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Supporting Information

S1 Conformer search and DFT verification

Figures S1 show the results from the conformer search. One can clearly see how the pool
of molecules is heavily decreased by the conformer search. Ideally the quality of the GA
output should be high enough that most or all of them should be viable molecules after the
search. However, only 4 conformers where used during GA runs. As such, the stereoisomer
checks where done with few conformers and it is possible that increasing the number of
conformers tried for each ligand orientation would lead to new configurations and then these
configurations would not be stable when performing a GFN2 optimization. Nevertheless,
the conformer search ensured that the molecules that remained where likely to have a
more accurate representation of the score and to have more reasonable geometries.
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Figure S1: Comparison of scores and population size before and after conformer search
for (a) 1 neutral ligand and (b) 2 neutral ligand configurations. The score is based on
the energy of the lowest energy conformer. The decrease in number of molecules after the
search is due to the fact that some molecules did not obtain any valid conformers in the
conformer search.

After the conformer search the 10 lowest energy conformers where passed to def2-
TZVP/PBE single point calculations to obtain new lowest energy conformers at the
DFT level. Then the molecules where filtered based on these new scores as described in the
main text. An example of how this SP refinement helped select better structure is shown
in Figure S2. The final verification step was the def2-TZVP/PBE optimization of the new
lowest energy conformers. The resulting reaction and protonation energy distributions for
the 1 neutral and 2 neutral ligand configurations are shown in Figure S3 and Figure S4.
At this level where conformers are def2-TZVP/PBE optimized there is a large portion
of molecules with positive protonation energies (Fig. S3 and Fig. S4). This is where we
applied the second filter to obtain the final populations (90+70) for which we attempt
to compute full catalytic cycles. A random selection of 40 of these catalysts are seen in
Figure S6 for the 1 neutral ligand catalysts and in Figure S6 for the 2 neutral ligand
catalysts.

23



Lowest energy xTB Lowest energy DFT

Figure S2: Example of the disparity between DFT and xTB lowest energy structures. It
appears that the lowest energy xTB has been embedded with a different starting structure.
This is not the case, the optimization of the xTB structure has moved the neutral ligand
into an axial position in stead of equatorial as seen on the right.
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Figure S3: (a) Score surface of molecules obtained after conformer search for 1 neutral
ligand molecules. The energies are normalized and without SA score modification. (b)
Distribution of calculated energies.
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Figure S4: (a) Score surface of molecules obtained after conformer search for 2 neutral
ligand molecules. The energies are normalized and without SA score modification. (b)
Distribution of calculated energies.
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Figure S5: 40 molecules picked at random from the final population of molecules scored
with 2 neutral ligand.
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Figure S6: 40 molecules picked at random from the final population of molecules scored
with 1 neutral ligand.
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S2 SA score

In addition to the gaussian modifier suggested by Gao and Coley [1], we apply an extra

gaussian

modifier on the average of the SA score for the ligands in a catalyst. The form

of this gaussian is visualized in figure S7. This modifier maps the upper range of values

for the S

A score into a smaller range on the y-axis. In this way, molecules in the upper

range of average SA scores would need less improvement in reaction energy scores in order
to survive throughout populations allowing for more evolutionary flexibility. Equation
(S1) shows the form of the Gao and Coley [1] modifier and equation (S2) shows our extra

modifier.

Final-SA score

Figure
o=0.8.

S3

Equation (S3) shows the final equation we use to obtain the final SA score.
1 [z —2.230044\
SAmo ifie = P P Sl
difiea(X) = exp ( 2 ( 0.6526308 ) ) (51)
1 /z—1)
Ext modi fier = -5 52
XEXa0di fier (X) eXP(Q(OB)) (S2)
3'SAmoiie L 1 2'SAmoiie L
SAsore = Extra,, g fier ( i d< 1) i (2or ) i d( 2>> (SS)
1.0
0.9
0-8—
0.7
0.6
0.5
0.0 0.2 0.4 0.6 0.8 1.0
Average SA score
S7: SA.re using our extra gaussian modifier. Gaussian constants are yp = 1,

Scoring surface

As discussed in the main text, the chosen method of combining scores was by multiplication
of normalized reaction scores. Figure S8 shows two experiment GA runs with different
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scoring objectives. The generations with addition of reaction energies is observed to be
too flexible in both dimensions. Optimizing towards one reaction energy can significantly
improve the score. As the first reduction is a heavily exergonic reaction for the schrock
cycle, the GA could easily optimize towards ligands that improved mostly on this reduction
reaction. The population moves almost exclusively upwards along the axis of reduction as
generations increase. On the other hand (left in Figure S8), we have the minimization of
the highest reaction energy which leads to a clear improvement of the protonation energy
on the x-axis. The first reduction is usually highly exothermic, effectively meaning that
this objective was likely only optimizing on the protonation energy.
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Figure S8: Example GA runs with two different scoring objectives. Left) Minimize the
highest reaction energy. E.g maximize the lowest normalized reaction energy. Right)
Maximize the sum of the normalized reaction energies

Figure S9 shows the result of a GA run where the starting population was comprised of the
top 10 molecules from five different 50 generation runs. The population score improvement
is noticeable from generation 1 to 10, but quickly converges and minor improvement is
observed from generation 10 to 20. The improvement gained from the extra generations
is minor and computation time could be better spent using a variety of non optimized
starting populations.

S4 Crossover

A detailed illustration of the crossover procedure in the GA is shown in Figure S10. There
are several random selection steps in the procedure, and unless otherwise specified a
random selection has equal probability for each option. The first step of the crossover
procedure is to select the catalyst and ligand we want to operate on. To do this, we first
select Cat 1 or Cat 2 and then we select either the anionic (L) or the neutral (Lg) ligand
in this catalyst. Then we can do one of two types of crossover on the chosen ligand. There
is a 20% probability of simply performing a switch of the selected ligand with the ligand
of the same type in the other catalyst. There is a 80% probability of performing ligand
crossover between the selected ligand and the ligand of the same type in the other catalyst.
The bottom of figure S10 shows an example in both cases where Cat 1 has been selected
together with the anionic ligand L;.
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Figure S10: Illustration of the crossover operations in the GA.
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S5 DFT calculations

S5.1 Schrock catalyst reference

The DFT results on all the Schrock catalyst reference intermediates and proton/electron
donors are identical to the ones presented in our previous work|[2].

S5.2 DFT methods

We apply identical DFT methods to previous approaches [2, 3]. ORCA 5 software [3] was
utilized for all DFT computations. The PBE functional [4] is used for the screening process
together with a relativistic basis set ZORA-def2-TZVP [5, 6]. For dispersion we use D3BJ
[7, 8]. For the final energy refinement we apply B3LYP [9-11]/ZORA-def2-TZVP /D3BJ.
The Split-RI-J [12] approximation was applied in PBE calculations, whereas RIJCOSX
[13, 14] approximation was utilized in B3LYP calculations. The zeroth order regular
approximation (ZORA [15]) was used to address relativistic effects. Finally, we use the
CPCM [16] solvent model with ¢ = 1.844.

S5.3 Errors for optimization of full cycles

Nitrogen fixation is an inherently difficult reaction. It was therefore found difficult to
obtain intermediates for the whole catalytic cycle and in particular the catalysts with 1
neutral ligand proved difficult. Figure S11 shows 3 examples of intermediates where the
catalyst has changed its configuration during DFT optimization. For catalysts with 1 and
2 neutral ligand configurations it was also observed that sometimes the incoming proton
would move to a coordinating amide instead of the NxHx moiety, an example of this is
shown in Figure S12.
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Figure S11: Examples of converged def2-TZVP /PBE structures for the catalysts with 1
neutral ligand in the trigonal bipyramidal configuration.

Catl Cat2

Figure S12: Illustration of protonated amide for the Mo—N,N3™ intermediates for Catl
and Cat2 of the 2 neutral ligand catalysts.
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Top catalysts with 1 neutral ligand

The top 10 scoring catalysts for the catalysts with 1 neutral ligand is shown in Figure
S13.

@ o
Catalyst .(: L1 L2 Score [EyE,] Max(aE,-AE.)
Catl PN \/Q-\ 0317  [-2.13,-24.13]  15.94
cat2 \N/O /dvﬁ\ 0316  [-2.45-2333]  9.05
P e
Cat3 N 0295  [-0.40,-17.55]  16.64
Cata NS ‘Q 0283  [4.42,-18.28]  13.92
[\
cats e A~ 0278  [5.38-17.33]  18.85

Cat6 U O ) O 0.271 [3.58,-12.37] 15.7

cat7 NS \/':/\“\ 0.271  [5.83,-15.04]  15.51
N/ /@\

Cat8 b 0.271  [8.62,-18.54]  8.76

Cat9 —<_/ O /_\ O 0.268  [-0.03,-7.14] 23.4
/

Cat10 NN —@ 0.262 [9.54,-15.93] 9.45

Figure S13: Top 15 molecules after the final B3LYP characterization. Every catalyst is
in a trigonal bipyramidal coordination geometry with 3 - L; and 1 - Ly. The score column
contains the score based on the multiplication of normalized electronic reaction energies.
The last column denotes the largest increase in reaction energy relative to the reference
catalyst across the catalytic cycle.

S6 Linear scaling relations

The linear scaling relation for the 36 catalysts used to construct the volcano plot is shown
in Figure S14. We excluded outliers by Chauvenets criterion with a cutoff of 5%.
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Figure S14: Linear scaling relationships based on 36 catalysts with B3LYP refined
energies. R? indicates the coefficient of determination.
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S7 Anionic carbons

The tmQMg-L dataset includes 5210 monodentates [17] that all have designated charge
and coordinating atoms. We use the xyz2mol' package to obtain mol objects for each
monodentate ligand. Then, using the coordinating atom information from the dataset,
we search for all monodentates where a carbon is the coordinating atom and where it
has a charge of -1. This gives us a total of 327 anionic ligands with an anionic carbon
as coordinating atom. This number is only an estimate as 223 monodentate ligands fail
the xyz2mol procedure. Additionally there can be incorrect overall ligands charges in the
dataset which adds additional error to the estimate. Nevertheless, anionic carbons are
existing in experimentally verified TM-complexes and therefore supports our approach to
use such coordinating ligands for the GA search.

S8 Investigate ligand contributions to protonation
energy

Figures S15, S16 and S17 contain the results from the ligand substitution study. Figure
S18 shows an example of how this substitution looks for the 3D structures, using Catl as
example.
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Figure S15: Ligand substitution energies for Catl. The labels on the x-axis indicate the
label of all ligands removed for each protonation energy calculation.

Thttps://github.com/jensengroup/xyz2mol
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Figure S16: Ligand substitution energies for Cat2. The labels on the x-axis indicate the
label of all ligands removed for each protonation energy calculation.
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Figure S17: Ligand substitution energies for Cat3. The labels on the x-axis indicate the
label of all ligands removed for each protonation energy calculation.
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Ligand subsitution Catl

4+6 4+6+7

4+6+7+5 44+6+7+5+3

Figure S18: Example of the ligand substitution experiment for Catl shown for the
Mo-N2 intermediate.
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