Characterization of a LanC-free pathway for the formation of an LL-MeLan residue and an *allo*AviMeCys residue in the newly identified class V lanthipeptide triantimycins

Weizhong Ding,^{a,#} Xiaofeng Wang,^{a,b,#} Yu Yin,^c Jiang Tao,^{d,*} Yanqing Xue^{a,*} and Wen Liu^{a,*}

^aState Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

^bSchool of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sublane Xiangshan, Hangzhou 310024, China.

°School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China.

^dDepartment of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Science, No. 639 Zhizaoju Road, Shanghai 200011, China

[#] These authors contributed equally to this work.

Table of Contents.

1. Supplementary Methods.

- 1.1 General Materials and Methods.
- 1.2 Constructs for Heterologous Expression in Streptomyces coelicolor.
- 1.3 Compounds Production and Examination.
- 1.4 Compounds Purification and Characterization.
- 1.5 Chiral Analysis of Amino Acid Residues.
- 1.6 Iodoacetamide Derivatization.
- 1.7 Chemical Synthesis of DL/LL-Lan and DL/LL-MeLan Standards.
- 1.8 Genes Co-Expression in *Escherichia coli* and Protein Purification.
- 1.9 Bioinformatic Analysis.

2. Supplementary Figures.

- Figure. S1. Structure and biosynthetic gene clusters of class Va lanthipeptides.
- Figure. S2. Sequence logos of the precursor candidates.
- **Figure. S3.** HPLC-MS traces of the $\Delta stnA1A2$, $\Delta stnA1A3$, and $\Delta stnA2A3$ strains.
- Figure. S4. Tandem MS analysis of 1.
- Figure. S5. Pseudo-MS³ analysis of y24 ion of 1.
- Figure. S6. Tandem MS analysis of 2.
- Figure. S7. Tandem MS analysis of 3.
- Figure. S8. NMR spectra of 1.
- Figure. S9. NMR spectra of 3.

Figure. S10. ROESY spectrum of the AviMeCys fragment in 1.

- Figure. S11. Chiral analysis of residues in 1.
- Figure. S12. Chiral analysis of residues in 3.
- Figure. S13. MS analysis of 3-1.
- Figure. S14. MS analysis of 1-T8S.
- Figure. S15. Chiral analysis of aminobutyric acid residues in 1-T8S.
- Figure. S16. SDS-PAGE analysis of engineered proteins.
- Figure. S17. MS analysis of mStnA1-1.
- Figure. S18. Iodoacetamide derivatization of mStnA1-1.
- Figure. S19. MS analysis of mStnA1-2.
- Figure. S20. MS analysis of mStnA3-1.
- Figure. S21. Iodoacetamide derivatization of mStnA3-1.
- Figure. S22. MS analysis of mStnA3-2.

3. Supplementary Tables.

- Table S1. Amino acid sequence of precursor peptide candidates.
- Table S2. Proposed function for each protein encoded in the *stn* gene cluster.
- Table S3. 1 H (500 MHz) and 13 C NMR (125 MHz) Data for 1.
- Table S4. 1 H (500 MHz) and 13 C NMR (125 MHz) Data for 3.
- Table S5. Related bacterial strains and plasmids used in this study.
- Table S6. Primers and chemically synthesized DNA sequences used in this study.

4. References.

1. Supplementary Methods.

1.1 General Materials and Methods.

Materials, Bacteria Strains and Plasmids. Chemicals, biochemicals and media were purchased from Sinopharm Chemical Reagent Co., Ltd. (China), Oxoid Ltd. (U.K.) or Sigma-Aldrich Corporation (USA) unless otherwise stated. Enzymes and kits for DNA manipulations were purchased from Takara Bio (Japan), Vazyme Biotech (China) or Thermo Fisher Scientific (USA). Bacterial strains and plasmids are summarized in Table S5. Primers used in this study are listed in Table S6.

Chemical Analysis. ¹H NMR, and ¹³C NMR spectra were recorded on an Agilent 500 MHz PremiumCompact⁺ NMR spectrometer (Agilent Technologies Inc., USA) or on a Bruker AV500 S5 spectrometer (Bruker Co. Ltd., Germany). Analyses by highperformance liquid chromatography (HPLC) was carried out on an Agilent 1260 HPLC system (Agilent Technologies Inc., USA). Semi-preparative HPLC was performed on Agilent 1100 system equipped with a DAD detector. Analysis by HPLC-coupled low resolution mass spectrometry (LR-MS) and high-resolution tandem MS (HR-MS/MS) were performed on a Thermo Fisher LTQ XL ESI-MS spectromer and a Q ExactiveTM Plus Mass Spectrometer (Thermo Fisher Scientific Inc., USA). HR-ESI-MS analysis were carried out on an Agilent 6230B Accurate Mass TOF LC/MS System (Agilent Technologies Inc., USA). Related data were processed using Thermo Xcalibur softwareTM or Agilent MassHunter softwareTM.

DNA Isolation, Manipulation, Sequencing and Synthesis. DNA isolation and manipulation in *Escherichia coli* or *Streptomyces* strains were carried out according to standard methods.¹ PCR amplifications were carried out on an Applied Biosystems Veriti[™] Thermal Cycler either using Taq DNA polymerase (Vazyme Biotech, Nanjing, China) for routine genotype verification or KOD DNA polymerase (Takara Bio, Tokyo, Japan) for high fidelity amplification. Primer synthesis was performed at Shanghai

Biosune Biotech Co., Ltd. (Shanghai, China). DNA sequencing was performed at Shanghai Biosune Biotech Co., Ltd. (Shanghai, China). The *stn* cluster that contains *stnA1A2A3U1KYDXPJMU2* was chemically synthesized by GenScript (Nanjing, China).

1.2 Constructs for Heterologous Expression in S. coelicolor.

The *stn* cluster was separately synthesized and cloned into the empty plasmid pXY200-1 by GenScript (Nanjing, China), resulting the plasmid pXYDuet-*stn*. Precisely, the 7 genes including *orf2/stnK/stnY/stnA1/stnA2/stnA3/stnM* was synthesized under the first *tipA* promoter, which led to plasmid pXY200-1-*stn*-half. Then the left 5 genes including *stnJ/stnD/stnX/stnP/orf1* and the second *tipA* promoter were synthesized and cloned into the plasmid pXY200-1-*stn*-half, which resulted in the working construction pXYDuet-*stn* (see **Figure 2B**).

The DNA synthesis resulted plenty of "semi-cloned" plasmids which were easily used for gene deletion and/or base edition combining enzymatic digestion, new custom-DNA synthesis, and ligation. Thusly, the gene deletions and base editions within this work were conducted by GenScript (Nanjing, China). Plasmids used in this work were listed in **Table S5**.

The introduction of each above recombinant plasmid into *S. coelicolor* M1146 chassis was carried out by *E. coli* ET12567-*Streptomyces* conjugation,¹ yielding the corresponding recombinant strains listed in **Table S5**.

1.3 Compounds Production and Examination.

The growth and preservation of *S. coelicolor* M1146 and the recombinant strains were conducted according to the manual.¹ Briefly, MS medium was used for spore

production. The fresh spores of the Streptomyces strains were inoculated into 50 mL TSB medium containing 50 µg/mL of apramycin, and were grown at 30°C and 220 rpm for 3 d, 5 mL of the resulting seed culture was inoculated in 100 mL TSB medium with thiostrepton (to a final concentration of 5 µg/mL). After growth for 4 d at 30°C and 220 rpm, 1 mL of the fermentation broth was centrifuged, and the collected mycelia were soaked in 1 mL of methanol for 30 min. After centrifugation, the methanol extract was subjected to HPLC-MS (positive ion mode) analysis on an Agilent SB-C18 Zorbax column (5 μ m, 4.6 mm × 250 mm) by gradient elution of solvent A (H₂O + 0.1% FA) and solvent B (CH₃CN + 0.1% FA) with a flow rate of 1 mL/min over a 36 min period: T = 0 min, 5 % B; T = 6 min, 5 % B; T = 25 min, 100 % B; T = 33 min, 100 % B; andT = 34 min, 5 % B; T = 36 min, 5 % B. Further HPLC coupled HR-MS/MS (positive ion mode) analysis was conducted on an Agilent Zorbax column (300SB-C18, 3.5 µm, 2.1 mm \times 100 mm) by gradient elution of solvent A(H₂O + 0.1% FA) and solvent B $(CH_3CN + 0.1\% FA)$ at a flow rate of 0.3 mL/min over a 23 min period as follows: T = 0 min, 5 % B; T = 5 min, 5 % B; T = 15 min, 95 % B; T = 20 min, 95 % B; T = 23 min, 5 % B.

1.4 Compounds Purification and Characterization.

For compound **1** and **3** isolation, ~ 120 L of the TSB fermentation broth of the STN-10 strain was centrifuged, and pelleted mycelial cake was extracted with 5 L of methanol for three times. After concentration, the crude extract was subjected to a Sephadex LH - 20 column (Mitsubishi Chemical Corporation, Japan), and then eluted with methanol. After crude concentration, the semipreparation was conducted on an Agilent Pursuit XRs 5 - C18 column (250 mm × 21.2 mm) by isocratic elution (76 % methanol in H₂O with 0.1% TFA, 15.0 mL/min), and a WatersTM XBridge BEH C18 OBD Prep Column, (5 µm, 10 mm × 250 mm) by isocratic elution (59 % CH₃CN in H₂O with 0.1% FA, 3.0 mL/min), yielding ~10 mg of **1** and ~10 mg of **3** as white amorphous powder for NMR analysis. Key structural elements of compounds **1** and **3** were revealed based on

detailed 1D and 2D NMR spectra.

Similarly, compounds **3-1** and **1-T8S** were purified from 30 L of fermentation broth of the STN11 and STN12, respectively.

1.5 Chiral Analysis of Amino Acid Residues.

Chiral analysis of amino acid residues was conducted using the methods described previously. ² For compound **1**, sample (400 µg in 600 µL of 6 M HCl, 5% thioglycolic acid (To prevent the degradation of Trp residue) ³ was heated to 110°C for 12 h with stirring in a sealed thick-walled reaction vessel, after which the hydrolysate was concentrated to dryness under N₂. The resulting hydrolysate was divided into two portions (200 µg × 2) for chemical derivatization with L-FDAA and D-FDAA, respectively. For compound **3**, sample (400 µg in 600 µL of 6 M HCl) was hydrolyzed as described above and the resulting hydrolysate was divided into two portions (200 µg × 2) for chemical derivatization with L-FDAA and D-FDAA, respectively. For compound **3**, sample (400 µg in 600 µL of 6 M HCl) was hydrolyzed as described above and the resulting hydrolysate was divided into two portions (200 µg × 2) for chemical derivatization with L-FDAA.

For L-FDAA and D-FDAA derivatization of amino acids, two aliquots (100 μ g × 2) of the hydrolysate were treated with 1 M NaHCO₃ (100 μ L) and L-FDAA or D-FDAA (1% solution in acetone, 100 μ L) at 40°C for 1 h, respectively. Samples were neutralized with 1 M HCl (100 μ L), diluted with MeCN (100 μ L), and centrifuged (17000g for 10 min) prior to HPLC-MS analysis on an Aglient Eclipse Plus C18 column (250 × 4.6 mm, 5 μ m) with gradient elution (at a flow rate of 1.0 mL/min from 10 % MeCN/H₂O to 60 % MeCN with 0.1 % FA over a 50 min period, 340 nm detector, positive ion mode). The configuration of the amino acid residues was determined by comparison of their retention times and elution orders with those for FDAA derivatives of amino acid standards. To prepare L-FDAA-amino acid standard derivatives, 50 mM of D- and Lamino acid (D/L-Ala, D/L-Val, D/L-Leu, D/L-Phe, D/L-Pro, D/L-Trp, D/L-Tyr, D/L-Met, D/L-Lys, D/L-Asp, D/L-Lys, D/L-Abu) dissolved in H₂O (50 μ L) was treated with 1 M NaHCO₃ (20 μ L) and 1 % L-FDAA (100 μ L) at 37°C for 2 h, and to prepare D-FDAA-Ala derivatives, 50 mM of D/L-Ala, dissolved in H₂O (50 μ L) was treated with 1 M NaHCO₃ (20 μ L) and 1 % D-FDAA (100 μ L) at 37°C for 2 h, respectively. After reaction, the solution was quenched with 1 M HCl (20 μ L) and diluted with MeCN (810 μ L) for HPLC-MS analysis using the same column and elution conditions as above.

The L-FDAA derivatization of LL- and DL-Lan and LL- and DL-MeLan amino acids were synthesized according to ref 5. The synthetic procedure was described in **1.7**.

1.6 Iodoacetamide Derivatization.

The number of free cysteines in the modified mStnA1-1 and mStnA3 peptides was determined through the alkylation of unreacted Cys thiols with IAA. The reaction was performed in reaction buffer (50 mM Tris pH = 8.0, 1mM TCEP, 10 mM IAA with peptide concentrations ranging from 50-100 μ M) at room temperature for 2 h. The reaction mixture was centrifuged and then were analyzed by HPLC-MS.

1.7 Chemical Synthesis of DL/LL-(Me)Lan Standard Derivatives.

Synthesis of (2*S*, 6*R*)-Lan (DL-Lan, **A**) and (2*R*, 6*R*)-Lan (LL-Lan, **B**) standard derivatives was performed according to a previous report, ⁵ and (2*R*, 3*R*, 6*R*)-Lan (LL-MeLan, **C**) and (2*S*, 3*S*, 6*R*)-Lan (DL-MeLan, **D**) was synthesized accordingly with

minor adaption.

For DL-Lan derivatives (**A**), D-serine (**1a**) serve as the starting material. Acetyl chloride (AcCl, 4 ml, 60 mmol) was slowly added to MeOH (25 ml) at 0 °C. The solution was stirred for 30 min, followed by addition of D-serine (2.1 g, 20 mmol). After refluxing for 3 h, the solution was cooled to room temperature, and evaporated under reduced pressure to **2a** as a white solid.

2a was resolved in water (12 mL, followed by addition of K_2CO_3 (2.76 g, 20 mmol, pH = 10). After addition of the solution of Boc₂O (5.23 g, 24 mmol) in tetrahydrofuran (THF, 28 mL), the mixture was stirred for 16 h. THF was evaporated away, and the left aqueous solution was extracted with EtOAc (3 x 40 ml). The organic fraction was washed with water and brine, respectively, and then dried over MgSO₄, filtered, and evaporated under reduced pressure to yield **3a** as a colorless transparent oil.

SOCl₂ (2.8 mL, 37.5 mmol) was added to degassed CH₃CN (20 mL) in a dry round bottom flask under nitrogen. The solution was cooled to -42 °C. **3a** (15 mmol) in degassed CH₃CN (20 mL) was added dropwise in 30 min. After the addition of pyridine (6 ml, 75 mmol) in 10 min, the yellow mixture was stirred for 2 h at -42 °C and then the mixture was stirred for 8 h at room temperature (r. t.). Ice was added to quench the reaction. The solution was acidified with aqueous 10% NaHSO₄ (pH = 1). The aqueous layer was extracted with EtOAc (3 x 40 mL). The organic fraction was washed with water, saturated NaHCO₃ and brine, respectively, and then dried over MgSO₄, filtered, and evaporated under reduced pressure to yield **4a** as a yellow oil.

4a was dissolved in 20 mL CH₃CN. RuCl₃. xH₂O (30 mg), NaIO₄ (3.52g. 17.5 mmol), H₂O (20 mL) were added to the solution at 0 °C. The solution was stirred for 30 min at 0 °C and returned to room temperature for 8 h. After the addition of EtOAc (20 mL) and brine (20 mL), the solution was extracted with EtOAc (3 x 40 mL). The organic fraction was washed with water, saturated NaHCO₃ and brine, respectively. The organic layer was dried over MgSO₄, filtered, and evaporated under reduced pressure to yield **5a** as a colorless transparent oil.

5 mL TFA was added to the solution of **5a** in 5 mL CH₂Cl₂. After refluxing for 30 min, the volatiles were removed in vacuo to obtain **6a**, which was added to the degassed solution of KHCO₃ (5 g, 50 mmol), followed by the addition of L-cysteine (1.2 g, 10 mmol, 25 ml H₂O). The solution was stirred for 16 h at room temperature prior to the addition of concentrated HCl (37% HCl, 25 mL, 250 mmol). Then, the acidic solution was heated under N₂ at 70 °C for 5 h. The solution was then adjusted to pH= 6.0 by NaOH, and the resulting DL-Lan (**8a**) was collected as white precipitate by filtration.

8a (0.21 mg, 1 mM) treated with 1 M NaHCO₃ (20 μ L) and 1 % L-FDAA (100 μ L) at 37°C (pH = 8.0) for 2h to yield L-FDAA-DL-Lan (**9a**).

The synthesis of L-FDAA-LL-Lan (9b), L-FDAA-LL-MeLan (9c), and L-FDAA-DL-MeLan (9d) was conducted accordingly, except for using L-serine (1b), L-allothreonine (1c), and D-allo-threonine (1d) as the starting materials, respectively.

Spectra of key intermediates:

5a: ¹H NMR (500 MHz, CDCl₃) 4.85 – 4.65 (m, 3H), 3.85 (s, 3H), 1.55 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.57 (s), 148.25 (s), 86.30 (s), 67.50 (s), 57.10 (s), 53.85 (s), 27.32 (s). HRMS m/z (ESI+). [M+NH₄]⁺ calc 299.0907; found 299.0906.

5b: ¹H NMR (500 MHz, CDCl₃) 4.88 – 4.67 (m, 3H), 3.84 (s, 3H), 1.57 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 166.87 (s), 148.55 (s), 86.60 (s), 67.30 (s), 57.05 (s), 53.65 (s), 27.12 (s). HRMS m/z (ESI+). [M+NH₄]⁺ calc 299.0907; found 299.0905.

5c: ¹H NMR (500 MHz, CDCl₃) δ 5.09 (p, J = 6.3 Hz, 1H), 4.70 – 4.53 (d, 1H), 3.82 (s, 3H), 1.49 (s, 9H), 1.46 (d, J = 5.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.57 (s), 148.23 (s), 86.20 (s), 62.30 (s), 53.10 (s), 27.85 (s), 15.32 (s). HRMS m/z (ESI+). $[M+NH_4]^+$ calc 313.1064; found 313.1074.

5d: ¹H NMR (600 MHz, CDCl₃) δ 5.15 (p, J = 6.3 Hz, 1H), 4.71 (d, J = 6.0 Hz, 1H), 3.86 (s, 3H), 1.52 (s, d, J = 5.1 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 166.68 (s), 148.23 (s), 86.11 (s), 65.01 (s), 53.08 (s), 27.84 (s), 21.04 (s). HRMS m/z (ESI+). [M+NH₄]⁺ calc 313.1064; found 313.1074.

1.8 Genes Co-Expression in E. coli and Protein Purification.

Constructs for co-expression in *E. coli.* Related *stn* genes were amplified using corresponding primers pairs listed in **Table S6**. While the PCR product containing *stnA1* or *stnA3* was cloned into the plasmid pRSFduet-1, the products containing *stnD* and/or *stnX* were cloned individually into pETduet-1 (see **Table S5**).

Protein expression. *E. coli* BL21(DE3) served as a general host for heterologous expression. The culture of each recombinant *E. coli* strain was incubated in LB medium (5 g of yeast extract, 10 g of tryptone and 10 g of NaCl per liter) containing 50 µg/mL kanamycin, 100 µ g/mL ampicillin, at 37 °C and 220 rpm until the cell density reached 0.6-0.8 at OD600. Protein expression was induced by the addition of isopropyl- β -D-thiogalactopyranoside (IPTG) to a final concentration of 0.1-0.3 mM, followed by further incubation for 25-30 hr at 25 °C or 16 °C. The cells were harvested by centrifugation at 5000 × g for 20 min, flash frozen and then stored at -80 °C.

Purification of a modified precursor peptide with SUMO tag. *E. coli* cells were resuspended in lysis buffer (50 mM Tris-HCl, 100 mM NaCl and 5 mM imidazole, pH 7.5). Recombinant proteins that contain a 6 x His-tag were purified on a His Trap HP column (GE Healthcare, USA), which was pre-treated with 10 column volumes (CVs) of lysis buffer followed by 10 CVs of wash buffer (50 mM Tris-HCl, 100 mM NaCl and 20 mM imidazole, pH 7.5), using elution buffer (50 mM Tris-HCl, 100 mM NaCl and 250 mM imidazole, pH 7.5). Desired protein fractions were concentrated (to 500 μ M-1 mM) using Amicon® Ultra-15 Centrifugal Filter Devices (MILLIPORE, USA) and desalted using a PD-10 Desalting Column (GE Healthcare, USA) according to the manufacturer's protocols, and then quantified in concentration by Bradford assay using bovine serum albumin as the standard. The purity of recombinant proteins was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).

1.9 Bioinformatic Analysis.

The bioinformatic survey of class Va lanthipeptides were conducted using cblaster tool.⁶ Protein function analysis was carried out using available BLAST methods (<u>http://www.ncbi.nlm.nih.gov/blast/</u>). The sequence similarity analysis (SSN) was conducted using the EFI tools.⁷ The multiple sequence alignment was performed by Clustal Omega tools (<u>https://www.ebi.ac.uk/jdispatcher/msa/clustalo</u>). The conserved core sequence analysis was generated by WebLogo 3.⁸

2. Supplementary Figures.

Figure. S1. Biosynthetic gene clusters of known class Va lanthipeptides (A), and recently reported class Va lanthipeptide members (B).

Figure S2. Conserved core sequence analysis of class Va candidates. The sequences of the precursor candidates are listed in **Table S1**.

Figure. S3. HPLC-MS traces of the $\Delta stnA1A2$, $\Delta stnA1A3$, and $\Delta stnA2A3$ strains.

(i), $\Delta stnA2A3$ strain. (ii), $\Delta stnA1A3$ strain. (iii), $\Delta stnA1A2$ strain. For compounds 1, 2 and 3, the m/z values are 1021, 1059, and 1043, respectively.

Figure. S4. Tandem MS analysis of 1. The HCD fragments and the MS/MS spectrum are shown.

Ions	Calc.	Obs.	Er.(ppm)	Ions	Calc.	Obs.	Er.(ppm)
b7	655.2662	655.2682	3.1	y17	1373.6989	1373.6898	6.6
b8	726.3033	726.3011	3.0	y16	1302.6617	1302.6631	1.1
b9	797.3405	797.3393	1.5	y15	1231.6246	1231.6265	1.5
b10	868.3776	868.3791	1.7	y14	1160.5875	1160.5867	0.7
b11	939.4147	939.4124	2.4	y13	1089.5504	1089.5511	0.6
b12	1010.4518	1010.4426	9.1	y12	1018.5133	1018.5146	1.3
b13	1081.4889	1081.4864	2.3	y11	947.4762	947.4739	2.4
b14	1152.5260	1152.5238	1.9	y10	876.4391	876.4382	1.0
b18	1408.6432	1408.6445	0.9	y9	805.4020	805.4031	1.4
				y8	748.3805	748.3769	4.8
				y7	691.3590	691.3573	2.5
				y6	620.3219	620.3179	6.4

Figure. S5. Pseudo-MS³ analysis of y24 of **1**. The HCD fragments and the MS/MS spectrum are shown.

Ions	Calc.	Obs.	Er.(ppm)	Ions	Calc.	Obs.	Er.(ppm)
b5	542.2415	542.2438	4.2	y8	772.3619	772.3627	1.0
b6	599.2630	599.2656	4.3	y7	609.2985	609.2986	0.2
b7	670.3001	670.3027	3.9	y4	344.1559	344.1569	2.9
b8	741.3372	741.3397	3.4	y3	230.1130	230.1139	3.9
b9	812.3743	812.3770	3.3	y2	173.0915	173.0923	4.6
b10	883.4114	883.4137	2.6				
b11	1030.4799	1030.4813	1.4				

Figure. S6. Tandem MS analysis of 2. The HCD fragments and the MS/MS spectrum are shown.

Ions	Calc.	Obs.	Er.(ppm)	Ions	Calc.	Obs.	Er.(ppm)
b5	542.2415	542.2427	2.2	y8	772.3619	772.3626	0.9
b6	599.2630	599.2656	4.3	y7	609.2985	609.2998	2.1
b7	670.3001	670.3029	4.2	y5	427.193	427.1942	2.8
b8	769.3685	769.3711	3.4	y4	344.1559	344.1569	2.9
b9	840.4056	840.4081	3.0	y3	230.113	230.1139	3.9
b10	911.4427	911.4452	2.7	y2	173.0915	173.0923	4.6

Figure. S7. Tandem MS analysis of **3**. The HCD fragments and the MS/MS spectrum are shown.

(B), 1D and 2D NMR spectra of 1 in DMSO-d₆.

(i), ¹H NMR spectrum (full spectrum) of **1** in DMSO-*d*₆.

(ii), Localized zoom-in of ¹H NMR spectrum of **1** in DMSO- $d_{6.}$

(iii), ¹³C NMR spectrum (full spectrum) of **1** in DMSO-*d*₆.

(iv), Localized zoom-in of 13 C NMR spectrum of 1 in DMSO- d_{6} .

(v), ¹H-¹H COSY spectrum of **1** in DMSO- $d_{6.}$

(vi), TOCSY spectrum of 1 in DMSO-d₆.

(vii), HSQC spectrum of 1 in DMSO-d₆.

(viii), HMBC spectrum of 1 in DMSO-d₆.

(ix), ROESY spectrum of 1 in DMSO- d_{6} .

(x), Localized zoom-in of ROESY spectrum of the Dhb-2 fragment in 1.

Figure. S8. NMR spectra of 1.

(A), Key 2D correlations of **3**.

(B), 1D and 2D NMR spectra of 3 in DMSO- d_{6} .

(i), ¹H NMR spectrum (full spectrum) of **3** in DMSO-*d*₆.

(ii), Localized zoom-in of ¹H NMR spectrum of **3** in DMSO-d₆.

(iii), ¹³C NMR spectrum (full spectrum) of **3** in DMSO-*d*₆.

(iv), Localized zoom-in of 13 C NMR spectrum of **3** in DMSO- $d_{6.}$

(v), ¹H-¹H COSY spectrum of **3** in DMSO- $d_{6.}$

(vi), TOCSY spectrum of $\mathbf{3}$ in DMSO- d_{6} .

(vii), HSQC spectrum of **3** in DMSO-*d*₆.

(viii), HMBC spectrum of **3** in DMSO-*d*₆.

(ix), ROESY spectrum of $\mathbf{3}$ in DMSO- $d_{6.}$

(x), Localized zoom-in of ROESY spectrum of the Dhb-2 and Dhb-17 fragments in **3**.

Figure. S9. NMR spectra of 3.

Figure S10. Determination of AviMeCys stereochemistry using ¹H-¹H ROESY. Localized zoom-in of ROESY spectrum of the AviMeCys fragment in **1** is shown.

Figure. S11. Chiral analysis of residues in **1**. The peak area ratio of L-FDAA-L-Ala / L-FDAA-D-Ala is not proportional, while the peak area ratio of D-FDAA-L-Ala / D-FDAA-D-Ala (100/27) is close to the ratio of 12 L-Ala / 3 D-Ala. The 3 newly generated Ala residues from former Ser residues were tentatively assigned in D-configuration.

Figure. S12. Chiral analysis of residues in **3**. The peak area ratio of L-FDAA-L-Ala / L-FDAA-D-Ala is 100:68, which is close to the ratio of 3 L-Ala / 2 D-Ala. The 2 newly generated Ala residues from former Ser residues were tentatively assigned in D-configuration.

Ions	Calc.	Obs.	Er.(ppm)	Ions	Calc.	Obs.	Er.(ppm)
b6	571.2245	571.2259	2.5	y13	1245.6071	1245.6167	7.7
b7	642.2617	642.2657	6.2	y12	1174.5746	1174.5834	7.5
b8	741.3300	741.3308	1.1	y11	1027.5062	1027.5139	7.5
b9	812.3671	812.3698	3.3	y8	772.3525	772.3540	1.9
b10	883.3997	883.4048	5.8	y5	427.1884	427.1844	9.4
b11	1030.4680	1030.4770	8.7	y4	344.1559	344.1572	3.8
b12	1101.5051	1101.5096	4.1	y3	230.1130	230.1140	4.3
b13	1214.5892	1214.596	5.6	y2	173.0915	173.0925	5.8
b14	1285.6217	1285.6281	5.0				
b15	1448.6851	1448.6948	6.7				

Figure. S13. MS analysis of 3-1. The HCD fragments and the MS/MS spectrum are shown.

Ions	Calc.	Obs.	Er.(ppm)	Ions	Calc.	Obs.	Er.(ppm)
b5	494.2343	494.24	11.5	y16	1302.6571	1302.6664	7.1
b6	565.2715	565.2765	8.8	y15	1231.6200	1231.6279	6.4
b 7	636.3086	636.3145	9.3	y14	1160.5829	1160.5898	5.9
b8	707.3457	707.3526	9.8	y13	1089.5458	1089.5538	7.3
b9	806.4141	806.4235	11.7	y12	1018.5086	1018.5155	6.8
b10	877.4512	877.4599	9.9	y11	947.4715	947.4782	7.1
b11	948.4883	948.4916	3.5	y10	876.4344	876.4403	6.7
b12	1019.5255	1019.534	8.3	y9	805.3973	805.4035	7.7
b13	1090.5625	1090.5648	2.1	y8	748.3758	748.382	8.3
b14	1189.6310	1189.6401	7.6	y7	691.3544	691.3604	8.7
b23 ²⁺	979.4651	979.4674	2.3	y6	620.3173	620.3234	9.8
b24 ²⁺	1014.9837	1014.986	2.3	y30 ²⁺	1241.6023	1241.6121	7.9
$b25^{2+}$	1050.5022	1050.505	2.7	y29 ²⁺	1206.0837	1206.0932	7.9
b26 ²⁺	1086.0208	1086.023	2.0	y28 ²⁺	1170.5652	1170.5745	7.9
b27 ²⁺	1121.5393	1121.5413	1.8	y22 ²⁺	929.4225	929.4302	8.3

Figure. S14. MS analysis of 1-T8S. The HCD fragments and the MS/MS spectrum are shown.

Figure. S15. Chiral analysis of aminobutyric acid residues in 1-T8S. L-FDAA derivatives of aminobutyric acid (Abu) residue in 1-T8S hydrolysate (i), D-Abu standard (ii), and L-Abu standard (iii).

Figure. S16. SDS-PAGE analysis of engineered proteins.

Ions	Calc.	Obs.	Er.(ppm)	Ions	Calc.	Obs.	Er.(ppm)
b2	219.0803	219.0813	4.5	y9	805.3973	805.3951	2.7
b3	334.1073	334.1085	3.6	y8	748.3758	748.3742	2.1
b4	448.1502	448.1524	4.9	y 7	691.3544	691.3535	1.3
b5	519.1873	519.1844	5.6	y28 ²⁺	1167.5347	1167.533	1.5
b6	606.2194	606.2177	2.8				
b7	737.2598	737.2583	2.0				
b8	868.3003	868.3015	1.4				
b9	983.3273	983.3289	1.6				
b10	1096.4113	1096.4101	1.1				
b11	1195.4797	1195.4769	2.3				
b16 ²⁺	851.3498	851.348	2.1				
b18 ²⁺	968.4000	968.392	8.3				
$b20^{2+}$	1068.4398	1068.4368	2.8				

Figure. S17. MS analysis of mStnA1-1. The HR-MS, HCD fragments, and the MS/MS

spectrum are shown.

Figure. S18. Iodoacetamide derivatization of mStnA1-1. mStnA1-1(i), and mStnA1-1 + iodoacetamide (ii). The calculated [M+4H]⁴⁺ for mStnA1-1 is 1596.2178.

Ions	Calc.	Obs.	Er.(ppm)	Ions	Calc.	Obs.	Er.(ppm)
b8	705.3300	705.3358	8.2	y25	2092.9194	2092.9251	2.7
b9	776.3671	776.3728	7.3	y23	1952.8655	1952.8685	1.5
b10	847.4042	847.4103	7.2	y22	1853.7970	1853.792	2.7
b11	930.4367	930.4472	11.3	y17	1369.6536	1369.6586	3.7
b12	1029.5051	1029.5129	7.6	y16	1298.6165	1298.6195	2.3
b13	1100.5422	1100.5523	9.2	y15	1229.5996	1229.5920	6.2
b14	1171.5793	1171.5863	6.0	y14	1158.5625	1158.5600	2.2
b15	1240.5961	1240.5943	1.5	y13	1087.5254	1087.5201	4.9
b16	1311.6332	1311.6204	9.8	y12	1016.4883	1016.4821	6.1
b17	1410.7017	1410.7082	4.6	y11	947.4715	947.4767	5.5
b11 ²⁺	465.7220	465.7266	9.9	y10	876.4344	876.4395	5.8
b12 ²⁺	515.2562	515.2609	9.1	y9	805.3973	805.4005	4.0
b13 ²⁺	550.7748	550.7781	6.0	y8	748.3758	748.3791	4.4
b14 ²⁺	586.2933	586.2969	6.1	y7	691.3544	691.3596	7.5
$b15^{2+}$	620.8017	620.8063	7.4	y6	620.3173	620.3123	8.1
				y29 ²⁺	1209.0509	1209.0539	2.5
				y27 ²⁺	1118.0005	1118.0068	5.6
				y25 ²⁺	1046.9634	1046.9669	3.3

Figure. S19. MS analysis of mStnA1-2. The HR-MS, HCD fragments, and the MS/MS spectrum are shown.

Ions	Calc.	Obs.	Er.(ppm)	Ions	Calc.	Obs.	Er.(ppm)
b4	489.2244	489.2234	2.0	y16	1482.7183	1482.6831	23.7
b5	604.2513	604.2496	2.8	y15	1411.6812	1411.6987	12.4
b6	732.3099	732.3076	3.1	y14	1312.6128	1312.6314	14.2
b7	819.3419	819.3409	1.2	y13	1241.5757	1241.5943	15.0
b8	920.3896	920.3906	1.1	y12	1172.5588	1172.5718	11.1
b9	1033.4736	1033.4719	1.6	y11	1025.4905	1025.5035	12.7
b10	1162.5162	1162.5152	0.9	y10	954.4534	954.4667	13.9
b11	1277.5432	1277.5430	0.2	y9	841.3693	841.3823	15.5
b12	1390.6272	1390.6272	0.0	y8	772.3525	772.3618	12.0
b13	1489.6957	1489.6939	1.2	y7	609.2892	609.2976	13.8
b14	1590.7433	1590.7426	0.4	y6	510.2208	510.2300	18.0
b15	1647.7648	1647.7605	2.6	y5	427.1884	427.1929	10.5
b16	1810.8281	1810.8249	1.8	y4	344.1559	344.1558	0.3
b17	1939.8707	1939.8708	0.1	y3	230.1130	230.1130	0.0
b18	2026.9027	2026.9101	3.7	y2	173.0915	173.0918	1.7
b19	2189.9661	2189.9590	3.2				
b20	2261.0032	2261.0082	2.2				
b30 ²⁺	1659.2358	1659.2372	0.8				
b31 ²⁺	1709.7596	1709.7562	2.0				
$b32^{2+}$	1738.2704	1738.2705	0.1				
$b33^{2+}$	1773.7889	1773.7893	0.2				
b41 ²⁺	2142.9421	2142.9582	7.5				
$b43^{2+}$	2227.9949	2228.0043	4.2				
b44 ²⁺	2263.5134	2263.5256	5.4				

Figure. S20. MS analysis of mStnA3-1. The HR-MS, HCD fragments, and the MS/MS

spectrum are shown.

Figure. S21. Iodoacetamide derivatization of mStnA3-1. mStnA3-1(i), and mStnA3-1 + iodoacetamide (ii). The calculated [M+4H]⁴⁺ for mStnA3-1 is 1442.4025.

Ions	Calc.	Obs.	Er.(ppm)	Ions	Calc.	Obs.	Er.(pp
							m)
b8	753.3300	753.3369	9.2	y15	1411.6812	1411.6955	10.1
b9	810.3515	810.3585	8.6	y14	1312.6128	1312.6279	11.5
b10	881.3886	881.3956	7.9	y13	1241.5757	1241.5925	13.5
b11	980.4570	980.4632	6.3	y12	1172.5588	1172.5705	10.0
b12	1051.4941	1051.5009	6.5	y11	1025.4905	1025.5027	11.9
b13	1120.5109	1120.5215	9.5	y10	954.4534	954.4651	12.3
b14	1267.5793	1267.5893	7.9	y9	841.3693	841.3820	15.1
b15	1338.6165	1338.6266	7.5	y8	772.3525	772.3607	10.6
b16	1451.7006	1451.7097	6.3	y7	609.2892	609.2983	14.9
b17	1520.7173	1520.7313	9.2	y6	510.2208	510.2299	17.8
b18	1683.7806	1683.7951	8.6	y5	427.1884	427.1926	9.8
b19	1782.8490	1782.8627	7.7	y4	344.1559	344.1556	0.9
b20	1865.8815	1865.8989	9.3	y3	230.1130	230.1129	0.4
b21	1948.9139	1948.9380	12.4	y2	173.0915	173.0917	1.2
b22	2062.9568	2062.9769	9.7				
b23	2119.9783	2119.9965	8.6				

Figure. S22. MS analysis of mStnA3-2. The HR-MS, HCD fragments, and the MS/MS

spectrum are shown.

3. Supplementary Tables.

Accession	Sequence					
	Subgroup 1					
EDY62314.1	MDKTGAITELIEGYDSYSDAEELNSTAAAEAPATSAPCG					
	AASVSWLASQFTVKTYKEGC					
EDY62315.1	MADLQQTGSISELVAGYDTYSEAGELVAEAAADAPAST					
	PTCAAATISWLGSQLTVKTYKEGC					
WP_037654341.1	MEKVDSIMELLSGYETYSTVEEINLSAASDAPATTLVCA					
	ATAGASWLTGQAVSKTYDEGC					
WP_037848572.1	MEKATSIVELLSGYEAYSSVEEINLSAASDAPATTWGCA					
	AVSASISWMSGQVVSKTVDDGC					
WP_055704500.1	MEKATAIEDLMAGYEAYSDARELGVTSAVDAPATSPAC					
	IASATASWLASQFSAKTISGGC					
WP_067439886.1	MEKATSIVELLSGYEAYSSAEEINLSAATDAPATTWGCA					
	AVSASVSWMSGQVVSKTVDDGC					
WP_073921129.1	MEKATSVIELLSGYEAYASAEDINLSAASDAPATTWGC					
	AAVSASISWMSGQVVSKTVDDGC					
WP_130878494.1	MEKSEAIIDLMAGYDAYSSADELNTTAAAEAPASTPAC					
	AAATMSWLGSQLTVKTYKDGC					
WP_130878495.1	MEKSEAIMDLMAGYDAYSTVDELNTTAAADAPATTAP					
	CGAATVSWLASQFTVKTYKDGC					

 Table S1. Amino acid sequence of 158 precursor peptide candidates.

WP_145487441.1 MEKTTAIMELMAGYEAYSDARELNVAAAAEAPATTPA CLASATASFVASQFSAKTIAGGC

- WP_177150683.1 MEKASSIVELLSGYEAYSSPEDINLSAASDAPATTWGCA AVTASISWMSGQVVSKTIDDGC
- WP_184734959.1 MEKSEAIMDLMAGYDAYSSVDELNTTAAADAPATSAP CGAAGVSWLASQFTVKTYKDGC
- WP_189234319.1 MEKTTAIMELMAGYEAYSDARELNVTAAAEAPATSPAC IASATASFVASQFSARTIAGGC
- WP_190198377.1 MEKTTAIMELMAGYEAYSDVRELNVTAAAEAPATSPAC IASATASFVASQFSARTIDGGC
- WP_190198378.1 MEKTTAIMELMAGYEAYSDVRELNVTAAAEAPATSPAC IASATASYVASQFSAKTIAGGC
- WP_229864334.1 MTTAITELMAGYEACSDVRELNVTAAAEAPATSPACIA GATASFVASRFSARTIDGGC
- WP_239766125.1 MEKTTAIMELMAGYEAYSDARELNVTAAAEAPATSPAC LASATASFVASQFSAKTIAGGC
- WP_266398935.1 MEKTTAIMELMAGYEAYSDARELNVTAAAEAPATSPAC LASATASFVASQFSARTIAGGC
- WP_277332212.1 MEKTTAIMELMAGYEAYSDARELNVTAAAEAPATTPA CLASATASFVASQFSARTIAGGC
- WP_277332214.1 MEKTTAIMELMAGYEAYSDARELNVTAAAEAPATTPA

CLASATASFVASQFSAKTIAGGC

Subgroup 2

- WP_015659228.1 MNTAEQLIAGYAAYTNAEEFGASAGPDAPAITITTVSSP ECVYFSLSAVSGSIATTKSWGC
- WP_015659229.1 MNTAEQLIAGYTAYTNAEEFGAGATAENPAITPTLLSFI

GGSSGGCGGAVSAISGASVAGTVNWGC

- WP_031041759.1 MNTSDNLMAGYATYTSADEIAATLDGGAPEISPVSLSIA VSITESSYACGAGISLSVGWTVGKGC
- WP_053560634.1 MNASAHLIAGYTAYTTAAEFDASITADAPAVTPATPSIAL SIAESSYACGAGVGASIGITFTKGC
- WP_071383935.1 MNTADQLIAGYTAYTSAEEFGVTAEGDAPATTPVTVTT VSSPECVQVSITVVGTTISGNC
- WP_071383936.1 MNTADQLIAGYTAYTSAEEFGVTAEGDAPATTPSILVSI DMSSAACGATIGYSISKTVNGGC
- WP_109497451.1 MNTTDTLLAGYAAYTSADEIAAAQDGGAPEISPVSLSIA VSIAESSYACSAGLSMSVGVTVGKGC
- WP_128433858.1 MNTTENLIAGYTAYTSAQEIEATHAEEAPGATPSVLSFI ATSGWACGAGIGTSIGVTAAKGC
 - QDN59091.1 MNTADQLIAGYTAYTDAADFGASAAGEAPATTPSIITAS SPECGAFSISAASGILTSVSITHGAGC
 - QDN59092.1 MNTADQLIAGYTAYTDAADFGASAGGQAPATTPTILSVI AESTPACGGAVSAVSASAVGFTAHWGC
- WP_153461214.1 MNNADQLIAGYTAYTDAEEVGAGATAEAPATTPALSVI

AVSTAACGAAVGSAIGGSIAGTVNWGC

- WP_215178513.1 MNTADQLLAGYTAYTTAEDFGASADNQSPAATPTITTV SSPECIYFSLGASAGSIASTKAWGC
- WP_215178515.1 MNTADQLLAGYTAYTNAEEFGAGVSADAPAITPTVLSF

IGGSSGGCGAAVSAISGAGVSATANWGC

- WP_230901794.1 MNTTDQLISGYAAYATAEEVGAAQTTGAPEASPVALSA TVVITEGSYALSAGISMSAGVTFGKGC
- WP_240117642.1 MNAADQLLEGYTAYTTAEEFGVAAESDAPAITTTVTSS EICVSLVSASVTATWDHGC
- WP_266864817.1 MNTTDQLISGYAAYATAEEIGAGQMTGAPEASPVALSA TVVITEGSYALSAGISMSAGVTFGKGC
- WP_306186810.1 MNTADQLIAGYTAYTDAADFGATAAGEAPATTPSIITAS SPECGAFTISAASGVLTSVSITHGAGC
- $WP_306186812.1 \quad MNTADQLIAGYTAYTDAADFGATAGGQAPATTPSILSV$

VAESSAACGGAVSAVSAASVGFTAHWGC

Subgroup 3

EFL08884.1	MHTMTETDLLSGYTAYTTAEELDQFDGKAAPAATTPVL
	APILIRASIIAARSSQQCAAGIAAAGGGIWRTIRKVC
WP_018960897.1	MQNVTEQDLFDGYTAYTSAEELGLHDGKDAAPAFSPTI
	PWAIRATIISARSSQQCAAALGSLAAKTVENKC
WP_031172570.1	MQSTQTEKDLFEGYTAYTSAEELGLYDGKDAAPAFSPT
	IPWAIRATIITARSSQQCAAALGSLTAKTIEKKC

- WP_055513948.1 MQSTQNEKDLFEGYTAYTSAEELGLYDGKDAAPAFSPT IPWAIRATIITARSSQQCAAALGSLTARTIEKKC
- WP_093908739.1 MQSTQNEKDLFEGYTAYTSAEELGLYDGKDAAPAFSPT IPWAIRATIITARSSQQCAAAIGSLTAKTIENKC
- WP_100660920.1 MQNVTEKDLFDGYTAYTSAEELGLHDGATAGPAFSPTV PWAIQATVISARSSQACAAALGSLAAKTVEKKC
 - PSJ25815.1 MQNVTEKDLFDGYTAYTSAEELGLYDGKDAAPAFSPTI PWAIRATLITARSSQQCAMAIGSFTARTIESKC
 - PVD03988.1 MQTTQNEKDLFEGYTAYTSAEELGLYDGKDAAPAFSPT IPWAIRATIITARSSQQCAAALGSLTAKTIEKKC
- WP_120754724.1 MQNVTEKDLFDGYTAYTSAEELGLYDGKDAAPAFSPTI PWAIRATLITARSSQQCAAAIGSFTARTIESKC
- WP_124268919.1 MQNVTEKDLFDGYTAYTSAEELGLHDGKEAAPAFSPTI PWAIRATIITARSSQQCAAALGSLAAKTVENKC
- WP_141310909.1 MQSTQNEKDLFEGYTAYTSAEELGLYDGKDAAPAFSPT IPWAIRATIITARSSQQCAAALGSLTAKTIEKKC
- WP_179084717.1 MQNVTEKDLFDGYTAYTSAEELGLYDGKDAAPAFSPTI PWAIRAGLITARSSQQCAAAIGSFTARTIESKC
- WP_217210041.1 MQSTQNEMDLFEGYTAYTSAEELGLYDGKDAAPAFSP TIPWAIRATIITARSSQQCAAAIGSLTAKTIENKC
- WP_267088483.1 MQNVTEQDLFDGYTAYTSAEELGLHDGATAGPAFSPTV PWAIQATVISARSSQACAAALGSLAAKTVEKKC

WP_272114553.1 MQSTQNEKDLFEGYTAYTSAEELGLYDGKDAAPAFSPT

IPWAIRATIITARSSQQCAAALGSLTAKTIENKC

Subgroup 4

WP_030697775.1 MNTQSLISGYSAYATADEIVPAVEAPGATITITTSSQACIS

AASAVSAVSIDNTFDHSC

- WP_042175381.1 MNTESLIAGYSAYAAADEIVPAVEAPGATITITTSSQACI SAASAVSAVSIDNTFDHSC
- WP_055421438.1 MNTQSLISGYSAYAAADEIVPAVEAPGATITITTSSQACI SAASAISAVSIDNTFDHSC
- WP_078077248.1 MNTQSLISGYTSYADADELVPAVEAPGATITVTVTSSAA CISAASAISAVSIDNTFDHSC
- WP_078077249.1 MNTQSLISGYTSYAEADELVPAAEAPGLIITTVTTSSQA CISAISAVSAVSIDNTFDHSC
- WP_078077250.1 MNTQSLISGYASYADADELVPAVDAPGGTITITVTSSQA CISAASAISAVSIDNTFDHSC
- WP_078878571.1 MGVNMNTESLIAGYSAYAAADEIVPAVEAPGATITITTS SQACISAASAVSAVSIDNTFDHSC
- WP_159030605.1 MNTQSLISGYSTYAAADEIVPAVEAPAATITITTSSQACIS AASAVSAVSVDNTFDHSC
- WP_179878856.1 MNAQSLISGYSTYAAADEIVPAVEAPAATITITTSSQACI SAASAVSAVSVDNTFDHSC
- WP_189107027.1 MNTQSLISGYTSYADADELVPAVDAPGGTITVTVTSSQA

CISAASAISAVSIDNTFDHSC

- WP_210959286.1 MNTQSLISGYSTYAAADEIVPAVEAPGATITITTSSQACIS AASAVSAVSIDNTFDHSC
- WP_216854818.1 MNTQSLISGYSAYADADELVPAVEAPGATITITTSSQACI

SAASAISAVSIDNTFDHSC

WP_274816480.1 MNTQSLISGYSAYAAADEIVPAVEAPAATVTVTTSSAAC

ISAASAVSAASVDNTFDHSC

Subgroup 5

- WP_166662147.1 MNEKLIAGYAAYTDAAELSAAALGEAPATIEIVTATVAS FVASAKTYDISC
 WP_166662148.1 MNEKLIAGYAAYTDAAELSAAALDEAPATIEIVTATVAS FVASAETYDIKC
 WP_166662149.1 MNEKLIAGYAAYTDADEFGTTALGEALASVESVSWVL SAASAGASVAATFDVGC
 WP_181138636.1 MNEKLIAGYTAYTNADEYGATTLGDAPGSAESASWVL SAASLGASVAATFDKGC
- WP_205034283.1 MNEKLIAGYAAYTNADEYGTAAAGEAPASIESVSWAVS GAAVGASVSASVKYGC
- WP_205034285.1 MNEKLIAGYAAYTTADEYGTAAVGEAPASAETVTVGIT IASIGLSASTVTSKC
- WP_214947142.1 MNEKLIAGYAAYTDAEEFAADALDGAPATIEIVSLTVAS

FVASAKTYDIAC

WP_214947143.1 MNEKLIAGYAAYTNADEFAANVLDSAPATIEIISLTVASF

VASAETYDIKC

WP_214947144.1 MNEKLIAGYAAYTDADEFGSTTLGDAPATIETVSWVVS

AASVGASVAATFDVGC

Subgroup 6

- WP_114054643.1 MQNIENVEIMELVGGFEAYAQAAELNFEASADAPAITPT LTTIAYTKVTVAGTAASIKWTC
- WP_125543401.1 MQKIENVNIMELVGGFEAYADAAELNFEASADAPAITP

TLTTIAYTKVSVAAGTASWKYSC

- WP_158070972.1 MQNDIEIMELVGGFEAYTEAAELNMEASVEAPAATPTA TIVYTKFSVASVTLTAKKGC
- WP_159688188.1 MQKNDTVDIMELVGGFEAYAEAAELNFEASADAPAITP TLTTIAYTKVSVASVSASVKWGC
- WP_249766625.1 MQKIENVDIMELVGGFEAYADAAELNFEASADAPAITP TLTTIAYTKVSVAATAASYKWSC
- WP_266935718.1 MQKIENVNIMELVGGFEAYADAAELNFEASADAPAITP TITTIAYTKVSVAAGTASWKYSC
- WP_272586646.1 MQNDIEIMELVGGFEAYTEAAELNMEASVQAPAATPTA

TIVYTKFSVASVTLTAKKGC

Subgroup 7

WP_158778660.1 MNDIELAAGFDTYADVNEMADEVTPDEAPSPQTIVSLS

IVASVKWGC

WP_159392957.1 MNDIELAAGFDAYADVNEMADEVTPDEAPSPQTIISVIV TASFDC

- WP_164496181.1 MNEIDLAAGFDTYADVNEMATEVTPDEAPSPQTIVSLS VVASIKWGC
- WP_165890941.1 MNEIDLAAGFDTYADVNEMVADGTPDEAPSPQTIVSLS VVASIKWGC
- WP_214947306.1 MNDVELATGFDAYADVNEMAAEVTPDEAPSPQTIISLSI VASFKWGC
- WP_264245111.1 MNDIELAAGFDTYADVNEMADEVTPDEAPSPQTIVSLS VVASIKWGC
- WP_289933485.1 MNDIELAAGFDTYADVNEMADEVTPDEAPSPQTIISLS VVSSIKWGC

Subgroup 8

WP_158717266.1 MSHDQNTLEELVTGYESYADADEIEVDAVTGAPATTPF

CGAAASFMLSYVTTNGPG

- WP_158717267.1 MSNDQSMLEELVTGYESYADADEIEVDAVTGAPATTPF CGAVASFALSYVTTNGPG
- WP_158717830.1 MRNDRSTLEDLVTGYESYADADEIEVDAVTGAPATTPF

CGAVASFALSYVTTNGPG

WP_158754607.1 MTNDQSTLEDLVTGYESYADADEIEVDAVTGAPATTPF

CGAVASFALSYVTTNGPG

WP_158879745.1 MRNDQSTLEDLVTGYESYADADEIEVDAVTGAPATTPF

CGAVASFALSYVTTNGPG

WP_158879748.1 MRNDQSTLEDLVTGYESYADADEIEVDAVTGAPATTPF

CGAAASFMLSYVTTNGPG

Subgroup 9

WP_159425375.1	MNSNDSIMELVAGYETYMDADELDVTAVADAPATTWY
	CASAAASFISAATYEATC
WP_167346010.1	MNNTDSIMELVAGYETYMDASELDVNAVTDAPATTWY
	CVSAGVSFVTAATYEATC
WP_167751178.1	MNSNDSIMELVAGYETYMDANELDVTAVADAPATTWY
	CASAAVSFLSAATYEATC
WP_177150682.1	MNSTDSIMDLVAGYETYMDASELDVTAVADAPATTWY
	CASAAVSFLSAITYEATC
WP_199885689.1	MNNTDSVMDLVAGYQTYMDAGDLDVSAVADAPATTW
	YCASAAASFLSAVTYEATC
	Others
EDY62313.1	MSGPADAGPRIQENTMQNNTEIMDLIANYDAYADVDE
	LNVTAAADAPATTPVCAASVASSTWCASAASAISGATY
	EAGC
EFL15961.1	MDSMDLIAGYAAYTTPEELAASEATDAPAITTTVTSSEI
	CITITVGWGC
WP_030025843.1	MDNASMMDLVAGYNTYAEASELGIQAVADAPATTPVC

AATVAASAVSSGWCASAAASAAGGATYKLGC

WP_030718520.1 MDNASMMDLVAGYNTYAEASELGIQAVADAPATTPVC

AATIAASAVSSGWCASAAASAAGGATYKLGC

- WP_037774183.1 MQNNTEIMDLIANYDAYADVDELNVTAAADAPATTPV CAASVASSTWCASAASAISGATYEAGC
- WP_055704501.1 MDKSTAIMELVSNYTSYADVTELNVTAAADAPATTPVC AVSIASSSWCAAGASAASGATYEITC
 - SCE13261.1 MSAQDLMNGYALYTDAEELAAQVVDAPAQESSPICLSF ISGISVSLTAEHTC
- WP_128433855.1 MNTADQLMAGYAVYTTSDEIGAGAAADAPAISPVSIFS AASSVECAIFSAGVVTSASAGGTVAGNC
- WP_145487440.1 MDKSMAIMELVSNYDAYADVDELNISAAADAPATTPV CAVSVASSSWCAASASAASGATYELTC
- WP_164497196.1 MDTHELIEGFDAYVEAEELNEDAMVDAPATTVPCTVAS FATGYFSC
- WP_164992316.1 MSEQELIEGYRYFVDVAELAASAERELPTTSIFSYVTTT CTGTVATVSV
- WP_164992317.1 MSAQDLMNGFAAYTDVEELAAQATTVTKEEASLSIGLS LSFISGVSVSLTAEHTC
- WP_164992318.1 MTAHDLVEGYRTFADAEELAASPAGEYLPTTTIFTISYP TTATPTISN
- WP_164992319.1 MSAQNLMNGFDAYTDAEELAAQPTTVTKEEQSMSLAI

TLVTISVVHTYDTGC
WP_165451546.1 MDKTDAIMDLVSNYDAYADVAELNVTAAADAPATTPV CAATLASSGWCAAGASAISGATYEAGC

- WP_169729690.1 MGEVVEMVAGFDTYADVEELNQIAVGEAPESSAPCTIY ASVSASISATASWGC
- WP_184734957.1 MDKNNSIMDLVSNYDAYADVAELNVTAAADAPATTPV CAATLASSAWCAAGASAISGATYEAGC
- WP_184823924.1 MDAVELFEGYSAYASTEEVAAADASEAPAITSTVTSSQG CAITVSAIFGC
- WP_190198375.1 MDKSVAIMELVSNYDAYADVEELNISAATDAPATTPVC AATASSAPCAAAASAVSAVTYHKGC
- WP_190198376.1 MDKSVAIMELVSNYDAYADVDELNISAAADAPATTPVC AASVASSSWCAASASAVSGATYELTC
- WP_209340438.1 MTDQLIEGYAAYASAEEIQAAGQAPATPVTVALSIAGSA LSGAGVGVSIGESIKHSC
- WP_209340439.1 MTQDLISGYAAYAEADELVAATGEAPATPVTIAISGAFST SLAASAATVAGNC
- WP_227957703.1 MDTQSLISGYAAYAEAEEIAPAAEAPAATTTVTTSSQACI SAISAVSAVSVDNTFDHSC
- WP_239766123.1 MDKSMAIMELVSHYDAYADVDELNITAAADAPATTPV CAASVASSSWCAASASAVSGATYELTC
- WP_243146557.1 MAGYTAYTSAAELGAAVDEAPAYTPTLSITGTCMTPILT
 - LVNGC

WP_266398929.1 MDKSLAIMELVSHYDAYADVDELNMTAAADAPTSTPV CAVSVASSSWCAASASAVSGATYELTC

WP_266398932.1 MDKSLAIMELVSHYDAYADVDELNMTAAADAPASTPV

CAVSVASSSWCAASASAVSGATYELTC

- WP_266679587.1 MAAAELIEGYAMYVSPEEADSLQIPDLDVEGQSIPPTPI ATTLIVHC
- WP_277332213.1 MDKSMAIMELVSNYDAYADVDELNITAAADAPATTPV

CAASIASSSWCAASASAVSGATYELTC

Protein	Length	Closest BLAST homolog	Putative function
	(AA)	(GenBank accession number)	
StnR	320	WP_052680418.1	Regulator
StnU1	110	WP_030028050.1	Hypothetical protein
StnP	844	WP_075970604.1	Putative Zn-dependent
			peptidase
StnX	320	WP_075970605.1	Hypothetical protein
StnD	199	WP_045320845.1	Flavoprotein
StnJ	320	WP_030025853.1	LLM class F420-dependent
			oxidoreductase
StnT3	611	WP_075970606.1	ABC transporter
StnT2	407	WP_030025848.1	ABC transporter
StnT1	295	WP_075970607.1	ABC transporter
StnM	349	WP_030025845.1	N-Methyltransferase
StnA3	56	WP_158879745.1	Precursor peptide
StnA2	56	WP_158717266.1	Precursor peptide
StnA1	68	WP_030025843.1	Precursor peptide
StnY	350	WP_079273209.1	Class V dehydratase subunit
			LanY
StnK	368	WP_030025841.1	Class V dehydratase subunit
			LanK
StnU2	119	WP_075970608.1	Hypothetical protein

 Table S2. Proposed function for each protein encoded in the stn gene cluster.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	Position	$\delta_{ m H}$ mult. (J in Hz)	$\delta_{ m C}$	No.	Position	$\delta_{ m H}$ mult. (J in Hz)	$\delta_{ m C}$
	NMe ₂ A bu(S)-1	CON	_	172.1		3	_	110.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Me2	2.94 s	40.1		4	7.54 d (7.5)	118.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.83 s	43.6		5	6.97 t (7.5)	118.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		α	4.19 br d	71.9		6	7.05 t (7.5)	121.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(4.2)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		β	3.65 ^a	39.8		7	7.33 ^a	111.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		γ	1.32 d (7.0)	17.3		8	_	136.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dhb-2	CON	8.35 s	164.7		9	_	127.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		α		127.1	Ala(S)-19	CON	7.70 ^a	171.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		β	5.90 q (7.0)	126.1		α	4.33 ^a	53.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		γ	1.46 d (7.0)	14.2		β	2.93ª	33.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pro-3	CO	_	171.2			2.86ª	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		α	4.45 ^a	64.0	Ala-20	CON	8.06 ^a	172.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		β	2.28, m	32.1		α	4.18 ^a	57.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.88ª			β	1.19 ^a	17.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		γ	1.87ª	23.0	Ala-21	CON	8.15 ^a	172.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.81 ^a			α	4.37 ^a	48.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		δ	3.89 ^a	47.1		β	1.27ª	18.5
Val-4CON 7.90^{a} 173.7 α 4.36^{a} 48.4 α $4.55 t (8.6)$ 56.6 β 1.26^{a} 17.6 β $2.00 m$ 31.6 Ala-23CON 8.01^{a} 172.0 γ 0.80^{a} 18.5 α 4.23^{a} 48.4 δ 0.85^{a} 19.3 β 1.24^{a} 17.9 Ala(S)-CON $8.98 d (9.6)$ 168.6 Ala-24CON 8.00^{a} 171.9 5 α $4.92 t$ 52.1 α 4.22^{a} 48.3 (11.1) (11.1) $ \beta$ 3.36^{a} 38.3 β 1.23^{a} 17.8 2.62^{a} $ Ala-25$ CON 8.38^{a} 171.7 Ala-6CON 8.08^{a} 171.4 α 4.20^{a} 48.3 α 4.36^{a} 48.4 β 1.17^{a} 17.6 β 1.25^{a} 18.4 $Ala-26$ CON 8.17^{a} 172.0 α 4.20^{a} 48.2 α 4.20^{a} 48.2			3.37 ^a		Ala-22	CON	8.12 ^a	171.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Val-4	CON	7.90 ^a	173.7		α	4.36 ^a	48.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		α	4.55 t (8.6)	56.6		β	1.26 ^a	17.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		β	2.00 m	31.6	Ala-23	CON	8.01 ^a	172.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		γ	0.80^{a}	18.5		α	4.23 ^a	48.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		δ	0.85 ^a	19.3		β	1.24 ^a	17.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ala(<i>S</i>)- 5	CON	8.98 d (9.6)	168.6	Ala-24	CON	8.00 ^a	171.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		α	4.92 t	52.1		α	4.22 ^a	48.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ß	(11.1) 3 36 ^a	383		ß	1 23 ª	17.8
Ala-6CON 8.08^{a} 171.4 α 4.20^{a} 48.3 α 4.36^{a} 48.4 β 1.17^{a} 17.6 β 1.25^{a} 18.4 Ala-26CON 8.17^{a} 172.0 Ala-7CON 8.11^{a} 171.9 α 4.20^{a} 48.2		Р	2.50 2.62ª	50.5	Ala-25	P CON	8 38 ^a	1717
α 4.36^{a} 48.4 β 1.17^{a} 17.6 β 1.25^{a} 18.4 $Ala-26$ CON 8.17^{a} 172.0 Ala-7 CON 8.11^{a} 171.9 α 4.20^{a} 48.2	Ala-6	CON	2.02 8.08ª	1714	Ald-25	a	4 20ª	48.3
$\beta = 1.25^{a} = 18.4 \text{Ala-26} \text{CON} 8.17^{a} = 172.0 \\ \text{Ala-7} \text{CON} 8.11^{a} = 171.9 \alpha = 4.20^{a} = 48.2 \\ \text{Ala-7} \text{Ala-7} \text{Ala-7} 172.0 \\ \text{Ala-7} \text{Ala-7} \text{Ala-7} 172.0 \\ \text{Ala-7} $	1110 0	α	4 36 ^a	48.4		ß	1.20 1.17 ^a	17.6
Ala-7 CON 8.11^{a} 171.9 α 4.20^{a} 48.2		ß	1.25 ^a	18.4	Ala-26	۲ CON	8.17 ^a	172.0
	Ala-7	р CON	8.11 ^a	171.9		α	4.20ª	48.2
α 4.21 ^a 48.3 B 119 ^a 17.8		α	4.21ª	48.3		ß	1.19 ^a	17.8
β 1.20 ^a 19.5 Ala-27 CON 8.15 ^a 171.4		ß	1.20ª	19.5	Ala-27	р CON	8.15ª	171.4
Abu-8 CON 7.87 ^a 171.5 σ 437 ^a 48.8	Abu-8	r CON	7.87ª	171.5		α	4.37 ^a	48.8
$\alpha = 4.33^{a} = 53.5$ $\beta = 1.24^{a} = 18.0$		a	4.33 ^a	53 5		ß	1.24 ^a	18.0
β 1.67 m 26.0 Glv-28 CON 8.07 ^a 172.6		<u>β</u>	1.67 m	26.0	Glv-28	r CON	8.07ª	172.6

Table S3. 1 H (500 MHz) and 13 C NMR (125 MHz) Data for 1.

	γ	0.80 ^a	9.9		α	3.76 ^a	42.1
Val-9	CON	8.06 ^a	170.9			3.73ª	
	α	4.18 ^a	57.4	Gly-29	CON	8.11 ^a	172.5
	β	1.96ª	30.6		α	3.81ª	42.2
	γ	0.80 ^a	18.5			3.71ª	
		0.85 ^a	19.3	Ala-30	CON	8.15 ^a	172.0
Ala -10	CON	8.05 ^a	172.1		α	4.37ª	48.5
	α	4.19 ^a	48.5		β	1.27ª	17.6
	β	1.20ª	18.0	alloAviMe	CON	8.32 d (8.9)	169.8
				Cys-31			
Ala -11	CON	8.02 ^a	172.1		α	4.21 ^a	56.2
	α	4.18 ^a	48.6		β	3.22ª	44.6
	β	1.18 ^a	17.7		γ	1.19ª	19.5
Ala -12	CON	8.05 ^a	172.1		1'	5.33 d (8.5)	105.4
	α	4.19 ^a	48.5		2'	6.67 t (8.5)	121.6
	β	1.20ª	18.0		N-3'	8.75 s	—
Ala -13	CON	7.90ª	172.0	Tyr-32	CON	8.70ª	169.9
	α	4.16 ^a	48.6		α	3.63ª	57.9
	β	1.22ª	17.6		β	3.12 ^a	32.8
Val-14	CON	7.87 ^a	169.6		1'		129.1
	α	4.15 ^a	58.0		2', 6'	6.86 d (8.2)	130.0
	β	2.08 ^a	30.1		3', 5'	6.59 d (8.2)	115.2
	γ	0.85 ^a	14.0		4'		155.7
	δ	0.86 ^a	14.2	Lys-33	CON	8.10 ^a	169.4
Ala(S)-	CON	7.77ª	170.0		α	4.44 ^a	51.3
15							
	α	4.45 ^a	53.9		β	2.28 ^a	32.1
	β	2.99ª	41.4			1.88 ^a	
		2.90 ^a			γ	1.87 ^a	23.0
Dha-16	CON	9.58ª	166.3		δ	1.87^{a}	23.0
	α		136.4			1.81ª	
	β	5.39 s	108.3		З	3.89 ^a	47.1
		5.43 s				3.37 ^a	
Gly-17	CON	8.90ª	169.6	Leu-34	CON	8.66ª	172.9
	α	3.81 ^a	44.0		α	3.98 m	53.0
		3.59ª			β	1.45 ^a	38.8
Trp-18	CON	8.04 ^a	171.7		γ	1.54 m	24.1
	α	4.49 ^a	54.6		δ	0.84^{a}	19.3
	β	3.30 ^a	26.4			0.90 d (6.6)	22.4
		3.11 ^a		Gly-35	CON	8.76 ^a	169.0
	NH-1	10.86 s			α	3.85 ^a	43.3
	2	7.15 br s	123.5			3.59ª	

^a Overlapped signals

No.	Position	$\delta_{ m H}$ mult. (J in Hz)	$\delta_{ m C}$	No.	Position	$\delta_{ m H}$ mult. (J in Hz)	$\delta_{ m C}$
NMe ₂ A bu(S)-1	CON		172.0		3', 5'	7.22ª	127.9
(~) -	Me2	2.96 s	40.4		4'	7.16ª	126.3
		2.82 s	43.7	Ala-12	CON	8.07ª	171.5
	α	4.29 br d (4.2)	71.8		α	4.24 ^a	58.3
	β	3.62 dq (7.2,	40.2		β	0.90ª	18.4
	·	4.2)					
	γ	1.31 d (7.2)	17.9	Leu-13	CON	7.87ª	170.9
Dhb-2	CON	8.71 s	162.4		α	4.27 ^a	48.0
	α		127.1		β	1.99ª	29.4
	β	5.81 q (6.8)	125.7			1.85ª	
	γ	1.41 d (6.8)	14.1		γ	1.96ª	30.5
Pro-3	CO	_	171.8		δ	0.76 d (6.8)	18.0
	α	4.20 ^a	63.7		3	0.79 d (7.1)	19.3
	β	1.86ª	31.3	Ala-14	CON	8.27 ^a	170.9
		1.24 ^a			α	4.27 ^a	48.2
	γ	1.76 ^a	22.8		β	1.19 ^a	18.4
		1.64 ^a		Tyr-15	CON	8.20 ^a	170.9
	δ	3.85 ^a	46.9		α	4.55 ^a	53.6
		3.29 ^a			β	2.89ª	36.4
Phe-4	CON	8.07 d (9.5)	174.5			2.59ª	
	α	5.08 td (11.7,	52.4		1'	—	137.3
		3.5)					
	β	2.98ª	38.5		2', 6'	7.01ª	130.3
		2.86ª			3', 5'	6.61ª	114.7
	1'	—	137.3		4'		155.7
	2', 6'	7.29 d (7.2)	129.5	Val-16	CON	8.06 ^a	170.9
	3', 5'	7.28 ^a	127.8		α	4.24 ^a	58.3
	4'	7.17 ^a	127.8		β	2.06 m	30.3
Ala(S)- 5	CON	9.28 d (9.3)	169.1		δ	0.90ª	13.7
	α	4.97 br t (11.3)	52.4		3	0.91ª	13.7
	β	3.37 ^a	39.8	Dhb-17	CON	9.47 s	164.3
		2.60 ^a			α		131.0
Gly-6	CONH	8.29ª	168.0		β	6.22 q (6.7)	125.7
	α	3.89ª	41.8		γ	1.69 d (6.7)	12.9
		3.81ª		Dhb-18	CON	9.06 s	163.8
Ala-7	CON	8.23 d (7.1)	172.1		α	_	130.4
	α	4.39ª	48.1		β	6.45 q (7.0)	129.3
	β	1.19 d (7.3)	18.4		γ	1.66 d (7.	13.1

Table S4. 1 H (500 MHz) and 13 C NMR (125 MHz) Data for 3.

						0)	
Val-8	CON	7.88 ^a	170.5	Asn-19	CON	7.88 ^a	171.0
	α	4.12 t (7.5)	57.4		α	4.64 m	50.0
	β	1.94 m	30.5		β	2.61ª	37.0
	γ	0.78 d (6.6)	17.9			2.52ª	
	δ	0.81 d (6.6)	19.3		γ	_	171.8
Ala-9	CON	7.98 d (6.8)	171.4		NH ₂	7.29ª, 6.93	—
						(s)	
	α	4.20 ^a	48.3	Gly-20	CON	7.71 ^a	169.1
	β	1.14 d (6.9)	18.3		α	3.88 ^a	41.6
Ala -10	CON	7.76 d (7.5)	171.7			3.70 ^a	
	α	4.24 ^a	58.3	Pro-21	CON	_	172.0
	β	0.87 d (7.1)	18.7		α	4.29 ^a	59.6
Phe-11	CON	8.19 ^a	171.8		β	1.85 ^a	29.3
	α	4.55 ^a	53.6			1.99 ^a	
	β	3.01 ^a	37.8		γ	1.86 ^a	24.0
		2.69 ^a		Gly-22	CON	8.14 ^a	172.0
	1'	_	137.8		α	3.72 ^a	40.6
	2', 6'	7.22 ^a	129.3			3.71 ^a	

^a Overlapped signals

Strain/plasmid	Characteristics	Source/Ref
		erences
Streptomyces		
S. coelicolor M1152	Heterologous expression host	Routine
		preservation
STN-01	Heterologous expression of	This study
(WT)	stnU1/K/Y/M/A1/A2/A3/J/D/X/	
	P/U2 in S. coelicolor	
STN-02	STN-01 derivative in which	This study
$(\Delta stnA2A3)$	stnA2 and stnA3 was deducted	
STN-03	STN-01 derivative in which	This study
$(\Delta stnA1A3)$	stnA1 and stnA3 was deducted	
STN-04	STN-01 derivative in which	This study
$(\Delta stnA1A2)$	stnA1 and stnA2 was deducted	
STN-05	STN-01 derivative in which	This study
$(\Delta stnK)$	stnK was deducted	
STN-06	STN-01 derivative in which	This study
$(\Delta stn Y)$	stnY was deducted	
STN-07	STN-01 derivative in which	This study
$(\Delta stnM)$	stnM was deducted	
STN-08	STN-01 derivative in which	This study
$(\Delta stnD)$	stnD was deducted	
STN-09	STN-01 derivative in which	This study
$(\Delta stnX)$	stnX was deducted	
STN-10	STN-01 derivative in which	This study
(stnA2:stnA3)	stnA2 was engineered to code	
	for <i>stnA3</i> core sequence	

Table S5. Related bacterial strains and plasmids used in this study.

STN-11	STN-04 derivative in which	This study
$(\Delta stnA1A2M)$	stnM was deducted	
STN-12	STN-01 derivative in which	This study
(<i>stnA1</i> (T8S))	stnA1 was engineered to code	
	for StnA1-T8S	
E. coli		
DH5a	Host for general cloning	Transgen
ET12567/pUZ8002	Donor strain for conjugation	Ref. 9
	between E. coli and	
	Streptomyces	
BL21(DE3)	Host for protein expression	Transgen
Plasmids		
pRSFDuet-1	Protein coexpression vector	Novagen
	used in E. coli, encoding N-	
	terminal 6 × His tag,	
	kanamycin resistance	
pETDuet-1	Protein coexpression vector	Novagen
	used in E. coli, encoding N-	
	terminal 6 × His tag, ampicillin	
	resistance	
pXY200-1	Protein coexpression vector	Ref. 9
	used in Streptomyces	
pXYDuet-stn	pXY200-1 derivative used for	This study
	STN-01	
pXYDuet- $\Delta stnA2A3$	pXYDuet-stn derivative used	This study
	for STN-02	
pXYDuet- $\Delta stnA1A3$	pXYDuet-stn derivative used	This study
	for STN-03	

pXYDuet- $\Delta stnA1A2$	pXYDuet-stn derivative used	This study
	for STN-04	
pXYDuet- $\Delta stnK$	pXYDuet-stn derivative used	This study
	for STN-05	
pXYDuet-∆ <i>stnY</i>	pXYDuet-stn derivative used	This study
	for STN-06	
pXYDuet-∆stnM	pXYDuet-stn derivative used	This study
	for STN-07	
pXYDuet- $\Delta stnD$	pXYDuet-stn derivative used	This study
	for STN-08	
pXYDuet- $\Delta stnX$	pXYDuet-stn derivative used	This study
	for STN-09	
pXYDuet-stnA2:stnA3	pXYDuet-stn derivative used	This study
	for STN-10	
pXYDuet-∆stnA1A2M	pXYDuet-\(\Delta\)stnA1A2 derivative	This study
	used for STN-11	
pXYDuet-stnA1(T8S)	pXYDuet-stn derivative used	This study
	for STN-12	
pRSFDuet-1-stnA3-stnKY	pRSFDuet-1 derivative,	This study
	containing <i>stnA3</i> , <i>stnK</i> , and	
	stn Y	
pRSFDuet-1-stnA1-stnKY	pRSFDuet-1 derivative,	This study
	containing <i>stnA1</i> , <i>stnK</i> , and	
	stn Y	
pETDuet-1-stnD	pETDuet-1 derivative,	This study
	containing <i>stnD</i>	
pETDuet-1-stnX	pETDuet-1 derivative,	This study
	containing <i>stnX</i>	

pETDuet-1-stnD-stnX	pETDuet-1 derivative,	This study
	containing <i>stnD</i> and <i>stnX</i>	

Primer	Sequence
pRSF-2-StnK-F	GAACAGATTGGTATGTCGACCACATTCGCTCC
pRSF-2-StnK-R	AGAACCACCACCAGAACCACCACCGGGGTTACCTC
	CAATCCG
	GGTGGTGGTTCTGGTGGTGGTGGTTCTGTGAGCACGGGAA
pKSF-2-StnY-F	CGAGAAC
DOE 2 StaVD	GCAGCGGTTTCTTTACCAGACTCGAGTACTGAGGTGG
pKSF-2-StnY-K	AAGCAGGGAG
	CTCGGCGCGCCTGCAGGTCGACAAGCTTATGTCGGAC
pRSF-1-sumo-F	TCAGAAGTCAATCAAGAAGC
pRSF-1-sumo-R	CGTTTCTCATGGATCCACCAATCTGTTCTC
pRSF-2-sumo-F	GTATAAGAAGGAGATATACATATGTCGGACTCAGAAGT
	CAATCAAGAAG
pRSF-2-sumo-R	TGGTCGACATACCAATCTGTTCTCTGTGAGCC
pRSF-StnA1-F	TTGGTGGATCCATGAGAAACGACCAGAGCACG
pRSF-StnA1-R	CGTTTCTCATGGATCCACCAATCTGTTCTC
pRSF-StnA3-F	TTGGTGGATCCATGAGAAACGACCAGAGCACG
pRSF-StnA3-R	CGTTTCTCATGGATCCACCAATCTGTTCTC
pETDuet-1-	AACTTTAAGAAGGAGATATACATGTCGGACTCAGAAG
sumo-F	TCAATCAAG
pETDuet-1-	
sumo-StnD-R	CGGCCGCAAGCIIGICGACCICACAGCGIGCICGCCG
pETDuet-2-	GTATAAGAAGGAGATATACAATGTCGGACTCAGAAGT
sumo-F	CAATCAAG
pETDuet-2-	
sumo-R	IGUUGUIUAUGAIUUAUUAAIUIGIIUIUIGIGAG
pETDuet-2-	
StnX-F	IGUIGGAILLGIGALLGUCALULLAU

Table S6. Primers and chemically synthesized DNA sequences used in this study.

pETDuet-2-	CAGCGGTTTCTTTACCAGACTCAGTGGTCTCCTGGTG
StnX-R	С

4. References.

- Kieser, T.; Buttner, MJ.; Charter, KF; Hopwood, D; Bibb, M. J.; Büttner, M; Chater, K. F.; Bibb, MJ; Chater, KF; Hopwood, DA; Bibb, M.J.; Buttner, M.J.; Hopwood, D.A.; Chater, K.F.; Bib, M.J.; Keiser, T; Butner, MJ; Bipp, MJ; Chater, K.F.; Chatter, KF; Kieser Y. *Practical Streptomyces Genetics* (John Innes Foundation, **2000**)
- (2) Shang, Z.; Winter, J. M.; Kauffman, C. A.; Yang, I.; Fenical, W. Salinipeptins: integrated genomic and chemical approaches reveal unusual D-amino acidcontaining ribosomally synthesized and post-translationally modified peptides (RiPPs) from a great salt lake *Streptomyces* sp.. *ACS Chemical Biology*. **2019**, *14*, 415-425.
- (3) Vijayasarathy, S.; Prasad, P.; Fremlin, L. J.; Ratnayake, R.; Salim, A. A.; Khalil, Z.; Capon, R. J., C3 and 2D C3 Marfey's Methods for Amino Acid Analysis in Natural Products. *Journal of Natural Products* **2016**, 79 (2), 421-427.
- (4) Georgiou, M. A.; Dommaraju, S. R.; Guo, X.; Mast, D. H.; Mitchell, D. A., Bioinformatic and Reactivity-Based Discovery of Linaridins. ACS Chemical Biology 2020, 15 (11), 2976-2985.
- (5) Chu, L.; Cheng, J.; Zhou, C.; Mo, T.; Ji, X.; Zhu, T.; Chen, J.; Ma, S.; Gao, J.; Zhang,
 Q., Hijacking a Linaridin Biosynthetic Intermediate for Lanthipeptide Production.
 ACS Chemical Biology 2022, 17 (11), 3198-3206.
- (6) C. L. M. Gilchrist, T. J. Booth, B. van Wersch, L. van Grieken, M. H. Medema, Y.-H. Chooi, A. Ouangraoua, *Bioinformatics Advances* 2021, 1, vbab016.
- (7) Zallot, R.; Oberg, N.; Gerlt, J. A., The EFI Web Resource for Genomic Enzymology Tools: Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes and Metabolic Pathways. *Biochemistry* 2019, 58 (41), 4169-4182.
- (8) Crooks, G. E.; Hon, G.; Chandonia, J.-M.; Brenner, S. E., WebLogo: A Sequence Logo Generator. *Genome Research* 2004, 14 (6), 1188-1190.
- (9) Xue, Y.; Wang, X.; Liu, W., Reconstitution of the Linaridin Pathway Provides Access to the Family-Determining Activity of Two Membrane-Associated Proteins in the Formation of Structurally Underestimated Cypemycin. *Journal of the*

American Chemical Society 2023, 145 (12), 7040-7047.