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1. The model evaluation metrics

To evaluate the model’s performance, we use four main metrics widely used to 
assess.
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Among these equations,  and  denote the predicted value and 𝑦𝑝𝑟𝑒𝑑,𝑖 𝑦𝑒𝑥𝑝,𝑖

experimental value of sample i, respectively.  and  represent the average 𝑦𝑝𝑟𝑒𝑑 𝑦𝑒𝑥𝑝

value of predicted values and experimental values, respectively. MAE is the mean 

absolute error. RMSE is the root mean square error. R2 is the coefficient of 

determination, with a maximum value of 1. And the closer R2 is to 1, the better the fit. 

r is the Pearson correlation efficient, with a maximum value of 1. And the closer r is to 

1, the more correlated the predicted values are with the experimental values. In 

general, if MAE and RMSE are smaller, meanwhile, R2 and r are closer to 1, then the 

model performs better.



2. Details of experiment characterizations

1H NMR spectra were recorded on a Bruker Avance II-400 MHz spectrometer at 

400 MHZ with DMSO-d6 as the solvent and tetramethylsilane (TMS) as the internal 

reference. 13C NMR spectrum was recorded on a Bruker Avance III-800 MHz 

spectrometer at 200 MHZ with DMSO-d6 as the solvent and tetramethylsilane (TMS) 

as the internal reference. High resolution mass spectrometry (HRMS) spectrum was 

measured on a Q-TOF Premier ESI mass spectrometer (Micromass, Manchester, UK). 

Fluorescence spectra were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 

fluorescence spectrometer. UV-Vis absorption spectra were obtained on a UV 2600 

spectrophotometer. The doped films of compounds were spin-coated from their 

corresponding 1,2-dichloroethane solutions with a concentration of 10 mg mL-1 at a 

speed of 1500 rpm on quartz substrates for 30 s. The absolute PLQY of the film sample 

were determined on a HORIBA Jobin Yvon Fluorolog-3 fluorescence spectrometer 

equipped with an integrating sphere (IS80 from Labsphere) and a digital photometer 

(S370 from UDT) under ambient conditions.

3. Quantum mechanics (QM) calculation

For the QM calculation, we performed the conformer search using Open Babel 

software with MMFF94 force field. The vertical transitions were considered for the 

excited state properties. Considering the solvent environment, we adopted the 

polarizable continuum model (PCM) with Gaussian 09 software for all the quantum 

chemistry calculations in this work, including optimizations of the ground state and S1 

state. Concretely, we optimized the ground state (S0) with B3LYP hybrid functional and 

6-31G(d) basis set first. Then S1 state was calculated using time-dependent density 

functional theory (TD-DFT) with CAM-B3LYP/6-31G(d) method. In addition, the S1 

state was also optimized at CAM-B3LYP/6-31G(d) level. All the QM calculations were 

performed by Gaussian 09 package.1



4. Supporting tables and figures

Table S1. The ablation experiment for impact of each state feature on the model 
performance.a

MPNN MPNN-RB MPNN-NO MPNN-AA MPNN-Al MPNN-Ar MPNN-State

λAbs 12.23 11.81 10.90 10.73 11.96 11.06 9.97

λEmi 16.83 14.79 15.04 15.45 14.52 15.34 14.55

FWHM 11.43 11.10 11.19 11.24 11.08 10.90 10.24

PLQY 0.131 0.131 0.126 0.123 0.123 0.128 0.120

aThe evaluation metric is mean absolute error (MAE). For the absorption, emission and FWHM, the unit 
is nm. MPNN denotes the conventional MPNN architecture. MPNN-RB denotes MPNN coupled with the 
RotatableBond feature. MPNN-NO denotes MPNN coupled with the Fr_NO feature. MPNN-AA denotes 
MPNN couple with the Fr_AromAtoms feature. MPNN-Al denotes MPNN coupled with the 
AliphaticRings feature. MPNN-Al denotes MPNN coupled with the AromaticRings feature. MPNN-State 
represents the MPNN model coupled with all the five state features.

In the work, we chose the five state features based on the experimental findings. 

Specifically, the experiments reported that the spiral structures, aromaticity, and 

molecular rings play important roles in the four optical properties.2–4 Thus, we 

selected the number of rotatable bonds (RotatableBond), the fraction of nitrogen and 

oxygen (Fr_NO), the fraction of aromatic atoms (Fr_AromAtoms), the number of 

aliphatic rings (AliphaticRings), and the number of aromatic rings (AromaticRings) as 

state features to characterize the three important structure factors. In order to 

evaluate impacts of the five state features, we compared the prediction performances 

of MPNN separately coupled with the five different state features on the four optical 

properties. It can be seen from Table S1 that each state feature improves the 

prediction performance with respect to the pure MPNN architecture, as evidenced by 



lower MAE. These ablation experiment confirms the effectiveness of the five state 

features in improving the model prediction performance. After fusing all the five state 

features into MPNN (i.e., MPNN-State), the model achieves the best performance with 

respect to any single state function, showcasing the necessity of considering five state 

features.

Table S2. The similarity comparison among the five datasets based on duplicates.a

Datasets Deep4Chem ChemFluor SMFluo1 BODIPYs JCIM_Abs

Deep4Chem / 0 0 0 16585

ChemFluor 0 / 0 4166 4170

SMFluo1 0 11 / 0 0

BODIPYs 0 4166 0 / 4166

JCIM_Abs 16585 4170 0 4166 /

a The optical properties are not only related to the emitter, but also influenced by the solvent. And all 
the experimental data of these five datasets were measured in different solvents. Thus, we should 
consider both the emitter SMILES and the solvent SMILES to assess the difference among the five 
datasets. Herein, following the method of removing any dye–solvent pairs with duplicate 
measurements proposed by Greenman et al., 5 we find out any emitter–solvent pairs with duplicate 
measurements among these five datasets. Deep4Chem, ChemFluor, and SMFluo1 do not have any 
duplicates, indicating they are completely different datasets. BODIPYs and JCIM_Abs datasets are 
combined datasets, in which some data are aggregated from Deep4Chem and ChemFluor. BODIPYs and 
JCIM_Abs individually contain nearly 13300 and 27000 samples, which exhibit approximate 1/3 and 1/2 
duplicates with respect to ChemFluor and Deep4Chem, respectively, thus still maintaining acceptable 
differences in data.

Table S3. The Pearson correlation coefficients between the computational values and the 
experimental ones for the new molecule PPI-2TPA.a 

Pearson correlation coefficients Abs_exp Emi_exp

Predicted 0.89 0.99

Calculated 0.00 0.81

aPredicted and Calculated denote the results from our SubOptGraph and QM, respectively. 
Abs_exp and Emi_exp denote experimental absorption and emission wavelengths for PPI-2TPA, 
respectively. It can be seen that the predicted values have significantly higher correlation 



coefficients with the experimental values than the calculated ones by QM, further confirming that 
our model can better predict the new molecule PPI-2TPA than the QM calculation. 



Fig. S1 The similarity histogram between 179 blue OLED emitters of the external test set and 
those in the training set of Deep4Chem for (a) the absorption wavelength. (b) Emission 
wavelength. (c) FWHM. (d) PLQY. We utilized the RDKit package to calculate the average 
values of Taminato similarity between every OLED emitter and those in the training set of 
Deep4Chem, based on the Morgan fingerprints. It can be seen that all the similarities are 
below 0.17, indicating low similarity between the OLED emitters and those emitters in the 
training set of Deep4Chem.

Fig. S2 The similarity histogram between PPI-2TPA and the 410 unique blue OLED emitters 
from the external test set (238 blue emitter/solvent combinations) and the training set of blue 
OLED emitters (1114 blue emitter/solvent combinations). We calculated the Taminato 
similarity between PPI-2TPA and these blue OLED emitters by using RDKit and the Morgan 



fingerprints. The similarities are below 0.45 with majority ranging from 0.1 to 0.25, indicating 
that PPI-2TPA has a different structure from these OLED molecules.

Fig. S3 1H NMR spectrum of PPI-2TPA

Fig. S4 13C NMR spectrum of PPI-2TPA 



Fig. S5 HRMS spectrum of PPI-2TPA

Fig. S6 Learning curves of different models for (a) the absorption wavelength, (b) the emission 
wavelength, (c) FWHM, and (d) PLQY. The mean absolute error (MAE) is served as the 
evaluation metric. MPNN-State, MPNN-Sub and MPNN-Edge denote MPNN separately 
coupled with the state function, the subgraph feature learning and edge feature updating.

The data was divided into the training and testing set in a ratio of 8 : 2. For the training 

set, we increased its size to assess the performance of the five models on the testing 

set. With increasing the percentage of training data from 0.2 to 1.0, all the five models 

perform better, in which SubOptGraph achieves the best performance. In addition, 

the performance of five models approach convergence when the training data is 

increased to be 100% percentage, suggesting that the data splitting of the 8:2 ratio is 



reasonable for the model training.
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