Supplementary Information

Toward Robust Lithium-Sulfur Battery via Advancing Li₂S Deposition

Xun Jiao^a, Xiaoxia Tang^a, Jinrui Li^a, Yujiao Xiang^a, Cunpu Li^{*,a}, Cheng Tong^{*,a}, Minhua Shao^b, Zidong Wei^{*,a}

^a State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.

^b Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

E-mail: lcp@cqu.edu.cn; tongcheng@cqu.edu.cn; zdwei@cqu.edu.cn

1. Supplementary figures

Figure S1 (a-b) High-resolution S 2p and C 1s XPS spectra of GeS₂-MoS₂/rGO, respectively.

Figure S2 Electronic conductivity of GeS₂-MoS₂/rGO heterostructure, GeS₂/rGO, and MoS₂/rGO under constant voltage of 1.0 V.

Figure S3 (a-b) The fitted R-space of EXAFS analysis of Ge in GeS₂-MoS₂/rGO and GeS₂/rGO, respectively.

Figure S4 (a-c) SEM images of GeS_2-MoS_2/rGO with different ratios; (d) Cycling capacity of GeS_2-MoS_2/rGO with different ratios at 0.5 C over 300 cycles.

Figure S5 (a) SEM image of GeS₂-MoS₂/rGO; (b) TEM image of GeS₂-MoS₂/rGO; (c-f) EDX images of GeS₂-MoS₂/rGO.

Figure S6 (a) AFM image and corresponding (b) particle size and thickness distribution of GeS_2-MoS_2/rGO . The particle distribution of GeS_2-MoS_2/rGO is 100-500 nm with a thickness of about 6 nm.

Figure S7 (a-b) SEM images of the MoS_2/rGO ; (c-d) TEM and HRTEM images of the MoS_2/rGO ; (e-h) EDX images of the MoS_2/rGO .

Figure S8 (a-b) SEM images of the GeS₂/rGO; (c-d) TEM and HRTEM images of the GeS₂/rGO; (e-h) EDX images of the GeS₂/rGO.

Figure S9 TG analyses of S@GeS_-MoS_/rGO, S@GeS_/rGO and S@MoS_/rGO.

Figure S10 (a-c) BET patterns of GeS₂-MoS₂/rGO, MoS₂/rGO and GeS₂/rGO.

Figure S11 Side (a) and top (b) views of the adsorption configurations of LiPSs on the GeS_2 -MoS₂ heterostructure.

Figure S12 Side (a) and top (b) views of the adsorption configurations of LiPSs on MoS₂ (002).

Figure S13 Side (a) and top (b) views of the adsorption configurations of LiPSs on GeS₂ (311).

Figure S14 (a) Optical images of Li_2S_6 solutions after 1 h and 6 h adsorption, respectively; (b) UV-Vis spectra of Li_2S_6 solutions after exposure to different catalysts.

Figure S15 Cycling life of different electrodes at 0.2 C over 300 cycles.

Figure S16 (a-b) Galvanostatic discharge/charge profiles of S@GeS₂/rGO and S@MoS₂/rGO with various current densities, respectively.

Figure S17 Galvanostatic discharge/charge profiles of pouch cell with the S@GeS₂-MoS₂/rGO cathode.

2. Supplementary tables

Catalyst	<i>I</i> (A)	<i>R</i> (1/S)	<i>L</i> (mm)	σ (S/mm)
GeS ₂ -MoS ₂ /rGO	0.0822	12.165	0.736	4.56*10 ⁻⁴
GeS ₂ /rGO	0.0145	68.966	0.743	8.12*10 ⁻⁵
MoS ₂ /rGO	0.0511	19.569	0.723	2.78*10-4

Table S1. The electronic conductivity (σ) values of different catalysts.

Sample	Shell	CN^a	$R(\text{\AA})^b$	$\sigma^2(\text{\AA}^2)^c$	$\Delta E_0(\mathrm{eV})^d$	<i>R</i> factor
Mo foil	Mo-Mo	8.0*	2.72±0.01	0.0034	4.7	
	Mo-Mo	6.0*	3.14±0.01	0.0030	6.7	0.0032
GeS ₂ -	Mo-S	3.7±0.1	2.41±0.01	0.0037	4.0	
MoS ₂ /rGO	Mo-Mo	2.7±0.2	3.14±0.01	0.0059	-1.8	0.0041
MoS ₂ /rGO	Mo-S	3.6±0.1	2.41±0.01	0.0025	4.0	
	Mo-Mo	2.5±0.1	3.15±0.01	0.0027	0.2	0.0011

Table S2. EXAFS fitting parameters at the Mo K-edge for various samples.

^{*a*}*CN*, coordination number; ^{*b*}*R*, distance between absorber and backscatter atoms; ^{*c*} σ^2 , Debye-Waller factor to account for both thermal and structural disorders; ^{*d*} ΔE_0 , inner potential correction; *R* factor indicates the goodness of the fit. S₀² was fixed to 0.89. A reasonable range of EXAFS fitting parameters: 0.700 < S₀² < 1.000; *CN* > 0; σ^2 > 0 Å²; $|\Delta E_0| < 15$ eV; *R* factor < 0.02.

Sample	Shell	CN^a	$R(\text{\AA})^b$	$\sigma^2(\text{\AA}^2)^c$	$\Delta E_0(\mathrm{eV})^d$	R factor
Ge foil	Ge-Ge	4.0*	2.46±0.01	0.0049	4.7	0.0063
GeS ₂ -	Ge–S	0.6±0.3	2.17±0.01	0.0089	13.6	
MoS ₂ /rGO	Ge-Ge	3.6±0.3	2.40±0.01	0.0052	5.1	0.0152
	Ge–S	0.8±0.3	2.03±0.01	0.0150	-5.5	
Ge52-IGO	Ge-Ge	3.7±0.2	2.40±0.01	0.0042	4.3	0.0122

Table S3. EXAFS fitting parameters at the Ge K-edge for various samples.

^{*a*}*CN*, coordination number; ^{*b*}*R*, distance between absorber and backscatter atoms; ^{*c*} σ^2 , Debye-Waller factor to account for both thermal and structural disorders; ^{*d*} ΔE_0 , inner potential correction; *R* factor indicates the goodness of the fit. S₀² was fixed to 0.96. A reasonable range of EXAFS fitting parameters: 0.700 < S₀² < 1.000; *CN* > 0; σ^2 > 0 Å²; $|\Delta E_0| < 15$ eV; *R* factor < 0.02.

Ratio	Мо	Ge
$MoS_2:GeS_2 = 0.7$	15.15%	21.53%
$MoS_2:GeS_2 = 0.9$	20.18%	22.63%
$MoS_2:GeS_2 = 1.1$	22.09%	19.83%

Table S4. The element content of different ratios of MoS_2 and GeS_2 in the GeS_2 - MoS_2/rGO heterostructure.

Electrode	$R_{ m s}\left(\Omega ight)$	$R_{ m ct}\left(\Omega ight)$
S@GeS2-MoS2/rGO	4.65	16.52
S@GeS ₂ /rGO	4.82	33.64
S@MoS ₂ /rGO	4.69	24.37

Table S5. Impedance (R_s and R_{ct}) of host materials after cycling.

Cathode	Discharge current (C)	Cycle number	Capacity retention	Reference
S/ZnSe-CoSe ₂ @NC	0.2	100 th	79.97%	S9
	2	1000 th	~63%	
W2N/M02N@MOF-C/S	0.5	260 th	94.96%	S10
	1	980 th	66.98%	
	3	2000 th	60.8%	
La2O3-MXene@CNF/S	0.2	400 th	85.2%	S11
	2	1000 th	~68%	
MoS ₂ -MoN/S	0.2	100 th	93.9%	S12
	2	1000 th	59%	
S@GeS2-MoS2/rGO	0.2	300 th	90.1%	
	0.5	300 th	89.17%	This work
	3	1000 th	68.63%	

 Table S6. The capacity retention of different cathodes.

3. Supplementary references

1. J. Xu, L. Xu, Z. Zhang, B. Sun, Y. Jin, Q. Jin, H. Liu and G. Wang, *Energy Storage Materials*, 2022, **47**, 223–234.

Y. Song, P. Tang, Y. Wang, Y. Wang, L. Bi, Q. Liang, L. He, Q. Xie, Y. Zhang, P. Dong, Y. Zhang, Y. Yao, J. Liao and S. Wang, *Journal of Energy Chemistry*, 2024, 88, 363–372.

3. Z. Huang, Y. Zhu, Y. Kong, Z. Wang, K. He, J. Qin, Q. Zhang, C. Su, Y. Zhong and H. Chen, *Advanced Functional Materials*, 2023, **33**, 2303422.

S. Wang, S. Feng, J. Liang, Q. Su, F. Zhao, H. Song, M. Zheng, Q. Sun, Z. Song, X. Jia, J. Yang, Y. Li, J. Liao, R. Li and X. Sun, *Advanced Energy Materials*, 2021, 11, 2003314.