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DETAILS ON MATERIALS AND MICROGEL SYNTHESIS

N -isopropylacrylamide (NIPAM) (Sigma-Aldrich, St. Louis, MO, USA), purity 97%, and deuterated N -
isopropylacrylamide (d-10) (d-NIPAM) (Polymer Source, Inc, Quebec, Canada), purity ≥ 98%, were puri�ed through
recrystallized from hexane, dried under reduced pressure (0.01 mmHg) at room temperature and stored at 253 K.
N,N'-methylenebisacrylamide (BIS) (Sigma-Aldrich, St. Louis, MO, USA), electrophoresis grade, was puri�ed through
recrystallization from methanol, dried under reduced pressure (0.01 mmHg) at room temperature and stored at 253 K.
Sodium dodecyl sulphate (SDS) (Sigma-Aldrich, St. Louis, MO, USA), purity 98%, and potassium persulfate (KPS)
(Sigma-Aldrich, St. Louis, MO, USA), purity 98%, were used as received. Ultrapure water (resistivity: 18.2 MW/cm
at room temperature) was obtained with Arium® pro Ultrapure water puri�cation Systems, Sartorius Stedim. All
other solvents (Sigma Aldrich RP grade) were used as received. Dialysis membrane, SpectraPor® 1, MWCO 6-8 kDa
(Spectrum Laboratories, Inc., Piscataway, NJ, USA) was soaked in distilled water for 2 h and then thoroughly rinsed
before use.
Two microgels, a protiated one and a deuterated one, were synthesized with the same procedure but with di�erent

monomers, NIPAM and d-NIPAM, respectively.
For the synthesis of the protiated microgel, NIPAM (0.137 M) was solubilized in 1560 mL of ultrapure water in a

2 L four-neck jacketed reactor in presence of BIS (1.87 mM) as crosslinker and SDS (7.82 mM) as surfactant. After
deoxygenation by bubbling nitrogen for 1 h, the solution was heated at 343 K and the initiator KPS (2.44 mM,
previously dissolved in 10 mL of deoxygenated water) was added to start the polymerization, carried out for 4 hours.
The �nal dispersion was puri�ed by dialysis (MWCO 6�8 kDa) for 2 weeks with several changes of distilled water
and then concentrated by lyophilisation up to 10 wt % in H2O. PNIPAM dispersion in D2O was prepared by two
cycles of lyophilisation to dryness and re-dispersion in deuterium oxide (10 wt %) to avoid H2O contamination of the
samples.
The synthesis of the deuterated microgel was carried out in a 250 mL four-neck jacketed reactor by replacing NIPAM

with an equimolar amount of d-NIPAM, dissolved in 125 mL of ultrapure water, and keeping the concentrations of
all the other reactants the same. The puri�cation of the dispersion and the concentration by lyophilization up to 10
wt % in H2O was carried out in a similar manner to the protiated microgel. For both microgels, non-deuterated BIS
was used as crosslinker, by assuming its concentration negligible with respect to the monomer one.
Sample at 40, 50 and 60 wt % were prepared directly in the aluminium cells for the EINS experiments, by evaporation

of the exceeding solvent of the dispersion at 10 wt % in dry atmosphere using a desiccator under moderate vacuum
(∼ 10 mmHg) and weighting the samples until the �nal concentrations was reached.
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DETAILS ON ELASTIC INCOHERENT NEUTRON SCATTERING EXPERIMENTS

Representative examples of the measured I(Q; 0) on IN16B for D-PNIPAM in H2O at 60 wt % are shown in Fig. S1.
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FIG. S1. I(Q; 0) measured on IN16B for D-PNIPAM in H2O at 60 wt % as a function of temperature.

DETAILS ON MOLECULAR DYNAMICS SIMULATIONS

All-atom molecular dynamics simulations of PNIPAM microgels suspensions at PNIPAM mass fractions of 40 and
60% (w/w) were performed following a similar procedure. For each system, equilibration was �rst carried out at
293 K in a pressure bath at 1 bar up to a constant density value, i.e. tot-drift lower than 2× 10−3 g cm−3 over 20 ns.
A similar equilibration protocol was applied at each temperature explored. The leapfrog integration algorithm was
employed with a time step of 2 fs. The length of bonds involving hydrogen atoms was kept �xed using the LINCS
algorithm. Cubic periodic boundary conditions and minimum image convention were applied.
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WATER AND PNIPAM DYNAMICS FROM MOLECULAR DYNAMICS SIMULATIONS

To probe the occurrence of the low temperature dynamical transition in the numerical simulations of microgels, we
�rst monitored the mean squared displacement (MSD). Fig. S2 shows the MSDs calculated for PNIPAM hydrogen
atoms at the resolution time τ=1800 ps of IN16B for the simulations of PNIPAM network at a concentration 60 wt
% and it compares them to the numerical and experimental MSDs reported in Ref. [S1] for PNIPAM linear chains
in the same experimental conditions. The linear �tting representation, which is conventionally used for proteins, is
also illustrated in Fig. S2. The linear representation appears compatible with the interpretation that a dynamical
transition occurs for both linear chains and polymer network at Td ∼ 225 K.
For completeness, Fig. S3 reports the time dependence of the MSDs calculated individually for water and PNIPAM

in the simulations of PNIPAM 60 wt % as a function of temperature. We observe that for a large temperature range
water can reach a di�usive regime, even at the resolution time of 1800 ps. Di�erently, within the entire explored time
window, PNIPAM never reaches a di�usive regime.

TABLE S1. Comparison between the transition
temperatures Td and Tm obtained from EINS mea-
surements on the spectrometer IN16B.

Sample Td (K) Tm (K)

D-PNIPAM in H2O 60 wt % 209.0±0.6 264.6±0.1
H-PNIPAM in H2O 60 wt % 223.2±0.6 264.4±0.6
H-PNIPAM in D2O 60 wt % 227.7±0.8 268.5±0.2
Td, Tm, and error bars were determined from the �t of

the integrated elastic intensity as a function of tempera-

ture.
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FIG. S2. Comparison between the numerical MSDs calculated at 1800 ps for the polymer hydrogen atoms in the simulations
of PNIPAM network 60 wt% (green circles) with the numerical (pink diamonds) and experimental (blue triangles) reported at
the same conditions for PNIPAM linear chains in ref [S1]. The transition temperature obtained by applying the conventional
linear �tting procedure on the experimental data (black lines) is marked with an arrow. Error bars amount to one standard
deviation and, when not visible, are within the symbol size.
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FIG. S3. Time evolution of the numerical mean squared displacement of hydrogen atoms as calculated for A) PNIPAM and B)
water in the simulations of PNIPAM 60 wt %. Data are shown for the entire temperature range explored 188 K < T < 293 K.
The vertical dashed lines marks the MSD values at 1800 ps.
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CHARACTERIZATION OF MICROGELS NETWORK MESH SIZE

To characterize the structure of PNIPAM microgels and get information on the internal architecture, we have
measured the form factor P (Q) by performing small angle neutron scattering experiments on protiated PNIPAM
microgels in deuterated water at low polymer concentration ∼1% wt, as reported in Fig. S4 [S2]. To have an estimate
of the mesh size of the polymer network we �tted the high-Q decay of the form factor using the Lorentzian form [S3]:

P (q) ∝ 1

[1 +
Df+1

3 ξ2q2]Df/2
(S1)

where Df is the fractal dimension of the correlated domains and ξ is the length over which correlation �uctuations
are spatially correlated. The resulting �tting parameters are Df = 1.4 and ξ = 100± 20, the latter being the length
over which correlation �uctuations are spatially correlated in the fuzzy corona of the microgels [S4]. We remark that
this is a measurement of the larger domains existing in the microgel corona at very low polymer concentrations, we
can expect that in the interior of the microgels at 60% wt, investigated in the present manuscript, the resulting mesh
size will be even smaller than this value. Of course, these are di�cult measurements, but a con�rmation of this comes
from the study of Houston et al [S5], where they measure the form factors of microgels in a sea of deuterated polymer
chains and report a value of the mesh size which decreases with polymer concentration by roughly 30%. Hence we can
expect that a realistic mesh size of the corona is of less than 10 nm, even smaller at the interior of the microgel. Such
a heterogeneous environment can then be easily thought to act as a very e�cient con�nement for water molecules.

FIG. S4. Measured form factor of dilute samples of protiated PNIPAM microgels in D2O (gray circles) and corresponding �ts
(blue line).
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