208600	-3.98866800	-2.31303300
Н	-6.82484100	-2.37291200	-2.63959300

 $[P4-I]^+$

Р	2.16630900	-0.17781400	-0.56429500
S	-1.64578000	1.70023800	-1.76452500
Ν	-0.22208600	1.65465000	0.50630800
С	0.93633500	2.31659000	-0.07213300
С	3.73817000	-1.00375900	-0.23073700
С	0.84825900	-1.19646700	0.12607800
С	-4.50194500	0.27864100	1.27856100
Ν	-2.20568600	0.58660000	0.63073500
С	-3.50327200	0.10655600	0.31812500
С	2.19759500	1.47749800	0.19412800
С	4.87504000	-0.28490500	0.15039400
С	-5.05938700	-1.08911300	-1.08515300
С	-0.20426900	-2.16986100	2.06527300
С	-3.78046900	-0.59247000	-0.85928300
С	0.80444900	-1.38909700	1.51306700
С	1.07048300	3.76482600	0.44435500

С	1.27987900	3.84550400	1.95555000
С	-0.10340600	-1.79341400	-0.70360400
С	-1.15515800	-2.77066300	1.23780700
С	-1.35073800	1.29811200	-0.14542600
С	2.16733400	4.52213000	-0.30253500
С	-1.10134700	-2.58833000	-0.14030100
С	6.07443900	-0.95906900	0.36378300
С	1.93606400	-0.00634400	-2.34310300
С	3.80263900	-2.39315400	-0.39672000
С	-5.77936800	-0.22896900	1.06802200
С	5.00616500	-3.05594400	-0.18601800
С	6.14042800	-2.33945800	0.19434300
F	-7.26922200	-1.38602800	-0.33587500
С	-6.03411100	-0.89862000	-0.11725000
Н	-0.13973700	1.38620100	1.48192400
Н	0.75730900	2.36899500	-1.14896700
Н	-4.27667300	0.81891500	2.19326400
Н	-1.95665300	0.49090300	1.61023200
Н	2.38101600	1.33581200	1.26612700
Н	3.06927200	1.98753300	-0.22960900
Н	4.83856800	0.79064800	0.28707600
Н	-5.30234600	-1.63107000	-1.99251000
Н	-0.24223200	-2.32074900	3.13909400

Η	-2.99956900	-0.74205400	-1.59328700
Н	1.55620900	-0.93846800	2.15741900
Н	0.10732500	4.23277700	0.20369000
Н	0.48861200	3.33020300	2.50897500
Н	1.27506900	4.89082300	2.27691000
Н	2.24450400	3.41768300	2.25073800
Н	-0.07558600	-1.64549600	-1.77889400
Н	-1.93809200	-3.38453800	1.67179000
Н	3.16562100	4.17897800	-0.00994700
Н	2.11152700	5.58923900	-0.07039500
Н	2.06791600	4.40777700	-1.38697900
Н	-1.83824800	-3.05913600	-0.78252200
Н	6.95598000	-0.40185500	0.66271900
Н	2.70833200	0.67055000	-2.71831200
Н	0.94440400	0.40892400	-2.54957900
Н	2.04648400	-0.98261600	-2.82079300
Н	2.91740100	-2.95638700	-0.68066900
Н	-6.56827200	-0.10358300	1.80094900
Н	5.05670100	-4.13202900	-0.31413900
Н	7.07756000	-2.86038700	0.36276400

[P4-Int-P]

P -2.67541600 -0.31084900 -0.30568300

S	0.49578600	-4.14807100	0.49282900
Ν	0.01416000	-1.55543000	0.98676500
С	-1.25404000	-1.79916200	1.64415200
С	-4.23863900	-1.18448600	-0.55114700
С	-2.96278100	1.44626100	-0.58964300
С	4.05801800	-1.76733900	-0.97986100
Ν	1.73444900	-1.88984800	-0.40470300
С	2.84888900	-2.46946900	-1.04784700
С	-2.10486200	-0.53687900	1.40934900
С	-4.67654800	-2.16413100	0.34389200
С	3.91154100	-4.13086400	-2.44436800
С	-4.32895100	3.40778700	-0.28364600
С	2.77689700	-3.64553700	-1.80095600
С	-4.13732700	2.04112300	-0.11390700
С	-1.07723400	-2.10589600	3.14537700
С	-0.53695500	-0.90684500	3.92175000
С	-1.98481300	2.21487500	-1.22701900
С	-3.35703100	4.17606500	-0.92489200
С	0.76158000	-2.47434700	0.35885800
С	-2.37038100	-2.63974900	3.75650100
С	-2.18806900	3.58268600	-1.39466500
С	-5.86282400	-2.84832100	0.08775400
С	-1.50863200	-0.93319400	-1.53521700

С	-4.98503900	-0.89122700	-1.69940800
С	5.19033800	-2.23623900	-1.63497800
С	-6.16834500	-1.57733200	-1.94544300
С	-6.60591400	-2.55534500	-1.05269200
F	6.19245700	-3.89070900	-2.97765800
С	5.09655800	-3.41987000	-2.34869900
Н	0.24825000	-0.54613400	0.75607800
Н	-1.72498200	-2.67489300	1.17793800
Н	4.10628800	-0.84717600	-0.40357600
Н	1.74255800	-0.86441200	-0.36287800
Н	-1.52184600	0.36322800	1.64182700
Н	-3.00048400	-0.51063300	2.03859900
Н	-4.10302200	-2.39846700	1.23651100
Н	3.87911700	-5.04356200	-3.02938000
Н	-5.23800000	3.87235800	0.08390500
Н	1.83741000	-4.17505100	-1.88218100
Н	-4.89928300	1.44278500	0.37838000
Н	-0.32945000	-2.90780500	3.17632900
Н	0.35583800	-0.48779600	3.44363600
Н	-0.26205600	-1.20396900	4.93807100
Н	-1.28523900	-0.11037500	4.00422500
Н	-1.06046500	1.76011800	-1.56970500
Н	-3.51269900	5.24235100	-1.05598300

Н	-3.16428900	-1.88394200	3.75280100
Н	-2.20720300	-2.93244400	4.79799800
Н	-2.72958900	-3.52072400	3.21341700
Н	-1.42430000	4.17845100	-1.88673900
Н	-6.20491500	-3.60831800	0.78231800
Н	-1.40486000	-2.01350700	-1.39799400
Н	-0.54265500	-0.43561400	-1.41738000
Н	-1.93220600	-0.73552100	-2.52391300
Н	-4.64944700	-0.12440000	-2.39299400
Н	6.13368900	-1.70364300	-1.58857900
Н	-6.74935800	-1.34646300	-2.83210600
Н	-7.53081800	-3.08905900	-1.24728100
Р	0.79220200	2.09441400	0.90017500
0	0.68928400	0.76417100	0.03506000
С	1.09275700	3.41193100	-0.36938000
С	0.92358500	4.76328500	-0.05149800
С	1.40409500	3.05958700	-1.68595500
С	1.08924800	5.74787400	-1.02537900
Н	0.64413500	5.04831000	0.96142900
С	1.55565400	4.03918100	-2.66554500
Н	1.51203100	2.00434900	-1.92683000
С	1.40172200	5.38644500	-2.33542300
Н	0.95934400	6.79488200	-0.76674700

Н	1.79683400	3.75562800	-3.68633400
Н	1.51956900	6.15081000	-3.09770200
С	2.51170800	2.01170600	1.61180300
С	3.06574900	0.75314500	1.86977900
С	3.23527000	3.14721000	1.99535000
С	4.31709500	0.62844100	2.47403900
Н	2.51200200	-0.14045100	1.59077800
С	4.48459800	3.02747600	2.59887600
Н	2.82752300	4.13816900	1.80808300
С	5.03227200	1.76673400	2.83807200
Н	4.73185000	-0.35919100	2.65656600
Н	5.03683200	3.92057800	2.87716400
Н	6.00773900	1.67367700	3.30571300

9. References

- [1] (a) X. Han, Y. Wang, et al. J. Am. Chem. Soc. 2011, 133, 1726; (b) X. Han, F. Zhong, et al. Angew. Chem. Int. Ed. 2012, 51, 767; (c) F. Zhong, X. Han, Chem. Sci. 2012, 3, 1231; (d) F. Zhong, X. Han, et al. Angew. Chem. Int. Ed. 2011, 50, 7837; (e) F. Zhong, J. Luo, et al. J. Am. Chem. Soc. 2012, 134, 10222; (f) F. Zhong, X. Dou, et al. Angew. Chem. Int. Ed. 2013, 52, 943.
- [2] H. Wang, T. Jiang, et al. J. Am. Chem. Soc. 2013, 135: 971; (b) S. Zhang, L. Li, et al, Org. Lett. 2015, 17, 1050. (c) Z. Yan, B. Wu, et al. Org. Lett. 2016, 18, 692.
- [3] Z. Yan, B. Wu, et al. Org. Lett. 2016, 12, 483.
- [4] (a) S. K. Singh, S. Shivaramakrishna, et al. *Eur. J. Med. Chem.* 2007, 42, 456; (b)
 S. Zhang, L. Li, et al. *Org. Lett.* 2015, 17, 5036.
- [5] Z.-J. Du, J. Guan, et al. J. Am. Chem. Soc. 2015, 173, 632.
- [6] Z. Yan, B. Wu, Org. Lett. 2016, 18, 692.
- [7] (a) Y.-H. Chen, D.-J. Cheng, J. Am. Chem. Soc. 2015, 137, 15062; (b) C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158-6170; (c) S. Grimme, J. Antony, et al. J. Chem. Phys. 2010, 132, 154104-154119; (d) S. Grimme, S. Ehrlich, et al. J. Comput. Chem. 2011, 32, 1456-1465; (e) J. Tomasi, B. Mennucci, et al. Chem. Rev. 2005, 105, 2999-3094; (f) M. J. Frisch; G. W. Trucks, et al. Fox, Gaussian 09, Revision D.01, Gaussian, Inc. Wallingford, CT, 2013; (g) T. Lu, F. Chen. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.
- [8] S. Zhang, L. Li, et al. Org. Lett. 2015, 17, 1050.
- [9] M. Quan, X. Wang, et al. Nat. Commun 2018, 9, 2258.

10. NMR spectra

125 / 218

126 / 218

127 / 218

128 / 218

129 / 218

133 / 218

140 / 218

141 / 218

147 / 218

148 / 218

149 / 218

150 / 218

152 / 218

153 / 218

155 / 218

156 / 218

157 / 218

161 / 218

164 / 218

165 / 218

168 / 218

172 / 218

173 / 218

176 / 218

178 / 218

180 / 218

181 / 218

185 / 218

186 / 218

190 / 218

191 / 218

192 / 218

194 / 218

197 / 218

198 / 218

202 / 218

205 / 218

206 / 218

207 / 218

210 / 218

212 / 218

213 / 218

214 / 218

