Supplementary Information for

Neutral Inverse-Sandwich Rare-Earth Metal Complexes of the Benzene

Tetraanion

Yi Wang,^{†a} Yurou Zhang,^{†a} Jiefeng Liang,^a Bowen Tan,^{a,b} Chong Deng,^a Wenliang Huang^{*a}

^a Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University; Beijing, 100871, P. R. China

^b Present address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

[†] These authors contributed equally.

Table of Contents

S1. Materials and Methods	S3
S2. NMR Spectra	S8
S3. X-ray Crystallography	S21
S4. UV–Vis–NIR Spectra	S33
S5. IR Spectra	S41
S6. Density Functional Theory (DFT) Calculations	S49
S7. References	S78

S1. Materials and Methods

S1.1. General Considerations

All experiments were performed under a dry argon atmosphere using standard Schlenk techniques or in a nitrogen filled Vigor glove box unless otherwise specified. Celite (purchased from Sigma-Aldrich) and 4 Å molecular sieves (purchased from Sinopharm) were dried under dynamic vacuum at 250 °C for at least 48 h prior to use. Solvents including hexanes, n-pentane, diethyl ether (Et₂O) and toluene, were collected from a Vigor YJC-5 Solvent Purification System under argon, transferred to the glove box without exposure to air, and stored over activated molecular sieves. Tetrahydrofuran (THF) was freshly distilled over sodium benzophenone ketyl and stored over activated molecular sieves prior to use. Deuterated solvents, benzene- d_6 (C₆D₆) and toluene-d₈ (C₇D₈) were obtained from Cambridge Isotope Laboratories, degassed three times using freeze-pump-thaw method and stored over activated molecular sieves for one week prior to use. Super dry benzene was purchased from J&K and stored over activated molecular sieves for one week prior to use. para-Xylene (p-xylene) was obtained from Energy Chemical, degassed three times using freeze-pump-thaw method and stored over activated molecular sieves for one week prior to use. (BDI)H (HC{C(Me)N[2,6-(3-pentyl-phenyl)]}₂),¹ (BDI)K,² KC₈,³ YI₃(THF)_{3.5} and SmI₃(THF)_{3.5}⁴ were prepared according to literature procedures. All other reagents were purchased from commercial suppliers and used as received.

¹H and ¹³C NMR spectra were recorded on Bruker Avance 400 MHz or 600 MHz spectrometers at room temperature. Variable temperature ¹H NMR was recorded on Bruker Avance 500 MHz spectrometers. Chemical shifts are referenced internally to the residual proteo-solvent signal, i.e., C_6D_5H at 7.16 ppm. CHN analyses were performed on a Vario EL elemental analyzer at the Analytical Instrumentation Center of Peking University. The single crystal X-ray diffraction data were collected at 180 K using a Rigaku Oxford diffractometer equipped with a CCD collector using Mo K α radiation, XtaLAB PRO 007HF(Mo). UV–Vis–NIR spectra were obtained on a SHIMADZU UV3600Plus in a 1 mm quartz cuvette at the Analytical Instrumentation Center of Peking University. Fourier transform infrared (FTIR) spectra in the range of 4000–400 cm⁻¹ were recorded on a Bruker Tensor 27 spectrometer using a KBr cell (for solution samples) at the Analytical Center of Peking University.

S1.2. Synthetic Details

Synthesis of (BDI)YI₂(THF) (1-Y). (BDI)K (200 mg, 0.35 mmol) was dissolved in 5 mL of Et₂O and YI₃(THF)_{3.5} (305 mg, 0.42 mmol, 1.2 equiv) was dispersed in 2 mL of Et₂O. Both mixtures were cooled at -78 °C for 15 min. The cold solution of (BDI)K was added to the suspension of YI₃(THF)_{3.5} dropwise with stirring. The mixture was warmed to room temperature and stirred for 5 h. The volatiles were removed under reduced pressure and the residue was extracted into hexanes (ca. 10 mL). Then the filtrate was concentrated to ca. 2 mL. After storing at -35 °C for 2 d, colorless crystals precipitated from the solution. The mother liquor was decanted and the crystals were washed with cold *n*-pentane and dried under reduced pressure to yield 1-Y as a pale yellow solid (Yield: 148 mg, 45%). Single crystals of 1-Y suitable for X-ray crystallography were grown from a hexanes solution at -35 °C. ¹H NMR (400 MHz, C₆D₆) δ , ppm: 7.14–7.04 (m, 6H, CH of aryl), 5.17 (s, 1H, CCHC), 3.61 (s, 4H,

CH(CH₂CH₃)₂), 3.28 (s, 4H, OCH₂), 2.01–1.80 (m, 8H, CH₂CH₃), 1.77–1.57 (m, 14H, CH₂CH₃) (8H) & CCH₃ (6H)), 1.23–1.11 (m, 16H, OCH₂CH₂ (4H) & CH₂CH₃ (12H)), 0.90 (s, 12H, CH₂CH₃). ¹³C{H} NMR (101 MHz, C₆D₆) δ, ppm: 168.25 (*C*(CH₃)N), 146.62, 139.46, 126.61, 125.13 (C of aryl), 96.60 (CCHC), 71.92 (OCH₂), 40.71 (CH(CH₂CH₃)₂), 27.36 (CH₂CH₃), 26.99 (OCH₂CH₂), 25.71 (CCH₃), 24.91 (CH₂CH₃), 11.80 (CH₂CH₃), 10.82 (CH₂CH₃). Anal. (%): Calcd. for $C_{44}H_{71}I_2N_2OY$, $M_{\rm w}$ = 986.78, in the formula as of (BDI)YI₂(THF)·0.5C₆H₁₄(hexanes): C, 53.56; H, 7.25; N, 2.84. Found: C, 53.77; H, 7.08; N, 2.81.

Synthesis of (BDI)SmI₂(THF) (1-Sm). (BDI)K (300 mg, 0.53 mmol) was dissolved in 12 mL of Et₂O and SmI₃(THF)_{3.5} (496 mg, 0.63 mmol, 1.2 equiv) was dispersed in 5 mL of Et₂O. Both were cooled at -78 °C for 15 min. The cold solution of (BDI)K was added to the suspension of SmI₃(THF)_{3.5} dropwise with stirring. The mixture was warmed to room temperature and stirred overnight. The brown suspension was then filtered through Celite and washed with Et_2O (ca. 5 mL \times 3). The volatiles were removed under reduced pressure and the residue was extracted into hexanes/Et₂O (ca. 15 mL, 1:1 v/v). A small amount of THF (100 µL) was added to facilitate the dissolution. Then the filtrate was concentrated to ca. 3 mL. After standing at room temperature for 1 h, orange crystals precipitated from the solution. The mother liquor was decanted and the crystals were dried under reduced pressure to yield 1-Sm as an orange solid (Yield: 292 mg, 55%). Single crystals of 1-Sm suitable for X-ray crystallography were grown from a Et₂O solution at room temperature. ¹H NMR (400 MHz, C_6D_6) δ , ppm: 7.86 (s, 1H, CCHC), 7.04 (t, J = 7.7 Hz, 2H, para-CH of aryl), 6.73 (d, J = 7.8 Hz, 4H, meta-CH of aryl), 4.51 (s, 4H, OCH₂), 2.68 (s, 6H, CCH₃), 2.00 (s, 4H, OCH₂CH₂), 1.88–1.11 (m, 16H, CH₂CH₃), 0.84 (s, 12H, CH₂CH₃), 0.65 (s, 4H, CH(CH₂CH₃)₂), 0.42 (s, 12H, CH₂CH₃). Anal. (%): Calcd. for $C_{42}H_{67.5}I_2N_2O_{1.25}Sm$, $M_w = 1024.68$, as in the formula of (BDI)SmI₂(THF)·0.25C₄H₁₀O(Et₂O): C, 49.23; H, 6.64; N, 2.73. Found: C, 49.41; H, 6.69; N, 2.78.

Synthesis of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (2-Y). 1-Y (100 mg, 0.11 mmol) and KC₈ (34 mg, 0.25 mmol, 2.4 equiv) were dispersed in 1 mL of C₆H₆. The mixture stirred vigorously at room temperature overnight. The volatiles of resulting black suspension were removed under reduced pressure. The residue was extracted into *n*-pentane (ca. 10 mL) and the volatiles were removed under reduced pressure. The black remaining solid was then extracted into Et₂O (ca. 8 mL) and the filtrate was concentrated to ca. 3 mL. After storing at -35 °C for 10 d, black crystals precipitated from the solution. The mother liquor was decanted and the crystals were washed with cold *n*-pentane and dried under reduced pressure to yield 2-Y as a black solid (Yield: 39 mg, 56%). Single crystals of 2-Y suitable for X-ray crystallography were grown from a *n*-pentane solution at -35 °C. ¹H NMR (400 MHz, C₆D₆) δ, ppm: 7.12–7.06 (m, 4H, *para*-CH of aryl), 6.99 (d, J = 7.6 Hz, 8H, *meta*-CH of aryl), 4.92 (s, 2H, CCHC), 3.03–2.95 (m, 8H, $CH(CH_2CH_3)_2$), 2.37 (t, $J_{Y-H} = 1.6$ Hz, 6H, CH of the bound benzene), 1.92–1.82 (m, 16H, CH₂CH₃), 1.75 (s, 12H, CCH₃), 1.71–1.58 (m, 16H, CH₂CH₃), 1.08 (t, J = 7.3 Hz, 24H, CH₂CH₃), 0.80 (t, J = 7.4 Hz, 24H, CH₂CH₃). ¹³C {H} NMR (101 MHz, C₆D₆) δ , ppm: 164.57 (C(CH₃)N), 144.56, 140.58, 125.05, 123.96 (C of aryl), 96.01 (CCHC), 65.74 (CH of the bound benzene, $J_{Y-C} = 4.8$ Hz), 41.61 (CH(CH₂CH₃)₂), 28.40 (CH₂CH₃), 24.50 (CH₂CH₃), 23.99 (CH(CH₂CH₃)₂), 11.92 (CH₂CH₃), 10.84 (CH₂CH₃). Anal. (%): Calcd. For C₈₀H₁₂₀N₄Y₂, M_w

= 1315.68, as in the formula of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_6H_6)$: C, 73.03; H, 9.19; N, 4.26. Found: C, 73.26; H, 9.42; N, 4.12.

Synthesis of $[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (2-Sm). 1-Sm (150 mg, 0.15 mmol) and KC₈ (48 mg, 0.36 mmol, 2.4 equiv) were dispersed in 1.5 mL of C₆H₆. The mixture stirred vigorously at room temperature for 4 h. The volatiles of resulting black suspension were removed under reduced pressure. The residue was extracted into Et₂O (ca. 10 mL) and the filtrate was concentrated to ca. 5 mL. A small amount of THF (50 µL) was added to the solution. After storing at -35 °C overnight, black crystals precipitated from the solution. The mother liquor was decanted and the crystals were dried under reduced pressure to yield 2-Sm as a black solid (Yield: 89 mg, 76%). Single crystals of 2-Sm suitable for X-ray crystallography were grown from a *n*-pentane solution containing a few drops of THF at -35 °C. ¹H NMR (400 MHz, C_6D_6) δ , ppm: 21.73 (s, 6H, CH of the bound benzene), 10.68 (s, 2H, CCHC), 6.68 (t, J = 7.8) Hz, 4H, para-CH of aryl), 6.31 (d, J = 8.0 Hz, 8H, meta-CH of aryl), 5.39 (s, 12H, CCH₃), 2.10–1.95 (m, 8H, CH₂CH₃), 1.45–1.31 (m, 8H, CH₂CH₃), 1.00 (t, J = 7.4 Hz, 24H, CH₂CH₃), -0.22 (s, 8H, CH(CH₂CH₃)₂), -1.82 (t, J = 7.1 Hz, 24H, CH₂CH₃), -2.67 to -2.82 (m, 8H, CH_2CH_3 , -5.40 to -5.64 (m, 8H, CH_2CH_3). The peaks of coordinating THF molecules are not observed probably due to the loss of THF molecules under reduced pressure during drying process. Anal. (%): Calcd. For $C_{86}H_{126}N_4Sm_2$, $M_w = 1516.70$, as in the formula of $[(BDI)Sm]_2(\mu-\eta^6,\eta^6-C_6H_6)\cdot C_6H_6(benzene): C, 68.10; H, 8.37; N, 3.69. Found: C, 67.91; H,$ 8.70; N, 3.88.

Synthesis of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (3-Y). 1-Y (150 mg, 0.16 mmol) and KC₈ (52 mg, 0.38 mmol, 2.4 equiv) were dispersed in 2 mL of p-xylene. The mixture was stirred vigorously at room temperature for 3 d. The volatiles of resulting black suspension were removed under reduced pressure. The residue was extracted into n-pentane (ca. 20 mL) and the filtrate was concentrated to ca. 5 mL. After storing at -35 °C for 7 d, black crystals precipitated from the solution. The mother liquor was decanted and the crystals were washed with cold *n*-pentane and dried under reduced pressure to yield 3-Y as a black solid (Yield: 41 mg, 38%). Single crystals of **3-Y** suitable for X-ray crystallography were grown from a *n*-pentane solution at – 35 °C. ¹H NMR (400 MHz, C₆D₆) δ, ppm: 7.05 (s, 12H, CH of aryl), 4.93 (s, 2H, CCHC), 3.03– 2.92 (m, 8H, CH(CH₂CH₃)₂), 2.71 (t, $J_{Y-H} = 1.7$ Hz, 4H, CH of the bound xylene), 2.00–1.77 (m, 16H, CH₂CH₃), 1.74–1.57 (m, 28H, CCH₃ (12H) & CH₂CH₃ (16H)), 1.14 (t, J = 7.3 Hz, 24H, CH₂CH₃), 0.82–0.76 (m, 30H, CH₂CH₃ (24H) & CH₃ of the bound xylene (6H)). ${}^{13}C{H}$ NMR (101 MHz, C₆D₆) δ, ppm: 165.48 (*C*(CH₃)N), 146.23, 140.46, 125.49, 123.84 (*C* of aryl), 96.40 (CCHC), 73.01 (CMe of the bound xylene, $J_{Y-C} = 6.8$ Hz), 71.14 (CH of the bound xylene, $J_{Y-C} = 4.0 \text{ Hz}$, 41.93 (CH(CH₂CH₃)₂), 28.27 (CH₂CH₃), 24.75 (CH(CH₂CH₃)₂), 23.77 (CH₂CH₃), 19.05 (CH₃ of the bound xylene), 12.63 (CH₂CH₃), 10.53 (CH₂CH₃). Anal. (%): Calcd. For $C_{82}H_{124}N_4Y_2$, $M_w = 1343.73$, as in the formula of $[(BDI)Y]_2(\mu - \eta^6, \eta^6 - C_8H_{10})$: C, 73.30; H, 9.30; N, 4.17. Found: C, 73.08; H, 9.26; N, 4.12.

Synthesis of $[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (3-Sm). 1-Sm (100 mg, 0.10 mmol) and KC₈ (32 mg, 0.24 mmol, 2.4 equiv) were dispersed in 1 mL of *p*-xylene. The mixture stirred vigorously at room temperature for 2 d. The volatiles of resulting black suspension were removed under reduced pressure. The residue was extracted into *n*-pentane (ca. 5 mL) and the filtrate was concentrated to ca. 3 mL. A small amount of THF (50 µL) was added to the solution.

After storing at -35 °C overnight, black crystals precipitated from the solution. The mother liquor was decanted and the crystals were washed with cold *n*-pentane and dried under reduced pressure to yield **3-Sm** as a black solid (Yield: 55 mg, 69%). Single crystals of **3-Sm** suitable for X-ray crystallography were grown from a *n*-pentane solution containing a few drops of THF at -35 °C. ¹H NMR (400 MHz, C₇D₈) immediately δ , ppm: 26.43 (s, 4H, CH of the bound *p*-xylene), 8.80 (s, 2H, CCHC), 6.36 (t, *J* = 7.7 Hz, 4H, *para*-CH of aryl), 6.19 (d, *J* = 7.7 Hz, 8H, *meta*-CH of aryl), 5.17 (s, 12H, CCH₃), 2.28–2.15 (m, 8H, CH₂CH₃), 1.50–1.35 (m, 8H, CH₂CH₃), 0.98 (t, *J* = 7.4 Hz, 24H, CH₂CH₃), 0.53 (s, 8H, CH(CH₂CH₃)₂), 0.20 (t, *J* = 6.9 Hz, 24H, CH₂CH₃), -0.54 to -0.72 (m, 8H, CH₂CH₃), -1.64 to -1.82 (m, 8H, CH₂CH₃), -7.95 (s, 6H, CH₃ of the bound *p*-xylene). The peaks of coordinating THF molecules are not observed probably due to the loss of THF molecules under reduced pressure during drying process. Anal. (%): Calcd. for C₈₂H₁₂₄N₄Sm₂, M_w = 1466.64, as in the formula of [(BDI)Sm]₂(µ–η⁶,η⁶-C₈H₁₀): C, 67.15; H, 8.52; N, 3.82. Found: C, 67.11; H, 8.73; N, 3.67.

Arene exchange reaction of 3-Sm. 3-Sm (6 mg, 0.004 mmol) was dissolved in C₆D₆ (ca. 0.6 mL) and the black solution was transferred to a J. Young tube. The arene exchange reaction was monitored by ¹H NMR spectroscopy at room temperature over the course of 24 h. There was significant exchange after 5 min (Figure S9). The reaction reached completion and 3-Sm was fully converted to [(BDI)Sm(THF)]₂(μ - η^6 , η^6 -C₆D₆) after 24 h (Figure S10).

Synthesis of (BDI)Sm(n⁸-COT) (4-Sm). 2-Sm (80 mg, 0.05 mmol) and cyclooctatetraene (COT) (13 mg, 0.13 mmol, 2.5 equiv) were dissolved in 6 mL and 2 mL of Et₂O, respectively. Both solutions were cooled at -78 °C for 15 min. The cold solution of 2-Sm was added to the solution of COT dropwise with stirring. The mixture was warmed to room temperature and stirred for 30 min. The volatiles of resulting brown solution were removed under reduced pressure. The residue was extracted into n-pentane (ca. 8 mL) and the filtrate was concentrated to ca. 3 mL. A small amount of THF (30 µL) was added to the solution. After standing at room temperature for 1 h, light purple solid precipitated from the solution. The mother liquor was decanted and the solid was dried under reduced pressure to yield 4-Sm as a light purple solid (Yield: 82 mg, 95%). Single crystals of 4-Sm suitable for X-ray crystallography were grown from a Et₂O solution at -35 °C. ¹H NMR (400 MHz, C₆D₆) δ , ppm: 8.20 (s, 8H, CH of COT), 7.99 (t, J = 7.8 Hz, 2H, para-CH of aryl), 7.77 (s, 1H, CCHC), 7.49 (d, J = 7.8 Hz, 4H, meta-CH of aryl), 3.58 (s, 10H, CCH₃ & OCH₂ of free THF), 1.72–1.59 (m, 4H, CH₂CH₃), 1.45– 1.37 (m, 4H, OCH₂CH₂ of free THF), 1.00–0.89 (m, 4H, CH₂CH₃), 0.70 (t, J = 7.4 Hz, 12H, CH_2CH_3), -1.46 (t, J = 7.2 Hz, 12H, CH_2CH_3), -1.78 to -1.92 (m, 4H, CH_2CH_3), -1.99 to -2.11 (m, 4H, CH₂CH₃), -2.21 (s, 4H, CH(CH₂CH₃)₂). Anal. (%): Calcd. For C_{51.5}H₇₉N₂OSm, $M_w = 878.54$, as in the formula of (BDI)Sm(η^8 -COT)·THF·0.5C₅H₁₂(*n*-pentane): C, 69.30; H, 8.92; N, 3.14. Found: C, 69.22; H, 8.89; N, 3.34.

Synthesis of (BDI)Sm(η^4 -C₄Ph₂) (5-Sm). 2-Sm (25 mg, 0.016 mmol) and 1,4diphenylbutadiyne (8 mg, 0.038 mmol, 2.4 equiv) were each dissolved in 1 mL of Et₂O. Both solutions were cooled at -78 °C for 15 min. The cold solution of 2-Sm was added to the solution of 1,4-diphenylbutadiyne dropwise with stirring. The mixture was warmed to room temperature and stirred for 1 h. The volatiles of resulting red brown solution were removed under reduced pressure. The residue was extracted into *n*-pentane (ca. 3 mL) and the filtrate was concentrated to ca. 1 mL. After storing at -78 °C for 1 h, red crystals precipitated from the solution. The mother liquor was decanted and the crystals were washed with cold *n*-pentane. The remaining solid was dried under reduced pressure to yield **5-Sm** as a dark red solid (Yield: 21 mg, 75%). Single crystals of **5-Sm** suitable for X-ray crystallography were grown from a *n*-pentane solution at $-35 \,^{\circ}$ C. ¹H NMR (400 MHz, C₆D₆) δ , ppm: 15.23 (s, 1H, CCHC), 13.39 (d, $J = 7.4 \,\text{Hz}$, 4H), 8.42 (t, $J = 7.0 \,\text{Hz}$, 4H, *meta*-CH of C₄Ph₂), 8.22 (t, $J = 7.2 \,\text{Hz}$, 2H), 5.15 (t, $J = 7.6 \,\text{Hz}$, 2H), 4.10 (s, 4H), 2.18 (s, 6H, CCH₃), 0.25 (s, 12H, CH₂CH₃), -0.26 to -1.07 (m, 20H, CH₂CH₃ (12H) & CH₂CH₃ (8H)), -2.69 (s, 4H), -3.99 (s, 4H), -12.01 (br s, 4H). The signals cannot be completely assigned due to the signal broadening and similar signal splitting in aryl groups of the ligand backbone and the [C₄Ph₂] unit. Anal. (%): Calcd. For C₅₃H₆₇N₂Sm, M_w = 882.49, as in the formula of (BDI)Sm(η⁴-C₄Ph₂): C, 72.13; H, 7.65; N, 3.17. Found: C, 72.27; H, 7.66; N, 3.00.

Fig. S1. ¹H NMR (400 MHz, C₆D₆, 298K) spectrum of (BDI)YI₂(THF) (**1-Y**), δ, ppm: 7.14–7.04 (m, 6H, CH of aryl), 5.17 (s, 1H, CCHC), 3.61 (s, 4H, CH(CH₂CH₃)₂), 3.28 (s, 4H, OCH₂), 2.01–1.80 (m, 8H, CH₂CH₃), 1.77–1.57 (m, 14H, CH₂CH₃ (8H) & CCH₃ (6H)), 1.23–1.11 (m, 16H, OCH₂CH₂ (4H) & CH₂CH₃ (12H)), 0.90 (s, 12H, CH₂CH₃).

Fig. S2. ¹³C {H} NMR (101 MHz, C₆D₆, 298K) spectrum of (BDI)YI₂(THF) (**1-Y**), δ, ppm: 168.25 (*C*(CH₃)N), 146.62, 139.46, 126.61, 125.13 (*C* of aryl), 96.60 (CCHC), 71.92 (OCH₂), 40.71 (*C*H(CH₂CH₃)₂), 27.36 (*C*H₂CH₃), 26.99 (OCH₂*C*H₂), 25.71 (CCH₃), 24.91 (*C*H₂CH₃), 11.80 (CH₂CH₃), 10.82 (CH₂*C*H₃).

Fig. S3. ¹H NMR (400 MHz, C₆D₆, 298K) spectrum of (BDI)SmI₂(THF) (**1-Sm**), δ, ppm: 7.86 (s, 1H, CC*H*C), 7.04 (t, *J* = 7.7 Hz, 2H, *para*-C*H* of aryl), 6.73 (d, *J* = 7.8 Hz, 4H, *meta*-C*H* of aryl), 4.51 (s, 4H, OC*H*₂), 2.68 (s, 6H, CC*H*₃), 2.00 (s, 4H, OCH₂C*H*₂), 1.88–1.11 (m, 16H, C*H*₂CH₃), 0.84 (s, 12H, CH₂C*H*₃), 0.65 (s, 4H, C*H*(CH₂CH₃)₂), 0.42 (s, 12H, CH₂C*H*₃).

Fig. S4. ¹H NMR (400 MHz, C₆D₆, 298K) spectrum of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (**2-Y**), δ , ppm: 7.12–7.06 (m, 4H, *para*-CH of aryl), 6.99 (d, J = 7.6 Hz, 8H, *meta*-CH of aryl), 4.92 (s, 2H, CCHC), 3.03–2.95 (m, 8H, CH(CH₂CH₃)₂), 2.37 (t, $J_{Y-H} = 1.6$ Hz, 6H, CH of the bound benzene), 1.92–1.82 (m, 16H, CH₂CH₃), 1.75 (s, 12H, CCH₃), 1.71–1.58 (m, 16H, CH₂CH₃), 1.08 (t, J = 7.3 Hz, 24H, CH₂CH₃), 0.80 (t, J = 7.4 Hz, 24H, CH₂CH₃).

Fig. S5. ¹³C{H} NMR (101 MHz, C₆D₆, 298K) spectrum of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (2-Y), δ , ppm: 164.57 (*C*(CH₃)N), 144.56, 140.58, 125.05, 123.96 (*C* of aryl), 96.01 (CCHC), 65.74 (*C*H of the bound benzene, $J_{Y-C} = 4.8$ Hz), 41.61 (*C*H(CH₂CH₃)₂), 28.40 (*C*H₂CH₃), 24.50 (*C*H₂CH₃), 23.99 (*C*H(CH₂CH₃)₂), 11.92 (CH₂CH₃), 10.84 (CH₂CH₃).

Fig. S6. ¹H NMR (400 MHz, C₆D₆, 298K) spectrum of $[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (2-Sm), δ , ppm: 21.73 (s, 6H, CH of the bound benzene), 10.68 (s, 2H, CCHC), 6.68 (t, J = 7.8 Hz, 4H, *para*-CH of aryl), 6.31 (d, J = 8.0 Hz, 8H, *meta*-CH of aryl), 5.39 (s, 12H, CCH₃), 2.10–1.95 (m, 8H, CH₂CH₃), 1.45–1.31 (m, 8H, CH₂CH₃), 1.00 (t, J = 7.4 Hz, 24H, CH₂CH₃), -0.22 (s, 8H, CH(CH₂CH₃)₂), -1.82 (t, J = 7.1 Hz, 24H, CH₂CH₃), -2.67 to -2.82 (m, 8H, CH₂CH₃), -5.40 to -5.64 (m, 8H, CH₂CH₃). The peaks of coordinating THF molecules are not observed probably due to the loss of THF molecules under reduced pressure during drying process.

Fig. S7. ¹H NMR (400 MHz, C₆D₆, 298K) spectrum of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (**3-***Y*), δ, ppm: 7.05 (s, 12H, CH of aryl), 4.93 (s, 2H, CCHC), 3.03–2.92 (m, 8H, CH(CH₂CH₃)₂), 2.71 (t, *J*_{Y-H} = 1.7 Hz, 4H, CH of the bound *p*-xylene), 2.00–1.77 (m, 16H, CH₂CH₃), 1.74–1.57 (m, 28H, CCH₃ (12H) & CH₂CH₃ (16H)), 1.14 (t, *J* = 7.3 Hz, 24H, CH₂CH₃), 0.82–0.76 (m, 30H, CH₂CH₃ (24H) & CH₃ of the bound *p*-xylene (6H)).

Fig. S8. ¹³C {H} NMR (101 MHz, C₆D₆, 298K) spectrum of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (**3-Y**), δ, ppm: 165.48 (*C*(CH₃)N), 146.23, 140.46, 125.49, 123.84 (*C* of aryl), 96.40 (CCHC), 73.01 (*C*Me of the bound xylene, *J*_{Y-C} = 6.8 Hz), 71.14 (*C*H of the bound *p*-xylene, *J*_{Y-C} = 4.0 Hz), 41.93 (*C*H(CH₂CH₃)₂), 28.27 (*C*H₂CH₃), 24.75 (*C*H(CH₂CH₃)₂), 23.77 (*C*H₂CH₃), 19.05 (*C*H₃ of the bound *p*-xylene), 12.63 (CH₂CH₃), 10.53 (CH₂CH₃).

Fig. S9. ¹H NMR (400 MHz, 298K) spectrum of [(BDI)Sm(THF)]₂(μ - η^{6} , η^{6} -C₈H₁₀) (**3-Sm**) in C₆D₆ (5 min after dissolution). 26.70 (s, 4H, CH of the bound *p*-xylene), 8.70 (s, 2H, CCHC), 6.39 (t, *J* = 7.8 Hz, 4H, *para*-CH of aryl), 6.23 (d, *J* = 7.8 Hz, 8H, *meta*-CH of aryl), 5.21 (s, 12H, CCH₃), 2.31–2.15 (m, 8H, CH₂CH₃), 1.54–1.40 (m, 8H, CH₂CH₃), 0.98 (t, *J* = 7.3 Hz, 24H, CH₂CH₃), 0.64 (s, 8H, CH(CH₂CH₃)₂), 0.39 (t, *J* = 6.7 Hz, 24H, CH₂CH₃), -0.30 to – 0.47(m, 8H, CH₂CH₃), -1.32 to –1.53(m, 8H, CH₂CH₃), -6.95 (s, 6H, CH₃ of the bound *p*-xylene).

Fig. S10. ¹H NMR (400 MHz, C₆D₆, 298K) spectra for monitoring the arene exchange reaction of **3-Sm** (characteristic peaks labelled with "&") in C₆D₆ at 25 °C. #: the characteristic peaks of $[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_6D_6)$; *: the peaks of free *p*-xylene. From bottom to top: (a) 5 min; (b) 20 min; (c) 40 min; (d) 24 h (full conversion).

Fig. S11. ¹H NMR (400 MHz, 298K) spectrum of $[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (**3-Sm**) in C₇D₈ (10 min after dissolution). 26.43 (s, 4H, *CH* of the bound *p*-xylene), 8.80 (s, 2H, CCHC), 6.36 (t, *J* = 7.7 Hz, 4H, *para*-CH of aryl), 6.19 (d, *J* = 7.7 Hz, 8H, *meta*-CH of aryl), 5.17 (s, 12H, CCH₃), 2.28–2.15 (m, 8H, CH₂CH₃), 1.50–1.35 (m, 8H, CH₂CH₃), 0.98 (t, *J* = 7.4 Hz, 24H, CH₂CH₃), 0.53 (s, 8H, CH(CH₂CH₃)₂), 0.20 (t, *J* = 6.9 Hz, 24H, CH₂CH₃), -0.54 to -0.72 (m, 8H, CH₂CH₃), -1.64 to -1.82 (m, 8H, CH₂CH₃), -7.95 (s, 6H, CH₃ of the bound *p*-xylene). The peaks of coordinating THF molecules are not observed probably due to the loss of THF molecules under reduced pressure during drying process.

Note: The arene exchange reaction of **3-Sm** in C_7D_8 was slower than that in C_6D_6 . Only a small amount of $[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_7D_8)$ was observed after 50 min at room temperature.

Fig. S12. ¹H NMR (400 MHz, C₆D₆, 298K) spectrum of (BDI)Sm(η^{8} -COT) (**4-Sm**), δ , ppm: 8.20 (s, 8H, CH of COT), 7.99 (t, J = 7.8 Hz, 2H, *para*-CH of aryl), 7.77 (s, 1H, CCHC), 7.49 (d, J = 7.8 Hz, 4H, *meta*-CH of aryl), 3.58 (s, 10H, CCH₃ & OCH₂ of free THF), 1.72–1.59 (m, 4H, CH₂CH₃), 1.45–1.37 (m, 4H, OCH₂CH₂ of free THF), 1.00–0.89 (m, 4H, CH₂CH₃), 0.70 (t, J = 7.4 Hz, 12H, CH₂CH₃), -1.46 (t, J = 7.2 Hz, 12H, CH₂CH₃), -1.78 to -1.92 (m, 4H, CH₂CH₃), -1.99 to -2.11 (m, 4H, CH₂CH₃), -2.21 (s, 4H, CH(CH₂CH₃)₂).

Fig. S13. ¹H NMR (400 MHz, C₆D₆, 298K) spectrum of (BDI)Sm(η^4 -C₄Ph₂) (**5-Sm**), δ , ppm: 15.23 (s, 1H, CC*H*C), 13.39 (d, *J* = 7.4 Hz, 4H), 8.42 (t, *J* = 7.0 Hz, 4H, *meta*-C*H* of C₄Ph₂), 8.22 (t, *J* = 7.2 Hz, 2H), 5.15 (t, *J* = 7.6 Hz, 2H), 4.10 (s, 4H), 2.18 (s, 6H, CCH₃), 0.25 (s, 12H, CH₂CH₃), -0.26 to -1.07 (m, 20H, CH₂CH₃ (12H) & CH₂CH₃ (8H)), -2.69 (s, 4H), -3.99 (s, 4H), -12.01 (br s, 4H). The signals cannot be assigned completely because of the signal broadening and similar signal splitting in aryl groups of ligand backbone and C₄Ph₄.

S3. X-ray Crystallography

S3.1. General

All structures were solved by the intrinsic phasing method with SHELXT⁵ and refined by fullmatrix least-squares procedures utilizing SHELXL^{6, 7} within Olex2 crystallographic software package.⁸ The PLATON⁹ routine SQUEEZE¹⁰ was used in the refinement of some structures.

S3.2. CCDC Deposition

All crystal structures reported in this work have been deposited to the Cambridge Crystallographic Data Center (CCDC) with the following deposition numbers:

```
CCDC-2345765: (BDI)YI<sub>2</sub>(THF) (1-Y)

CCDC-2345766: (BDI)SmI<sub>2</sub>(THF) (1-Sm)

CCDC-2345769: [(BDI)Y]<sub>2</sub>(\mu-\eta^{6},\eta^{6}-C<sub>6</sub>H<sub>6</sub>) (2-Y)

CCDC-2345764: [(BDI)Sm(THF)]<sub>2</sub>(\mu-\eta^{6},\eta^{6}-C<sub>6</sub>H<sub>6</sub>) (2-Sm)

CCDC-2345768: [(BDI)Y]<sub>2</sub>(\mu-\eta^{6},\eta^{6}-C<sub>8</sub>H<sub>10</sub>) (3-Y)

CCDC-2345762: [(BDI)Sm(THF)]<sub>2</sub>(\mu-\eta^{6},\eta^{6}-C<sub>8</sub>H<sub>10</sub>) (3-Sm)

CCDC-2345767: (BDI)Sm(\eta^{8}-COT) (4-Sm)

CCDC-2345763: (BDI)Sm(\eta^{4}-C<sub>4</sub>Ph<sub>2</sub>) (5-Sm)
```

(BDI)YI₂(THF) (1-Y)

Fig. S14. Representation of (BDI)YI₂(THF) (**1-Y**) with thermal ellipsoids set at 50% probability. Hydrogen atoms and disordered counterpart (THF) were omitted for clarity. Sections of aryl substituents were shown as wireframe for clarity. Selected distances (Å) and angles (°): Y1–N1 2.2760(48), Y1–N2 2.2681(48), Y1–I1 2.9239(7), Y1–I2 2.9469(6), Y1–O1 2.3725(40), N1–Y1–N2 87.736(170), I1–Y1–I2 136.217(21).

Single crystals suitable for X-ray crystallography were grown from a hexanes solution at – 35 °C. A total of 24757 reflections ($-17 \le h \le 16$, $-30 \le k \le 26$, $-21 \le 1 \le 13$) were collected at T = 180.00 K with $2\theta_{max} = 58.984^{\circ}$, of which 10611 were unique. The residual peak and hole electron density were 1.72 and -1.22 eÅ^{-3} . The least-squares refinement converged normally with residuals of $R_1 = 0.0662$ and GOF = 1.077. Crystal and refinement data for **1-Y**: formula C₄₁H₆₅I₂N₂OY, space group $P2_1/n$, a = 12.5793(4) Å, b = 21.9106(6) Å, c = 15.8022(4) Å, $\beta = 99.436(3)^{\circ}$, V = 4296.5(2) Å³, Z = 4, $\mu = 2.825 \text{ mm}^{-1}$, F(000) = 1912.0, $R_1 = 0.1008$ and $wR_2 = 0.1970$ (based on all data).

(BDI)SmI₂(THF) (1-Sm)

Fig. S15. Representation of (BDI)SmI₂(THF) (**1-Sm**) with thermal ellipsoids set at 50% probability. Hydrogen atoms were omitted for clarity. Sections of aryl substituents were shown as wireframe for clarity. Selected distances (Å) and angles (°): Sm1–N1 2.3088(27), Sm1–N2 2.3133(35), Sm1–I1 3.0166(5), Sm1–I2 2.9896(5), Sm1–O1 2.4409(37), N1–Sm1–N2 86.557(109), I1–Sm1–I2 137.905(14).

Single crystals suitable for X-ray crystallography were grown from a Et₂O solution at room temperature. A total of 32901 reflections ($-16 \le h \le 17$, $-29 \le k \le 30$, $-21 \le l \le 22$) were collected at T = 180.00 K with $2\theta_{max} = 59.032^{\circ}$, of which 10887 were unique. The residual peak and hole electron density were 1.60 and -1.53 eÅ⁻³. The least-squares refinement converged normally with residuals of $R_1 = 0.0387$ and GOF = 1.061. Crystal and refinement data for **1-Sm**: formula C₄₁H₆₅I₂N₂OSm, space group *P*2₁/n, *a* = 12.5729(3) Å, *b* = 21.8852(4) Å, *c* = 15.9583(3) Å, $\beta = 99.806(2)^{\circ}$, *V* = 4326.94(16) Å³, *Z* = 4, $\mu = 2.814$ mm⁻¹, *F*(000) = 2004.0, $R_1 = 0.0480$ and $wR_2 = 0.1038$ (based on all data).

$[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (2-Y)

Fig. S16. Representation of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (2-Y) with thermal ellipsoids set at 50% probability. Hydrogen atoms were omitted for clarity. Sections of aryl substituents were shown as wireframe for clarity. Both crystallographically independent molecules in an unsymmetric unit were shown. Selected distances (Å) and angles (°): For independent molecule 1: Y1-N1 2.3848(32), Y1-N2 2.3547(49), Y2-N3 2.3913(40), Y2-N4 2.3748(40), Y1-Y2 3.9984(8), Y1-C75 2.4106(54), Y1-C76 2.5190(65), Y1-C77 2.4780(59), Y1-C78 2.4196(49), Y1-C79 2.5339(40), Y1-C80 2.4673(44), Y2-C75 2.5195(48), Y2-C76 2.4138(43), Y2-C77 2.4643(44), Y2-C78 2.5268(56), Y2-C79 2.4106(61), Y2-C80 2.4645(59), Y1-R_{cent} 2.0022(6), Y2-R_{cent} 1.9962(6), C75-C76 1.4635(77), C76-C77 1.4364(79), C77-C78 1.4493(72), C78-C79 1.4647(73), C79-C80 1.4524(78), C80-C75 1.4440(69), N1-Y1-N2 76.330(151), N3-Y2-N4 75.207(143), Y1-R_{cent}-Y2 179.585(25). Torsion angles: C77-C78/C79-C80 -13.1(8), C75-C76/C78-C79 10.8(5). For independent molecule 2: Y3-N5 2.3715(33), Y3-N6 2.3859(43), Y4-N7 2.3909(33), Y4-N8 2.3681(33), Y3-Y4 3.9997(6), Y3-C155 2.4020(48), Y3-C156 2.4537(57), Y3-C157 2.5247(59), Y3-C158 2.4027(47), Y3-C159 2.4543(47), Y3-C160 2.5221(43), Y4-C155 2.4987(47), Y4-C156 2.4481(60), Y4-C157 2.3928(44), Y4-C158 2.5108(48), Y4-C159 2.4769(57), Y4-C160 2.4161(57), Y3-R_{cent} 2.0017(4), Y4-R_{cent} 1.9982(4), C155-C156 1.4247(117), C156-C157 1.4467(94), C157-C158 1.4480(95), C158-C159 1.4057(104), C159-C160 1.4312(92), C160-C155 1.4415(94), N5-Y3-N6 74.948(135), N7-Y4-N8 75.688(129), Y3-R_{cent}-Y4 178.907(21). Torsion angles: C156-C157/C158-C159 12.7(9), C157-C158/C160-C155 -10.9(5).

Single crystals suitable for X-ray crystallography were grown from a *n*-pentane solution at – 35 °C. A total of 189297 reflections ($-38 \le h \le 40$, $-30 \le k \le 27$, $-34 \le l \le 35$) were collected at T = 179.99(10) K with $2\theta_{max} = 59.1^{\circ}$, of which 38188 were unique. The residual peak and hole electron density were 1.99 and -1.23 eÅ⁻³. The least-squares refinement converged normally with residuals of $R_1 = 0.0833$ and GOF = 1.033. Crystal and refinement data for **2-Y**: formula C₈₀H₁₂₀N₄Y₂, space group $P2_1/c$, a = 28.8724(5) Å, b = 21.9655(2) Å, c = 25.9782(4) Å, $\beta = 116.683(2)^{\circ}$, V = 14720.7(4) Å³, Z = 8, $\mu = 1.613$ mm⁻¹, F(000) = 5648.0, $R_1 = 0.1634$ and $wR_2 = 0.1870$ (based on all data).

$[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (2-Sm)

Fig. S17. Representation of $[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (**2-Sm**) with thermal ellipsoids set at 50% probability. Hydrogen atoms and disordered counterpart (THF) were omitted for clarity. Sections of aryl substituents were shown as wireframe for clarity. Selected distances (Å) and angles (°): Sm1–N1 2.5099(15), Sm1–N2 2.5096(18), Sm1–Sm1' 4.1906(4), Sm1–C38 2.5590(15), Sm1–C39 2.4927(13), Sm1–C40 2.6025(17), Sm1–C38' 2.5335(19), Sm1–C39' 2.5979(22), Sm1–C40' 2.6025(17), Sm1–R_{cent} 2.0953(3), C38–C39 1.4533(34), C39–C40 1.4501(27), C40–C38' 1.4547(28), N1–Sm1–N2 76.436(47), Sm1–R_{cent}–Sm1' 180.000(11). Torsion angles: C40'–C38/C39–C40 12.8(3), C38–C39/C38'–C39' 0(2).

Single crystals suitable for X-ray crystallography were grown from a *n*-pentane solution containing a few drops of THF at -35 °C. A total of 27011 reflections ($-10 \le h \le 17$, $-18 \le k \le 16$, $-21 \le 1 \le 20$) were collected at T = 179.99(10) K with $2\theta_{max} = 59.192^{\circ}$, of which 10250 were unique. The residual peak and hole electron density were 0.64 and -0.43 eÅ⁻³. The least-squares refinement converged normally with residuals of $R_1 = 0.0219$ and GOF = 1.055. Crystal and refinement data for **2-Sm**: formula C₈₈H₁₃₆N₄O₂Sm₂, space group *P*-1, *a* = 12.8287(2) Å, *b* = 13.2492(2) Å, *c* = 15.2084(2) Å, *a* = 110.2990(10)°, *β* = 94.3910(10)°, *γ* = 118.829(2)°, *V* = 2028.26(6) Å³, *Z* = 1, μ = 1.481 mm⁻¹, *F*(000) = 832.0, R_1 = 0.0246 and wR_2 = 0.0558 (based on all data).

$[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (3-Y)

Fig. S18. Representation of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (**3-Y**) with thermal ellipsoids set at 50% probability. Hydrogen atoms were omitted for clarity. Sections of aryl substituents were shown as wireframe for clarity. Selected distances (Å) and angles (°): Y1–N1 2.3776(25), Y1–N2 2.3919(26), Y2–N3 2.4083(28), Y2–N4 2.4137(25), Y1–Y2 4.0210(7), Y1–C39 2.4128(34), Y1–C40 2.5141(36), Y1–C41 2.4984(33), Y1–C42 2.3934(33), Y1–C43 2.5003(38), Y1–C44 2.5007(40), Y2–C39 2.5950(32), Y2–C40 2.4361(37), Y2–C41 2.4410(39), Y2–C42 2.5696(36), Y2–C43 2.4318(37), Y2–C44 2.4537(34), Y1–R_{cent} 1.9993(5), Y2–R_{cent} 2.0220(5), C39–C40 1.4388(52), C40–C41 1.4584(53), C41–C42 1.4662(55), C42–C43 1.4619(55), C43–C44 1.4451(62), C44–C39 1.4572(56), N1–Y1–N2 77.009(86), N3–Y2–N4 76.222(88), Y1–R_{cent}–Y2 178.704(18). Torsion angles: C44–C39/C40–C41–14.2(6), C42–C43/C39–C40 12.4(3).

Single crystals suitable for X-ray crystallography were grown from a *n*-pentane solution at – 35 °C. A total of 44814 reflections ($-30 \le h \le 21$, $-15 \le k \le 18$, $-32 \le l \le 35$) were collected at T = 180.00 K with $2\theta_{max} = 59.032^{\circ}$, of which 18550 were unique. The residual peak and hole electron density were 1.43 and -0.88 eÅ^{-3} . The least-squares refinement converged normally with residuals of $R_1 = 0.0565$ and GOF = 1.047. Crystal and refinement data for **3-Y**: formula C₈₂H₁₂₄N₄Y₂, space group $P2_1/c$, a = 22.0209(6) Å, b = 13.3172(3) Å, c = 25.7853(6) Å, $\beta = 96.038(3)^{\circ}$, V = 7519.8(3) Å³, Z = 4, $\mu = 1.580$ mm⁻¹, F(000) = 2888.0, $R_1 = 0.0895$ and $wR_2 = 0.1649$ (based on all data).

$[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (3-Sm)

Fig. S19. Representation of $[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (**3-Sm**) with thermal ellipsoids set at 50% probability. Hydrogen atoms and disordered counterpart (THF) were omitted for clarity. Sections of aryl substituents were shown as wireframe for clarity. Selected distances (Å) and angles (°): Sm1–N1 2.5242(17), Sm1–N2 2.5406(18), Sm1–Sm1' 4.2182(5), Sm1–C38 2.5799(20), Sm1–C39 2.5440(23), Sm1–C40 2.5770(31), Sm1–C38' 2.5262(31), Sm1–C39' 2.5978(26), Sm1–C40' 2.5945(22), Sm1–R_{cent} 2.1091(3), C38–C39 1.4499(42), C39–C40 1.4825(43), C40–C38' 1.4752(27), N1–Sm1–N2 75.915(65), Sm1–R_{cent}–Sm1' 180.000. Torsion angles: C40–C38'/C39'–C40' 5.1(4), C38–C39/C38'–C39' 0(3).

Single crystals suitable for X-ray crystallography were grown from a *n*-pentane solution containing a few drops of THF at -35 °C. A total of 26322 reflections ($-17 \le h \le 16, -18 \le k \le 14, -21 \le 1 \le 20$) were collected at T = 179.99(10) K with $2\theta_{max} = 58.7^{\circ}$, of which 10253 were unique. The residual peak and hole electron density were 1.06 and -0.75 eÅ⁻³. The least-squares refinement converged normally with residuals of $R_1 = 0.0304$ and GOF = 1.082. Crystal and refinement data for **3-Sm**: formula C₉₀H₁₄₀N₄O₂Sm₂, space group *P*-1, *a* = 12.7862(7) Å, *b* = 13.2072(6) Å, *c* = 15.4523(6) Å, *a* = 64.913(4)°, *β* = 70.485(4)°, *γ* = 61.214(5)°, *V* = 2043.3(2) Å³, *Z* = 1, μ = 1.471 mm⁻¹, *F*(000) = 848.0, R_1 = 0.0381 and wR_2 = 0.0775 (based on all data).

(BDI)Sm(η^{8} -COT) (4-Sm)

Fig. S20. Representation of $(BDI)Sm(\eta^{8}-COT)$ (4-Sm) with thermal ellipsoids set at 50% probability. Hydrogen atoms were omitted for clarity. Sections of aryl substituents were shown as wireframe for clarity. Selected distances (Å) and angles (°): Sm1–N1 2.4606(20), Sm1–N2 2.4280(17), Sm1–C38 2.6342(39), Sm1–C39 2.6366(38), Sm1–C40 2.6239(33), Sm1–C41 2.6207(37), Sm1–C42 2.6332(40), Sm1–C43 2.6274(34), Sm1–C44 2.6257(31), Sm1–C45 2.6271(36), Sm1–R_{cent} 1.8948(3), C38–C39 1.3780(52), C39–C40 1.392(7), C40–C41 1.4121(69), C41–C42 1.4289(61), C42–C43 1.4201(65), C43–C44 1.3538(71), C44–C45 1.3862(61), C45–C38 1.3847(51), N1–Sm1–N2 73.408(59).

Single crystals suitable for X-ray crystallography were grown from a Et₂O solution at -35 °C. A total of 32606 reflections ($-19 \le h \le 19, -20 \le k \le 24, -21 \le 1 \le 21$) were collected at T = 180.00 K with $2\theta_{max} = 58.992^{\circ}$, of which 10231 were unique. The residual peak and hole electron density were 0.89 and -0.72 eÅ^{-3} . The least-squares refinement converged normally with residuals of $R_1 = 0.0321$ and GOF = 1.055. Crystal and refinement data for **4-Sm**: formula C₄₅H₆₅N₂Sm, space group $P2_1/n$, a = 14.4271(4) Å, b = 17.8919(4) Å, c = 16.0725(4) Å, $\beta = 102.800(3)^{\circ}$, V = 4045.67(18) Å³, Z = 4, $\mu = 1.483$ mm⁻¹, F(000) = 1644.0, $R_1 = 0.0437$ and $wR_2 = 0.0838$ (based on all data).

$(BDI)Sm(\eta^{4}-C_{4}Ph_{2})$ (5-Sm)

Fig. S21. Representation of (BDI)Sm(η^4 -C₄Ph₂) (**5-Sm**) with thermal ellipsoids set at 50% probability. Hydrogen atoms were omitted for clarity. Sections of aryl substituents were shown as wireframe for clarity. Selected distances (Å) and angles (°): Sm1–N1 2.3875(22), Sm1–N2 2.3780(23), Sm1–C44 2.4487(26), Sm1–C45 2.4459(26), Sm1–C46 2.4467(27), Sm1–C47 2.4914(30), C44–C45 1.3195(41), C45–C46 1.3097(40), C46–C47 1.3063(41), C38–C44 1.4670(41), C47–C48 1.4761(40), N1–Sm1–N2 84.043(72), C44–C45–C46 148.978(304), C47–C46–C45 150.998(298), C44–Sm1–C47 92.994(103).

Single crystals suitable for X-ray crystallography were grown from a *n*-pentane solution at – 35 °C. A total of 31410 reflections ($-14 \le h \le 15$, $-15 \le k \le 15$, $-24 \le l \le 25$) were collected at T = 180.00 K with $2\theta_{max} = 61.432^{\circ}$, of which 12197 were unique. The residual peak and hole electron density were 1.39 and -1.32 eÅ^{-3} . The least-squares refinement converged normally with residuals of $R_1 = 0.0412$ and GOF = 1.125. Crystal and refinement data for **5-Sm**: formula $C_{53}H_{67}N_2Sm$, space group P-1, a = 10.8737(4) Å, b = 11.7593(5) Å, c = 18.5401(8) Å, $a = 98.600(4)^{\circ}$, $\beta = 93.568(3)^{\circ}$, $\gamma = 92.844(3)^{\circ}$, V = 2335.30(17) Å³, Z = 2, $\mu = 1.292 \text{ mm}^{-1}$, F(000) = 922.0, $R_1 = 0.0486$ and $wR_2 = 0.1071$ (based on all data).

	2-Y ^a	2-Y ^b		3-Y
Y1(3)–N1(5)	2.3848(32)	2.3715(33)	Y1-N1	2.3776(25)
Y1(3)–N2(6)	2.3547(49)	2.3859(43)	Y1-N2	2.3919(26)
Y2(4)–N3(7)	2.3913(40)	2.3909(33)	Y2-N3	2.4083(28)
Y2(4)–N4(8)	2.3748(40)	2.3681(33)	Y2-N4	2.4137(25)
Y1(3)-Y2(4)	3.9984(8)	3.9997(6)	Y1–Y2	4.0210(7)
Y1(3)-C75(155)	2.4106(54)	2.4020(48)	Y1–C39	2.4128(34)
Y1(3)-C76(156)	2.5190(65)	2.4537(57)	Y1-C40	2.5141(36)
Y1(3)-C77(157)	2.4780(59)	2.5247(59)	Y1-C41	2.4984(33)
Y1(3)-C78(158)	2.4196(49)	2.4027(47)	Y1-C42	2.3934(33)
Y1(3)-C79(159)	2.5339(40)	2.4543(47)	Y1–C43	2.5003(38)
Y1(3)-C80(160)	2.4673(44)	2.5221(43)	Y1-C44	2.5007(40)
Y2(4)-C75(155)	2.5195(48)	2.4987(47)	Y2-C39	2.5950(32)
Y2(4)-C76(156)	2.4138(43)	2.4481(60)	Y2-C40	2.4361(37)
Y2(4)-C77(157)	2.4643(44)	2.3928(44)	Y2-C41	2.4410(39)
Y2(4)-C78(158)	2.5268(56)	2.5108(48)	Y2-C42	2.5696(36)
Y2(4)-C79(159)	2.4106(61)	2.4769(57)	Y2-C43	2.4318(37)
Y2(4)-C80(160)	2.4645(59)	2.4161(57)	Y2-C44	2.4537(34)
Y1(3)–R _{cent}	2.0022(6)	2.0017(4)	Y1-R _{cent}	1.9993(5)
Y2(4)–R _{cent}	1.9962(6)	1.9982(4)	Y2–R _{cent}	2.0220(5)
C75(155)–C76(156)	1.4635(77)	1.4247(117)	C39–C40	1.4388(52)
C76(156)–C77(157)	1.4364(79)	1.4467(94)	C40–C41	1.4584(53)
C77(157)–C78(158)	1.4493(72)	1.4480(95)	C41–C42	1.4662(55)
C78(158)–C79(159)	1.4647(73)	1.4057(104)	C42–C43	1.4619(55)

Table. S1. Selected distances (Å) and angles (°) of 2-Y and 3-Y.

C79(159)–C80(160)	1.4524(78)	1.4312(92)	C43–C44	1.4451(62)
C80(160)–C75(155)	1.4440(69)	1.4415(94) C44–C39		1.4572(56)
N1(5)-Y1(3)-N2(6)	76.330(151)	74.948(135)	N1-Y1-N2	77.009(86)
N3(7)-Y2(4)-N4(8)	75.207(143)	75.688(129)	N3-Y2-N4	76.222(88)
Y1(3)-R _{cent} -Y2(4)	179.585(25)	178.907(21)	Y1-R _{cent} -Y2	178.704(18)
	C77–C78/	C44–C39/		C44–C39/
Torsion angles	C79–C80	C40–C41		C40–C41
	-13.1(8)	-14.2(6)	Torrion on alog	-14.2(6)
	C75–C76/	C42–C43/	Torsion angles	C42–C43/
	C78–C79	C39–C40		C39–C40
	10.8(5)	12.4(3)		12.4(3)

^a independent molecule 1; ^b independent molecule 2.

	2-Sm		3-Sm
Sm1–N1	2.5099(15)	Sm1–N1	2.5242(17)
Sm1–N2	2.5096(18)	Sm1–N2	2.5406(18)
Sm1–Sm1′	4.1906(4)	Sm1–Sm1′	4.2182(5)
Sm1–C38	2.5590(15)	Sm1–C38	2.5799(20)
Sm1–C39	2.4927(13)	Sm1–C39	2.5440(23)
Sm1–C40	2.6025(17)	Sm1–C40	2.5770(31)
Sm1–C38′	2.5335(19)	Sm1–C38′	2.5262(31)
Sm1–C39′	2.5979(22)	Sm1–C39′	2.5978(26)
Sm1–C40'	2.6025(17)	Sm1-C40'	2.5945(22)
Sm1-R _{cent}	2.0953(3)	Sm1-R _{cent}	2.1091(3)
C38–C39	1.4533(34)	C38–C39	1.4499(42)
C39–C40	1.4501(27)	C39–C40	1.4825(43)
C40–C38′	1.4547(28)	C40–C38′	1.4752(27)
N1–Sm1–N2	76.436(47)	N1–Sm1–N2	75.915(65)
Sm1-R _{cent} -Sm1'	180.000(11)	Sm1-R _{cent} -Sm1'	180.000
Torsion angles	C40'-C38/C39-C40 12.8(3) C38-C39/C38'-C39' 0(2)	Torsion angles	C40–C38'/C39'–C40' 5.1(4) C38–C39/C38'–C39' 0(3)

Table. S2. Selected distances (Å) and angles (°) of 2-Sm and 3-Sm.

S4. UV–Vis–NIR Spectra

Fig. S22. UV–Vis–NIR spectrum (220–1600 nm) of (BDI)YI₂(THF) (**1-Y**) (298 K, 1.0 mM in Et₂O). $\lambda_{max} / nm (\varepsilon / M^{-1} \cdot cm^{-1})$: 260 (8010), 369 (15800).

Fig. S23. UV–Vis–NIR spectrum (230–1600 nm) of (BDI)SmI₂(THF) (**1-Sm**) (298 K, 1.0 mM in Et₂O). $\lambda_{max} / nm (\epsilon / M^{-1} \cdot cm^{-1})$: 364 (42000), 437–487 (1230–900).

Fig. S24. UV–Vis–NIR spectrum (220–1600 nm) of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (**2-Y**) (298 K, 0.5 mM in *n*-pentane). λ_{max} / nm ($\varepsilon / M^{-1} \cdot cm^{-1}$): 285 (19000), 360 (40900), 424 (4800), 500–726 (2920–1000).

Fig. S25. UV–Vis–NIR spectrum (220–1600 nm) of $[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (**2-Sm**) (298 K, 0.5 mM in *n*-pentane). $\lambda_{max} / nm (\varepsilon / M^{-1} \cdot cm^{-1})$: 293 (17700), 375 (33800), 439 (5000), 523–651 (3300–1800).

Fig. S26. UV–Vis–NIR spectrum (220–1600 nm) of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (**3-Y**) (298 K, 0.5 mM in *n*-pentane). λ_{max} / nm ($\varepsilon / M^{-1} \cdot cm^{-1}$): 292 (23500), 360 (57400), 437 (6900), 543–690 (4100–2000).

Fig. S27. UV–Vis–NIR spectrum (220–1600 nm) of $[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (**3-Sm**) (298 K, 0.5 mM in *n*-pentane). λ_{max} / nm ($\varepsilon / M^{-1} \cdot cm^{-1}$): 300 (9700), 370 (27900), 452 (3320), 545–705 (2180–1000).

Fig. S28. UV–Vis–NIR spectrum (220–1600 nm) of (BDI)Sm(η^{8} -COT) (**4-Sm**) (298 K, 1.0 mM in *n*-pentane). $\lambda_{max} / nm (\varepsilon / M^{-1} \cdot cm^{-1})$: 250 (21500), 358 (20900), 385 (8000).

Fig. S29. UV–Vis–NIR spectrum (220–1600 nm) of (BDI)Sm(η^4 -C₄Ph₂) (**5-Sm**) (298 K, 1.0 mM in *n*-pentane). $\lambda_{max} / nm (\varepsilon / M^{-1} \cdot cm^{-1})$: 248 (26800), 286 (31000), 345 (27800), 515 (400).

S5. IR Spectra

All IR spectra were recorded in the range of $4000-400 \text{ cm}^{-1}$.

Fig. S30. IR spectrum of (BDI)YI₂(THF) (**1-Y**) in KBr, \tilde{v} / cm⁻¹: 774 (w), 794 (w), 845 (w), 926 (w), 1019 (m), 1103 (w), 1142 (w), 1167 (w), 1180 (w), 1262 (m), 1359 (m), 1384 (s), 1432 (m), 1462 (m), 1518 (m), 2874 (m), 2933 (m), 2963 (s).

Fig. S31. IR spectrum of (BDI)SmI₂(THF) (**1-Sm**) in KBr, $\tilde{\nu} / \text{cm}^{-1}$: 629 (w), 792 (m), 842 (w), 857 (w), 926 (w), 1014 (m), 1075 (w), 1104 (w), 1142 (w), 1167 (w), 1180 (w), 1267 (m), 1359 (m), 1383 (s), 1433 (m), 1459 (m), 1517 (m), 1533 (w), 1622 (w), 1655 (w), 2873 (m), 2932 (m), 2963 (s), 3062 (w).

Fig. S32. IR spectrum of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (**2-Y**) in KBr, $\tilde{\nu}$ / cm⁻¹: 677 (w), 700 (m), 789 (w), 890 (w), 927 (w), 1022 (m), 1097 (w), 1167 (m), 1268 (m), 1347 (w), 1401 (s), 1429 (w), 1526 (m), 2873 (m), 2933 (m), 2963 (s), 3060 (w).

Fig. S33. IR spectrum of $[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_6H_6)$ (**2-Sm**) in KBr, $\tilde{\nu} / cm^{-1}$: 478 (w), 563 (w), 688 (m), 755 (w), 770 (w), 786 (m), 895 (w), 927 (w), 1018 (m), 1075 (w), 1095 (w), 1142 (w), 1166 (m), 1180 (w), 1269 (m), 1346 (m), 1398 (s), 1453 (m), 1523 (m), 1546 (m), 2872 (m), 2931 (m), 2960 (s), 3059 (w).

Fig. S34. IR spectrum of $[(BDI)Y]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (**3-***Y*) in KBr, $\tilde{\nu}$ / cm⁻¹: 684 (w), 757 (m), 772 (w), 791 (m), 925 (m), 1024 (m), 1097 (w), 1142 (w), 1169 (m), 1268 (m), 1347 (m), 1401 (s), 1429 (w), 1457 (m), 1527 (m), 2873 (m), 2933 (m), 2962 (s), 3060 (w).

Fig. S35. IR spectrum of $[(BDI)Sm(THF)]_2(\mu-\eta^6,\eta^6-C_8H_{10})$ (**3-Sm**) in KBr, $\tilde{\nu}$ / cm⁻¹: 479 (w), 563 (788), 670 (w), 788 (m), 925 (w), 1022 (m), 1097 (w), 1141 (w), 1167 (w), 1217 (w), 1271 (m), 1346 (w), 1403 (s), 1456 (m), 1525 (m), 2873 (m), 2933 (m), 2962 (s). 3059 (w).

Fig. S36. IR spectrum of (BDI)Sm(η^{8} -COT) (**4-Sm**) in KBr, $\tilde{\nu}$ / cm⁻¹: 628 (w), 672 (w), 707 (m), 790 (m), 899 (w), 925 (w), 1026 (w), 1096 (w), 1142 (w), 1167 (w), 1267 (m), 1346 (w), 1362 (w), 1399 (s), 1429 (w), 1462 (w), 1531 (m), 2873 (m), 2933 (m), 2963 (s), 3029 (w).

Fig. S37. IR spectrum of (BDI)Sm(η^4 -C₄Ph₂) (**5-Sm**) in KBr, $\tilde{\nu}$ / cm⁻¹: 455 (w), 564 (m), 620 (w), 690 (m), 753 (m), 788 (w), 930 (w), 1020 (w), 1069 (w), 1105 (w), 1142 (w), 1170 (w), 1249 (w), 1276 (w), 1392 (s), 1435 (m), 1513 (w), 1603 (w), 2872 (m), 2930 (m), 2962 (s), 3058 (w).

S6. Density Functional Theory (DFT) Calculations

S6.1. Computational Details

DFT calculations were performed on the simplified models of neutral inverse-sandwich rare-earth metal complexes **2-M** and **3-M** (M = Y and Sm) by replacing 3-pentyl by methyl. All DFT calculations were performed ORCA v. 5.0.1,¹¹ with geometry optimization starting from the single crystal structures. The hybrid functional PBE0¹² with dispersion correction ("D3BJ"),^{13, 14} was used and scalar relativistic effect was taken into account with the zeroth order regular approximation (ZORA).¹⁵ For metals, segmented all-electron relativistically contracted (SARC) basis sets were chosen.^{16, 17} For the bound arenes and other atoms directly bound to metals (N and O), adapted versions of the valence triple-zeta basis sets with polarization functions, def2-TZVP, were applied and for the other light atoms, the valence double-zeta basis sets with polarization functions, def2-TZVP, were applied and for the other light atoms, the valence double-zeta basis sets with polarization functions, def2-SVP, were selected.¹⁸ Single-point energy calculations were then performed with all atoms at triple-zeta level, except for **3-Sm** due to convergence problem (the single-point calculations of **3-Sm** was done with the same level of theory as geometry optimization). The natural bond orbital (NBO) analysis was carried out with NBO 6.0.¹⁹ Representations of the molecular orbitals were rendered by VMD v. 1.9.3,²⁰ combined with the wave function analysis program Multiwfn.²¹

S3. Key structural parameters of 2-Y .			
Selected distances [Å] and torsion angles [°]	Exp.	Calc.	Diff
Y1–N1	2.385(5)	2.332	-0.05
Y1-N2	2.355(5)	2.367	0.01
Y2-N3	2.391(4)	2.340	-0.03
Y3–N4	2.375(4)	2.366	-0.0
Y1C1	2.411(5)	2.392	-0.0
Y1–C2	2.519(6)	2.524	0.00
Y1–C3	2.478(6)	2.450	-0.02
Y1-C4	2.420(5)	2.377	-0.04
Y1–C5	2.534(4)	2.514	-0.0
Y1–C6	2.467(4)	2.443	-0.02
Y2C1	2.520(5)	2.521	0.00
Y2–C2	2.414(4)	2.394	-0.0
Y2–C3	2.464(4)	2.450	-0.0
Y2C4	2.527(6)	2.513	-0.0
Y2–C5	2.411(6)	2.367	-0.0
Y2–C6	2.465(6)	2.443	-0.0
Y1-C _{cent}	1.996(1)	1.966	-0.0
Y2-C _{cent}	2.002(1)	1.964	-0.0
C1–C2	1.464(8)	1.464	0
C2–C3	1.436(8)	1.467	0.03
C3–C4	1.449(7)	1.465	0.01
C4–C5	1.465(7)	1.465	0
C5–C6	1.452(8)	1.467	0.01
C1–C6	1.444(7)	1.466	0.02
Avg. C–C (the bound ring)	1.452(8)	1.466	0.01
C3–C4/C5–C6	-13.1(8)	-15.9	-2.
C1-C2/C4-C5	10.8(5)	14.0	3.2

S6.2. Comparison between Experimental and Calculated Structures

S50

	1		-
Selected distances [Å] and torsion angles [°]	Exp.	Calc.	Diff.
Y1-N1	2.378(2)	2.351	-0.027
Y1-N2	2.392(3)	2.360	-0.032
Y2-N3	2.408(3)	2.392	-0.016
Y3-N4	2.414(3)	2.388	-0.026
Y1–C1	2.413(3)	2.382	-0.031
Y1–C2	2.514(4)	2.523	0.009
Y1–C3	2.498(3)	2.453	-0.045
Y1–C4	2.393(3)	2.373	-0.020
Y1–C5	2.500(4)	2.526	0.026
Y1–C6	2.501(4)	2.463	-0.038
Y2C1	2.595(3)	2.572	-0.023
Y2–C2	2.436(4)	2.398	-0.038
Y2–C3	2.441(4)	2.450	0.009
Y2–C4	2.570(4)	2.568	-0.002
Y2–C5	2.432(4)	2.394	-0.038
Y2–C6	2.454(3)	2.451	-0.003
Y1-C _{cent}	1.999(1)	1.971	-0.028
Y2–C _{cent}	2.022(1)	1.995	-0.027
C1–C2	1.439(5)	1.466	0.027
C2–C3	1.458(5)	1.471	0.013
C3–C4	1.466(5)	1.465	-0.001
C4–C5	1.462(6)	1.467	0.005
C5–C6	1.445(6)	1.470	0.025
C1–C6	1.457(6)	1.463	0.006
Avg. C–C (the bound ring)	1.455(6)	1.467	0.012
C1–C7	1.519(5)	1.500	-0.019
C4–C8	1.513(5)	1.500	-0.013
C6-C1/C2-C3	-14.2(6)	-17.5	-3.3
C1–C2/C4–C5	12.4(3)	15.6	3.2

Table. S4. Key structural parameters of **3-Y**.

Selected distances [Å] and	Б	2-Sm	(¹¹ A)	2-Sm (¹³ A)		
torsion angles [°]	Exp.	Calc.	Diff.	Calc.	Diff.	
Sm1–N1	2.510(2)	2.486	-0.024	2.541	0.031	
Sm1–N2	2.510(2)	2.471	-0.039	2.467	-0.043	
Sm2–N3	2.510(2)	2.521	0.011	2.528	0.018	
Sm3–N4	2.510(2)	2.455	-0.055	2.458	-0.052	
Sm1–C1	2.559(2)	2.544	-0.015	2.658	0.099	
Sm1–C2	2.493(1)	2.470	-0.023	2.664	0.171	
Sm1–C3	2.603(2)	2.564	-0.039	2.688	0.085	
Sm1–C4	2.534(2)	2.519	-0.015	2.714	0.180	
Sm1–C5	2.598(2)	2.582	-0.016	2.711	0.113	
Sm1–C6	2.502(2)	2.494	-0.008	2.680	0.178	
Sm2–C1	2.534(2)	2.513	-0.021	2.728	0.194	
Sm2–C2	2.598(2)	2.581	-0.017	2.740	0.142	
Sm2–C3	2.502(2)	2.484	-0.018	2.691	0.189	
Sm2–C4	2.559(2)	2.543	-0.016	2.659	0.100	
Sm2–C5	2.493(1)	2.494	0.001	2.651	0.158	
Sm2–C6	2.603(2)	2.572	-0.031	2.671	0.068	
Sm1-C _{cent}	2.095(1)	2.069	-0.026	2.269	0.174	
Sm2-C _{cent}	2.095(1)	2.071	-0.024	2.274	0.179	
Sm1–O	2.576(1)	2.560	-0.016	2.590	0.014	
Sm2–O	2.576(1)	2.563	-0.013	2.582	0.006	
C1–C2	1.453(3)	1.465	0.012	1.491	0.038	
C2–C3	1.450(3)	1.454	0.004	1.408	-0.042	
C3–C4	1.455(3)	1.451	-0.004	1.414	-0.041	
C4–C5	1.453(3)	1.464	0.011	1.491	0.038	
C5–C6	1.450(3)	1.454	0.004	1.409	-0.041	
C1–C6	1.455(3)	1.453	-0.002	1.412	-0.043	
Avg. C–C (the bound ring)	1.453(3)	1.457	0.004	1.437	-0.016	
C3–C4/C5–C6	-12.8(3)	-12.1	0.7	-0.6	12.2	

Table. S5. Key structural parameters of 2-Sm.

C1C2/C4C5	0(2)	-0.8	-0.8	0.6	0.6
-----------	------	------	------	-----	-----

Selected distances [Å] and torsion		3-Sm	(¹¹ A)	3-Sm (¹³ A)		
angles [°]	Exp.	Calc.	Diff.	Calc.	Diff.	
Sm1–N1	2.524(2)	2.489	-0.035	2.505	-0.019	
Sm1–N2	2.541(2)	2.508	-0.033	2.518	-0.023	
Sm2–N3	2.524(2)	2.515	-0.009	2.504	-0.020	
Sm3–N4	2.541(2)	2.481	-0.060	2.518	-0.023	
Sm1–C1	2.526(3)	2.557	0.031	2.676	0.150	
Sm1–C2	2.598(3)	2.553	-0.045	2.730	0.132	
Sm1–C3	2.594(2)	2.534	-0.060	2.765	0.171	
Sm1–C4	2.580(2)	2.540	-0.040	2.770	0.190	
Sm1–C5	2.544(2)	2.567	0.023	2.727	0.183	
Sm1–C6	2.577(3)	2.519	-0.058	2.680	0.103	
Sm2–C1	2.580(2)	2.527	-0.053	2.769	0.189	
Sm2–C2	2.544(2)	2.526	-0.018	2.727	0.183	
Sm2–C3	2.577(3)	2.519	-0.058	2.681	0.104	
Sm2–C4	2.526(3)	2.541	0.015	2.678	0.152	
Sm2–C5	2.598(3)	2.571	-0.027	2.732	0.134	
Sm2–C6	2.594(2)	2.602	0.008	2.765	0.171	
Sm1–C _{cent}	2.109(1)	2.089	-0.020	2.316	0.207	
Sm2–C _{cent}	2.109(1)	2.093	-0.016	2.317	0.208	
Sm1–O	2.585(3)	2.576	-0.009	2.571	-0.014	
Sm2–O	2.585(3)	2.589	0.004	2.573	-0.012	
C1–C2	1.450(4)	1.449	-0.001	1.405	-0.045	
C2–C3	1.483(4)	1.450	-0.033	1.413	-0.070	
C3–C4	1.475(3)	1.465	-0.010	1.489	0.014	
C4–C5	1.450(4)	1.439	-0.011	1.405	-0.045	
C5–C6	1.483(4)	1.455	-0.028	1.413	-0.070	
C1–C6	1.475(3)	1.462	-0.013	1.489	0.014	
Avg. C–C (the bound ring)	1.469(4)	1.453	-0.016	1.436	-0.033	
C1–C7	1.513(3)	1.499	-0.014	1.495	-0.018	

Table. S6. Key structural parameters of 3-Sm.

C4–C8	1.513(3)	1.497	-0.016	1.495	-0.018
C3-C4/C5-C6	5.1(4)	-2.5	-7.6	0.7	-4.4
C1–C2/C4–C5	0(3)	2.3	2.3	0	0

S6.3. Representations of Molecular Orbitals (MOs)

Fig. S38. Kohn-Sham orbitals (isovalue 0.04) with composition analysis for the frontier orbitals of **3-Y**. Only the metal, the atoms directly bound to the metal, and all carbon atoms of the bound arene are shown for clarity. Nitrogen in blue, oxygen in red, metal in cyan, and carbon in grey.

Table. S7. Energy levels of frontier orbitals of 2-Y and 3-Y.

E(eV)	2-Y	3-Y
НОМО	-3.55	-3.36
HOMO-1	-3.59	-3.65

Fig. S39. Kohn-Sham orbitals (isovalue 0.04) with composition analysis for the frontier orbitals of **3-Sm** (11 **A**). Only the metal, the atoms directly bound to the metal, and all carbon atoms of the bound arene are shown for clarity. Nitrogen in blue, oxygen in red, metal in cyan, and carbon in grey.

- /	2-Sm	(¹¹ A)	3-Sm (¹¹ A)		
E(eV)	α	β	α	β	
НОМО	-2.93	-2.84	-2.68	-2.51	
HOMO-1	-3.09	-2.96	-2.93	-2.83	

Table. S8. Energy levels of frontier orbitals of 2-Sm (¹¹A) and 3-Sm (¹¹A).

S6.4. Population analysis

Atom	No.	Natural Charge	Core	Valence	Rydberg	Total
Y	1	1.56479	35.9734	1.36435	0.09746	37.43521
Y	2	1.56772	35.97335	1.36226	0.09668	37.43228
N	3	-0.67235	1.9992	5.65049	0.02266	7.67235
N	4	-0.67165	1.9992	5.64973	0.02273	7.67165
N	5	-0.67439	1.9992	5.6527	0.02249	7.67439
N	6	-0.67158	1.99921	5.64977	0.0226	7.67158
С	7	-0.67266	1.99944	4.66232	0.0109	6.67266
Н	8	0.23027	0	0.76808	0.00165	0.76973
Н	9	0.22339	0	0.77531	0.00129	0.77661
Н	10	0.23019	0	0.76829	0.00152	0.76981
С	11	0.31452	1.99916	3.66651	0.01981	5.68548
С	12	-0.432	1.99909	4.41534	0.01756	6.432
Н	13	0.21057	0	0.78742	0.002	0.78943
С	14	0.31474	1.99916	3.66625	0.01986	5.68526
С	15	-0.67229	1.99944	4.66185	0.01099	6.67229
Н	16	0.22998	0	0.76837	0.00165	0.77002
Н	17	0.22355	0	0.77518	0.00126	0.77645
Н	18	0.22972	0	0.76873	0.00155	0.77028
С	19	0.12025	1.99879	3.85851	0.02245	5.87975
С	20	-0.02888	1.99907	4.01193	0.01788	6.02888
С	21	-0.21584	1.99914	4.20011	0.01659	6.21584
Н	22	0.21192	0	0.7865	0.00159	0.78808
С	23	-0.21813	1.99923	4.20163	0.01727	6.21813
Н	24	0.21578	0	0.78284	0.00137	0.78422
С	25	-0.21472	1.99915	4.19921	0.01636	6.21472
Н	26	0.21225	0	0.78608	0.00167	0.78775
С	27	-0.02442	1.99906	4.00776	0.0176	6.02442

 Table. S9. Natural population analysis for 2-Y.

-			1		1	-
С	28	-0.62747	1.99944	4.61762	0.01042	6.62747
Н	29	0.2274	0	0.77095	0.00165	0.7726
С	30	-0.63295	1.99944	4.62286	0.01065	6.63295
Н	31	0.23385	0	0.7644	0.00175	0.76615
С	32	0.1193	1.99878	3.85959	0.02233	5.8807
С	33	-0.02773	1.99907	4.01074	0.01792	6.02773
С	34	-0.21575	1.99914	4.19995	0.01666	6.21575
Н	35	0.21211	0	0.78631	0.00159	0.78789
С	36	-0.21809	1.99922	4.2016	0.01727	6.21809
Н	37	0.216	0	0.78262	0.00138	0.784
С	38	-0.21481	1.99914	4.19916	0.01651	6.21481
Н	39	0.21228	0	0.78605	0.00167	0.78772
С	40	-0.02501	1.99906	4.0083	0.01765	6.02501
С	41	-0.62757	1.99944	4.61774	0.01039	6.62757
Н	42	0.22849	0	0.76989	0.00162	0.77151
С	43	-0.63055	1.99944	4.62049	0.01062	6.63055
Н	44	0.22181	0	0.77635	0.00184	0.77819
С	45	-0.67187	1.99944	4.66137	0.01106	6.67187
Н	46	0.22971	0	0.76867	0.00163	0.77029
Н	47	0.22357	0	0.77517	0.00126	0.77643
Н	48	0.22975	0	0.7687	0.00155	0.77025
С	49	0.31378	1.99915	3.66714	0.01993	5.68622
С	50	-0.43242	1.99909	4.41571	0.01762	6.43242
Н	51	0.21034	0	0.78765	0.00201	0.78966
С	52	0.31366	1.99916	3.66731	0.01988	5.68634
С	53	-0.67211	1.99944	4.66182	0.01085	6.67211
Н	54	0.23044	0	0.76795	0.00161	0.76956
Н	55	0.22322	0	0.7755	0.00128	0.77678
Н	56	0.22955	0	0.7689	0.00155	0.77045
С	57	0.11852	1.99878	3.86048	0.02222	5.88148
С	58	-0.02877	1.99907	4.01191	0.0178	6.02877

С	59	-0.21524	1.99914	4.19955	0.01654	6.21524
Н	60	0.21212	0	0.78628	0.0016	0.78788
С	61	-0.21772	1.99923	4.20119	0.0173	6.21772
Н	62	0.21596	0	0.78265	0.00139	0.78404
С	63	-0.21469	1.99914	4.19896	0.01658	6.21469
Н	64	0.21227	0	0.78611	0.00162	0.78773
С	65	-0.02323	1.99907	4.00648	0.01769	6.02323
С	66	-0.62678	1.99944	4.61688	0.01046	6.62678
Н	67	0.22665	0	0.77171	0.00163	0.77335
С	68	-0.63057	1.99944	4.62054	0.0106	6.63057
Н	69	0.22105	0	0.77713	0.00183	0.77895
С	70	0.12341	1.9988	3.85541	0.02239	5.87659
С	71	-0.02867	1.99907	4.01182	0.01778	6.02867
С	72	-0.21622	1.99915	4.20052	0.01656	6.21622
Н	73	0.21179	0	0.78663	0.00159	0.78821
С	74	-0.21952	1.99923	4.20295	0.01734	6.21952
Н	75	0.21569	0	0.78293	0.00138	0.78431
С	76	-0.21428	1.99914	4.19877	0.01637	6.21428
Н	77	0.21206	0	0.78628	0.00166	0.78794
С	78	-0.02592	1.99906	4.00922	0.01764	6.02592
С	79	-0.62728	1.99943	4.61761	0.01024	6.62728
Н	80	0.22844	0	0.76991	0.00165	0.77156
С	81	-0.63215	1.99944	4.62208	0.01063	6.63215
Н	82	0.22232	0	0.77588	0.0018	0.77768
Н	83	0.22388	0	0.77432	0.0018	0.77612
Н	84	0.21987	0	0.77882	0.00131	0.78013
Н	85	0.21877	0	0.77989	0.00134	0.78123
Н	86	0.22179	0	0.77638	0.00182	0.77821
Н	87	0.2231	0	0.7751	0.0018	0.7769
Н	88	0.21943	0	0.77925	0.00131	0.78057
Н	89	0.23165	0	0.76662	0.00172	0.76835

Н	90	0.21904	0	0.77962	0.00134	0.78096
Н	91	0.2238	0	0.7744	0.00181	0.7762
Н	92	0.22	0	0.77869	0.00132	0.78
Н	93	0.2187	0	0.78	0.0013	0.7813
Н	94	0.23309	0	0.76517	0.00174	0.76691
Н	95	0.22192	0	0.77624	0.00184	0.77808
Н	96	0.21841	0	0.7803	0.00129	0.78159
Н	97	0.21929	0	0.77938	0.00133	0.78071
Н	98	0.23208	0	0.76618	0.00174	0.76792
С	99	-0.57775	1.99883	4.55246	0.02646	6.57775
Н	100	0.26438	0	0.73403	0.00159	0.73562
С	101	-0.58027	1.99877	4.55328	0.02821	6.58027
Н	102	0.27112	0	0.72699	0.00189	0.72888
С	103	-0.58369	1.99878	4.55704	0.02787	6.58369
Н	104	0.2717	0	0.72635	0.00194	0.7283
С	105	-0.58502	1.99882	4.55955	0.02665	6.58502
Н	106	0.26545	0	0.73295	0.00159	0.73455
С	107	-0.58256	1.99878	4.55547	0.02831	6.58256
Н	108	0.27138	0	0.72671	0.0019	0.72862
С	109	-0.57877	1.99879	4.55203	0.02796	6.57877
Н	110	0.27032	0	0.72777	0.00191	0.72968
Tc	otal	0.00000	175.90213	272.88291	1.21496	450.00000

Average charge on yttrium: 1.57

Total charge of the bound benzene (C+H)/(C): -1.87/-3.49

Average charge on nitrogen donors of the BDI ligand: -0.67

Atom	No.	Natural Charge	Core	Valence	Rydberg	Total
Y	1	1.65854	35.96993	1.24543	0.1261	37.34146
Y	2	1.7125	35.9727	1.21659	0.0982	37.2875
N	3	-0.68441	1.99921	5.66225	0.02295	7.68441
N	4	-0.68076	1.99921	5.65836	0.02319	7.68076
N	5	-0.69831	1.99927	5.67612	0.02292	7.69831
N	6	-0.69964	1.99927	5.67746	0.02291	7.69964
С	7	-0.67097	1.99944	4.66068	0.01085	6.67097
Н	8	0.22922	0	0.76926	0.00152	0.77078
Н	9	0.22371	0	0.77502	0.00128	0.77629
Н	10	0.2288	0	0.76954	0.00166	0.7712
С	11	0.31213	1.99914	3.66841	0.02032	5.68787
С	12	-0.42917	1.99909	4.4123	0.01778	6.42917
Н	13	0.21084	0	0.78709	0.00207	0.78916
С	14	0.31244	1.99914	3.66809	0.02033	5.68756
С	15	-0.67082	1.99944	4.6606	0.01077	6.67082
Н	16	0.22912	0	0.76935	0.00152	0.77088
Н	17	0.22347	0	0.77525	0.00127	0.77653
Н	18	0.2289	0	0.7694	0.0017	0.7711
С	19	0.11551	1.99876	3.86287	0.02286	5.88449
С	20	-0.02716	1.99906	4.01007	0.01803	6.02716
С	21	-0.21644	1.99914	4.20042	0.01688	6.21644
Н	22	0.21414	0	0.78417	0.00169	0.78586
С	23	-0.21781	1.99923	4.20125	0.01733	6.21781
Н	24	0.21691	0	0.78171	0.00138	0.78309
С	25	-0.21427	1.99914	4.19851	0.01661	6.21427
Н	26	0.2131	0	0.7853	0.0016	0.7869
С	27	-0.02895	1.99907	4.0117	0.01818	6.02895
С	28	-0.62632	1.99944	4.61566	0.01122	6.62632

Table. S10. Natural population analysis for 3-Y.

Н	29	0.22703	0	0.77109	0.00189	0.77297
С	30	-0.62465	1.99944	4.61468	0.01053	6.62465
Н	31	0.22645	0	0.77191	0.00164	0.77355
С	32	0.11995	1.99877	3.85834	0.02294	5.88005
С	33	-0.02712	1.99905	4.01004	0.01802	6.02712
С	34	-0.21696	1.99914	4.20108	0.01674	6.21696
Н	35	0.214	0	0.7843	0.0017	0.786
С	36	-0.21932	1.99922	4.20276	0.01733	6.21932
Н	37	0.21678	0	0.78184	0.00138	0.78322
С	38	-0.21551	1.99914	4.19966	0.01671	6.21551
Н	39	0.21295	0	0.78545	0.0016	0.78705
С	40	-0.02989	1.99907	4.01268	0.01815	6.02989
С	41	-0.62812	1.99944	4.61746	0.01122	6.62812
Н	42	0.22818	0	0.76992	0.0019	0.77182
С	43	-0.6211	1.99944	4.61127	0.01038	6.6211
Н	44	0.22421	0	0.7741	0.00169	0.77579
С	45	-0.67431	1.99944	4.66362	0.01125	6.67431
Н	46	0.23192	0	0.76644	0.00164	0.76808
Н	47	0.22256	0	0.77618	0.00126	0.77744
Н	48	0.23215	0	0.76615	0.0017	0.76785
С	49	0.30957	1.99914	3.67085	0.02044	5.69043
С	50	-0.43407	1.99908	4.41674	0.01824	6.43407
Н	51	0.20978	0	0.78797	0.00225	0.79022
С	52	0.30985	1.99914	3.67066	0.02036	5.69015
С	53	-0.67414	1.99944	4.66367	0.01103	6.67414
Н	54	0.23179	0	0.76657	0.00163	0.76821
Н	55	0.22248	0	0.77621	0.0013	0.77752
Н	56	0.23226	0	0.76605	0.00169	0.76774
С	57	0.12972	1.99881	3.84853	0.02294	5.87028
С	58	-0.03049	1.99904	4.01326	0.01819	6.03049
С	59	-0.21513	1.99913	4.19881	0.01719	6.21513

Н	60	0.2128	0	0.78559	0.00161	0.7872
С	61	-0.21789	1.99922	4.2011	0.01757	6.21789
Н	62	0.2168	0	0.78179	0.00141	0.7832
С	63	-0.21739	1.99913	4.20094	0.01732	6.21739
Н	64	0.21323	0	0.78521	0.00156	0.78677
С	65	-0.03579	1.99904	4.01841	0.01834	6.03579
С	66	-0.63398	1.99944	4.62308	0.01146	6.63398
Н	67	0.22314	0	0.77502	0.00183	0.77686
С	68	-0.63026	1.99944	4.62001	0.01081	6.63026
Н	69	0.22904	0	0.76931	0.00165	0.77096
С	70	0.13037	1.99881	3.8478	0.02303	5.86963
С	71	-0.02924	1.99904	4.01225	0.01794	6.02924
С	72	-0.21435	1.99913	4.19837	0.01685	6.21435
Н	73	0.21257	0	0.78579	0.00164	0.78743
С	74	-0.21818	1.99922	4.20155	0.01741	6.21818
Н	75	0.21662	0	0.78198	0.0014	0.78338
С	76	-0.21782	1.99914	4.20164	0.01704	6.21782
Н	77	0.21326	0	0.78516	0.00158	0.78674
С	78	-0.03654	1.99904	4.01931	0.01819	6.03654
С	79	-0.63386	1.99944	4.62322	0.0112	6.63386
Н	80	0.22286	0	0.77528	0.00186	0.77714
С	81	-0.63019	1.99944	4.62008	0.01067	6.63019
Н	82	0.22867	0	0.76969	0.00164	0.77133
Н	83	0.22187	0	0.77619	0.00194	0.77813
Н	84	0.22138	0	0.77717	0.00145	0.77862
Н	85	0.22063	0	0.77804	0.00133	0.77937
Н	86	0.22455	0	0.7737	0.00176	0.77545
Н	87	0.22097	0	0.77707	0.00196	0.77903
Н	88	0.22133	0	0.77718	0.00148	0.77867
Н	89	0.22009	0	0.77859	0.00131	0.77991
Н	90	0.22354	0	0.77466	0.0018	0.77646

Н	91	0.21772	0	0.78094	0.00134	0.78228
Н	92	0.23487	0	0.76327	0.00187	0.76513
Н	93	0.2183	0	0.78037	0.00132	0.7817
Н	94	0.22404	0	0.77412	0.00184	0.77596
Н	95	0.21759	0	0.78105	0.00136	0.78241
Н	96	0.23533	0	0.76284	0.00184	0.76467
Н	97	0.21831	0	0.78036	0.00133	0.78169
Н	98	0.22389	0	0.77423	0.00188	0.77611
С	99	-0.59855	1.99942	4.58631	0.01282	6.59855
Н	100	0.20562	0	0.7925	0.00187	0.79438
Н	101	0.22314	0	0.77398	0.00288	0.77686
Н	102	0.21608	0	0.78177	0.00215	0.78392
С	103	-0.39567	1.99876	4.36515	0.03175	6.39567
С	104	-0.59955	1.99883	4.57193	0.02879	6.59955
С	105	-0.60228	1.99889	4.57698	0.02641	6.60228
С	106	-0.39955	1.99876	4.36918	0.03161	6.39955
С	107	-0.59791	1.99883	4.57013	0.02895	6.59791
С	108	-0.59617	1.99889	4.5707	0.02658	6.59617
С	109	-0.59858	1.99942	4.58619	0.01296	6.59858
Н	110	0.2042	0	0.79375	0.00205	0.7958
Н	111	0.22343	0	0.77381	0.00277	0.77657
Н	112	0.21776	0	0.78011	0.00213	0.78224
Н	113	0.26538	0	0.733	0.00162	0.73462
Н	114	0.27234	0	0.72558	0.00208	0.72766
Н	115	0.26563	0	0.73275	0.00161	0.73437
Н	116	0.27126	0	0.72671	0.00203	0.72874
Total		0.00000	179.89694	284.79409	1.30896	466.00000

Average charge on yttrium: 1.69

Total charge of the bound *p*-xylene excluding two methyl groups (C+H)/(C): -2.02/-3.19Average charge on nitrogen donors of the BDI ligand: -0.69

Atom	No.	Natural Charge	Core	Valence	Rydberg	Total	Natural Spin Density
Sm	1	1.21576	53.95759	6.3465	0.48015	60.78424	5.13626
0	2	-0.53232	1.99963	6.50743	0.02527	8.53232	0.00414
N	3	-0.65186	1.99903	5.62202	0.03081	7.65186	0.00141
N	4	-0.6449	1.99902	5.61437	0.03151	7.6449	-0.00356
С	5	-0.67324	1.99944	4.66277	0.01103	6.67324	-0.00051
Н	6	0.23164	0	0.76668	0.00168	0.76836	0.00016
Н	7	0.2218	0	0.77695	0.00125	0.7782	-0.00007
Н	8	0.22517	0	0.77322	0.00161	0.77483	0.00019
С	9	0.31818	1.99907	3.66196	0.02079	5.68182	0.0042
С	10	-0.44746	1.99907	4.42977	0.01863	6.44746	-0.00302
Н	11	0.20851	0	0.78959	0.0019	0.79149	0.00023
С	12	0.32074	1.99906	3.65972	0.02048	5.67926	0.00526
С	13	-0.673	1.99943	4.66249	0.01108	6.673	-0.00068
Н	14	0.22621	0	0.77216	0.00163	0.77379	0.00017
Н	15	0.22115	0	0.77755	0.00129	0.77885	-0.00011
Н	16	0.23363	0	0.76489	0.00148	0.76637	0.00019
С	17	0.13974	1.99869	3.83568	0.02589	5.86026	0.00567
С	18	-0.03405	1.99905	4.01599	0.01901	6.03405	-0.00039
С	19	-0.20805	1.99914	4.19268	0.01623	6.20805	0.00062
Н	20	0.2098	0	0.78856	0.00164	0.7902	-0.00001
С	21	-0.22233	1.99922	4.20619	0.01692	6.22233	-0.00112
Н	22	0.21403	0	0.78459	0.00138	0.78597	0.00004
С	23	-0.21368	1.99913	4.1979	0.01664	6.21368	0.00054
Н	24	0.20878	0	0.78964	0.00158	0.79122	-0.00002
С	25	-0.02752	1.99907	4.00866	0.01979	6.02752	-0.00011
С	26	-0.61817	1.99944	4.60745	0.01127	6.61817	0.00049
Н	27	0.21774	0	0.78027	0.00199	0.78226	0

Table. S11. Natural population analysis for 2-Sm (¹¹A).

С	28	-0.6206	1.99943	4.61082	0.01035	6.6206	0.00037
Н	29	0.23197	0	0.76576	0.00227	0.76803	0.0019
С	30	0.13419	1.9987	3.84085	0.02626	5.86581	0.00503
С	31	-0.02399	1.99906	4.00502	0.0199	6.02399	0.00172
С	32	-0.21602	1.99913	4.20037	0.01652	6.21602	-0.00079
Н	33	0.2078	0	0.79063	0.00156	0.7922	0.00002
С	34	-0.21695	1.99922	4.20073	0.017	6.21695	0.00135
Н	35	0.21158	0	0.78693	0.00149	0.78842	-0.00004
С	36	-0.20453	1.99914	4.18952	0.01586	6.20453	-0.00098
Н	37	0.20858	0	0.78965	0.00177	0.79142	0.00004
C	38	-0.03356	1.99905	4.01591	0.0186	6.03356	0.00176
C	39	-0.6237	1.99943	4.61337	0.0109	6.6237	0.00005
Н	40	0.23103	0	0.76669	0.00228	0.76897	0.00163
С	41	-0.61907	1.99944	4.6088	0.01083	6.61907	0.00058
Н	42	0.21662	0	0.7814	0.00199	0.78338	0.00016
С	43	-0.07093	1.99926	4.05529	0.01637	6.07093	0.00139
Н	44	0.22724	0	0.77045	0.00231	0.77276	0.00028
Н	45	0.18161	0	0.81623	0.00216	0.81839	0.0002
С	46	-0.43231	1.99946	4.42215	0.0107	6.43231	-0.0001
Н	47	0.22634	0	0.77223	0.00142	0.77366	-0.00009
Н	48	0.21288	0	0.78556	0.00156	0.78712	0.00001
С	49	-0.43515	1.99946	4.42557	0.01011	6.43515	0.00013
Н	50	0.22627	0	0.77231	0.00142	0.77373	-0.00002
Н	51	0.20943	0	0.78894	0.00163	0.79057	-0.00003
С	52	-0.07005	1.99931	4.05295	0.01779	6.07005	0.00187
Н	53	0.20087	0	0.79718	0.00195	0.79913	0.00016
Н	54	0.19316	0	0.80472	0.00212	0.80684	0.00024
Sm	55	1.21694	53.95728	6.36056	0.46522	60.78306	5.16754
0	56	-0.53572	1.99964	6.51225	0.02383	8.53572	0.00626
N	57	-0.64431	1.99906	5.61255	0.03271	7.64431	0.00039
Ν	58	-0.64939	1.99901	5.62012	0.03025	7.64939	-0.00247

С	59	-0.67473	1.99944	4.66422	0.01108	6.67473	-0.00072
Н	60	0.23284	0	0.76549	0.00168	0.76716	0.00026
Н	61	0.22045	0	0.77824	0.00131	0.77955	-0.00013
Н	62	0.22634	0	0.77209	0.00157	0.77366	0.00027
С	63	0.31664	1.99908	3.66348	0.0208	5.68336	0.00634
С	64	-0.44919	1.99906	4.43139	0.01874	6.44919	-0.00266
Н	65	0.20823	0	0.78986	0.00191	0.79177	0.00022
С	66	0.31856	1.99905	3.66172	0.02067	5.68144	0.00712
С	67	-0.67114	1.99943	4.6608	0.0109	6.67114	-0.00082
Н	68	0.22408	0	0.77428	0.00165	0.77592	0.00027
Н	69	0.22188	0	0.77687	0.00125	0.77812	-0.0001
Н	70	0.23234	0	0.76616	0.0015	0.76766	0.0003
С	71	0.1538	1.99875	3.82148	0.02598	5.8462	0.00329
С	72	-0.03915	1.99905	4.02076	0.01934	6.03915	0.00271
С	73	-0.20493	1.99914	4.18969	0.01611	6.20493	-0.00097
Н	74	0.20882	0	0.78942	0.00176	0.79118	0.00003
С	75	-0.22373	1.99921	4.20757	0.01695	6.22373	0.00215
Н	76	0.21203	0	0.78644	0.00153	0.78797	-0.00007
С	77	-0.21668	1.99914	4.20101	0.01654	6.21668	-0.00081
Н	78	0.20788	0	0.79049	0.00163	0.79212	0.00002
С	79	-0.03232	1.99905	4.01413	0.01915	6.03232	0.00178
С	80	-0.61915	1.99944	4.60831	0.0114	6.61915	0.00057
Н	81	0.2153	0	0.78266	0.00204	0.7847	0.00015
С	82	-0.62336	1.99943	4.61346	0.01046	6.62336	-0.00027
Н	83	0.23141	0	0.76673	0.00186	0.76859	0.00088
С	84	0.12499	1.99866	3.84861	0.02774	5.87501	0.00634
С	85	-0.02366	1.99907	4.00393	0.02066	6.02366	0.00158
С	86	-0.21322	1.99913	4.19749	0.01659	6.21322	0.00002
Н	87	0.20899	0	0.78947	0.00153	0.79101	0
С	88	-0.21772	1.99922	4.20152	0.01699	6.21772	0.00011
Н	89	0.21325	0	0.78538	0.00137	0.78675	0

	1						
С	90	-0.20642	1.99914	4.19121	0.01607	6.20642	0.0002
Н	91	0.20941	0	0.78896	0.00164	0.79059	0.00001
С	92	-0.03509	1.99906	4.01617	0.01986	6.03509	0.00147
С	93	-0.61972	1.99943	4.60949	0.0108	6.61972	0.0003
Н	94	0.2309	0	0.76682	0.00228	0.7691	0.00219
С	95	-0.61956	1.99944	4.60942	0.01069	6.61956	0.00072
Н	96	0.21775	0	0.78027	0.00198	0.78225	0.00012
С	97	-0.07212	1.99926	4.05638	0.01647	6.07212	0.00112
Н	98	0.2278	0	0.76992	0.00228	0.7722	0.00031
Н	99	0.18212	0	0.81569	0.00219	0.81788	0.00006
С	100	-0.43339	1.99946	4.42331	0.01062	6.43339	0.00005
Н	101	0.2265	0	0.77206	0.00144	0.7735	-0.00005
Н	102	0.21362	0	0.78481	0.00157	0.78638	0.00001
С	103	-0.43509	1.99946	4.42537	0.01026	6.43509	0.00012
Н	104	0.22643	0	0.77218	0.00139	0.77357	-0.00009
Н	105	0.20893	0	0.78942	0.00164	0.79107	-0.00003
С	106	-0.06871	1.99931	4.05203	0.01737	6.06871	0.00146
Н	107	0.20213	0	0.79599	0.00188	0.79787	0.00006
Н	108	0.19199	0	0.80589	0.00211	0.80801	0.00014
Н	109	0.21919	0	0.77935	0.00146	0.78081	0.00009
Н	110	0.22482	0	0.7725	0.00268	0.77518	0.00256
Н	111	0.21958	0	0.77851	0.00191	0.78042	-0.00014
Н	112	0.21494	0	0.78375	0.00131	0.78506	0.00002
Н	113	0.21612	0	0.78257	0.00131	0.78388	0.00007
Н	114	0.22551	0	0.77269	0.0018	0.77449	0.00005
Н	115	0.22804	0	0.76927	0.00269	0.77196	0.00227
Н	116	0.21789	0	0.78073	0.00139	0.78211	0.00009
Н	117	0.21776	0	0.78081	0.00143	0.78224	0.00008
Н	118	0.22535	0	0.77187	0.00278	0.77465	0.00308
Н	119	0.21956	0	0.77849	0.00195	0.78044	0.00005
Н	120	0.21375	0	0.78491	0.00134	0.78625	0.00006

Н	121	0.21641	0	0.78231	0.00128	0.78359	0.00011
Н	122	0.22623	0	0.77201	0.00176	0.77377	0.00005
Н	123	0.22901	0	0.76855	0.00244	0.77099	0.00175
Н	124	0.2181	0	0.78057	0.00133	0.7819	0.00005
С	125	-0.5386	1.99824	4.50304	0.03732	6.5386	-0.06323
Н	126	0.25973	0	0.73846	0.00181	0.74027	0.0033
C	127	-0.53991	1.99824	4.50254	0.03913	6.53991	-0.05277
Н	128	0.2719	0	0.72616	0.00194	0.7281	0.00328
С	129	-0.51719	1.99822	4.48267	0.0363	6.51719	-0.073
Н	130	0.28342	0	0.7146	0.00198	0.71658	0.00382
С	131	-0.53274	1.99827	4.49557	0.0389	6.53274	-0.07569
Н	132	0.25822	0	0.73979	0.00199	0.74178	0.00435
С	133	-0.52758	1.99826	4.49117	0.03815	6.52758	-0.06413
Н	134	0.27025	0	0.72783	0.00192	0.72975	0.00359
С	135	-0.52189	1.99826	4.48499	0.03863	6.52189	-0.07828
Н	136	0.27924	0	0.71883	0.00194	0.72076	0.00398
Tot	al	0	231.85957	341.84428	2.29615	576	10

Average spin density on samarium: 5.15

Average charge on samarium: 1.22

Total charge of the bound benzene (C+H)/(C): -1.56/-3.18

Average charge on nitrogen donors of the BDI ligand: -0.65

Average charge on oxygen of THF: -0.53

Atom	No.	Natural Charge	Core	Valence	Rydberg	Total	Natural Spin Density
Sm	1	1.44316	53.95481	6.10745	0.49458	60.55684	5.09428
0	2	-0.64288	1.99964	6.6146	0.02864	8.64288	0.00644
N	3	-0.74173	1.99906	5.7088	0.03387	7.74173	0.00403
N	4	-0.74019	1.99906	5.70406	0.03706	7.74019	0.00607
С	5	-0.7165	1.99913	4.70685	0.01052	6.7165	-0.00059
Н	6	0.24615	0	0.75214	0.00171	0.75385	0.00054
Н	7	0.24213	0	0.75663	0.00124	0.75787	-0.00006
Н	8	0.25445	0	0.74404	0.0015	0.74555	0.00053
С	9	0.32208	1.99854	3.65973	0.01965	5.67792	0.01233
С	10	-0.45096	1.99869	4.43443	0.01783	6.45096	-0.00641
Н	11	0.23193	0	0.76647	0.00161	0.76807	0.00027
С	12	0.31863	1.99855	3.66327	0.01955	5.68137	0.01182
С	13	-0.71746	1.99913	4.70777	0.01057	6.71746	-0.0006
Н	14	0.25396	0	0.74445	0.00159	0.74604	0.00055
Н	15	0.24189	0	0.75686	0.00125	0.75811	-0.00006
Н	16	0.24718	0	0.7512	0.00161	0.75282	0.0005
С	17	0.15229	1.99833	3.82622	0.02316	5.84771	0.00375
С	18	-0.04581	1.99869	4.02896	0.01816	6.04581	0.00166
С	19	-0.22884	1.9988	4.213	0.01704	6.22884	-0.00002
Н	20	0.23613	0	0.76211	0.00176	0.76387	0
С	21	-0.23939	1.99887	4.22286	0.01766	6.23939	0.00013
Н	22	0.23849	0	0.75992	0.0016	0.76151	0
С	23	-0.23334	1.99881	4.2177	0.01683	6.23334	-0.00012
Н	24	0.23604	0	0.76224	0.00172	0.76396	0
С	25	-0.0559	1.99868	4.03885	0.01836	6.0559	0.00153
С	26	-0.66047	1.99917	4.64853	0.01277	6.66047	-0.00052
Н	27	0.23499	0	0.76133	0.00368	0.76501	0.00241

Table. S12. Natural population analysis for 3-Sm (¹¹A).

С	28	-0.66611	1.99916	4.65466	0.01228	6.66611	0.00061
Н	29	0.23871	0	0.75962	0.00168	0.76129	0.00008
С	30	0.1651	1.99836	3.81394	0.02261	5.8349	0.00256
С	31	-0.05047	1.99868	4.03412	0.01767	6.05047	0.00157
С	32	-0.23182	1.99881	4.21613	0.01687	6.23182	-0.00021
Н	33	0.23459	0	0.76367	0.00174	0.76541	-0.00001
С	34	-0.24697	1.99887	4.23067	0.01743	6.24697	-0.00009
Н	35	0.2368	0	0.76159	0.00161	0.7632	0.00001
С	36	-0.23818	1.99881	4.22211	0.01727	6.23818	-0.00016
Н	37	0.23392	0	0.76433	0.00175	0.76608	0
С	38	-0.04467	1.9987	4.02825	0.01772	6.04467	0.00123
С	39	-0.66918	1.99916	4.65711	0.01291	6.66918	0.0008
Н	40	0.23914	0	0.7591	0.00176	0.76086	0.00003
С	41	-0.66478	1.99917	4.65291	0.01269	6.66478	0.00036
Н	42	0.2405	0	0.75608	0.00342	0.7595	0.00156
С	43	-0.06643	1.99884	4.0495	0.0181	6.06643	0.00094
Н	44	0.23389	0	0.76311	0.003	0.76611	0.00014
Н	45	0.21015	0	0.78653	0.00332	0.78985	0.00018
С	46	-0.49217	1.99906	4.47851	0.0146	6.49217	0.00004
Н	47	0.25217	0	0.74614	0.00169	0.74783	-0.00014
Н	48	0.23761	0	0.75984	0.00255	0.76239	0.00001
С	49	-0.4933	1.99906	4.47969	0.01455	6.4933	0.00007
Н	50	0.25175	0	0.74659	0.00167	0.74825	-0.00001
Н	51	0.2378	0	0.75978	0.00242	0.7622	0.00001
С	52	-0.06692	1.99889	4.04983	0.01819	6.06692	0.00108
Н	53	0.23145	0	0.76522	0.00333	0.76855	0.00047
Н	54	0.21344	0	0.78317	0.0034	0.78656	0.00016
Sm	55	1.32043	53.95364	6.1752	0.55072	60.67957	5.20124
0	56	-0.63342	1.99963	6.60898	0.02481	8.63342	0.00731
N	57	-0.7106	1.99902	5.66931	0.04227	7.7106	-0.00418
Ν	58	-0.7437	1.99901	5.70686	0.03783	7.7437	0.00362
С	59	-0.71634	1.99913	4.70687	0.01033	6.71634	-0.00077
---	----	----------	---------	---------	---------	---------	----------
Н	60	0.24671	0	0.7517	0.00159	0.75329	0.00014
Н	61	0.24282	0	0.75587	0.00132	0.75718	-0.00011
Н	62	0.25342	0	0.74508	0.0015	0.74658	0.00028
С	63	0.33379	1.99856	3.64753	0.02013	5.66621	0.00723
С	64	-0.46036	1.9987	4.4437	0.01795	6.46036	-0.00057
Н	65	0.23429	0	0.76416	0.00156	0.76571	0.00016
С	66	0.31886	1.99854	3.66264	0.01996	5.68114	0.00355
С	67	-0.71388	1.99912	4.70425	0.01051	6.71388	-0.00057
Н	68	0.25251	0	0.74596	0.00153	0.74749	0.00013
Н	69	0.24156	0	0.75718	0.00126	0.75844	-0.00005
Н	70	0.24766	0	0.75084	0.0015	0.75234	0.00012
С	71	0.17102	1.99834	3.80714	0.02349	5.82898	0.00389
С	72	-0.03971	1.99869	4.02338	0.01764	6.03971	0.00234
С	73	-0.23995	1.99882	4.22388	0.01725	6.23995	-0.00069
Н	74	0.23303	0	0.76519	0.00178	0.76697	0.00001
С	75	-0.2525	1.99888	4.23576	0.01786	6.2525	0.0012
Н	76	0.23453	0	0.76378	0.00169	0.76547	-0.00004
С	77	-0.23389	1.99881	4.21862	0.01646	6.23389	-0.00008
Н	78	0.23482	0	0.76347	0.00171	0.76518	0
С	79	-0.0485	1.99867	4.03139	0.01844	6.0485	0.00143
С	80	-0.66787	1.99916	4.65654	0.01216	6.66787	0.00043
Н	81	0.24232	0	0.75454	0.00314	0.75768	0.0014
С	82	-0.66639	1.99917	4.6542	0.01303	6.66639	0.00068
Н	83	0.2407	0	0.75771	0.00159	0.7593	0.00007
С	84	0.16113	1.99831	3.81813	0.02243	5.83887	0.00436
С	85	-0.05755	1.99861	4.03939	0.01955	6.05755	0.00149
С	86	-0.23015	1.9988	4.21411	0.01724	6.23015	0.0007
Н	87	0.23424	0	0.76411	0.00165	0.76576	-0.00002
С	88	-0.24249	1.99887	4.22609	0.01753	6.24249	0.00024
Н	89	0.23747	0	0.76094	0.00159	0.76253	-0.00001

С	90	-0.23004	1.99882	4.21424	0.01699	6.23004	0.00014
Н	91	0.23566	0	0.76257	0.00177	0.76434	-0.00002
С	92	-0.04597	1.99869	4.03016	0.01712	6.04597	0.00052
С	93	-0.65834	1.99909	4.64467	0.01457	6.65834	-0.00078
Н	94	0.24392	0	0.75439	0.00169	0.75608	0.00021
С	95	-0.67503	1.99916	4.66455	0.01132	6.67503	0.00005
Н	96	0.2467	0	0.75096	0.00234	0.7533	0.00035
С	97	-0.07169	1.99881	4.05455	0.01833	6.07169	0.00119
Н	98	0.24192	0	0.75484	0.00324	0.75808	0.00002
Н	99	0.20684	0	0.79004	0.00312	0.79316	0.00019
С	100	-0.48878	1.99906	4.47507	0.01465	6.48878	0.00006
Н	101	0.25371	0	0.7446	0.00169	0.74629	-0.00003
Н	102	0.23794	0	0.75985	0.00221	0.76206	0.00003
С	103	-0.49516	1.99906	4.48167	0.01443	6.49516	0.00012
Н	104	0.25398	0	0.74448	0.00154	0.74602	-0.00001
Н	105	0.23958	0	0.75793	0.00249	0.76042	0
С	106	-0.07283	1.99889	4.05537	0.01857	6.07283	0.00205
Н	107	0.22931	0	0.76785	0.00284	0.77069	0.00001
Н	108	0.21024	0	0.7862	0.00356	0.78976	0.00029
Н	109	0.24688	0	0.75133	0.0018	0.75312	0.00005
Н	110	0.24004	0	0.75865	0.00131	0.75996	0.00008
Н	111	0.23957	0	0.75902	0.00141	0.76043	0.00002
Н	112	0.24158	0	0.75539	0.00303	0.75842	0.00146
Н	113	0.23942	0	0.75914	0.00145	0.76058	0.00002
Н	114	0.24058	0	0.75589	0.00353	0.75942	0.00183
Н	115	0.24695	0	0.75132	0.00174	0.75305	0.00002
Н	116	0.23774	0	0.7609	0.00136	0.76226	0.00005
Н	117	0.24389	0	0.75439	0.00172	0.75611	0.00014
Н	118	0.23803	0	0.76061	0.00136	0.76197	0.00004
Н	119	0.24105	0	0.75747	0.00148	0.75895	0.00002
Н	120	0.23943	0	0.75745	0.00312	0.76057	0.00087

Н	121	0.24739	0	0.75122	0.00139	0.75261	-0.00017
Н	122	0.22809	0	0.76605	0.00586	0.77191	0.00358
Н	123	0.24071	0	0.75722	0.00207	0.75929	0.00005
Н	124	0.24025	0	0.75827	0.00148	0.75975	-0.00005
С	125	-0.54578	1.99827	4.50125	0.04625	6.54578	-0.08266
Н	126	0.26783	0	0.72915	0.00302	0.73217	0.00376
С	127	-0.33276	1.99813	4.28626	0.04837	6.33276	-0.12074
С	128	-0.60165	1.99824	4.55203	0.05138	6.60165	-0.00459
Н	129	0.26586	0	0.73023	0.00391	0.73414	0.00237
С	130	-0.57457	1.99941	4.56026	0.0149	6.57457	0.00938
Н	131	0.22145	0	0.77392	0.00463	0.77855	-0.00862
Н	132	0.23068	0	0.76697	0.00235	0.76932	-0.00167
Н	133	0.21096	0	0.78703	0.00201	0.78904	-0.00333
С	134	-0.54178	1.99827	4.49737	0.04614	6.54178	-0.05727
Н	135	0.27249	0	0.7236	0.00391	0.72751	0.00297
С	136	-0.31204	1.99822	4.25891	0.0549	6.31204	-0.12926
С	137	-0.58373	1.99832	4.53602	0.04939	6.58373	-0.00318
Н	138	0.2638	0	0.73291	0.00329	0.7362	0.00193
С	139	-0.57566	1.9994	4.56031	0.01595	6.57566	0.01165
Н	140	0.21797	0	0.77991	0.00212	0.78203	-0.00479
Н	141	0.23157	0	0.76589	0.00254	0.76843	-0.00184
Н	142	0.19577	0	0.80073	0.0035	0.80423	-0.01121
Tot	al	0	235.83384	353.58819	2.57797	592	10

Average spin density on samarium: 5.15

Average charge on samarium: 1.38

Total charge of the bound *p*-xylene excluding two methyl groups (C+H)/(C): -1.69/-2.92

Average charge on nitrogen donors of the BDI ligand: -0.73

Average charge on oxygen of THF: -0.64

Cpd.	avg. M	Total (C+H)/(C) of the bound ring (excluding Me)	avg. N	avg. O	avg. Spin density of M
2-Y	1.57	-1.87/-3.49	-0.67	/	/
3-Y	1.69	-2.02/-3.19	-0.69	/	/
2-Sm (¹¹ A)	1.22	-1.56/-3.18	-0.65	-0.53	5.15
3-Sm (¹¹ A)	1.38	-1.69/-2.92	-0.73	-0.64	5.15

Table. S13. Calculated natural charges for 2-M and 3-M (M = Y and Sm).

Complexes	Avg. M–N	Avg. M–O	Avg. M–C	Avg. C–C for the bound arene
2-Y	0.23	/	0.25	1.12
3-Y	0.20	/	0.22	1.12
2-Sm (¹¹ A)	0.22	0.16	0.27	1.12
3-Sm (¹¹ A)	0.19	0.14	0.24	1.11

Table. S14. Wiberg bond index for **2-M** and **3-M** (M = Y and Sm).

S7. References

- 1. T. X. Gentner, B. Rösch, G. Ballmann, J. Langer, H. Elsen and S. Harder, *Angew. Chem. Int. Ed.*, 2019, **58**, 607-611.
- 2. B. Rösch, T. X. Gentner, J. Langer, C. Färber, J. Eyselein, L. Zhao, C. Ding, G. Frenking and S. Harder, *Science*, 2021, **371**, 1125-1128.
- 3. D. E. Bergbreiter and J. M. Killough, J. Am. Chem. Soc., 1978, 100, 2126-2134.
- 4. K. Izod, S. T. Liddle and W. Clegg, *Inorg. Chem.*, 2004, **43**, 214-218.
- 5. G. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3-8.
- 6. G. Sheldrick, *Acta Crystallogr. Sect. A*, 2008, **64**, 112-122.
- 7. G. Sheldrick, Acta Crystallogr. Sect. C-Struct. Chem., 2015, 71, 3-8.
- 8. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 9. A. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.
- 10. A. Spek, Acta Crystallogr. Sect. C-Struct. Chem., 2015, 71, 9-18.
- 11. F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73-78.
- 12. C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- 13. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 14. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, **32**, 1456-1465.
- 15. E. v. Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1993, 99, 4597-4610.
- 16. D. A. Pantazis and F. Neese, J. Chem. Theory Comput., 2009, 5, 2229-2238.
- 17. J. D. Rolfes, F. Neese and D. A. Pantazis, J. Comput. Chem., 2020, 41, 1842-1849.
- 18. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297-3305.
- 19. E. D. Glendening, C. R. Landis and F. Weinhold, J. Comput. Chem., 2013, 34, 1429-1437.
- 20. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38.
- 21. T. Lu and F. Chen, J. Comput. Chem., 2012, **33**, 580-592.